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Abstract. Phytoplankton patchiness has been investigated
with multifractal analysis techniques. We analyzed oceanic
chlorophyll maps, measured by the SeaWiFS orbiting sen-
sor, which are considered to be good proxies for phytoplank-
ton. The study area is the Senegalo-Mauritanian upwelling
region, because it has a low cloud cover and high chloro-
phyll concentrations. Multifractal properties are observed,
from the sub-mesoscale up to the mesoscale, and are found
to be consistent with the Corssin-Obukhov scale law of pas-
sive scalars. This result indicates that, in this specific region
and within this scale range, turbulent mixing would be the
dominant effect leading to the observed variability of phyto-
plankton fields. Finally, it is shown that multifractal patchi-
ness can be responsible for significant biases in the nonlinear
source and sink terms involved in biogeochemical numerical
models.

1 Introduction

It is sometimes argued that turbulent mixing leads to ho-
mogeneous fields. However, Kolmogorov (1941), Obukhov
(1949) and Corssin (1951) have shown that, on the contrary,
turbulent mixing generates highly irregular structures that are
heterogeneous at all scales. Their work was based on the hy-
pothesis of scale invariance, which means, in simple words,
that eddies can be expected to occur in a similar manner at all
scales. In the case where the physical quantity is the concen-
tration of a passive tracer, these authors demonstrated that its
variability exhibits fractal properties which can be described
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statistically using scale laws. This result is often referred to
as the theory of passive scalars.

Since the phytoplankton’s ability to swim is very limited,
its displacements are mainly due to the velocity of the fluid in
which it evolves. Phytoplankton patchiness is thus strongly
related to turbulence. This consequence has led numerous
authors to study the scale invariance properties of phyto-
plankton patches, and to confront experimental data with
phenomenological models derived from, or inspired by, the
theory of passive scalars. Early studies remained confined to
second-order moments, such as the slope of the power spec-
trum (see, e.g., Platt, 1972), whereas more recent research
takes into account the intermittent transfer of conservative
quantities in scale space, such as energy and scalar variance,
which give rise to multifractal statistics through cascade pro-
cesses (Seuront et al., 1996a, b, 1999; Seuront and Schmitt,
2004, 2005a, b; Lovejoy et al., 2001a, b; Pottier et al., 2008).

At smaller scales, most of these studies found empirical
proof for a passive scalar regime of phytoplankton patchi-
ness, corresponding to the well-known “−5/3” power spec-
trum slope of homogenous and isotropic turbulence. This
purely turbulent regime appears to be limited to spatial scales
smaller than a particular scale of the order of 100 m, called
the “planktoscale” by Lovejoy et al. (2001b). In fact, al-
though phytoplankton can reasonably be described as pas-
sively advected, in the sense that its retroaction on the turbu-
lent flow is negligible, it cannot be considered to be totally
passive, since it is biologically active. One important biolog-
ical process is zooplankton grazing, and the “planktoscale” is
currently interpreted as corresponding to the scale at which
changes take place in the grazing regime. This modifica-
tion of the grazing regime appears to be related to the zoo-
plankton’s ability to swim. Contrary to phytoplankton, zoo-
plankton is able to swim, although its speed remains limited.
Therefore, there exists a scale above which its displacements
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are dominated by turbulent mixing. This hypothesis is sup-
ported by the fact that the zooplankton’s concentration power
spectrum whitens at scales smaller than the “planktoscale”
(Currie and Roff, 2006).

At scales larger than the “planktoscale”, the phytoplankton
patchiness description is more confused. Some authors found
a power spectrum slope steeper than−5/3 (around−2, Cur-
rie and Roff, 2006; Seuront et al., 1999), interpreting this re-
sult as a transition from Eulerian to Lagrangian statistics, due
to the inertia of the boat carrying the instruments (cf. Seuront
et al., 1996b). On the other hand, the analysis of remotely
sensed phytoplankton fields from aircraft led to a smoother
slope (around−1.2, Lovejoy et al., 2001b). From a theoreti-
cal point of view, the situation is even less clear: some studies
reached the conclusion that growth and trophic interactions
should decrease the slope of the power spectrum (Denman
and Platt, 1976; Fasham, 1978), whereas some others predict
that it should increase (Steele and Henderson, 1979) or that
the power spectrum has no specific regime (Horwood, 1978).

In this context, to the best of our knowledge, the large
volumes of data collected by remote sensing from space,
over a period of more than two decades, have almost not
been exploited in order to improve scientific understanding
of the multi-scaling properties of phytoplankton fields (with
the noticeable exception of Nieves et al., 2007). The aim of
the present study is to analyze oceanic chlorophyll maps ob-
tained through the use of this type of sensor. The first part of
the paper briefly recalls the passive scalar theory and the no-
tion of multifractal intermittency. The second and third parts
describe both the cascade model and the analysis technique.
The fourth part presents the dataset and the pre-treatments.
The fifth and sixth parts are dedicated to the results and their
interpretation. Finally, the last part of the paper provides
an example of the importance of multifractal patchiness in
oceanic tracers, by assessing the biases it produces in bio-
geochemical numerical models.

2 Theoretical background: turbulence and
multifractals

Richarsdon (1922) described turbulence as a cascade process
that transfers kinetic energy from large scales to small scales
by a hierarchy of imbricated eddies. The hypothesis of scale
invariance relies on phenomenology and the invariance of the
Navier-Stokes equations under dilatation or contraction of
the reference system (see Appendix A of Schertzer and Love-
joy, 1987). On the basis of this hypothesis, and the conserva-
tion of energy in the inertial range, Kolmogorov (1941) used
dimensionality and some general assumptions, such as ho-
mogeneity and isotropy, to derive his famous statistical scale
law:

1vl ' ε1/3l1/3 (1)

In this equation,1vl ≡ 〈|v(x + l)−v(x)|〉 represents the
mean shear of (longitudinal) velocity between two points
separated by a distancel, andε represents the mean density
of the energy flux, which is equal to the rate of energy dis-
sipation per unit mass. A similar scale law has been derived
for the concentrationC of a passive tracer (Obukhov, 1949;
Corrsin, 1951):

1Cl ' ϕ1/3l1/3 (2)

whereϕ ≡ χ3/2ε−1/2 represents the non-linear coupling be-

tween velocity and concentration, withχ ≡ −
∂(1Cl)

2

∂t
the

mean density of the concentration variance flux (for a review
concerning these early turbulent models, see, e.g., Panchev,
1971).

Landau and Lifshitz (1944) pointed out that these fluxes
have no reason to be homogeneous: although they are on av-
erage conserved during the cascade process, their transfer is a
priori intermittent. This remark has led the transfer process to
be described by stochastic multiplicative cascades (Novikov
and Stewart, 1964; Yaglom, 1966). A multiplicative cas-
cade can be constructed by iterating the following simple
procedure: (i) distribute a quantity uniformly over an inter-
val, (ii) divide this interval into sub-intervals, (iii) multiply
these by a random variable in order to obtain the new quan-
tity for each sub-interval, (iv) repeat steps (ii) and (iii) until
the smallest scale of the cascade is reached. The important
point here is that the distribution of the random variables, re-
ferred to as the multiplicative weights in the following, does
not depend on the level of iteration of the construction al-
gorithm. Thus, because the latter is not dependent on scale,
the resulting mathematical object has fractal and even mul-
tifractal properties. It turns out that these properties can be
described by the scaling of its statistical moments, of frac-
tional orderq (for more details, see Schertzer et al., 2002):〈
ε
q
l

〉
'

(
L

l

)Kε(q)

(3)

〈
χ

q
l

〉
'

(
L

l

)Kχ (q)

(4)

whereεl andχl are the fluxes averaged at scalel, L is the
largest scale of the cascade, andKε(q) andKχ (q) are the
so-called moment scaling functions.

In order to obtain realistic fields, the discrete cascade
model described above has been generalized to continu-
ous cascades, obtained by scale densification (Schertzer and
Lovejoy, 1987). This generalization was necessary because
two points separated by a given length in physical space
do not always have the same distance to their closest com-
mon ancestor in the cascade (cf. Pecknold et al., 1993).
An interesting property of continuous cascades is that their
generators (i.e., the logarithm of the random multiplicative
weights) converge towards infinitely divisible laws. How-
ever, there is still no consensus concerning the degree of con-
vergence. Some authors proposed Poisson generators (She
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and Ĺevêque, 1994; Dubrulle, 1994) whereas some others
add an assumption of self-similar renormalization, so that the
generator converges more accurately towards stable distribu-
tions (Schertzer and Lovejoy, 1987, 1997). Until this ques-
tion finds a definitive answer, since the notion of scale invari-
ance is at the root of the theory, the latter assumption seems
plausible, and the decision was made to use stable laws to
describe the generator of the process which correspond to
Gaussian distributions if the variance is finite or Levy distri-
butions if the variance is infinite. In this type of case, the
moment scaling functions take the simple form (Schertzer
and Lovejoy, 1987):

Kε(q) =
C1ε

αε −1

(
qαε −q

)
(5)

Kχ (q) =
C1χ

αχ −1

(
qαχ −q

)
(6)

whereαε and αχ are multifractality parameters varying be-
tween 0 and 2, andC1ε andC1χ are intermittency parame-
ters varying between 0 and the dimension of the embedding
space, which here is equal to 2.

3 The FIF model

Concerning the chlorophyll concentration, these laws can-
not be directly applied, the main reason being that biologi-
cal activities may produce deviations from a purely passive
scalar behaviour. Nevertheless, we expect that the variability
of chlorophyll maps still presents some multifractal proper-
ties, and that it would be possible to use a cascade model
similar to that presented above. We thus looked for a phe-
nomenological model having the same form as Eq. (1), but
in which the parameters are not known, i.e.:

1Chll '
〈
ζ a

〉
lH (7)

where Chl is the chlorophyll concentration and1Chll ≡

〈|Chl(x + l)−Chl(x)|〉. ζ is a conserved flux anda andH

are adjustable parameters. As described above, the conserved
flux has to verify the basic multifractal relation:

〈
ζ

q
l

〉
'

(
L

l

)Kζ (q)

(8)

and it is assumed that it converges towards a log-stable law:

Kζ (q) =
C1ζ

αζ −1

(
qαζ −q

)
. (9)

This model is described by four parameters:a, H , αζ and
C1ζ . However, it is possible to reduce the number of pa-
rameters to three, since taking thea-th power ofζ in Eq. (7)
is equivalent to a simple shift ofH by Kζ (a), and to the
multiplication ofC1ζ by a factoraαζ (Lavallée et al., 1993).
The proof uses theq-th-order structure functions of chloro-
phyll maps defined by the average of theq-th power of

chlorophyll concentration variations, denoted by1Chlql ≡

〈|Chl(x+l)−Chl(x)|q〉. According to Eq. (7), theq-th-order
structure function is equal to:

1Chlql '
〈
ζ aq

〉
lqh. (10)

By introducing Eq. (8), this equation simplifies to:

1Chlql ' lqH−Kζ (aq). (11)

Then, the termKζ (aq) can be decomposed into conserva-
tive and non-conservative parts using the following identity,
which can be straightforwardly derived from Eq. (9):

K(ap) = qK(a)+aαK(q). (12)

This operation yields:

1Chlql ' lq(H−K(a))−a
αζ Kζ (q). (13)

As expected, by defining:{
K ′

ζ (q) ≡ aαζ Kζ (q)

H ′
≡ H −Kζ (a),

(14)

one obtains the usual form of the structure function corre-
sponding to the case wherea = 1:

1Chlql ' l
qH ′

−K ′
ζ (q)

. (15)

In the following, we thus use a simplified form of Eq. (7)
requiring only three parameters, namely,H , αζ andC1ζ :

1Chll ' ζ lH (16)

This model is called the fractionally integrated flux (FIF) and
was first presented by Schertzer and Lovejoy (1987) in the
framework of their study of rain fields. In this regard, it is
interesting to note the similarities between marine biogeo-
chemistry and the cycle of water in the atmosphere. Firstly,
both are strongly dependent on ascending currents: these cur-
rents bring nutrients to the surface layers of the ocean and
water vapour to the upper layers of the atmosphere. Then,
the first phase transition to heavier particles generally occurs
in thin layers in which physical conditions are appropriate:
phytoplankton is produced near to the ocean’s surface be-
cause it needs light to grow, whereas clouds are formed in
the atmospheric layer in which water vapour condenses. The
next phase transition to heavier particles occurs when phyto-
plankton feeds zooplankton, and when cloud droplets are in-
corporated into raindrops. Finally, zooplankton may die and
sink (or return to a nutrient form by mineralization), whereas
raindrops may fall (or return to water vapour by evapora-
tion). Although these atmospheric and oceanic processes
have very different space and time scales, with one involv-
ing biology and the other physics, the comparison is striking.
The interesting point here is that, in both cases, the evolution
cycle is an alternating composition of turbulent mixing and
phase transition processes. This analogy leads phytoplankton
patchiness to be thought of as “clouds in the sea”. Besides,
as will be shown below, the multifractal parameters obtained
from chlorophyll maps are close to those obtained in the case
of cloud or rain fields.
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4 Analysis technique

The first step of the analysis consists in verifying the scale
law given by Eq. (9), and in estimating its exponentH .
This is generally performed by using the first-order struc-
ture function. Since the fluxζ is assumed to be conserved in
scale space, whatever the scalel, 〈ζl〉 is constant. Therefore,
Eq. (9) reduces to:

1Chll ∝ lH . (17)

This equation allowsH to be estimated using the simple ex-
pression:

H = logl (1Chll). (18)

The second step consists in quantifying the multifractal prop-
erties of the flux, and in estimatingαζ andC1ζ . In order to
do so, it is necessary to reconstruct the cascade and therefore
to retrieve the flux at the finest available scale. According to
Eq. (9), this requires a fractional derivative of orderH . How-
ever, a simple derivation of integer order provides a good nu-
merical approximation (Lavallée et al., 1993), such as taking
the norm of the gradient of the field:

ζlmax≈

√(
dChl

dx

)2

+

(
dChl

dy

)2

. (19)

Note that, since the rest of the analysis is based on the gra-
dient of the field, it is crucial to work with data affected by
a low level of noise. Indeed, if the noise is strong, taking
the gradient of the field will result in useless, noisy fields.
Therefore the finest available scale does not necessarily cor-
respond to the measurement scale: it is usually necessary to
perform initial averaging of the data at a larger scale, before
computing the gradient, in order to suppress the noisiest of
the finest scales. The cut-off scale at which the fields have
to be averaged is called the “effective measurement scale”
in the following. This scale is determined by computing the
power spectrum, and then estimating the wave number above
which it flattens out.

Once the flux has been obtained at the “effective measure-
ment scale”, the stochastic multiplicative cascade can be re-
constructed by averaging (or “degrading”) the flux at larger
scales. The statistical moments are then computed for vari-
ous orders and scales in order to test Eq. (8). If the scaling of
the statistical moments is verified,Kζ (q) can be estimated.
Finally, the parametersαζ andC1ζ are obtained by determin-
ing the least squares fit to this function.

5 Dataset

Particular attention was paid to the selection of chlorophyll
maps, because multifractal analysis is very sensitive to the
quality of the data. As explained above, the analysis tech-
nique is based on the gradient of the field. Therefore, if the

signal is too noisy, the fluctuations due to turbulence or other
processes will be hidden. Moreover, the estimation of higher-
order statistical moments can easily be biased by the pres-
ence of a few unrealistic values in the data, such as isolated
pixels having abnormally high chlorophyll concentrations.

Another difficulty is that areas below clouds or high
aerosol concentrations cannot be observed, because the sen-
sor cannot see the sea surface. As a consequence, chloro-
phyll maps remotely sensed from space present many “holes”
of different sizes (the set defined by the locations of these
missing data may be fractal itself, because cloud and aerosol
distributions are also fractal, see respectively Lovejoy and
Schertzer, 2006 and Lilley et al., 2004). We also noticed that
the values around the periphery of these “holes” were not
reliable, presumably because of uncertainties in the correc-
tion of the atmospheric effect. Therefore, it was chosen to
study only maps which had no missing values. This type of
data is of course difficult to find, because of the abundance of
clouds and aerosols in the atmosphere, such that a compro-
mise needed to be found between the size of the maps and
the sample size.

In order to optimize this compromise, the study area was
carefully chosen. The most appropriate area was found to be
the Senegalo-Mauritanian upwelling region, because it nor-
mally has a very low cloud cover (although this does not re-
main true during the summer months, when the InterTropical
Convergence Zone (ITCZ) moves north). Another reason is
the presence of upwelling, which provides high chlorophyll
concentrations far from the coast, due to peculiar oceanic
conditions (Aristegui et al., 2004; Lathuilière et al., 2008).
Therefore, the choice of this area reduced the measurement
noise with respect to the coherent signal. Finally, the chosen
location lies between 10◦ N–26◦ N and 14◦ E–26◦ E, which
corresponds to the area between the Cape Verde islands and
the coast of West Africa, between Mauritania and Guinea-
Bissau (see Fig. 1).

The choice of product level also has to be carefully con-
sidered. Classical 8-day composite maps could not be used,
because they include a non-uniform time averaging in the
data, depending on the amount of missing data for each pixel.
Level L3 products (daily global maps mapped to a uniform
scale grid) could not be used either, firstly because of pro-
jection effects, and secondly because this product is actually
derived from sub-sampling of the original data: only one
pixel is kept for each square of 4× 4 pixels. This reduc-
tion in the amount of data is unavoidable, because SeaWiFS
is positioned in Low Earth Orbit (LEO), meaning that the
time it remains within the field of view of receiver stations
it too short for full datasets to be transmitted to the ground.
However, full resolution chlorophyll data was transmitted for
some restricted areas, including the Senegalo-Mauritanian
upwelling region. This dataset is called the local unmapped
level L2 product, and is suitable for use in this study. In
this product, the pixel resolution is around 1 km2. However,
the spot size over which the data are measured varies with
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Fig. 1. Geographic map of the Senegalo-Mauritanian upwelling re-
gion.

elevation angle. Therefore, only the inner part of the scans
was considered, in order to limit this effect. Note also that
some authors (Lovejoy et al., 2001b) recommend using di-
rect analysis of marine reflectivities (level L1 product) be-
cause the fields’ heterogeneity may bias chlorophyll concen-
tration retrieval algorithms. Indeed, since these algorithms
are generally non-linear, it is not correct to extrapolate them
directly to the measurement scale which is much larger than
the scale of homogeneity. However, this problem should not
affect our analysis because the retrieval of chlorophyll con-
centration was performed without any extrapolation in scale
space (the retrieval algorithm is based on an empirical rela-
tion derived from the comparison between remotely sensed
marine reflectivities and in-situ chlorophyll concentrations).
Moreover, working directly with marine reflectivities is dif-
ficult because of its lack of physical interpretation. Actually,
the only physical quantity that can be related to a theoretical
scale law is the chlorophyll concentration Chl. For example,
consider a non-linear relationship of the form Chl= f (R),
whereR denotes a marine reflectivity. Iff is non-linear,
thenf −1 is also non-linear. There is consequently no reason
for the marine reflectivityR = f −1(Chl) to verify a scaling
of the form of Eq. (9) because non-linear transformations do
not generally conserve first-order structure functions.

Finally, 100 maps of 128× 128 pixels of 1 km2, with a
minimum of 99.5% of available data, were extracted from
SeaWiFS data over a period of one year running from July
2003 to June 2004 (a sample chlorophyll map is shown in
Fig. 2). The few missing data were interpolated automati-
cally by computing the mean of the surroundings pixels. All
selected maps were checked manually. Some maps had to
be rejected because of an offset affecting some parts of the
field. The origin of this offset is not known. The gradient of
the maps was also checked manually, in order to detect any
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Fig. 2. Example of a 128 km2 horizontal chlorophyll map (resolu-
tion 1 km2) extracted from the SeaWiFS local L2 product.
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Fig. 3. First-order structure function of SeaWiFS chlorophyll maps
compared with a linear curve of slope equal to 0.4. The depar-
ture from the theorical fit observed at the finest scales is attributed
to measurement noise, and corresponds to flattening of the power
spectra at high wave numbers (see Fig. 4).

isolated, unrealistically high values. Each of these unrealistic
pixels was corrected using the mean value of the surrounding
pixels.

6 Results

Figure 3 shows the first-order structure function for the 100
SeaWiFS chlorophyll maps. The smaller scales (1–4 km)
were not taken into account when determining the fit, be-
cause they present a deviation from the scaling observed
throughout the remainder of the scale range (4–128 km).
The cause of this deviation does not appear to be physical,
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Fig. 4. Angle-integrated power spectrum of SeaWiFS chlorophyll
maps compared with a linear curve of slope equal to−1.67. The
power spectrum flattens out at the fifth octave, corresponding to
wavelengths smaller than 4 km.

because such a break in the scaling has never been observed
in other studies (cf. Lovejoy et al., 2001b). This break was
therefore associated with the scale below which the measure-
ment noise becomes dominant, when compared with the co-
herent signal (here, the definition of the noise is very large:
it includes not only the sensor’s sensitivity, but also atmo-
spheric corrections and retrieval algorithms errors). This hy-
pothesis is confirmed by the power spectrum (Fig. 4), which
flattens out beyond a wave number corresponding to 4 km in
the physical space. Finally, over the scale range 4–128 km,
the empirical first-order structure function is consistent with
Eq. (17), andH is estimated to be around 0.4 (the numeri-
cal fit yields 0.402 with a standard deviation of the estimator
equal to 0.005).

Since the noise has to be removed before continuing the
analysis, the data were averaged over 4×4 km2 areas. Then,
for each map, the norm of the gradient was computed and
normalized in order to reconstruct the cascade. Figure 5 (left)
shows the scaling of the statistical moments for various or-
ders. This set of scale laws is found to be consistent with
the basic multifractal relation given by Eq. (8). For each
order q, the slope of the scale law provides an estimation
of Kζ (q). The moment scaling function retrieved by this
method is shown in Fig. 6. The fit of this function accord-
ing to Eq. (9) yieldsC1ζ ≈ 0.12 andαζ ≈ 1.92 (here, we re-
nounced to provide the standard deviations of the estimators
because they would indicate an artificially high precision; the
estimation error of the whole analysis technique has been
tested with simulations and is found to be around 10% for

both parameters). Note that the values of these parameters,
as well as that ofH , are close to those obtained for rain and
clouds, which are respectivelyH ≈ 0.4, C1 ≈ 0.12, α ≈ 1.8
(Verrier et al., 2010) andH ≈ 0.4,C1 ≈ 0.08,α ≈ 1.9 (Love-
joy and Schertzer, 2006). Another possibility is to normalize
the norm of the gradient in the same manner for all maps
by using the “climatological” mean computed over all maps.
This technique has the advantage to provide an estimation of
the outer scale of the cascade by extrapolating the scale laws
of the moments (see, e.g., Lovejoy and Schertzer, 2006). Al-
though the sample used in this study is limited and may not
be representative, the results are presented in Fig. 5 (right)
and yield an outer scale equal to 2000 km, which could be
related to the size of oceanic gyres in terms of order of mag-
nitude.

We also tried to perform the same type of analysis using
SST (Sea Surface Temperature), which is another useful, re-
motely sensed oceanic tracer. However, this attempt failed
because the spectrum of the SST maps was found to flatten
out at larger scales (around 32 km) than that of chlorophyll
maps, and the available range of scales was thus insufficient.
This whitening effect, which hides the small scale fluctua-
tions, may be due to air-sea exchanges, which tend to spa-
tially homogenize the SST. However, Nieves et al. (2007)
performed a multi-scale analysis of SST data with a larger
scale range (level L3 product) and found that the observed
multifractal spectra was very similar to the one obtained with
chlorophyll concentration data. This result provides an addi-
tional argument in favour of a link between phytoplankton
patchiness and turbulent mixing at large scales, which will
be developed in the next section.

The use of statistical moments is a very convenient way
of estimating multifractal parameters. However, as it is not
very intuitive, we propose here to demonstrate the existence
of a cascade process, through the use of the more classical
concept of probability density. The algorithm used in this
method is the following: (i) compute the flux at the finest
available scale, (ii) perform averages over 2× 2 squares,
(iii) compute the multiplicative weights that relate the values
of the coarse-grained flux to the previous ones, (iv) plot the
Probability Density Function (PDF) of the logarithm of these
multiplicative weights, (v) iterate steps (ii), (iii) and (iv) un-
til the largest scale of the cascade is reached. This method
is straightforward to implement and does not require any
prior assumption concerning the data. The results obtained
with our selection of chlorophyll maps are given in Fig. 7.
The PDF of the logarithm of the multiplicative weights does
not depend on the scale at which they are derived, thus con-
firming the use of a scale invariant cascade model. Figure 8
shows the left tail of the total PDF, compared with a Gaussian
distribution having the same mean and variance. The empir-
ical PDF decays as a power law (producing a straight line on
a log-log graphic), which is much slower than the Gaussian
behaviour. This result supports the fact that the generator
follows a Lévy law with infinite variance, and allowsα to
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be estimated using a different approach, since the theoretical
slope of the asymptote this distribution is equal to−(1+α).
The resulting value ofα is found to be 1.95, which is consis-
tent with the value previously obtained using statistical mo-
ments.

7 Interpretation

Since the parameterH was found to be close to 1/3, it is
tempting to relate it to the theory of passive scalars. This
theory is based on the hypothesis of a 3-D isotropic tur-
bulence that does not hold for our selection of chlorophyll
maps, because, in the considered scale range (1–128 km),
the ocean is a stratified fluid with a horizontal dimension
much larger than the vertical one. However, some recent
studies (e.g., Lovejoy and Schertzer, 2010) suggest that the
Corrsin-Obukhov scale law may still be valid in the horizon-
tal. Therefore, if turbulent mixing is the dominant effect, we
may expect that the horizontal variability of phytoplankton
fields would verify the scale law given in Eq. (2). If this is
correct, then, assuming the velocity and passive scalar fluc-
tuations to be independent, Schmitt et al. (1996) have shown
that the parameterH of the FIF model (Eq. 9) should be
equal to:

H = 1/3+Kε(1/6)−Kχ (1/2). (20)

The deviation ofH with respect to the value 1/3 is due to the
intermittency of the energy and scalar variance fluxes, since
a conserved flux raised to a power exponent, not equal to 1,
is no longer a conserved quantity. The termKε(1/6) depends
only on the turbulence, and is well known; by assuming the
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parametersαε = 1.5 andC1ε = 0.25 proposed by Schmitt et
al. (1996), its value is expected to be around−0.05. How-
ever, the estimation of the termKχ (1/2) is more delicate,
since the multifractal parameters ofχ are not known a priori,
and have to be estimated. One possible solution consists in
using the empirical multifractal parameters obtained forζ in
the previous section, because they have a simple approximate
relationship to those ofχ (de Montera et al., 2010):{

αχ ≈ αζ

C1χ ≈ 2αζ C1ζ .
(21)

This yields αχ ≈ 1.92 and C1χ ≈ 0.45, thus allowing
Kχ (1/2) to be estimated at a value equal to−0.11. The
(semi-)theoretical value ofH is therefore 1/3−0.05+0.11≈

0.39, which is consistent with its experimental value of 0.4
obtained with the SeaWiFS chlorophyll maps.

This coherency led us to the conclusion that phytoplankton
behaves like a passive scalar within the studied scale range,
which includes the mesoscale and the sub-mesoscale. This
does not mean that phytoplankton is a purely passive scalar,
however it implies that biological activity does not affect the
scale law generated by turbulent mixing. This is consistent
with the previous finding of Seuront et al. (1999) and Cur-
rie and Roff (2006), who showed that biological activity af-
fected the scaling over a limited range only, between 30 m
and 500 m, which is smaller than the resolution of remotely
sensed satellite data.

However, as explained in the introduction, other studies
(e.g., Lovejoy et al., 2001b) found a parameterH equal
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Fig. 8. Log-log graph of the left tail of the total PDF of the log-
arithm of multiplicative weights (blue), compared with a Gaussian
having the same mean and variance (red). The PDF decays as a
power law, with a slope−2.95 (green fit), corresponding to a Lévy
law of indexα = 1.95. The Gaussian function decays much faster,
and would therefore be inappropriate for cascade generation.

to 0.12 and concluded to a combined turbulent/growth-
dominated process. Therefore, the question is still open and
future studies should try to understand precisely in which
particular seasons or locations this departure from the tur-
bulent scaling is likely to occur. According to the model pro-
posed in Lovejoy et al. (2001a), this departure should be ob-
served in area which have a weak turbulent activity combined
with a high growth rate.

8 Bias in biogeochemical numerical models

The forecasting of coupled turbulent/biogeochemical sys-
tems is currently performed by means of 3-D numerical sim-
ulations. The main shortcoming of this technique is that
it necessarily implies the use of high-pass filtering in scale
space (or “scale truncation”), which strongly affects the esti-
mation of non-linear advection terms in the fluid mechanics
equations. This truncation of scale space is unavoidable be-
cause of the limited power of computers. It means, for exam-
ple, that a small length interval, considered as a differential
elementdx in the equations, has a value much larger than the
scale of homogeneity in the numerical simulation (generally
10–100 km for global models, whereas dissipation occurs at
scales of the order of a millimeter). The impact of this dras-
tic simplification remains unknown. Although it is generally
believed that it can be compensated for, for example by in-
creasing the viscosity (Boussinesq hypothesis), this remains
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age resulting from the hypothesis of homogeneity over 128 km2

areas, for a quadratic source term in a biogeochemical numerical
model.

to be demonstrated (for a test of the Boussinesq hypothesis,
see Schmitt, 2007).

If biogeochemical processes are involved, the situation is
even worse, because the estimation of these interactions is
also affected by the truncation error. Moreover, the parame-
ters of biogeochemical models are often obtained by means
of laboratory experiments performed at a typical scale of one
meter. Therefore, since the relations in which these param-
eters are involved are generally non-linear, it is not correct
to use them at larger scales if the real fields are heteroge-
neous. It can thus be useful to assess the bias generated
by the assumption of homogeneity over larger scales. For
this, we consider a global numerical model operating with
a 1◦ grid scale (roughly corresponding to the 128 km2 maps
analyzed in the present paper), which includes a quadratic
source term of the formβC2, whereC is the concentration
of a tracer andβ is a parameter assumed to be derived under
stable conditions, at the scale of one meter in a laboratory.
If it is assumed that the 100 SeaWiFS chlorophyll maps are
realizations of the sub-grid heterogeneity of the tracer, then
for each map we compute the source term at the finest avail-
able scale (which is 1 km in this case, whereas a 1 m scale
would be needed!), and average these values over the whole
128 km2 map. Finally, we estimate the value of this source
term that would result from the hypothesis of homogeneity,
by averaging the concentration over the whole 128 km2 map
and then computing the source term. The source term is then
estimated with a relative errorE equal to:

E =

〈
Chl2

〉
−〈Chl〉2〈

Chl2
〉 . (22)

The PDF of the percentage of this relative error is shown in
Fig. 9. Its mean value is approximately 22%, which is far
from being negligible. One possible approach for reducing
this error would be to derive an analytic expression for the
scale dependency of the biological parameters (such asβ in
the example above), using the multifractal parameters of the
tracer patchiness, if available.

9 Conclusions

Multifractal properties of oceanic chlorophyll maps have
been investigated with remotely sensed data recorded from
space. The FIF model has been validated, showing that
chlorophyll maps can be modelled statistically, through the
use of a fractionally integrated multiplicative cascade. In
the study area, the Senegalo-Mauritanian upwelling region,
the parameters of this model were found to beH ≈ 0.4,
C1 ≈ 0.12 andα ≈ 1.92. The estimates of the scale law expo-
nentH is consistent with passive scalar behaviour, indicating
that phytoplankton variability is dominated by turbulent mix-
ing over the studied scale range (4–128 km), and that biolog-
ical activity do not modify this scaling. This result confirms
previous studies that reached this conclusion based on in-situ
data. However, it cannot be generalized to other locations
because it may not be correct in areas having a high growth
rate combined with a weak turbulent activity.

Finally, it has been shown that, as a consequence of this
multifractal patchiness, the non-linear source and sink of bio-
geochemical numerical models could be strongly biased. Fu-
ture studies should therefore be dedicated to the use multi-
fractal techniques to improve the accuracy of numerical sim-
ulations. This could be performed, for example, by predict-
ing the scale dependence of the model parameters or by re-
fining the assimilation of data measured at different scales.
Although the effect of grazing was not observed in this study
because of the low resolution of satellite data, the develop-
ment of such techniques implies to take it into account since
the scaling is modified at lower scales, in particular at scales
of the order of the so-called “planktoscale”.
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She, Z.-S. and Ĺevêque, E.: Universal scaling laws in fully-
developed turbulence, Phys. Rev. Lett., 72, 336–339, 1994.

Verrier, S., de Montera, L., Barthès, L., and Mallet, C.: Multifractal
analysis of African monsoon rain fields, taking into account the
zero rain-rate problem, J. Hydrol., 389(1–2), 111–120, 2010.

Yaglom, A. M.: The influence on the fluctuation in energy dissipa-
tion on the shape of turbulent characteristics in the inertial inter-
val, Sov. Phys. Dokl., 2, 26–30, 1966.

www.ocean-sci.net/7/219/2011/ Ocean Sci., 7, 219–229, 2011


