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Abstract. This paper describes the implementation and
evaluation of a pre-operational three dimensional variational
(3DVAR) data assimilation system for the North/Baltic Sea.
Univariate analysis for both temperature and salinity is ap-
plied in a 3DVAR scheme in which the horizontal compo-
nent of the background error covariance is modeled by an
isotropic recursive filter (IRF) and the vertical component
is represented by dominant Empirical Orthogonal Functions
(EOFs). Observations of temperature and salinity (T/S) pro-
files in the North/Baltic Sea are assimilated in the year of
2005. Effect of the 3DVAR scheme is assessed by a compar-
ison between data assimilation run and control run. The sta-
tistical analysis indicates that the model simulation is signif-
icantly improved with the 3DVAR scheme. On average, the
root mean square errors (RMSE) of temperature and salinity
are reduced by 0.2◦C and 0.25 psu in the North/Baltic Sea.
In addition, the bias of temperature and salinity is also de-
creased by 0.1◦C and 0.2 psu, respectively. Starting from an
analyzed initial state, one month simulation without assimi-
lation is carried out with the aim of examining the persistence
of the initial impact. It is shown that the assimilated initial
state can impact the model simulation for nearly two weeks.
The influence on salinity is more pronounced than tempera-
ture.

1 Introduction

In coastal and shelf seas, operational forecasting systems be-
come feasible in recent years due to several reasons: increas-
ing maturity of numerical models, advances in systematic
and real-time monitoring, and progresses in data assimilation
techniques and applications. At present, there are increasing
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requirements for operational forecasting systems in coastal
and shelf seas. The objective of operaional forecast is to pro-
vide information in wide utility and availability to deal with
marine environment problems and satisfy needs at different
levels from the community (offshore oil industry operations,
fish stock management, chemical contamination, and water
quality associated with public heath, etc.).

In coastal and shelf seas, numerical forecasting is in it-
self a major challenge for the scientific community because
of the specific and rich dynamics in the coastal regions.
Though there have been some studies with various meth-
ods (Cossarini et al., 2009; Zhang et al., 2010; Barth et
al., 2007; Kuropav et al., 2007; Dobricic and Pinardi, 2008;
Fu et al., 2011), the coastal-shelf scale data assimilation is
rather immature as compared to the global scale data assimi-
lation and less applied in operational forecasting systems for
a long time. This problem can be attributed to several fac-
tors. Firstly, one major problem is the lack of real time in-
situ observations in an operational sense; Secondly, quality
of satellite observations such as SST and SSH is relatively
poor in coastal waters than open seas because the data is
more influenced by the cloud cover in the coastal regions.
This renders the assimilation more dependent on in-situ ob-
servations; Thirdly, complex topography and coastlines also
impose some technical constraints on coastal-shelf data as-
similation schemes. In recent years, this situation has greatly
changed with the rapidly increasing observations and knowl-
edge about coastal processes. More observation are avail-
bale with new coastal-shelf sea operational observation sys-
tems deployed. For example, observing systems have been
largely improved in the European area. Among them, the
Baltic Operational Oceanographic System (BOOS) is now
providing real-time ocean observations and forecasts for the
marine industry, public and other end-users. Its follow-up
system InfoBoos provides online data delivery of both satel-
lite and in-situ measurements over the Baltic sea since 1999.
To some extent, the rapid developments of these operational
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observation systems make it possible to assimilate real-time
ocean observations into a coastal-shelf forecasting system.
In the second place, recent development of data assimila-
tion techniques offers more choices to develop a coastal/shelf
scale ocean data assimilation system. For the data assimi-
lation applications in coastal-shelf forecasting systems, the
highly inhomogeneous, non-stationary and anisotropic fore-
casting error covariance is one of the most important issues
to be coped with. For that purpose, a complex data assim-
ilation scheme such as 4DVAR may be preferable because
the adjoint model can take into account the trajectory of
background error evolution. However, such scheme requires
prohibitive computational resources, and also demands huge
manpower to develop and maintain the system due to its dif-
ficulty and complexity in technical implementation. As com-
pared to the 4DVAR, 3DVAR or Optimal Interpolation (OI)
is more computationally efficient. Regarding these schemes,
how to deal with the high inhomogeneity in the coastal-
offshore regions remains a serious issue. Nevertheless,due
to the low cost of implementation and computation, as well
as being able to use various types of observations globally,
3DVAR is still an appealing scheme for the coastal oper-
ational forecasting systems. In addition, when developing
variational data assimilation systems at operational centers,
3DVAR has been a necessary prerequisite to the ultimate goal
of 4DVAR assimilation algorithms.

In the North Sea and Baltic Sea, Danish Meteorological
Institute (DMI) has been running a regional oceanographic
physical model DMI-BSHcmod (Dick et al., 2001) and pro-
vide operational forecasts since 2001. After several years’
operational practices and research activities, this coast/shelf
forecasting system is required to be improved in several
branches. Among them, one of the most pressing motiva-
tions is to develop a suitable data assimilation technique so
that the real ocean observations can be utilized to improve
the forecasting skill of the system. As for the North/Baltic
Sea, the spatial and temporal resolution required to make re-
alistic predictions are generally much higher than the resolu-
tion required for the adjacent deep ocean. Processes such as
tides, breaking of internal waves and the barotropic response
to high-frequency atmospheric forcing have time scales of
hours and horizontal scales that can be of order 100 m or
less. Moreover, the complex bathymetry and topography re-
quires some special treatments in the assimilaion schemes
in order to realistically reproduce the background error co-
variance, which is apprently not satisfying the assumption of
being Guassian (Fu et al., 2011). A 3DVAR scheme using
anisotropic recursive filter (ARF, Hayden and Purser, 1995;
Purser et al., 2003a) is tested in (Liu et al., 2009). Its ca-
pability of modelling the anisotropic background error co-
variances structure helps to certain extent make use of the
subsurface in-situ observations. Fu et al (2011) also apply an
Ensemble Optimal Interpolation (EnOI) to assimilate tem-
perature and salinity profiles. A simplified Kalman filter was
implemented in the operational DMI-BSHcmod since 2006

(Larsen et al., 2006), but this scheme is heavily reduced to
only address the SST data. To use temperature and salinity
profiles, we need to either expand this method or implement
a suitable scheme according to our practical need. In consid-
eration of computational cost and technical maintenance, a
3DVAR scheme is chosen for a pre-operational data assimi-
lation system. Both IRF and ARF are applied in the 3DVAR
data assimilation system. But as a preliminary step, only IRF
is employed to carry out the experiments for the system ver-
ification and validation in this study. ARF will be adopted
and tested in the next step for future practical applications.
In this implementation, design for scalability of observation
operators is taken into account so that the increasingly ex-
panded ocean measurements from various platforms can be
more easily added into the data assimilation system.

The rest of the paper is arrangesd as follows: Section 2
describes the basic 3DVAR scheme; Section 3 presents the
preconditioning and transform of variables in 3DVAR. Sec-
tion 4 describes the operational forecasting model and obser-
vations used for assimilation experiments. Section 5 presents
the experiment with a single observation. Results from 1 year
assimilation experiment withT/Sprofiles are given in Sec-
tion 6. Section 7 gives a conclusion and an outlook on the
future work.

2 The 3DVAR scheme

2.1 General formulation

In general, the basic scheme of 3DVAR is to find the optimal
solution of the model statex which minimizes the follow-
ing cost function (e.g., Lorenc, 1997; Dobricic and Pinardi,
2008):

J (x) =
1

2
(x − xb)

T B−1 (x − xb) (1)

+
1

2

(
H(x) − yo

)T R−1 (
H(x) − yo

)
x is the model state to be estimated. It usually refers to anal-
ysis state vector.xb is the background state vector,yo is the
observation state vector.H is the non-linear observational
operator with which the analysis equivalent of observation
y =H(x) can be obtained and compared with the observation
measurements. The superscriptT denotes matrix transpose.
In the cost function, the misfit between analysis and back-
ground is weighted by the background error covarianceB,
and the misfit between analysis and observation is weighted
by the observational error covarianceR. Usually the optimal
solution is found by minimizing the cost functionJ (x) with
respect tox, in which its gradient is also needed for determin-
ing the search direction and iteration steps in the minimizing
algorithm:

∇J (x) = B−1 (x − xb) + ∇x H(x)T R−1 (
H(x) − yo

)
(2)
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Following an incremental method (Courtier, 1994), Eq. (1)
is linearized around the background state into the following
form:

J (δx) =
1

2
δxT B−1 δx +

1

2
(H δx − d)T (3)

R−1 (H δx − d)

whered =yo −H(xb)is the innovation vector,H is the lin-
earized observation operator evaluated atx =xb andδx =x−

xb is the analysis incremental vector. In this way, the orig-
inal problem translates into finding an incremental analysis
δx. Equation (2) becomes:

∇J (δx) = B−1 δx + HT R−1 (H δx − d) (4)

In the current scheme, the state vector contains only temper-
ature and salinity :

x = [T S]
T (5)

2.2 Numerical algorithm of minimization

For a typical coastal ocean data assimilation system, the or-
der of the original size of background error covariance matrix
B is about 106 ∼ 107. After some applications of simplifying
procedures like preconditioning variable transform and ap-
plying EOFs, the size ofB is still very large, so minimization
algorithm with high efficiency is crucial to solve the 3DVAR
problem.

An available quasi-Newton L-BFGS algorithm (Byrd et
al., 1995) is applied in this 3DVAR system to minimize
the cost function (Eq. 6). Indeed, L-BFGS uses a limited
memory variation of the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) update to approximate the inverse Hessian matrix
(denoted byHK). Unlike the original BFGS method which
stores a densen × n approximation (if the lenghth of state
vector isn), L-BFGS stores only a few vectors that represent
the approximation implicitly. Due to its moderate memory
requirement, L-BFGS method is particularly well suited for
optimization problems with a large number of variables

3 Preconditioning and transform of control variables

In practice, the most difficult issue in minimizing the cost
function of 3DVAR is how to deal with the inverse of the
background error covariance matrixB due to its tremen-
dous size. One practical solution to this problem is to per-
form a preconditioned control variable transform (defined by
δx = Uv) in the process of minimization (e.g. Lorenc, 1997;
Weaver et al., 2003). Normally, the transformU is chosen
to approximately satisfy the relationshipB = UUT and when
the control variable vectorv is chosen, errors of the variables
are assumed to be uncorrelated. With this assumption, the
cost function is rewritten as follows:

J (v) =
1

2
vT v +

1

2
(HUv − d)T R−1 (HUv − d) (6)

Equation (4) then becomes:

∇vJ = v + UT HT R−1 (HUv − d) (7)

In this way, the minimization can be carried out without han-
dling the inverse ofB. Although the optimal solution can be
found with Eqs. (6) and (7) theoretically, further simplifica-
tion is necessary sinceU still has a large size. Suppose the
background error covariance between any two points can be
separated into a product of vertical component by horizon-
tal component, it is easy to demonstrate (Lorenc, 2000) that
the computation ofB implicitly involves the transform ofU
which includes a sequence of linear operators:

U = UP UV UH (8)

whereUH is the horizontal part of the control variable trans-
form related to the horizontal mode ofB, UV is the vertical
part of the control variable transform related to the vertical
mode ofB, andUP is the physical transform related to the
multivariate dynamic or physical constraints (e.g. the rela-
tionship between sea surface height, SSH, error and temper-
ature/salinity error; the relationship between current and SSH
etc.). The formulation and meaning of each linear operator is
described in the following subsections.

3.1 Horizontal part of control variables transform

The background error covariance in our scheme is assumed
initially to be isotropic and homogeneous Gaussian type.
Usually the Gaussian type spatial correlation can be effi-
ciently modeled in two ways. One way is to repeatedly ap-
ply a Laplacian operator which is also the solution of the
horizontal diffusion equation. This method is mostly used
in those 3DVAR data assimilation schemes applied in global
NWP spectral models and also in global oceanographic data
assimilation (e.g., Weaver and Courtier, 2001). The other
way is to apply a recursive filter to approximate the Gaus-
sian correlation function (Lorenc, 1992; Hayden and Purser,
1995; Dobricic and Pinardi, 2008). While the recursive fil-
ter is widely applied in the meteorological data assimilation,
applications are less documented in the oceanic literature.

The recursive filter operator is defined as follows:

Rf :

{
Bi = αBi−1 + (1 − α) Ai i = 1, 2, ..., I

Ci = αCi+1 + (1 − α) Bi i = I, ..., 2, 1
(9)

whereAi is the original value at gridi, Bi is the value after
filtering for i = 1 to I , Ci is the initial value after one pass
of filter in each direction fromi = I to i = 1. α is the filter
coefficient to be determined.

According to Hayden and Purser (1988), the boundary
condition for one filtering pass is:

B0 = 0, Ci+1 =
α

1 + α
Bi (10)
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The filter coefficient can be deduced through comparing the
spectral response function of the filter with the correlation
function. For a typical Gaussian correlation function:

Cgauss= ε2 exp
(
(1x)2/2 L2

)
(11)

whereε2 is the variance,1x is the grid spacing andL is the
horizontal correlation length scale, we have:

α = 1 + E −

√
E(E + 2) (12)

where E =N1x2/L2 in which N is the number of filter
passes. It is important to note, the IRF should be multiplied
by a factorβ = ε2

√
2πL in the application.

For those error correlations being closer, the modeling of
the Gaussian type correlations with IRF is not adequate. An
alternative method called the second-order auto-regressive
model (SOAR) can be chosen as the correlation function:

Csoar = ε2 (1 + |1x|/L) exp (−|1x|/L) (13)

In this case, the correlation coefficient is also calculated us-
ing Eq. (12), but with differentE andβ : E =N1x2/4L2,
β = ε24L.

In our scheme, both correlation models are employed in
the 3DVAR for IRF as options in whichL = 35 km,N = 10.
The standard deviation of background errorε is set to be 0.5
for both T/S fields. BecauseRf is a symmetric and self-
adjoint operator, we can have:

UH = Rf Rf ...Rf︸ ︷︷ ︸
N/2

(14)

It means thatUH can be calculated by total ofN/2 filter
passes.

3.2 Vertical part of the control variables transform

Like many implementations of 3DVAR (e.g. Bark et al .,
2004; Dobricic and Pinardi, 2008 ), to reduce the com-
putation of the background error covariances, an empirical
orthogonal functions (EOFs) decomposition of the vertical
component of background error covariance is used for the
vertical transform. The vertical transform is written in the
following form:

UV = E
√

3 (15)

WhereE is a matrix of eigenvectors, while3 is a diagonal
matrix with eigenvalues of the EOFs. The vertical compo-
nent of background error covariances can be estimated either
by empirical functions or from statistics of large-size samples
of model forecasts. But as the first step toward an operational
assimilation system, the vertical correlation is only modelled
with a revised empirical function in the form of:

Rz = 1
/(

1 + Lz (ln 1z)2
)

(16)

Fig. 1. Vertical correlations of the background error covariance.
Each line labeled with different colors stands for a vertical correla-
tion between one layer located at the right top of the line and others.

whereLz = 20 m is the vertical correlation scale,1z is the
thickness between any two layers. The structure of the ver-
tical correlation function is shown in Fig. 1. Since only the
most dominant EOFs are used, the number of EOFs is much
smaller than the size of the control vector. Thus, the com-
putational effort is significantly reduced as the size of the
background error covariance is greatly decreased.

4 The implementation

4.1 DMI-BSHcmod

The model used in this study is the DMI operational model
DMI-BSHcmod, which is a hydrostatic three dimensional
circulation model developed by German Bundesamt für
Seeschifffahrt und Hydrographie (BSH). It is a free-surface
with hydrostatic and Boussinesq approximation.The model
solves the Navier-Stokes equations for the currentsU/V, tem-
peratureT and salinityS. The finite difference method is
adopted for its spatial discretization in which the staggered
Arakawa C grid (Arakawa and Lamb, 1977) is applied on
spherical coordinates horizontally, and z-coordinate is ap-
plied vertically. An upwind time integrating scheme is used
for handling the advection of momentumwhile a conserva-
tive, fully explicit, multidimensional scheme is used for ad-
vection of the temperature and salinity. The model has been
running operationally at BSH since mid-90s (Dick et al.,
2001) and at DMI since 2001. It has been significantly im-
proved in recent years with the support from the European
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Framework Program (FP) projects. As the salty bottom wa-
ter flowing into the Baltic Sea originates from the northeast
(NE) Atlantic, the model covers a large area (the Baltic/North
Sea and NE Atlantic) in order to study Baltic/North Sea wa-
ter exchange through the Danish Straits. Three nesting lev-
els are applied: a 2-dimensional (2-D) NE Atlantic model
(NOAMOD) is used to provide surge boundary conditions
for a Baltic/North Sea 3-D model (NBCMOD). A 3-D coastal
model covering the inner Danish waters (KUCMOD) is two-
way nested with the NBCMOD (Fig. 1). All the three models
are set up horizontally in spherical coordinates and vertically
in z coordinate. Both the NOAMOD and NBCMOD have
a horizontal resolution of about 6 nautical miles (nm) while
the fine grid model has a horizontal resolution of about 1 nm.
The 3-D models have in total 50 vertical layers. The top layer
thickness is selected at 8 m in order to avoid tidal drying of
the first layer in the English Strait. The rest of the layers in
the upper 80 m have 2 m vertical resolution. The layer thick-
ness below 80 m increases gradually from 4 m to 50 m.

The model is forced by hourly meteorological forcing
(10 m winds, 2 m air temperature, mean sea level pressure,
surface humidity and cloud cover) based on the DMI op-
erational weather model HIRLAM (High Resolution Lim-
ited Area Model). The forcing has a horizontal resolution
of about 15 km. The surface heat flux is parameterized us-
ing bulk quantities of both the atmosphere and sea or sea
ice, respectively. The evaporation flux is taken into account
only in the heat budget. The changes of water volume due
to evaporation, precipitation and ice formation are ignored.
River runoff is the daily averaged data derived from river
measurements for 5 German rivers, hydrological simulations
for 42 Baltic rivers and climatology values for the rest of the
rivers.

The turbulence vertical mixing scheme is based on ak−ω

turbulence model extended for buoyancy affected geophys-
ical flows (Umlauf et al., 2003) but with a new set of co-
efficients. Through parameterizations it takes into account
breaking surface waves. The atmospheric forcing of the tur-
bulence model is provided through a new set of surface flux
boundary conditions fork andω. Different algebraic stabil-
ity functions are applied for the vertical diffusivities of mo-
mentum, heat, salt and passive tracers (Canuto et al., 2002)
and these have been reconstructed into new, computationally
sound expressions in turbulent time scale, temperature gradi-
ent, salinity gradient, resolved velocity shear and unresolved
but parameterized shear from breaking internal waves.

4.2 Coastline treatment

When RF is applied in 3DVAR, its boundary condition (see
Eq. 10) is usually defined in regular grid points. Since the ex-
istence of coastline in regional ocean model, how to deal with
the boundary conditions of RF becomes a problem. Dorbri-
cic and Pinardi (2008) handle this problem by inserting some
imaginary water points at the land near coast and then the RF

can be calculated on the extended grid. Liu et al. (2009) use a
“mirror reflection” boundary condition for solving this prob-
lem. The purposes of both methods are to make the RF com-
putation more efficient. However, because the initial value of
the analysis increment is zero in the incremental 3DVAR, the
RF algorithm can be extended to the land grid points when
it is applied to the full grid. The compuational expense is
reduced by this treament, but the accuracy may be degraded
for the extreme cases such as a very thin peninsula.

4.3 Observations

T/S profile observations are gathered from several sources.
The first database is the ICES (International Council for the
Exploration of the Sea) which provides CTD profile data in
the Baltic Sea. The second database is MADS (The National
Database for Marine Data), which is supplied by NERI (Na-
tional Environmental Research Institute, Denmark). the third
source is from the BSH which providesT/S profiles from
fixed buoy stations in the North Sea/Baltic Sea. The last data
source is the ferry boxes in the national and regional moni-
toring programs.

Figure 2 shows the spatial and temporal distribution of
T/Sprofiles in the North Sea/Baltic Sea in 2005. The upper
panel shows the spatial coverage of the locations of stations
or sites packed from different resources. The total number
of observations sites is 4099. The spatial coverage of the ob-
servations indicates an irregular distribution with relatively
denser data in the North Sea and Danish transition waters,
but with sparse data in the Baltic Sea, especially in its north-
east part. The bottom panel gives the daily number ofT/S
profiles throughout 2005 and displays quite uneven distribu-
tion of measurements with time.

Most of theT/Sprofiles have already gone through a pri-
mary data quality control. For further application in data as-
similation, we have designed a simple intrinsic quality con-
trol scheme in the 3DVAR in order to prevent the potential
“poor quality” data from destroying the analysis. As men-
tioned in Section 2.1, the innovation vector, denoted by the
difference between the background field and the observa-
tions, is used as an indicator. If the innovation exceeds a
certain number of observation error standard deviations, the
observation is discarded. The criteria are set up empirically
based on our past validation results of the model. For ex-
ample, the observation is discarded if the magnitude of the
innovation is large than 2.5◦C or 2.0 psu.

Figure 3 shows the observation usage in our experiments.
Applying the data quality control scheme, out of total num-
ber of 82 354 temperature and 79 148 salinity measurements,
about 92.63 % temperature and 91.16 % salinity measure-
ments can be used into the data assimilation system.
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Fig. 2. T/Sprofile distribution in the North Sea/Baltic Sea during 2005. The upper panel shows the spatial coverage. The outer rectangle
frame covers the model coarse grid domain and inner red rectangle frame covers the model fine grid domain. The bottom panel shows the
temporal distribution. The blue column indicates the model coarse grid domain, the red column for the model fine grid domain.
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Fig. 3. Total number of observation points versus used number of
observation points for temperature and salinity in situ profiles.

4.4 Observation error covariance

The observation errors at different sites are assumed to be un-
correlated in space, thus the observation error covariance ma-
trix R is diagonal and the specification ofR is then reduced
to a list of observation error standard deviations for each data
type, variable, and level, etc. In our current scheme, allT/S
profile measurements are packed together, so only the uni-
tary standard deviation forT/Sare specified for our primary
experiment, The standard deviation forT is set to 0.5◦C and
the value forS is 0.5 psu. More realistic estimation of obser-
vation standard deviation values would be taken into account
in the future.

5 Test with isolated observation

Single observation test is an important step to evaluate the
performance of 3DVAR in a complex system. It is helpful

in investigating the basic feature of the background error co-
variance and testing the validity of the DA system. The solu-
tion obtained from a complex system should be close to the
analytic solution if the DA system is properly implemented
and effective. Suppose one observation is located exactly at
a model grid point, according to the characteristics of the an-
alytic solution for 3DVAR, the increment at this point can be
simply obtained (e.g., Zhuang et al., 2005) with the form:

δx =
σ 2

B

σ 2
B + σ 2

O

d (17)

where δx is the univariate analysis increment at the grid
point, d is the innovation corresponding to the single obser-
vation,σ 2

B andσ 2
o are background error variance and obser-

vation error variance, respectively.
A single observation analysis was carried out with the

3DVAR scheme and an isolated temperature observation
(11.6◦ E, 56◦ N) at the depth of 5 m in Danish Waters. Fig-
ure 4 shows the horizontal and vertical distribution of the
analysis increment field. In the horizontal, the numerical
solution presents a Gaussian-shape structure. In the verti-
cal, a Gaussian vertical structure is shown, which can be
deduced from its corresponding correlation functions. The
maximum value of the increment, from Fig. 4, is 0.52◦C. By
Eq. (16), the analytic solution can be calculated at the ob-
servation point, which is about 0.5◦C. The two solutions are
not identical because interpolations in the DA system have
effect on the solution. Moreover, influence of iterations for
minimization is not negligible.

6 Experiments

Three experiments are performed in order to evaluate the im-
pact of the 3DVAR data assimilation scheme on the model
simulations. The first two experiments are carried out for
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Fig. 4. The analysis increment corresponding to 1.0 unit innovation with an isolatedT at Danish Water. Upper panel: horizontal distribution
at 5 m; bottom panel: cross section at 56◦ N.
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Fig. 5. A case of minimization iteration. The gradient of cost func-
tion has descended to be around zero.

the year of 2005. The first experiment is a control run, in
which the model perform daily 24-h forecasts without data
assimilation. The second experiment is the same as the first
one except that all collected observations are assimilated into
the model by 3DVAR scheme. In order to examine how
long the impact of the assimilated initial state can persist,
the third experiment is run only for one month starting with
an assimilated initial state from the second experiment on
1 March 2005. No observations are assimilated during this
period. The assimilation is carried out daily provided that
there are observations.

6.1 Experimental set-up

In the experiments, the model is set up with two-way nested
domains in which the coarse grid covers the North Sea/Baltic
Sea area with horizontal resolution of 10′ in longitude and 6′

in latitude (approximately 11 km by 11 km), and the fine grid
covers the Danish Waters and German Bight with horizontal

Fig. 6. DMI-BSHcmod bathymetry and domain setup. The
bathymetry shown in the figure is for the coarse grid. The red rect-
angle frame outlines the inner fine grid.

resolution of about 1.8 km. The bathymetry and model do-
main setup are shown in Fig. 6. 50 vertical layers at fixed
depth levels are used for the coarse grid model, 52 layers at
a different set of fixed depth levels for the fine grid model.
3DVAR use the same resolutions as the model. In a data as-
similation cycle, observations are assimilated on the coarse
grid model and fine grid model, respectively. The assimila-
tion is carried out daily provided that there are observations.

6.2 Results

Normally, 3DVAR schemes can be assessed by comparing
the statistics of differences between the model state and in
situ observations for the experiments with or without data
assimilation. In our system, the innovations are calculated
and saved in log files, which provide an easy way to esti-
mate the RMSE and bias from those differences. For the data
assimilation experiment, it should be noted that the innova-
tions are calculated before the assimilation analysis time and
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Fig. 7. The daily spatially averaged RMSE and bias of innovations
(background minus observation) for the experiment with 3DVAR
data assimilation (blue line), and the experiment without data as-
similation (red line). The corresponding rmse and bias of analysis
residual (analysis minus observation) are shown by green line.

the corresponding observations are not used. Therefore, the
evaluation of the analysis quality can be regarded as indepen-
dent (Dobricic and Pinardi, 2008). Additionally, the RMSE
and bias of analysis minus observation (analysis residual) are
calculated in order to show to what extent the analyses agree
with observations.

Figure 7 shows the spatially averaged RMSE and bias
estimated from the innovation and analysis residuals of
both temperature and salinity for the period January 2005–
December 2005. For both the temperature and salinity, the
RMSE of innovation is generally smaller throughout the year
of 2005 when the data assimilation scheme is applied, indi-
cating that the data assimilation improves the simulations.
Particularly, the RMSE and bias is significantly reduced with
the 3DVAR data assimilation from the middle of February to
the end of March.

One of the foundations for 3DVAR is the unbiased as-
sumption. Ideally, the background, observations as well as
the analysis are all unbiased. In other words, most data as-
similation systems are bias-blind, which are designed to cor-
rect random errors only (Dee, 2005). In this case, we have

< δx > = 0 (18)

< d > = < H
(
xb − yo

)
> = 0 (19)

where the point bracket represents spatial or temporal mean.
However, in reality, a systematic bias inevitably exists in both
the background and observation space, and consequently in
the analysis space. Therefore, the mean of analysis increment
stands for the analysis bias while the mean of innovation rep-
resents the model bias, if the observation is assumed to be the
“truth”. In Fig. 7b and d the daily model biases are shown
for both experiments. The results indicate that the model bi-
ases of temperature and salinity are obviously reduced with
3DVAR data assimilation.

Figure 8 presents the overall statistics of the RMSE and
bias calculated from the 3 experiments. On average, with the
3DVAR data assimilation, the temperature RMSE is reduced
by 0.22◦C, and the salinity RMSE is reduced by 0.41 psu.
TheT/Sbias is reduced by 0.23◦C and 0.3 psu, respectively.
From above estimations, it can be found that the temperature
and salinity of the model have positive biases. Relatively, the
bias of salinity is more decreased after the assimilation.

Further investigation has been done by analyzing the time
averaged profiles forT/SRMSE and bias calculated from the
above experiment results. Because of uneven depth of the
ocean bathymetry in the North and Baltic Sea, as well as
the scarcity of observations in deeper ocean, the calculation
is performed only covering the water volume above 100 m.
Most of the observations are located above 100 m, making
the statistics more reliable. Figure 9 shows the comparison
of RMSE and bias ofT/S innovation for the control run, as-
similation run and the analysis residual. It is obvious that the
data assimilation significantly reduces the RMSE and bias of
the model simulation throughout the layers. For temperature,
the RMSE is largest at the depth of 60 m, which corresponds
to the typical depth of thermocline. The RMSE of salinity
shows a clear declining tendency except at the depth of 40 m,
where a spike is found. On average, the RMSE of temper-
ature and salinity is reduced by 0.2◦C and 0.25 psu. Aside
from the RMSE, the 3DVAR is shown to be effective in re-
ducing the model biases of temperature and salinity (right
panel in Fig. 9). The positive bias of the temperature is found
with two maxima locating at the depth of 15 m and 60 m, re-
spectively. For salinity above 60 m, the bias is positive with
values up to 0.8 psu. Below 60 m, however, the bias is nega-
tive. After assimilation, the bias of temperature and salinity
is reduced by 0.1◦C and 0.2 psu on average.

In order to examine how long the influence of the assim-
ilated initial state will persist, simulation of one month has
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Fig. 8. The gross RMSE (left panel) and bias (right panel) ofT/Sfor control (Tct/Sct), 3DVAR data assimilation innovation (Tin/Sin), as well
as 3DVAR data assimilation analysis residual (Tan/San).

Fig. 9. The comparison of rmse and bias profiles for both temperature(A, B) and salinity(C, D) among the innovation from control
experiment (red line), the innovation from 3DVAR assimilation experiment (blue line), and the analysis residual from 3DVAR assimilation
experiment(green line). The experiments run daily forecast through the year of 2005.
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been carried out starting on 1 March 2005. During this pe-
riod, no observation is assimilated but with an initial state ob-
tained from the above data assimilation experiment. In this
experiment, only the initial state contains the previous obser-
vational information. In Fig. 10, the result of this experiment
is compared with the control run and assimilation run. From
Fig. 10a, it is seen that the RMSE of temperature is clearly
smaller than the control run at the first 2 weeks. For salinity,
the RMSE is reduced by 0.5 psu at the first 2 weeks with the
initial state taken from the assimilation run. Different from
the temperature, RMSE of salinity is still smaller than the
control run from 20 March to the end of the month. This
provides useful clues when the time window of observations
is chosen for an ocean data assimilation system. A daily cy-
cle of assimilation may not be necessary. A time window
of about 1 week may be used by assembling observations.
This is also important for operational data assimilation when
real-time observations are not available forT/Sprofiles.

From Fig. 10, it can also be noted that the bias of temper-
ature is nearly the same starting from different initial states.
Comparatively, the bias of salinity witnesses clear reduction
of about 0.5 psu. The salinity experiences less variations than
the temperature in this short period, which helps to retain the
influence of the initial state. The RMSE and bias is also af-
fected by the starting date. More experiments are needed in
the future to further examine this issue.

7 Conclusions and discussions

The development and implementation of a 3DVAR data as-
similation system for operational regional model are de-
scribed in this paper. Similar to some other 3DVAR imple-
mentations, the most common approaches such as the incre-
mental method, IRF and vertical EOFs are applied in our im-
plementation. A single observation test is firstly performed
to validate the effectiveness of the 3DVAR scheme in a com-
plex model system. In order to further assess the method,
three experiments for the year of 2005 have been carried
out. The results show that theT/S simulation is improved
as the RMSE and bias of the model results are greatly re-
duced with the data assimilation. On average, the RMSE of
temperature and salinity is reduced by 0.2◦C and 0.25 psu.
In addition, the bias of temperature and salinity are also de-
creased by 0.1◦C and 0.2 psu, respectively. Moreover, it is
demonstrated that the assimilated initial state has a positive
impact on the model simulation. From our experiment, the
impact can persit for nearly two weeks. Relatively, the im-
pact on salinity is more pronounced than temperature for the
averaged RMSE. This offers a possibility of properly using
observations in delayed mode (opposite to real-time) in an
operational data assimilation scheme in the future. It sug-
gests that we can also expect a better model simulation by
conducting data assimilation once every 2 weeks when there
are no real-time observations.

Fig. 10. The daily spatially averaged rmse and bias of innovation
of both temperature(A, B) and salinity(C, D) for the experiments
with 3DVAR data assimilation (blue line), without data assimila-
tion (red line), as well as one month non-data assimilation run with
assimilated initial value (black line) throughout March 2005.

The preliminary results are encouraging in some aspects,
but there are still some issues to be addressed in order to
further improve this data assimilation system. For instance,
the ARF is worthy of replacing the IRF for modeling the
anisotropic structure of the background error covariances in
the North/Baltic Sea though it is computationally more ex-
pensive. The estimation of the background error could be
further investigated with long time model simulations. More-
over, the multivariate control variables analysis could be a
better choice for producing more consistent analysis and
forecast. Finally, surface observations such as the sea surface
temperature (SST) and sea surface height (SSH) will play
a complementary role in the assimilation whenT/Sprofiles
are assimilated. Assimilation of satellite data in the coastal
region will be important and beneficial to improve the pre-
operational assimilation system.
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