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Abstract. This study employs NASA’s recent satellite mea-
surements of sea-surface temperatures (SSTs) and sea-level
winds (SLWs) with missing data filled-in by Singular Spec-
trum Analysis (SSA), to construct empirical models that cap-
ture both intrinsic and SST-dependent aspects of SLW vari-
ability. The model construction methodology uses a num-
ber of algorithmic innovations that are essential in providing
stable estimates of the model’s propagator. The best model
tested herein is able to faithfully represent the time scales
and spatial patterns of anomalies associated with a number
of distinct processes. These processes range from the daily
synoptic variability to interannual signals presumably asso-
ciated with oceanic or coupled dynamics. Comparing the
simulations of an SLW model forced by the observed SST
anomalies with the simulations of an SLW-only model pro-
vides preliminary evidence for the ocean driving the atmo-
sphere in the Southern Ocean region.

1 Introduction

1.1 Motivation

This study addresses aspects of ocean-atmosphere interac-
tion over the Southern Ocean using measurements provided
by satellite sensors. Our objective is to quantitatively de-
scribe and analyze co-variability of sea-surface temperature
(SST) and sea-level wind (SLW) in this region, by develop-
ing inverse stochastic models that are derived directly from
the remotely sensed data. Empirical models of potentially
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SST-dependent SLW variability can help analyze the coupled
climate dynamics of the Southern Ocean, especially when
combined with oceanic General Circulation Models (GCMs).

Climate variability over the Southern Ocean is likely to
be of global significance, due to this ocean’s special role in
linking the Atlantic, Pacific, and Indian basins. However,
progress in understanding the dynamics of large-scale air-
sea coupling over the Southern Ocean has been slow, largely
due to the very low density of in situ measurements in this
region. Recently launched NASA satellites provide accurate
high-resolution global measurements of important climatic
variables such as SST and SLW. These global fields now per-
mit the construction of empirical air-sea interaction models
for the Southern Ocean. Despite improved data coverage in
the region, estimating the propagator of the above mentioned
statistical models remains an ambitious and challenging task,
since (1) there are still missing data due to the presence of
strong winds or heavy rains, and (2) such a model has to
have an unprecedentedly large number of degrees of free-
dom, due to high-dimensional nature of global-scale air-sea
interaction. The model construction thus requires major al-
gorithmic revisions and gap-free datasets, which we develop
and describe in detail below.

1.2 Background

The Southern Ocean is the region south of roughly 30◦ S that
includes the Antarctic Circumpolar Current (ACC), along
with the branches of circulations that link it to the Atlantic,
Pacific, and Indian Oceans (Schmitz, 1996).
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1.2.1 Satellite data over the Southern Ocean

Poor spatial coverage by in situ measurements in the South-
ern Ocean prohibits direct comprehensive description of
climate variability there. The data from NASA satellites
launched over the past decade thus provide a unique source
of precise measurements of climatically important quantities
such as SST and SLW. Global coverage and fine resolution
make them extremely valuable for studying air-sea interac-
tion in the Southern Ocean. In particular, the microwave-
based sensor AMSR on the AQUA satellite launched in 2002
samples SST field under clouds – an opportunity that was
previously unavailable for infrared-based SST records over
the typically cloudy Southern Ocean.

Microwave-based SST products (Kummerow et al., 2000;
Wentz et al., 2000) have been utilized before to explore
tropical SST variations (Hashizume et al., 2000; Chelton et
al., 2001; Harrison and Vecchi, 2001; Vecchi and Harrison,
2002; Vecchi et al., 2003). We will use this type of measure-
ments in the present paper to address air-sea interaction over
the Southern Ocean.

1.2.2 Southern Ocean climate

The Southern Ocean is characterized by intense climatolog-
ical westerlies that induce strong meridional Ekman trans-
ports and drive the ACC. The modes of climate variabil-
ity in the Southern Ocean differ by their time scales and
spatial signatures, as well as by specific dynamical mecha-
nisms. Synoptic variability, with a time scale of a few days,
is comprised of extremely powerful atmospheric storms as-
sociated with baroclinic Rossby waves passing over the re-
gion. These synoptic eddies cause large-amplitude SST re-
sponses mainly through enhanced vertical turbulent mixing
in the oceanic boundary layer and through changes in the
air-sea heat flux. An example of such coherent patterns of
wind and SST anomalies associated with synoptic variability
is shown in Fig. 1, which displays snapshots of these fields’
anomalies on 1 December 2002; the anomalies were com-
puted relative to the base 16-day period of 1–16 December
2002. The pattern correlation between the SST and SLW
fields over the region shown in Fig. 1 is of aboutr = −0.73,
which allows to reject the null hypothesis of zero correla-
tion in favor of the alternative of negative correlation at 0.1 %
level, according to the one-sidedt-test withν = 16 degrees of

freedom (the value oft statistic ist = r

√
ν
/
(1−r2) ≈ −4.3).

The number of spatial degrees of freedom within the region
of interest in the above test was estimated based on the de-
correlation scale of about 1000 km.

On longer time scales, an intraseasonal mode of intrinsic
atmospheric variability is called the Southern Annular Mode
(SAM). It has a pronounced zonally symmetric component,
hence its name (Thompson and Wallace, 2000; Thompson
et al., 2000). It is also known as zonal-flow vacillation
(Hartmann, 1995) and consists of irregular meridional dis-
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Figure 1. Anomalies of atmospheric (SLW) and oceanic (SST) fields on 1 December 2002, 2 

computed as the deviations from the average over the 16-day period of 1–16 December 2002: 3 

(a) sea-level wind (SLW) anomaly; (b) sea-surface temperature (SST) anomalies. The two 4 

fields are spatially correlated, over the region shown, with the correlation coefficient of –0.73. 5 
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Fig. 1. Anomalies of atmospheric (SLW) and oceanic (SST) fields
on 1 December 2002, computed as the deviations from the average
over the 16-day period of 1–16 December 2002:(a) sea-level wind
(SLW) anomaly;(b) sea-surface temperature (SST) anomalies. The
two fields are spatially correlated, over the region shown, with the
correlation coefficient of –0.73.

placements of the atmospheric jet. SAM is thought to be
energized by higher-frequency synoptic eddies and may, in
turn, modify the storm track at lower frequencies (Robin-
son, 2000; Lorenz and Hartmann, 2001). Feldstein (2000)
has argued that SAM variability is due to linear dynam-
ical response to stochastic forcing associated with synop-
tic eddies. In contrast, Koo et al. (2002) presented a non-
linear framework for zonal-flow vacillation, based on the
paradigm of weather regimes (Reinhold and Pierrehumbert,
1982; Legras and Ghil, 1985; Marshall and Molteni, 1993;
Koo and Ghil, 2002; Kravtsov et al., 2005a). Hall and
Visbeck (2002) discussed the dynamics of oceanic response
to SAM-type surface-wind evolution, and reported signif-
icant variations in SST, sea-ice extent and ACC transport
associated with this variability. Even longer-term modes
of variability include the so-called semi-annual oscillation
(Van Loon, 1967, 1972; Meehl, 1991; Meehl et al., 1998)
and the Pacific-South American (PSA) oscillation (Mo and
Ghil, 1987) often described as a tropically forced stand-
ing wave train (Mo and White, 1985; Mo and Ghil, 1987;
Karoly, 1989; Grimm and Silva Dias, 1995; Garreaud and
Battisti, 1999). The PSA has also been associated with an
El Niño/Southern Oscillation (ENSO) teleconnection pattern
(Kwok and Comiso, 2002) and has signatures in the South-
ern Ocean’s surface air temperature, SST and sea-ice ex-
tent; these signatures are referred to as the Antarctic Dipole
(Yuan and Martinson, 2000, 2001). Finally, the Antarctic
Circumpolar Wave (ACW) has an interannual time scale and
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is associated with eastward-propagating signals in SST, sea-
level pressure, and sea-ice extent (White and Peterson, 1996;
Jacobs and Mitchell, 1996; Peterson and White, 1998).

1.2.3 Air-sea coupling over the Southern Ocean

Synoptic eddies and the lower-frequency SAM that domi-
nate climate variability in the Southern Ocean on weekly-
to-intraseasonal time scales are due primarily to intrinsic at-
mospheric dynamics. Surface manifestations of these modes
induce significant oceanic response. The SST variability as-
sociated with this response affects, in turn, the atmospheric
flow. Additionally, the SLW variability may be modified,
on an intraseasonal-to-interannual and longer time scale, by
SST anomalies associated with intrinsic oceanic or inher-
ently coupled processes, such as the PSA and ACW.

Surface wind influences SST directly by modifying ver-
tical turbulent heat exchange between the two fluids (Gill,
1982; Arya, 1988) and inducing strong horizontal Ekman
transports in the oceanic mixed layer. High-frequency wind
forcing also leads to significant long-term oceanic changes
by affecting, among other things, the seasonal-mean sub-
surface temperatures and mixed-layer depths (Kamenkovich,
2005). In addition, surface-wind fluctuations can energize in-
trinsic oceanic modes, which may play an important role in
the dynamics of the Southern Ocean (Wunsch, 1999; Weisse
et al., 1999; Karsten et al., 2002; Gille, 2003). The SST sig-
natures of these modes have structures that are different from
that of a local SST response to wind forcing. These oceanic
phenomena have long intrinsic time scales and may thus lead
to partial predictability of the Southern Ocean climate.

The way SLW may respond to SST anomalies is via
changes in stability of the marine atmospheric boundary
layer. Air passing over a positive SST anomaly becomes
more unstable; this leads to anomalous turbulent momentum
flux and amplification of the surface wind (Arya, 1988). This
effect was shown to be at work over the Eastern Tropical Pa-
cific (Wallace et al., 1989; Liu et al., 2000; Chelton et al.,
2001; Hashizume et al., 2001) and over the Southern Ocean
(O’Neill et al., 2003) on seasonal-to-interannual time scales.
Other dynamical factors may also contribute to this response
at all time scales (Hsu, 1984; Lindzen and Nigham, 1987;
Mitchell and Wallace, 1992).

The SST-induced modifications of the atmospheric bound-
ary layer may cause changes in the free atmosphere’s circu-
lation. The linear response is expected to be weak, but non-
linear modes of atmospheric variability, such as SAM, may
produce a stronger effect (Koo et al., 2002; Kravtsov et al.,
2006a, b). Feliks et al. (2004, 2007) have shown, in partic-
ular, how an oceanic thermal front may induce intraseasonal
variability in the overlying atmosphere, including surface-
wind evolution.

To summarize, the Southern Ocean is characterized by
vigorous variability on a wide range of time scales. Air-sea
interaction in the region is complex and difficult to repre-

sent in dynamical models, as it involves a wide variety of
boundary layer processes, as well as their coupling to in-
trinsic dynamics of the fluids on both sides of the ocean-
atmosphere interface. Statistically, however, these interac-
tions may well be described by joint variability of SLW and
SST. A purely empirical model of this co-variability, based
on recent high-quality satellite observations, could provide
an accurate quantitative description of air-sea interaction
without having to resolve explicitly the complex chain of par-
ticipating dynamical processes.

1.2.4 Empirical stochastic models of SST and SLW

Data-based inverse stochastic models used in climate dynam-
ics generally belong to one of the two major groups: (i) mul-
tivariate parametric models with additive, state-independent
noise, the simplest of which is the so-called linear inverse
model (LIM) (Penland, 1989, 1996; Penland and Sardesh-
mukh, 1995; Penland and Matrosova, 1998; Winkler et al.,
2001); and (ii) nonparametric, univariate or bivariate models
involving state-dependent, multiplicative noise (Sura, 2003;
Sura and Gille, 2003; Sura et al., 2006; Sura and Newman,
2008; Sura and Sardeshmukh, 2008). Both types of models
can be useful in addressing various aspects of climate vari-
ability, but are very different in terms of how they are con-
structed, as well as in their potential applications.

In particular, the models with multiplicative noise con-
sider the time series of a variable of interest (for example,
u−component of surface wind, or SST) at a single spatial
location, and estimate state-dependent drift and diffusion pa-
rameters of the stochastic differential equation (SDE), which
presumably governs the evolution of this variable. In or-
der to get reliable estimates of model parameters given rela-
tively sparse observations, as is the case for Southern Ocean
winds, one may concatenate data sets from multiple loca-
tions, which are situated far enough so that their respective
time series may be assumed to be uncorrelated (Sura, 2003).
The scalar SDEs so obtained describe local features of inter-
actions between processes evolving on different time scales.
They are particularly successful in interpreting some of the
nongaussian aspects of both SLW (Sura, 2003; Monahan,
2004, 2006a,b) and SST (Sura et al., 2006; Sura and New-
man, 2008; Sura and Sardeshmukh, 2008) variability. The
multiplicative noise in the above studies is attributed to ran-
dom fluctuations of the drag coefficient or air-sea heat ex-
change coefficient.

On the other hand, multivariate parametric models driven
by additive noise are usually constructed in the phase
space of the leading empirical orthogonal functions (EOFs)
(Preisendorfer, 1988) of the field(s) of interest, thus address-
ing non-local aspects of the variability under consideration.
This non-locality comes at the expense of a fairly restrictive
parametric dependency of the system’s tendency on its state.
In LIMs, for example, this dependency is assumed to be lin-
ear, while the model coefficients and noise parameters are
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found by multiple linear regression (MLR). LIMs driven by
Gaussian stochastic forcing cannot model the nongaussian
aspects of the observed statistics, but more general, nonlinear
empirical parametric models can. Kravtsov et al. (2005b) de-
veloped a methodology for constructing such nonlinear em-
pirical models, which also addresses some other weaknesses
of LIMs. This methodology showed excellent results when
applied to the problems of mid-latitude variability of geopo-
tential heights (Kondrashov et al., 2006), as well as to de-
scribing tropical SST evolution (Kondrashov et al., 2005).

1.3 This paper

The purpose of the present paper is to construct an empirical
model of SLW variability over the Southern Ocean by using
concurrent high-quality satellite measurements of SLW and
SST. Doing so requires the use of recent microwave-sensed
SST fields available after the launch of AQUA in June 2002.
Since only about 5 years of such data are available, we do
not attempt to develop a closed model that would simulate by
itself long-term aspects of SLW-SST co-variability, such as
ACW; this would require a much longer data set with enough
degrees of freedom to capture interannual SST signals. In-
stead, the quantities involving SST observations will serve
as predictors in the stochastic model of SLW evolution; the
time-dependent SST anomalies themselves will be treated as
given. We will show that this model is capable of reproduc-
ing the statistics of daily-to-intraseasonal SLW anomalies.
As a brief introductory illustration of one of many poten-
tial uses of the empirical model constructed, we will present
some evidence for large-scale oceanic imprint onto the at-
mospheric variability in the Southern Ocean by comparing
the statistics of an SLW-only empirical model with that of a
model forced by the daily history of SST anomalies.

Our statistical SST-dependent SLW model will also be
able to capture some aspects of air-sea interaction and
longer-term variability when coupled to a dynamical oceanic
component. Experiments with such a coupled dynamical-
statistical model will be studied in a future paper. The ap-
plication of our statistical model as a component of a hy-
brid coupled GCM requires that both local and non-local as-
pects of SLW variability and its coupling with SST variabil-
ity be comprehensively represented in the empirical model.
We will therefore build upon the methodology of Kravtsov et
al. (2005b) to construct this model, but emphasize here that
substantial modifications to that model construction tech-
nique are necessary, as detailed below.

As we have mentioned at the end of section 1.1, the
high-dimensional nature of basin-scale air-sea coupling in
the Southern Ocean region prohibits direct application of
Kravtsov et al. (2005b) method and requires major modifi-
cations to the model construction algorithm; these changes,
when applied to gap-free satellite datasets with missing data
filled-in by M-SSA (Kondrashov and Ghil, 2006), are essen-

tial in obtaining stable estimates of the empirical model prop-
agator.

The rest of the paper is organized as follows. Section
2 describes the data sources, pre-processing and gap-filling
methodology, as well as the data set’s basic statistics. Sec-
tion 3 outlines general, as well as novel technical aspects of
the empirical stochastic model construction, with method-
ological details given in the appendices. The performance of
our empirical models is evaluated in Sect. 4, while Sect. 5
summarizes our results and elaborates on their significance.

2 Data, pre-processing methodology, and basic statistics

2.1 Data sources

The gridded data products used in this analysis are obtained
from the Remote Sensing Sytems website (http://www.ssmi.
com). The SST data are taken from the AMSR-E ocean
data product (Version-5) for the time interval from June 2002
to February 2007 (Kawanishi et al., 2003). Missing data
are due to sun glint, heavy rain, proximity of ice edge, and
winds greater than 20 m s−1. The wind speed and direction
at 10 m a.s.l. are obtained from the QuikSCAT scatterometer
dataset (Liu, 2002). The geophysical data record began on
July 1999; for the analysis in this paper, we use data for the
time interval that overlaps with that of the AMSR-E dataset.
Although the scatterometer data tend to be less accurate in
the presence of rain, we do not remove such data entries,
since our statistical technique is based on analyzing spatial
covariances within the fields considered; the small-scale ran-
dom errors associated with rain occurrences will thus be ef-
fectively filtered out.

Both gridded data sets are available on a 0.25◦
×0.25◦ grid

twice a day, on ascending and descending paths. For our sub-
sequent analyses, the data were averaged in space and time
to produce daily values on a 2◦

×2◦ grid.

2.2 Filling the missing data

While recent satellite observations over the Southern Ocean
do have a previously unprecedented quality, there are still
gaps in data coverage in the presence of heavy rains or strong
winds; specifically, about 40 % of the points in the SST data
set and 20 % in the SLW data set were missing. In order
to fill these gaps in the data, we used the methodology of
Kondrashov and Ghil (2006). Their algorithm is based on
multi-channel singular spectrum analysis (M-SSA) (Ghil et
al., 2002) and takes advantage of both spatial and temporal
correlations in the existing data to iteratively produce esti-
mates of missing data points, which are then used to com-
pute a self-consistent spatiotemporal lag-covariance matrix;
cross-validation is applied to find the optimal window width
and number of dominant M-SSA modes to fill the gaps.

The missing data have been filled-in for SLW and SST
fields separately; that is, cross-correlations between these
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two fields were not exploited. Since the total number of spa-
tial grid points exceeds the temporal length of the data set
(in days) for both SLW and SST, we utilized the “reduced-
covariance” approach (Ghil et al., 2002) to compute the
spatio-temporal lag-covariance matrix. Based on the results
of cross-validation experiments, we chose the lag of 1 day
and 300 M-SSA modes for filling SLW components and the
lag of 5 days and 160 M-SSA modes for SST. The domain-
averaged root-mean-square (rms) error for filled-in values
is estimated to be 0.44◦C for SSTs and 1.7 m s−1 for SLW
components.

2.3 Basic statistics

2.3.1 Filtering

We considered continuous, filled-in by M-SSA data sets of
daily SST scalars and SLW vectors on a 2×2◦ grid (65◦

−

30◦ S), for the period of 1 June 2002–13 February 2007, for
a total of 1719 days. We first removed the seasonal cycle
by retaining, at each grid point, only the residual of the mul-
tiple linear regression of the original, unfiltered time series
onto a ten-variable “seasonal cycle” time series. The latter
time series had the form(sin(2πnt/365), cos(2πnt/365)) ,
where timet is measured in days and changes fromt = 0 to
t = 1718, whilen = 1,2,3,4,5. The filtered versions of the
original SST and SLW time series were then also linearly de-
trended to get rid of secular variability, since our statistical
models are assumed to be stationary.

2.3.2 Low-order moments

Figure 2 shows a few of low-order moments of the filtered
anomalies so obtained. The time-mean wind is plotted in
panel (a), with the wind speed given by color shading, and
the direction of the wind by arrows. The winds are predom-
inantly westerly, as expected, and their spatial pattern repre-
sents a mid-latitude jet, whose axis is located at about 50◦ S
between South America and Australia, and at about 55◦ S
elsewhere; the strength of the jet in the latter region is some-
what weaker, with the exception of even weaker time-mean
winds just east of South America. The standard deviation of
the wind speed shown in panel (b) is fairly uniform through-
out the Southern Ocean, with the most intense variability
south of the stronger portion of the jet, and the weakest vari-
ance at the northern edge of the Southern Ocean. Modern
data sets thus indicate that, at the 2◦

×2◦ resolution used here,
the “furious fifties” are much more intense than the “roaring
forties” of sailing days. Moreover, at this resolution and on a
5-yr average, winds off Cape Horn or the Cape of Good Hope
are not particularly strong, although their standard deviation
is maximal off Cape Horn and above the Agulhas Current,
east and south of the Cape of Good Hope.

Color shading in panel (c) shows the distribution of the
skewness of the zonal component of the surface wind, which
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Figure 2. Low-order moments of SLW and SST anomalies: (a) time-mean SLW; (b) standard 2 

deviation of SLW; (c) skewness of the zonal component of SLW; and (d) time-mean SST. 3 
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Fig. 2. Low-order moments of SLW and SST anomalies:(a) time-
mean SLW;(b) standard deviation of SLW;(c) skewness of the
zonal component of SLW; and(d) time-mean SST.

is found to be negative in the majority of the basin. Monahan
(2004) explains this property of the zonal-wind anomalies
in terms of a nonlinear surface drag law: according to this
law, positive anomalies inu in the region with positive time-
mean zonal winds will be subjected to stronger friction than
negative anomalies, so that the resultingu-wind distribution
will be negatively skewed.

The time-mean SST field (Fig. 2d) is consistent with the
climatological wind (Fig. 2a) in that the strongest SST front
is co-located with the strongest zonal jet, south of Africa
and further eastward, at 40◦ S. This is presumably the region
of the strongest ACC as well. The north-south SST gradi-
ents elsewhere are weaker. The SST variance (not shown) is
largely uniform throughout the Southern ocean, with values
around 1–2◦C.

2.3.3 Principal component (PC) analysis

Prior to computing the EOFs and PCs of SLW and SST, we
multiplied the time series of these quantities at each grid
point by the square root of the cosine of its latitude, to ac-
count for the meridian convergence and get area-weighted
grid-point contributions to the total variance of each field.
The EOFs of SST and SLW were computed separately, and
we used the combined (u, v) field to compute the latter. The
percentages of variance accounted for by the first 100 EOFs
of SLW are shown in Figs. 3a, b, while the analogous plots
for SST EOF are in Figs. 3c, d.

Two leading SLW EOF pairs are somewhat separated from
each other and from the rest of the modes (Fig. 3a) and to-
gether account for about 20 % of the total SLW variance
(Fig. 3c). These two pairs are associated with the leading
synoptic disturbances in the “weaker jet” (160◦ W–80◦ W)
and “stronger jet” region (40◦ W–130◦ E), respectively; com-
pare Fig. 2a and Fig. 4. Spatial analysis of Fig. 4a, b and 4c, d
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Figure 3. Variances accounted for by the 100 leading EOF modes of (a,b) SLW and (c,d) 2 

SST; individual and cumulative variances appear in panels (a,c) and (b,d), respectively. 3 
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Fig. 3. Variances accounted for by the 100 leading EOF modes
of (a, b) SLW and (c, d) SST; individual and cumulative variances
appear in panels(a, c)and(b, d), respectively.
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Figure 4. Leading EOFs of SLW: (a,b) EOFs 1 and 2; (c,d) EOFs 3 and 4. 2 
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Fig. 4. Leading EOFs of SLW:(a, b) EOFs 1 and 2;(c, d) EOFs 3
and 4.

shows that these two modes are characterized by zonal wave
numbers 8 and 9, respectively. For the SST, only two leading
EOFs stand out from the rest (Fig. 3c), and account for about
12 % of the total SST variance (Fig. 3d). Both of these EOFs
have a wavelike pattern with dominant zonal wavenumbers
3–4 (Figs. 5a, b) and pronounced interannual variability
(Fig. 5c) suggesting their possible association with the ACW.
In particular, if the time scaleT of the ACW is set up by ad-
vection processes (Weisse et al., 1999), thenT = L/U , where
L and U are length and velocity scales, respectively. For
wavenumber-3 patterns (Figs. 5a, b)L∼6000 km; given typ-
ical advective velocities ofU=10 cm s−1, one then ends up
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Figure 5. Leading EOFs of SST: (a,b) EOFs 1 and 2; and (c) corresponding PCs (PCs 1 and 2 2 

are shown as blue and red lines, respectively). 3 
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Fig. 5. Leading EOFs of SST:(a, b) EOFs 1 and 2; and(c) corre-
sponding PCs (PCs 1 and 2 are shown as blue and red lines, respec-
tively).

 39 

 1 

Figure 6. Integral correlation time scales of the leading 100 PCs for: (a) wind, and (b) SST. 2 
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Fig. 6. Integral correlation time scales of the leading 100 PCs for:
(a) wind, and(b) SST.

with the estimateT ∼2 yr, consistent with Fig. 5c. The EOF
spectrum becomes fairly flat roughly beyond mode 40 for
SLW and mode 20 for SST. The leading 100 EOFs account
for about 80 % of the total variance of both fields.

Figure 6 shows integral correlation time scalesTint of the
leading 100 EOFs of SLW in panel (a) and SST in panel
(b). The quantityTint was defined asTint =

∑100
τ=1|c(τ )|1τ ,

wherec(τ ) is the autocorrelation of a given PC at the lagτ

(in days), and1τ = 1 day. In general, the integral correla-
tion time scale of the trailing modes is shorter than that of the
leading modes, for both the SLW and SST PCs, although the
dependence ofTint on the mode number is not monotonic.
The leading EOF pairs of SLW have time scales of about
5.5 and 4 days, respectively, while the leading EOF pair of
SST is characterized byTint ≈60 days. The latter estimate is
an order of magnitude longer than the maximumTint of the
SLW EOFs, which is of about 7 days. Hasselmann (1976) in-
troduced a null hypothesis for low-frequency variability SST
anomalies, which involved integration of fast and essentially
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random air-sea heat fluxes by an ocean mixed layer. The fast
random heat flux forcing was associated with SLW variabil-
ity, while the longer time scale of SST anomalies arose due
to ocean mixed layer’s thermal inertia. We argue that lead-
ing SST modes are not consistent with this null hypothesis
for two reasons: (i) the Hasselmann mechanism is local, im-
plying positive spatial correlations between SLW and SST
patterns, whereas the patterns in Figs. 4 and 5a, b are not so
correlated; and (ii) the interannual time scales of the leading
SST modes (Fig. 5c) are longer than those associated with
mixed layer thermal inertia. We thus conjecture that the lead-
ing SST modes arise from intrinsic ocean dynamics.

In fact, the arguments of the latter paragraph apply to most
of the SST EOFs, more so for leading modes, and to a some-
what smaller degree for the trailing modes. The empirical
stochastic models of SLW constructed in the next section
will include the dependence on SST anomalies that span the
subspace of their leadingK EOFs, withK = 50 andK = 75.
Therefore, any sensitivity of the SLW variability produced by
empirical stochastic models to these SST anomalies should
be interpreted as that caused by SST variability, rather than
vice-versa.

3 Construction of empirical stochastic models

3.1 General methodology

We construct empirical stochastic models in the phase space
of M leading EOFs of SLW, for various values ofM(10–
100), following the general methodology of Kravtsov et
al. (2005b). In order to do so, we first form daily tendencies
of N leading PCs of SLW: the tendency at dayn, for exam-
ple, is approximated as the difference between the value of
a given PC at dayn+1 minus the value of this PC at dayn.

The M time series of tendencies so obtained represent our
response variables.

We will consider several versions of the empirical models.
In the simplest, linear case, the main level of the empirical
model is obtained by multiple linear regression (MLR) of
each response variable ontoM leading PCs of SLW, resulting
in an equation of the form

xn+1
−xn

= B ·xn
+rn, (1)

wherex is anM-component vector of the leading PCs,B is
an M ×M matrix of the regression coefficients, whiler is
the vector ofM residual time series uncorrelated with each
of the predictor variables; as before,nis the time index (in
days). If we modelr as vector-noisedw that is white in
time, but spatially correlated, then the formulation of Eq. (1)
is a so-called linear inverse model (LIM) of SLW variability.
The spatial correlation refers to that between the different
components of the residual time series inr (anddw). Given
random realizations of the forcingdw, the LIM (1) can be
integrated to produce surrogate time series of theM leading
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Figure 7. Probability density function (PDF; left panels) and autocorrelation function (ACF; 2 

right panels) of the observed and simulated zonal velocity anomalies at 120ºW and 55ºS. 3 

Solid lines: the observed functions; dashed lines: 95% spread based on SLW-only model with 4 
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Fig. 7. Probability density function (PDF; left panels) and autocor-
relation function (ACF; right panels) of the observed and simulated
zonal velocity anomalies at 120◦ W and 55◦ S. Solid lines: the ob-
served functions; dashed lines: 95 % spread based on SLW-only
model with quadratic main level. The four rows show the results,
from top to bottom, for the models constructed in the subspace of
10, 30, 50, and 100 PCs of SLW, respectively.

PCs of SLW, which can then be translated into variable SLW
patterns in physical space by summing the SLW EOFs mul-
tiplied by the value of the corresponding surrogate PC at a
given time. The statistics of such surrogate SLW realizations
can then be compared to that of the observed anomalies to
judge the performance of the LIM.

Kravtsov et al. (2005b) introduced several improvements
to the LIM (1). In particular, it often happens that the auto-
correlation of the residuals at nonzero lags is not negligible.
In order to address this problem, Kravtsov et al. (2005b) pro-
posed to construct an additional level of the inverse model; at
this level, the tendencies of the main-level residuals are mod-
eled as a linear function of the extended state vector[xn

; rn
],

consisting of theM original PCs, plusM first-level residuals:

rn+1
−rn

= B1 · [xn
; rn

]+rn
1. (2)

This exercise producesM second-level residuals: if the latter
are not white in time, their tendencies can in turn be modeled
as a linear function of the extended state vector consisting
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Figure 8. The standard deviation of the wind speed time series obtained by taking the 2 
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Fig. 8. The standard deviation of the wind speed time series ob-
tained by taking the ensemble average of 100 simulations of SST-
dependent SLW model forced by the observed history of SST
anomalies. The model was constructed in the phase space of 100
leading EOFs of SLW. A typical (maximum) standard deviation
of analogous SLW-only model’s ensemble-mean time series (not
shown) is 0.25 (0.55) – both values are smaller than the standard
deviations shown here.
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Figure 9. The results of PCR cross-validation for the main level of our quadratic SLW-only 2 

models. The number on the abscissa shows how many SLW PCs are included in the model. 3 

The dashed line denotes the total number of predictors in the equation for each PC. The error 4 
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equation, and the bar representing the standard deviation of these estimates. The straight 7 
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Fig. 9. The results of PCR cross-validation for the main level of our
quadratic SLW-only models. The number on the abscissa shows
how many SLW PCs are included in the model. The dashed line
denotes the total number of predictors in the equation for each PC.
The error bar plot (light solid line) shows the optimal number of
PCR components, with the central value being the average of this
number over its individual estimates obtained for each PC equation,
and the bar representing the standard deviation of these estimates.
The straight heavy line is the optimal linear fit of the dependence of
the PCR-optimized number of components on the number of origi-
nal variables (PCs) considered.

now of theM original PCs,M first-level residuals, as well
asM second-level residuals. Additional levels can be added
in the same way until the residual time series becomes white
in time. Note that this procedure is different from merely
modeling the main-level residual as colored noise, since it
also takes into account any hidden dependency of the residual
tendencies on the main-level PC predictors.

Another modification, which proved useful in modeling
tropical SST evolution in Kondrashov et al. (2005), consisted
of the inclusion of an explicit seasonal cycle. Despite our
having removed the explicit seasonal cycle from the SLW
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nonlinearity in the main level. The error bar plots show the mean and standard deviations of 3 

each quantity displayed computed using individual values of this quantity for each of the 4 

model equations (the number of equations is equal to the number of original PCs simulated by 5 
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Fig. 10. PLS cross-validation results for the three-level empirical
model with quadratic nonlinearity in the main level. The error bar
plots show the mean and standard deviations of each quantity dis-
played computed using individual values of this quantity for each of
the model equations (the number of equations is equal to the number
of original PCs simulated by the empirical model). Left panels: the
optimal number of PLS components; right panels: the percentage
of variance unaccounted for by the regression;x-symbols show the
results of PLS regression using the optimal number of latent vari-
ables, while the circles display the results of standard MQR, with
all predictors considered.

fields prior to constructing our empirical stochastic model,
the parameters of this model may still have some seasonal
dependence. Kondrashov et al. (2005) found that the op-
timal way to incorporate such dependence is two include,
at the main level of the model, two additional predictors,
namely sin(2πt/365) and cos(2πt/365). The remainder of
the procedure is unaltered, and the construction of the addi-
tional levels of the empirical stochastic models proceeds as
described above.

Finally, the most significant modification of LIM method-
ology in Kravtsov et al. (2005b) was to consider nonlinear
combinations of basic predictors. For example, one can in-
clude, in addition toM predictor variables (PC-1–PC-M),
all possible quadratic combinations of PCs: the product of
PC-1 with all of PC-1–PC-M, plus the product of PC-2 with
PC-2–PC-M, and so on. Using index notations for vectors,
matrices, and tensors, and assuming implicit summation over
repeating indices, the modified main-level equation can be
written as

xn+1
i −xn

i = aijkx
n
j xn

k +bijx
n
j +ci +rn

i . (3)

The coefficients of such a regression model are also found
by the MLR procedure; however, since this procedure now
employs an extended vector of predictor variables and their
quadratic combinations, it is called multiple quadratic regres-
sion (MQR). Kravtsov et al. (2005b) argued that it is best to
restrict the nonlinear modifications to the main level of the
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empirical model, while the construction of additional lev-
els proceeds as before. The main advantage of a nonlinear
empirical model is that it can address nongaussian aspects
of the observed variability. Its main disadvantage is a po-
tentially much larger number of predictors: in a quadratic
model based onM PCs and including two periodic seasonal
cycle variables and a constant forcing term, the number of
predictors isM × (M +1)/2+M +3, and so is the number
of coefficients that need to be determined by the regression
procedure for each of theM response variables. Kravtsov et
al. (2005b) argued that this problem may be efficiently ad-
dressed by a variety of regularization procedures that allow
one to avoid overfitting and construct nonlinear multi-level
stochastic models with optimal predictive capabilities. We
built on this approach here to develop a novel regularization
algorithm for robust estimation of empirical model coeffi-
cients (see the appendices).

3.2 Stochastic model versions

Using the regularization methods described in appendix A,
we have constructed several empirical model versions, which
differed by the number of PCs considered, the order of non-
linearity at the main level of the model, and the presence or
absence of the dependence on SST. All models had three lev-
els, with levels 2 and 3 being linear. The SLW-only models
with linear and quadratic main level were obtained in the sub-
space ofM = 10, 15, 20, 25, 30, 35, 40, 45, 50, 75, and 100
PCs, and the cubic models for all of the aboveM ≤ 40.

We found that the performance of all these model versions
is very similar, for a givenM. This result argues for using the
linear SLW-only model, because it has the simplest form and
the smallest number of coefficients; hence, it is more reliable
and easily implemented than nonlinear models. The SLW
model with SST dependence was based onM = 100 leading
PCs of the SLW field –x, andL = 50 orL = 75 leading PCs
of the SST field –y The main level of the SST-dependent
SLW model included linear dependence on SLW and SST
PCs, the cross-product of each SLW PC with each SST PC,
constant forcing term, and two seasonal cycle variables; no
quadratic combinations of SLW PCs or SST PCs were used
as predictors:

xn+1
i −xn

i = aijkx
n
j yn

k +bx
ijx

n
j +b

y
iky

n
k +cs

i sin(2πtn/365) (4)

+cc
i cos(2πtn/365)+ci +rn

i .

4 Performance of empirical stochastic models

4.1 Simulation procedure

Empirical models constructed using the methodology de-
scribed in the previous section and the appendices were used
to produce 100 surrogate simulations of SLW variability,
each of these simulations being 1719-day long. Despite the
regularization applied when constructing regression models,

Table 1. Average number of initial-state resets for different empiri-
cal SLW-only models computed based on 100 surrogate simulations
of a given model (see Sect. 4.1).

M 10 20 30 40 50 75 100

Linear 9 8 9 11 12 11 13
Quadratic 15 12 21 27 27 15 10
Cubic 9 25 35 48

a few of the simulations using nonlinear models exhibited in-
stability. In order to avoid such situations altogether, we have
used the following procedure (Kravtsov et al., 2005b).

The models were integrated in ten-day chunks. The first
chunk was started from random initial states. If at any time
during this ten-day period the absolute value of any of the
variables ended up outside their range (the latter ranges deter-
mined based on the values obtained for the training, model-
construction period), then this ten-day simulation was dis-
carded and restarted from another random state. The proce-
dure was repeated as many times as necessary until a ten-day
simulation with the values of all variables within the speci-
fied range was obtained. The final state from this simulation
was then used to initialize the next ten-day simulation, for
which the ranges of the variables were in turn monitored as
before, and so on.

The threshold value for the PCs was computed as the ob-
served maximum of the absolute value, over all the PCs and
during the whole observational interval; the threshold val-
ues for the second and third-level variables were computed
in the same way using “observed values” of these quantities.
We kept track of the number of times the threshold condition
above was violated, during each of 1719-day surrogate sim-
ulations. Table 1 lists the average values of this number for
the simulations using linear, quadratic, and cubic SLW-only
models. The average is computed over 100 available realiza-
tions of each empirical model.

In general, the number of initial-state resets is small, on the
order of 10–20 resets during 1719-day-long simulation. Note
that the resets do not always reflect instability – our linear
model is, for example, always stable, in agreement with LIM
theory (Penland, 1989, 1996; Penland and Ghil, 1993), but it
still produces the values that exceed chosen thresholds from
time to time. On the other hand, the cubic model forM = 35
and 40 does run out of control and may produce unbounded
realizations of the simulated fields. Finally, the models that
include SST forcing are not listed in Table 1, because they
never produce realizations that exceed the threshold values.
This fact suggests that coupling with SST is important for
properly modeling SLW variability (see also Sect. 4.3).
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4.2 Daily-to-monthly aspects of SLW variability

We illustrate the performance of the empirical models by ex-
amining first local aspects of the simulated SLW variability,
based on the output of the quadratic, SLW-only model. Fig-
ure 7 shows probability density function (PDF; left panels)
and autocorrelation function (ACF; right panels) of the ob-
served and simulated zonal velocity anomalies at 120◦ W and
55◦ S – in the middle of an intense-jet region (see Fig. 2); the
correspondence at other locations is qualitatively and quanti-
tatively analogous. The heavy solid line in all the plots shows
the observed PDF or ACF, while the dashed lines mark the
95 % spread in these quantities obtained from 100 realiza-
tions of the quadratic SLW model. The four top-to-bottom
rows of Fig. 7 display the results from the empirical model
based onM = 10, 30, 50, and 100 SLW PCs, respectively.

The empirical model of 10 leading PC components of
SLW (upper row) produces a time series with a substantially
smaller variance of the wind at the given location, while the
time scale of SLW anomalies there is overestimated. Both of
these results are to be expected, since the leading SLW EOFs
account for a limited fraction of total variance (Fig. 3) and are
generally characterized by the longest time scales (Fig. 6).
Including progressively more components into the empiri-
cal model achieves continuous improvement of these two
characteristics of SLW variability, with the 100-component
model capturing quite well both the variance and the time
scale of SLW anomalies. None of the model versions, how-
ever, captures the observed negative skewness of the zonal-
velocity distribution. In fact, the quadratic model PDFs are
essentially Gaussian and very similar to the ones obtained us-
ing simulations of the cubic and linear models (not shown).

We have tried a number of ways to better capture the
skewness of the zonal-wind anomalies in our empirical mod-
els. These attempts included choosing a different EOF ba-
sis, which arranged the SLW patterns so that each of them
would capture a significant fraction of variance, while hav-
ing maximally skewed distribution, as well as blending our
multi-level model methodology with the multiplicative-noise
techniques of Sura and collaborators (see Sect. 1.2), but still
failed to reproduce the negative skewness of the zonal-wind
anomalies. We think that the reason for this failure is that the
dynamics behind this negative skewness is essentially local,
as it involves the effectively larger surface drag for positive
u-wind anomalies in the region of the positive time-meanu-
wind (Monahan, 2004). Considering the anomalies in the
EOF basis does not optimally represent such local dynamics:
Each of the PCs turns out to possess skewness values smaller
than the typical skewness of the zonal wind at a certain grid
point, and this skewness is identified by the regression proce-
dure as negligible; hence, this non-Gaussian aspect of zonal-
wind behavior is not properly represented in our empirical
models. Non-local dynamics, though, are well represented
in our statistical models of SLW evolution, as we will see in
Sect. 4.3.

The correspondence between the observed and simulated
statistics for meridional SLW components is similar or bet-
ter than that in Fig. 7 (not shown), since the meridional wind
distribution is generally more gaussian. Similar results are
also obtained for other locations in the Southern Ocean (not
shown). These local results are essentially indistinguishable
between all versions of the empirical models including the
SST-dependent version, given the number of SLW PCs con-
sidered.

4.3 SST effects on SLW evolution

We show here some preliminary evidence for the substan-
tial oceanic imprint onto Southern Ocean’s SLW variability;
this oceanic effect is a necessary condition for the existence
of active ocean-atmosphere coupling there. In order to do
so, we have computed ensemble-averaged evolution of the
SLW anomalies for a 100-member ensemble using the em-
pirical stochastic model forced by the history of the observed
SST anomalies, as well as this evolution for the SLW-only
stochastic model. We then computed the standard devia-
tion of the ensemble-averaged wind speed for both cases, at
each grid point: the results of this computation for the SST-
dependent SLW model are shown in Fig. 8. The standard
deviation in the SST-dependent case is much larger (by a fac-
tor of 5–10), at all grid points, than that in the SLW-only case
(not shown), and exhibits a distinctive large-scale spatial pat-
tern, suggesting this SLW variability is forced by long-term,
ocean-induced SST anomalies. We plan to address this in-
triguing behavior in a future paper (see Sect. 5).

In summary, the model constructed in the phase space of
100 leading EOFs of SLW and including, in addition, linear
and bilinear interactions with SST anomalies restricted to the
subspace of 75 leading EOFs of SST, as well as the seasonal
effects, is stationary and captures several local and non-local
aspects of SLW evolution, on all time scales. We plan to use
this model as the atmospheric component of a hybrid coupled
model in which the oceanic component will be a state-of-the-
art GCM (see Sect. 5).

5 Summary and discussion

We have analyzed five years of remotely sensed data sets
of sea-surface temperature (SST) and sea-level wind (SLW)
over the Southern Ocean; the microwave sensors installed
on recently launched NASA satellites provide an unprece-
dented quantity and quality of observations in the region.
The missing data due to heavy rains or cloud coverage has
been filled-in by singular spectrum analysis (SSA). The main
technical outcome of this investigation is the construction of
a statistical, stochastically forced model of SLW over the
Southern Ocean; the model construction algorithm uses a
number of essential innovations required to obtained robust
estimates of the model’s propagator. This model captures
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detailed features of SLW variability on a wide range of time
scales, from daily to interannual, and spatial scales spanning
the range from the atmospheric Rossby radius to the basin
scale. The model also accounts for ocean-atmosphere cou-
pling via dependence of SLW equations on the SST anoma-
lies.

The model’s potential in helping to interpret observed
evolution of Southern Ocean’s climatic variables is briefly
illustrated by identifying substantial oceanic imprint onto
SLW variability, which may be indicative of possible coupled
ocean-atmosphere effects in the Southern Ocean: ensemble
averaging over 100 simulation of the statistical model forced
by the observed SST anomalies reveals variability of a large
magnitude and distinctive spatial pattern. The analogous en-
semble average based on simulations of the SLW-only model
is characterized by a very small magnitude and a lack of spa-
tial coherence.

The construction of the above statistical models is rooted
in the empirical methodology of Kravtsov et al. (2005b) and
Kondrashov et al. (2005, 2006); however, the model con-
struction algorithm is substantially modified and improved
here in a number of ways that help choose the optimal
model structure (see the appendices). These modifications
make Kravtsov et al. (2005b) technique, previously used to
identify low-dimensional behavior within high-dimensional
noisy data, applicable to the analysis of the phenomena in-
volving intermediate number of degrees of freedom. In par-
ticular, the most comprehensive statistical model operates in
the subspace spanned by 100 leading empirical orthogonal
functions (EOFs) of the daily SLW over the Southern Ocean,
thus modeling the evolution of 100 corresponding principal
components (PCs); the seasonal cycle was removed from all
fields prior to performing the principal component analysis.

The model equations relate the time derivative of each PC
to the right-hand side consisting of three parts: the part that
depends on SLW only, the SST-dependent part, and the vari-
able forcing term. The first part is approximated as a linear
function of all PCs of the SLW field. The dependence on
SSTs is modeled as the linear function of the leading 75 PCs
of the SST, plus bilinear terms involving the cross-product of
SLW and SST PCs; since this part is nonlinear, the season-
ally dependent forcing term is also included. The variable
forcing that drives the variability in the model is simulated
in a separate set of equations that relate the time derivative
of each component of the forcing vector to the linear func-
tion of SLW and SST PCs, as well as the forcing vector it-
self, and also include the second-level variable forcing. The
second-level forcing’s tendency is in turn modeled linearly
in a way analogous to the main-level forcing, while the vari-
able forcing at this last, third level of the model is approxi-
mated as spatially coherent noise that is white in time. The
construction of this statistical model involved a novel multi-
step regression algorithm to compute the coefficients of the
model’s propagator, as well as to determine the parameters
of the noise.

Table 2. The number of statistically significant coefficients of a
three-level quadratic inverse model based onM leading PCs of
SLW (see Appendix B for further details).

Level # of # of all # of significant (Ks /K)
PCs (M) coeffs. (K) coeffs. (Ks) ×100 %

Level 1 30 14 940 2248 15
40 34 520 3426 10
50 66 400 4333 7
75 219 600 4849 2
100 515 300 4660 1

Level 2 30 1800 695 39
40 3200 994 31
50 5000 1415 28
75 11 250 2834 25
100 20 000 4986 25

Level 3 30 2700 393 15
40 4800 528 11
50 7500 688 9
75 16 875 1235 7
100 30 000 1923 6

We plan to use the statistical model constructed in the
present study to further investigate the dynamics of ocean-
atmosphere interaction over the Southern Ocean. In partic-
ular, our current results may suggest the presence of active
coupling in the region by identifying a nontrivial SLW re-
sponse to the observed SST anomalies, although Bretherton
and Battisti (2000) proposed alternative explanations to such
findings. Goodman and Marshall (1999), on the other hand,
formulated a theory of interannual-to-decadal coupled vari-
ability that is potentially applicable to the Southern Ocean.
This theory predicts the existence of coupled modes, given a
certain spatial phase relationship between SST patterns and
SST-induced SLW anomalies; this phase relationship gives
rise to Ekman pumping anomalies that force and modify the
oceanic circulation and the associated SST field. It would be
interesting to check whether we can detect such a phase re-
lationship in our statistical model. Another very promising
way to apply our empirical SLW model is to couple it to an
oceanic GCM. We plan to achieve this coupling by blend-
ing the SST-dependent SLW model with atmospheric bound-
ary layer model of Seager et al. (1995). The latter model
needs the specification of boundary-layer winds to compute
ocean-atmosphere heat fluxes. These winds will be supplied
by the statistical model, and will also be used to compute
the atmosphere-ocean momentum flux. The ocean model
forced by heat, moisture, and momentum fluxes will predict
the evolution of the SST field, which will, in turn, affect the
future SLW anomalies. The experiments with such a hybrid
coupled GCM of the Southern Ocean regions may provide
invaluable insights into the dynamics of climate variability
there.
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Appendix A

PCR and PLS regression

The main regularization tool is cross-validation, in which
one chooses randomly a subset of the vector time series (in
the analyses below, we typically consider 80 % of original
data points), applies a given regression technique, and then
uses the regression model to reconstruct the segments of the
time series that were omitted in the model identification step.
The performance of the regression technique may then be as-
sessed according, for example, to the smallness of the differ-
ences between the regression-based prediction and the actual
values of the time series. We will use cross-validation in a
number of different ways when constructing the empirical
models below.

A major problem in applying MQR or MLR based on a
large number of predictors is multi-collinearity (Press et al.,
1994). This problem can be avoided by finding linear combi-
nations of original predictors in such a way that their time se-
ries are uncorrelated, while each linear combination accounts
for the maximum possible amount of the total variance. A
natural way to determine this modified set of predictors is to
apply principal component analysis to the original vector of
predictors, and then use cross-validation for finding the opti-
mal number of PCs to retain in the regression; this procedure
is called the principal component regression (PCR). Note that
since we construct our empirical models in the phase space
of the data set’s EOFs, the predictor variables in an LIM are
already uncorrelated. On the other hand, the MQR predictors
are the original set of PCs augmented by their quadratic com-
binations. Therefore, applying principal component analysis
to this new multivariate data set generally produces a differ-
ent set of predictors.

The PCR results for MQR based on several numbers of
PCs,M=10, 15, 20, 25, 30, 35, and 40, are displayed in
Fig. 9; the values ofM are shown on the abscissa of this
graph. We computed the optimal number of PCR predic-
tors for each of theM equations of the quadratic regression
model. We thus obtained, for the model describing the evo-
lution of M leading SLW PCs,M estimates of the optimal
number of PCR components. The error bar plot in Fig. 9
shows the average value of this number over theMavailable
estimates, along with its standard deviation. The dependence
of the optimal number of PCR components on the number of
original PCs is very well approximated by a linear fit (heavy
solid line); this number is much smaller, for largeM, than
the maximum possible number of variables, which is equal,
for MQR, toM ×(M +1)/2+M +3.

PCR does a fairly good job in picking the smallest set
of uncorrelated predictors that capture most of the variance.
However, the choice of the PCR predictors does not involve
at all the information about how well these predictors are cor-
related with the response variable. The procedure that does
take into account this additional information is called partial

least-squares regression (PLS); see Abdi (2003) for a brief,
but comprehensive review. We apply PLS to the set of opti-
mal predictors determined via PCR cross-validation (Fig. 9),
rather than to the original, much larger set of predictors.

Similarly to the PCR procedure, the leading PLS predictor
is defined as a linear combination of the original predictor
time series, but in this case the quantity being maximized
is the correlation between this time series and the predictor
time series. We found that applying PLS to each response
variable individually produces better results than the matrix
formulation of the PLS algorithm, which also considers lin-
ear combinations of all response variables and finds two sets
of coefficients that define the mode of response and the mode
of predictor variables that are maximally correlated (Abdi,
2003). In the general multivariate case, the weights of the
leading PLS mode are found using Singular Value Decom-
position (SVD) as the first right singular vector of the ma-
trix XT Y, whereX andY are the matrices whose columns
are the time series of the predictor and response variables,
respectively. The right singular vectors ofXT Y define the
weights for the response variables; in the univariate case, the
single such weight is naturally equal to 1.

The time series of the leading PLS mode is obtained by
summing the original time series of the predictor variables
with the weights obtained as above. The signal associated
with the leading PLS mode is then regressed out of both the
response variable(s) time series, and all the predictor time
series; this is done, once again, by only retaining the resid-
ual of the linear regression of each of these time series onto
the time series associated with the leading PLS mode. The
above procedure is then applied to the “reduced” response
and predictor time series to obtain the next PLS mode, and
so on to obtain all the PLS modes. The optimal number of
modes to retain in this procedure is also determined by cross-
validation.

The PLS cross-validation results for the main level of the
quadratic models based onM = 10, 15, 20, 25, 30, 35, and
40 PCs are shown in the upper row of Fig. 10. The error bar
plot in the left panel is analogous to that in Fig. 9, and shows,
in this case, the optimal number of PLS components, which
is found to be less than 10 for allM. The error bar plot with
x-symbols (solid lines) in the right panel shows the residual
variance as the percentage of the total response-variable vari-
ance; the expectation value and the standard deviation for a
givenM are, once again, based on the results of the PLS pro-
cedure applied to each of theM response variables (and, of
course, the same set of original predictors). The additional
error bar plot in the same panel (dashed line with circles)
shows the same quantity based on the full MQR, which uses
all of the original response variables. Note that forM = 10,
15, and 20, only a few (definitely less than 10) effective pre-
dictor variables found by consecutive application of the PCR
and PLS methodologies capture essentially the same amount
of variance in the response variables as the MQR based on
63, 138, and 223 variables, respectively. ForM = 40, the
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residual variances differ by a factor of 2, which indicates that
the additional variance “captured” by the original MQR pro-
cedure is associated with a substantial overfitting.

The additional panels in Fig. 10 show analogous results
for the second (2M original predictors) and third (3M orig-
inal predictors) level of the wind-only empirical stochastic
model. The PCR pre-processing has not been applied to these
levels, so that the PLS regularization acted directly on the
original PCs and residuals. In each case, about a dozen op-
timal predictors are identified, which capture essentially the
same amount of the response variance as the full MLR model
for this level. Note that the residual variances become in-
creasingly close to 50 % for the second and third level. Since
our response variables have the formrn+1–rn and the pre-
dictors include the termrn, the case with no prediction skill
(that is,r being pure white noise) will identify the regression
coefficient multiplyingrn to be equal to –1, and all other
coefficients to be zero. In this case, the residual will be ex-
actly equal torn+1, and therefore the residual variance will
be exactly equal to the 50 % of the response-variable vari-
ance. The deviations of the residual variance from 50 % in
the fourth level of the wind-only regression model are negli-
gible (not shown), thus identifying the three-level empirical
model to be optimal.

Appendix B

Selection of predictor variables

A few regression coefficients found by the application of
PCR-and-PLS regularization, as described in appendix A,
can be translated by trivial matrix manipulation into the co-
efficients of the empirical model in the original predictor-
variable basis. Many of these coefficients are fairly small and
do not contribute much to the predictive capability of a given
empirical model. We therefore fine-tuned and enhanced our
regression technique by the following procedure for the se-
lection of the predictor variables.

This procedure was also based on subsampling of origi-
nal predictor and response variables. For a model mimicking
the evolution ofM original PCs of SLW (M = 10−100), we
first obtained 100 sets of regression coefficients by randomly
applying PCR-and-PLS regularization to 100 randomly sam-
pled subsets of the full original time series, each of which
included 80 % of the original data points. The optimal num-
ber of PCR components in the quadratic model was estimated
according to the linear approximation shown in Fig. 9. The
general cubic model was also constructed forM = 10−40;
for this model, we determined the optimal number of PCR
components in a way analogous to that for the quadratic
model, prior to applying the PLS regularization step. No
PCR step was applied to the linear models. At the PLS step,
we have used a fixed number of 25 latent variables to define
the optimal subspace for regression. This number exceeded

the optimal one in Fig. 9 by at least a factor of two and thus
could not result in underfitting. The regression coefficients
so obtained were then translated into the original predictor-
variable space.

If the interval between the 2nd and 97th percentile of a
given regression coefficient obtained as described above con-
tained the value zero, we excluded the corresponding predic-
tor variable from consideration, thus forming a new, smaller
subset of predictor variables. This subset was in turn sub-
sampled 100 times and subjected to PCR-and-PLS regression
to identify coefficients not significantly different from zero,
and so on, until all coefficients of the final set of predictors
were found to be significant. The same procedure was ap-
plied to the second and third level of each version of the in-
verse model. The final regression coefficients in each case
were found by applying the PCR-and-PLS regularization to
the fully sampled set of optimal predictors.

Table 2 lists the number of statistically significant nonzero
coefficients of the three-level inverse model ofM leading
PCs of SLW; the main level includes quadratic nonlineari-
ties and a seasonal cycle. The total number of coefficients
at the main level is(M × (M + 1)/2+M + 3)×M, at the
second level – 2M2, and at the third level – 3M2. Note that
the statistically significant coefficients are but a small frac-
tion of the total number of coefficients. For example, for
M = 75, the main level of the quadratic model has only 4849
nonzero coefficients, out of a maximum possible of 219600.
This means that our regression procedure identified, on av-
erage, 4849/75≈65 nonzero coefficients in each of the 75
main-level equations; this number is an order of magnitude
smaller than the number of degrees of freedomNDOF in the
time series of the length of 1719. If one estimates the decor-
relation time scale of SLW anomalies to be 5 days, then
NDOF ≈ 1719/5 = 344>> 65. Recall also, that the num-
ber of independent regression coefficients we have actually
computed at each level is 25, which makes the number of
coefficients/DOF comparison even more favorable.
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