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Abstract. A spatio-temporal complexity (STC) measure
which has been previously used to analyze data from terres-
trial ecosystems is employed to analyse 21 years of remotely
sensed sea-surface temperature (SST) data from the Philip-
pines. STC on the Philippine wide SST showed the mon-
soonal variability of the Philippine waters. STC is correlated
with the SST mean (R2

≈ 0.7), and inversely correlated with
the SST standard deviation (R2

≈ 0.9). Both STC and SST
are highest during the middle of the year, which coincides
with the Southwest Monsoon, but with the STC values be-
ing higher towards the end of the monsoon until the start of
the inter-monsoon. In order to determine if STC has the po-
tential to define limits of bio-regions, the spatial domain was
subsequently divided into six thermal regions computed via
clustering of temperature means. STC and EOF of the STC
values were computed for each thermal region. Our STC
analysis of the SST data, and comparisons with SST values
suggest that the STC measure may be useful for character-
ising environmental heterogeneity over space and time for
many long-term remotely sensed data.

1 Introduction

Temperature is a controlling factor in ocean systems.
Anomalies in sea surface temperature (SST) have a wide
range of effects on marine ecosystems including the decline
in reef fish populations (Pratchett et al., 2006) and coral dis-
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ease outbreaks (Bruno et al., 2007). In the early 1990s, links
between SST and coral bleaching were proposed (Lesser
et al., 1990; Glynn and D’Croz, 1990). Strong et al.(1996)
subsequently successfully identified suspected areas of coral
reef bleaching using satellite derived SST. Recently,Pẽnaflor
et al.(2009) focused on the SST of the Coral Triangle (which
spans eastern Indonesia, parts of Malaysia, the Philippines,
Papua New Guinea, Timor Leste and the Solomon Islands)
and highlighted the importance of investigating how SST has
changed through space and time within this region.

Here, we explore the hypothesis that the spatio-temporal
complexity of the SST signal can be linked to physical pro-
cesses such as prevailing winds and weather systems and our
objective is to characterize these dynamics. In particular, we
assess the ability of a recently developed measure of spatio-
temporal complexity (STC) to provide additional informa-
tion from the SST data. STC is a relatively new measure
whose applications to remotely sensed data in the ocean sci-
ences have yet to be demonstrated. If sufficiently sensitive,
such a measure could ultimately serve as an indicator of im-
pending change in the dynamics of SST, which might help to
detect the onset of coral bleaching or other regime shifts in
the marine ecosystem.

The dynamics of a complex system has been said to lie
“at the edge of chaos” (Langton, 1992) between the two ex-
tremes of order (equivalent to a uniform spatial pattern or
temporal equilibrium) and disorder (equivalent to a random
spatial distribution or white noise), exhibiting a balance be-
tween underlying regularity and complete unpredictability
(chaos). In this study, we define complexity in this man-
ner, attempting to characterize the dynamics of the Philip-
pine sea surface temperatures along this gradient of order
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to disorder. By mixing the ocean surface, we would ex-
pect the prevailing weather systems to have an effect on this
dynamics, creating seasons during which the SST is more
uniform across the Philippine region (ordered), patchy (com-
plex) or random (disordered). The measure we use is based
on entropy measures arising from information theory. En-
tropy measures are standard tools for measuring complexity
and have been widely used in ecology to measure species di-
versity (Nsakanda et al., 2007). Shannon entropy was first
used to measure species diversity inMacArthur (1955) and
although it is one of the most popular methods to measure the
structural complexity of an ecological system, it is not able
to measure the complexity of the system’s dynamics (Parrott,
2005). Other information-based measures (e.g., mean infor-
mation gain, effective complexity and fluctuation complex-
ity) have been applied to the analysis of temporal data (time
series) or to spatial data but rarely to both types of data (An-
drienko et al., 2000; Wackerbauer et al., 1994; Parrott et al.,
2008; Shalizi and Shalizi, 2003).

It is important to capture both space and time in complex-
ity measures andParrott(2005) andParrott et al.(2008) in-
troduced STC for this purpose (Fig.1). It was applied to
simulated vegetation data to explore its potential in charac-
terising ecological spatio-temporal dynamics (Parrott, 2005)
and was successfully used to analyze repeat photography
data for a temperate forest inParrott et al.(2008). STC
is based on Shannon entropy and is able to incorporate the
three dimensional nature of space-time fluctuations. It can
be applied to spatio-temporal data sets wherein the state of
a two-dimensional spatial mosaic has been recorded at regu-
lar time intervals and it can distinguish between ordered and
disordered, complex or patchy spatio-temporal distributions
(Parrott et al., 2008). It is also able to detect spatio-temporal
patterns such as space-time cycles (Parrott, 2005).

In this paper, we apply the STC algorithm on the 4 km res-
olution SST data to study the dynamics of Philippine SST
both in space and in time. We investigate how STC performs
in distinguishing the years affected by ENSO events, and
in distinguishing regions subject to different oceanographic
conditions. To identify these regions, K-means clustering
was used and the STC of each region was calculated to deter-
mine how well the measure could detect changes over time
and space. To aid in analyzing the composite STC plots of
the Philippine region and of each thermal region, empirical
orthogonal functions (EOF) were employed on the STC val-
ues.

2 Methods

2.1 SST data

SST data are from 1985–2005 night-time observations of the
Advanced Very High Resolution Radiometer (AVHRR) on
board the Polar Orbiting Environmental Satellites (POES)

Table 1. ENSO classification from Golden Gate Weather Services.

Strong El Nĩno 1991, 1997
Moderate El Nĩno 1986, 1987, 1994, 2002
Weak El Nĩno 2004
Strong La Nĩna 1988
Moderate La Nĩna 1995, 2000
Weak La Nĩna 1998, 1999
Normal 1985, 1989, 1990, 1992,

1993, 1996, 2001, 2003, 2005

of the National Oceanic and Atmospheric Administra-
tion (NOAA). The AVHRR-SST products are twice-weekly
datasets and we used its processed form from the AVHRR
Pathfinder Project of the National Oceanographic Data Cen-
ter (NODC) and the University of Miami’s Rosenstiel School
of Marine and Atmospheric Science (seeNational Oceano-
graphic Data Center(2008)). This 4 km resolution SST data
was used for the analysis and has a temporal resolution of
once a week. The Philippine data was taken from the global
data at location 114 to 130 longitude and 4 to 21.5 lati-
tude. The resulting spatial dimension of the SST matrix
is 399×365 pixels, out of which the Philippine land mass
occupies about 10%, and its temporal dimension is 1092
(52 weeks×21 years).

2.2 Classification of ENSO years

We classified all years between 1985 and 2005 as either El
Niño, La Nĩna or normal according to the Oceanic Niño-
based list at “El Nĩno and La Nĩna Years and Intensities”
(Golden Gate Weather Services, 2010). The classification is
given in Table1.

2.3 Measuring Spatio-Temporal complexity

STC analyzes data consisting ofNL × NW spatial points
taken over a period ofNT time intervals and works partic-
ularly well for digital images of a rectangular area taken over
time. The STC algorithm we use here works only with bi-
nary data, i.e., each spatial point or pixel can either be 1 or
0 (black or white). To convert the data to binary format, a
threshold is chosen and each data point is converted to either
1 if its value is higher than the threshold, or it is converted to
0 otherwise. The choice of a threshold value is a key param-
eter in STC calculations and should be done so as to ensure
that a sufficiently high density of points is retained, while at
the same time capturing the underlying dynamics. For data
that is stationary in the mean and variance, the mean value is
usually a good choice. Given the non-stationarity of our data
set due to the effects of the Mt. Pinatubo eruption in 1990, as
well as the large annual cycle in temperature values, we used
a moving average threshold.
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Fig. 1. Schematic of the spatio-temporal complexity analysis:(a) The series of raster-based sea surface temperature (SST) images are stacked
into a 3-D space-time matrix.(b) A threshold temperature is applied to generate a binary matrix, in which all cells below the threshold have
zero values (shown here as empty cells). Ann×n×n moving cube is placed at successive locations in the space-time matrix like a sliding
window. At each location, the number of non-zero entries (m) in the cube is noted. The relative frequency,pk , that each occupancy level,
m, is observed is calculated.(c) Frequency histograms ofpk versusm. A highly uneven histogram (left) is indicative of ordered space-
time dynamics and gives a low value of spatio-temporal complexity (STC). A bell-shaped histogram (middle) is indicative of a random
distribution of non-zero entries in the space-time matrix and gives an intermediate value of STC. A perfectly even histogram (right) arises
when the space-time matrix is populated with patches of all different sizes and shapes and gives a maximal value of STC.

After converting the data to binary, it is stacked into a 3-
dimensionalNL ×NW ×NT matrix, and a “moving cube”
is made to traverse the matrix while counting the num-
ber of non-zero entries (within the cube) at each position
(see Fig.1). To incorporate the temporal dimension of the
data, the dimension,c, of this cube is taken to be at least
2 but much smaller than the dimensions of the data ma-
trix (i.e., 2≤ n � min(NL,NW ,NT )). The total number
of possible positions of the cube inside the data matrix is
M = (NL −n+1)× (NW −n+1)× (NT −n+1). At each
position of the moving cube, the number of non-zero entries
(or the occupancy level) is denoted bymi,i = 1,...,M, and
we tabulate the number of times the occupancy levelmi ap-
pears. Specifically, for an occupancy level ofk, we count the
number ofmi such thatmi = k and denote this asµk. The
relative frequency ofk non-zero entries, denoted bypk, is

given by

pk =
µk

µ0+µ1+ ...+µn3
, (1)

and the spatio-temporal complexity of theNL ×NW ×NT

data matrix is given by

STC=

−

n3∑
k=0

pk lnpk

ln(n3+1)
. (2)

Here we impose that lnpk = 0 if pk = 0.
The optimal use of STC in analyzing data is obtained by

dividing the time dimension of the three-dimensional data
matrix into slices and then computing the STC of this time
slice. By plotting the STC value of this time slice with re-
spect to time, the evolution of the system’s spatio-temporal
complexity is revealed. There are practical issues in choos-
ing the thickness of the slices and in our implementation, we
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used time slices with thicknesss = 3,4,5 (i.e., STC is calcu-
lated for data matrices ofNL ×NW × s). We used moving
cube sizes ofc = 3,4,5 wherec ≤ s. Furthermore, we also
considered both non-overlapping and overlapping slices.

It is mathematically proven inBotin (2009) that forc ≥ 2,
STC gives the lowest value to a completely ordered 3-D
data matrix and that it gives the highest value to a data ma-
trix where all occupation levels are observed with equal fre-
quencies. The highest value of STC thus corresponds to a
spatio-temporal dynamics consisting of many frequent small
patches and several large irregular patches that are constantly
changing their sizes and locations in space and time. If we
consider the patches as three-dimensional “blobs” in space-
time, then the frequency distribution of blob volumes for a
data matrix having an STC value of 1 follows a power law
distribution (Parrott et al., 2008). On the other hand, a data
matrix containing large sized and regularly shaped patches
of non-zero entries would have high frequencies for fully
occupied cubes and empty cubes and low frequencies for
non-empty cubes that are not fully occupied. Since this is
closer to an ordered case, STC will assign a low value for this
kind of data. Furthermore,Parrott(2005) discussed that un-
like Shannon entropy which assigns the highest value to ran-
domly generated data, STC assigns intermediate values for
randomly generated binary 3-D matrices. Thus, according to
the classification of complexity measures byAtmanspacher
(2007), we can classify STC under the class of measures
where complexity is a convex function of randomness.

High STC is thus of interest in a geophysical context, since
it is an indication that the space-time dynamics of the vari-
able studied has a scale-invariant, fractal structure, as typified
by the power law distribution of blob sizes in the space-time
matrix. Power-laws have been observed in many time series
for physical systems and in spatial data, and fractal structures
seem to be ubiquitous across many physical systems (Tur-
cotte, 1997). In dynamical systems, the presence of power-
law behavior in space or time is a necessary but not sufficient
condition for first order phase transitions and self-organized
criticality (Bak and Chen, 1991; Goldenfeld, 1992; Reichl,
1998) and it is possible that this extends to spatiotemporal
dynamics under regimes of high STC.

2.4 Identification of the thermal regions

To identify thermal regions with distinct temporal and spatial
variability, we followed the method inPẽnaflor et al.(2009).
We used the web-based geospatial clustering tool Deluxe In-
tegrated System for Clustering Operations (DISCO;Budde-
meier et al.(2008); accessible athttp://fangorn.colby.edu/
disco-devel). Due to data limitations imposed by DISCO, we
obtained the average monthly temperature of each pixel/point
of the spatial domain. Input data files for DISCO were pre-
pared by arranging each pixel data on one row, with each
column containing averaged SST data for a month. Then the
K-means algorithm (in DISCO) was employed on the entire

domain and was allowed to search from 5 to 10 clusters. It
obtained 6 optimal clusters as determined by the “Minimum
Description Length” (MDL). The centroid of each cluster
was obtained and a rectangular region was chosen to have
a height of around 35 pixels and width of around 50 pixels,
which fit within the cluster and which does not overlap pix-
els on land. The resulting regions are shown in Fig.2 and are
used in later analyses.

2.5 Empirical Orthogonal Function analysis of the STC

The Empirical Orthogonal Functions (EOF) analysis used in
oceanography is the same as Principal Component Analy-
sis (PCA) and has also been called Proper Orthogonal De-
composition (POD) in reduced order modeling (Banks et al.,
2002). EOFs provide an efficient method of compressing
data (Emery and Thomson, 2001; Banks et al., 2002) and
the EOFs represent the uncorrelated modes of variability of
the data (Emery and Thomson, 2001).

In EOF analysis, the data is typically from concurrent
time-series records gathered by a grid of recording stations.
In order to perform EOF analysis on the Philippine-wide
STC values, we separate the STC time histories by year,
group them into El Nĩno, La Nĩna and normal, and con-
sider that they were measured concurrently during the same
year. Thus for the El Nĩno group, the different yearly
time-histories represent the time histories taken by different
recording stations. This alleviates the technical difficulty that
the STC measurements were taken at the same location (i.e,
the whole Philippines) and that the measurements were not
taken in one year but during different years. For each group,
we then look for a set of orthogonal predictors or modes
whose linear combination could account for the combined
variance in all of the observations.

To illustrate its application to Philippine-region analysis
of El Niño years, let us denote the yearly STC bySj (ti),j =

1,...,M,i = 1,...,N . N denotes the number of STC time-
points in each year, whileM is the number of El Nĩno years.
If strong, moderate and weak ENSO years are used, then
from Table1 we haveM = 7. Since overlapping time-slices
were used in STC calculations, the number of STC data
points for the last year (2005) is not equal to the rest of the
years. Therefore in the EOF analysis we exclude the values
for 2005 which is classified as normal. For each yearj , the
mean is subtracted fromSj to obtain the anomaly field, or
departure from the climatology field:̃Sj = Sj −Sj .

EOF analysis yieldsM orthogonal basis functions (or
modes)φk(x) such that

S̃j (t) =

M∑
k=1

αk(t)φk(xj ) , (3)

whereαk(t) is the amplitude of thekth orthogonal mode at
time t , andxj is the location/year group in whichSj was
observed.

Ocean Sci., 6, 933–947, 2010 www.ocean-sci.net/6/933/2010/
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(a) 6th week of 1988 (b) 10th week of 1988

(c) 23rd week of 1988 (d) 33rd week of 1988

Fig. 2. SST during the NE monsoon season (a andb) and SW monsoon (c andd). The arrows indicate the direction of the prevailing winds
(not scaled to indicate wind strength). The locations of the six thermal regions are indicated in boxes.

To compute the EOF basis functions and time-dependent
amplitudes (also denoted as principal components), theM ×

M covariance matrixS is created, with elementsSij = S̃T
i ·

S̃j . The eigenvectorsVk and the corresponding eigenvalueαk

of S are computed. In order to compare the EOF results with
the EOF of other ENSO years, we normalized the eigenvec-
tors byVk = Vk/(

√
Nαk) (Banks et al., 2002). As detailed

in Emery and Thomson(2001), the EOF basis functions and
time-dependent amplitudes are given respectively by

φk(xj ) = [Vk]j ,αk(t) =

M∑
m=1

S̃m(t)[Vk]m . (4)

For the EOF analysis of SST data, denoted also bySj (ti),

the subscriptj is the index of the location of the observation
points while the subscripti is the index of the measurement
time-points.

For EOF analysis of the STC of thermal regions, the STC
values are grouped according to the thermal regions and thus
the analysis is more analogous to the EOF analysis of SST
data (since measurements are taken at different locations).N

has the same value as in the Philippine region EOF analysis,
while M is the number of years measured in each thermal re-
gion – which is the same for all 6 regions. We also performed
an EOF analysis of the thermal regions grouped according to
ENSO classification.

A summary of the main modules of the algorithm is given
in Fig. 3.

www.ocean-sci.net/6/933/2010/ Ocean Sci., 6, 933–947, 2010
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Fig. 3. A flowchart of the steps in the analysis of SST data.

3 Results and Discussion

3.1 STC of the whole Philippine region

The Philippine region considered in this analysis is shown
in Fig. 2. In Fig. 4, we plot the STC of the weekly Philip-
pine SST from 1985 to 2005 using overlapping time slices
with thicknesss = 3,4,5 and moving cube sizesc = 3,4,5,
wherec ≤ s. Two consecutive time slices overlap ins − 1
time points wheres is the thickness of the time slice, i.e., if
theith time slice contains the time pointsTi,Ti+1,...Ti+s−1,
then the next time slice containsTi+1,Ti+2,...Ti+s . A mov-
ing average threshold of 5 weeks (two before and two after
the current week) was used to convert the SST data to binary.
In the moving average threshold computation, we denote the
number of weeks before and after byj , i.e., a window of
5 weeks corresponds toj = 2. The use of a moving aver-
age threshold ofj = 0,1,3,4,5 produced similar results as in
Fig. 4 (Supplement Fig. 1) hence a moving average thresh-
old of 5 weeks was used in all computations. As shown in
Fig. 4, the method is robust with respect to the time slice
sizes and cube sizes. The use of non-overlapping time slices
yielded plots qualitatively similar to those in Fig.4 (Supple-
ment Fig. 2), but since fewer STC values for each year were
generated with this method, we used overlapping time slices
for the rest of the paper.

We previously used a fixed threshold of 25.2◦C which was
the average temperature for pre Mt. Pinatubo eruption years
(1985–1990). The reason was that the large fluctuations in
temperature after the 1991 Mt. Pinatubo eruption gave rise
to unusually high variance in the latter years of the dataset.

Fig. 4. The STC of the Philippine SST from 1985 to 2005 using
different time slice sizes (s), different moving cube sizes (c) and
with a moving window average threshold of 5 weeks (i.e., 2 weeks
before and 2 weeks after the week being analyzed). Results with
moving window averages of 0, 3, 7, 9, 10 and 11 weeks are similar
(Supplement Fig. 1). El Niño years are highlighted in blue, La Niña
in red and normal years in green.

In some cases (e.g., in times of extremely hot weather), all of
the SST values are above 25 degrees, causing all cells (except
for the land mass) in the binary matrix to be assigned a value
of 1. The result was consistently low values of STC for each
year during summer (see Fig. 3 of the discussion stage of this
article). The use of a moving average threshold in this case
allowed us to remove such artefacts.

Figure4 shows that the STCs follow an annual cycle but
could not differentiate El Nĩno, La Nĩna or normal years
(highlighted in blue, red and green, respectively). All strong,
moderate and weak Niño and La Nĩna are used (see Table1
for the classification of ENSO years).

The Philippines is under two surface monsoon regimes:
(1) the North East monsoons (orHanging Amihan) and the
South West monsoons (orHanging Habagat), transitioned by
the inter-monsoon season and (2) the North East Trade Wind
Regime. There are annual variations as to the onset months
for each seasonal regime but in general, NE monsoons hap-
pen between November and April while SW monsoons are
from June to September. For the purpose of our discussion
we refer to the proposed seasonal regimes ofWilliams et al.
(1993) shown in Table2.

The weeks with relatively lower STC values of the whole
Philippines (see Fig.4) were observed to coincide with the
NE monsoons. This monsoon is characterized by strong
winds coming from the north-east (see Fig.2 for a depic-
tion of monsoon wind direction), which result in the forma-
tion of large contiguous patches of cool waters due either to
atmospheric cooling or to vertical mixing through the weak
thermocline. In contrast, the relatively weaker winds from
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Table 2. Seasons of the Philippines, adapted fromWilliams et al.
(1993).

Inter-monsoon Oct–Nov
NE Monsoon formation Sep–mid Oct
NE Monsoon or Trade Wind Nov–Apr
North Pacific Trade Wind Mar
Inter monsoon Apr–May
SW Monsoon formation Mar–Jun
SW Monsoon Jun–Oct

the south-west during the SW monsoons create local hetero-
geneity in the data, giving rise to high STC, but less overall
standard deviation. Thus, at the Philippine region level, it is
the monsoon winds (and not El Niño or La Nĩna) that seem
to have the largest effect on the spatio-temporal dynamics of
the sea surface temperatures.

The NE monsoons may start as early as October, attain
maximum strength in January, weaken in March and disap-
pear in April (Williams et al., 1993). The lowest STC values
in the Philippine-wide annual cycle (Fig.4) occur at the peak
of NE monsoons when wind from the NE is strongest and
the water column is strongly mixed, with plenty of upwelling
events near shelves and strong island wakes. The decrease in
STC is thus an indication of this mixing.

Fig. 5 shows that high STC values are associated with
times of high average SST. Looking at the STC versus the
standard deviation of the SST values shows a clear contrast-
ing relationship: high STC values are associated with a low
standard deviation of the SST (Fig.6). This relationship
suggests that the ocean has a high relative degree of spa-
tial heterogeneity (STC) during the hot summer months and
low spatial heterogeneity (yet high overall (non-spatial) vari-
ance) in the cooler months. The high STC during the summer
months is due to relatively weaker winds and high precipi-
tation, allowing for more localized and heterogeneous SST
patterns to dominate (Fig.2c, d). The high STC of summer
months could also be due to the typhoons whose short dura-
tions in contrast to the rest of the year do not introduce much
variability to the data at this weekly temporal resolution. In
contrast, the prevailing weather patterns during the winter
months allow for large contiguous patches of cool waters to
form due either to atmospheric cooling or to vertical mix-
ing through the weak thermocline. The formation of these
patches are however highly variable with the strength of the
prevailing wind (Fig.2a, b).

The high (positive) correlation between STC values and
the mean of the SST time-slice prompted us to investigate
if STC could provide additional insights into the data than
those provided by simply plotting the SST mean. Fig.7 and
Supplement Figs. 3 and 4 show that although STC (red lines)
and SST (green and blue lines) have the same periodic pat-
tern, STC is different from SST during the middle of the year
when the STC and SST are high, i.e., during the SW mon-

Fig. 5. Scatter plot of STC (x-axis) vs mean of SST time-slice (y-
axis) for each set ofs andc in Fig. 4.

Fig. 6. Scatter plot of STC (x-axis) vs standard deviation of the SST
time-slice (y-axis) for each set ofs andc in Fig. 4.

soon and succeeding inter-monsoon. This indicates that dur-
ing this period, the spatio-temporal complexity of the SST
data is dominated by forces other than the temporal changes
in temperature. On the other hand, STC follows SST during
the inter-monsoon preceding the SW monsoon.

The highest temperature during the 21-year period ap-
peared in 1998 (Fig.7), during which the worst coral bleach-
ing in the world occurred. The STC during the middle of this
year, however, was not higher than the other years.

www.ocean-sci.net/6/933/2010/ Ocean Sci., 6, 933–947, 2010



940 Z. T. Botin et al.: Spatio-Temporal Complexity analysis of Philippine SST

Fig. 7. The STC plots (red) together with the mean of the slice win-
dows used in STC calculations (green) and the thresholds obtained
by taking the mean of the 5 weeks centered at the current week be-
ing analyzed (blue). Each dataset (STC, SST mean and SST moving
ave threshold) are mean-centered and divided by their maxima. El
Niño years are highlighted in blue, La Niña in red and normal years
in green.

To further analyze in detail how the STC and SST compare
during the Philippine seasons, we plotted their average val-
ues at each week in Fig.8. The average of the values in Fig.7
corresponds to the right-most column in in Fig.8, where all
strong, moderate and weak ENSO years are used. We also
obtained the average of strong ENSO years (left column) and
strong plus moderate ENSO years (middle column). A com-
parison of the upper and lower panels reveals a contrasting
behavior of the STC and SST during the middle of the year.
SST is higher during the SW monsoon than during the inter-
monsoon following it. On the other hand, STC is higher
during the end of the SW monsoon (and at the start of the
inter-monsoon), than during the start of the SW monsoon.

Note that in all plots in Fig.8, La Niña (in red) appears
to be distinct from the other years. This could be due to the
smaller number of years used in the study. On the left-most
column, only one strong La Niña year was used (1988), com-
pared to two years (1991 and 1997) for El Niño, while on the
middle column, 3 years were used for La Niña compared to
6 years for El Nĩno years. Although La Niña appears distinct
from the other years even when strong, moderate and weak
years were used (right-most column), the difference shows
in both the SST average (top) and STC average (bottom) and
thus this could be attributed to the usual higher temperatures
of La Niña years. A study using a longer time-span with
more La Nĩna annotated years is needed to determine if the
spatio-temporal complexity of La Niña is indeed different
from those of the other years.

To determine if the higher STC values at the end of the SW
monsoon in Fig.8 are due to the STC parameters, we plotted
results for different parameters in Supplement Fig. 5, with
s = 5,c = 3,j = 2, s = 5,c = 5,j = 2 ands = 5,c = 5,j = 5.
A moving average threshold of 11 weeks (j = 5) slightly di-
minished the higher STC values at the end of the SW mon-
soon, but is still present. The 21-year plots of the STC and
SST using different STC parameters in Supplement Figs. 3
and 4 also show that the STC values are higher during the
latter part of the SW monsoon.

We divided the 52-week period into 5 intervals, chosen
by visually inspecting the SST plots in Fig.8 and manually
choosing points where the plot changes direction. The in-
tervals we obtained are: weeks 1–10, 11–24, 25–34, 35–41
and 42–52, and are indicated by vertical grid-lines in Fig8.
These intervals roughly coincide with the Philippine seasons
(Table2): weeks 11–24 are in the inter-monsoon from NE
to SW, weeks 25–34 are in the SW monsoon, weeks 35–41
are in the inter monsoon from SW to NE, and weeks 42–52
together with weeks 1 to 10 are in the NE monsoon. Not
all intervals match the peaks or valleys in the STC plots
(lower panels of Fig.8), indicating that although STC fol-
lows the overall pattern of SST, it captures signals other than
those from temporal changes of the temperature. To in-
vestigate in more detail, we mean-centered and normalized
the SST and STC averages (from Fig.7), and plotted the
STC and SST values on the same axis. Fig.9 and Supple-
ment Fig. 6 show that STC and SST are are almost identical
during the inter-monsoon which leads to the SW monsoon
(weeks 11–24), STC is higher than SST during the inter-
monsoon (following the SW monsoon, weeks 35–41), and
during the start of the NE monsoon, the STC values drop
faster than SST. A one-tailed t-test of the SST values during
weeks 11–24 and weeks 25–34 yielded a p-value of 4.8e-
2 for El Niño (strong+moderate+weak), 1.9e-2 for La Niña
(strong+moderate+weak), 2.1e-3 for normal years, and 5.2e-
3 for all years. Atα = 0.05 significance level, all tests sup-
ported our observation that SST is higher during the SW
monsoon than during the following inter-monsoon. We next
performed a one-tailed t-test of the SST and STC values dur-
ing the inter-monsoon (after SW monsoon, weeks 35–41),
and obtained the following p-values: 1.2e-5 for El Niño, p-
value=3.0e-1 for La Nĩna, 2.4e-6 for normal, and 1.9e-6 for
all years. At the same significance level, El Niño, normal and
all years rejected the null hypothesis, supporting our obser-
vation that STC is higher during this period. It can be seen
in Fig. 9 and Supplement Fig. 6 that the STC and SST val-
ues of La Nĩna during the SW monsoon and inter-monsoon
are not much different. The relationships between SST and
STC for each of the intervals are investigated in more detail
in Supplement Fig. 7.

To provide another level of comparison of STC with SST,
we performed an EOF analysis of the SST data. Due to
the large size of the covariance matrix, we encountered
memory problems when we computed the eigenvalues and
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SST, strong ENSO SST, strong+moderate ENSO SST, strong+moderate+weak ENSO

STC, strong ENSO STC, strong+moderate ENSO STC, strong+moderate+weak ENSO

Fig. 8. Yearly average of the SST (top row) and STC values (bottom row). Strong El Niño and La Nĩna years (left column), strong +
moderate (middle column) and strong + moderate + weak ENSO years are used (Table1). The 399×365 Philippine region SST values on
each week were averaged, then at each week, the values from all the years were averaged. The same was done for the STC values except
there was no need to average over a spatial region. In all plots, the normal and all year groups do not vary. STC parameters:s = 3, c = 3,
j = 2, overlapping time-slices.

Fig. 9. The STC and SST yearly average values (as computed in
Fig. 8) were mean-centered and divided by the maximum value.
For El Niño and La Nĩna, all strong, moderate and weak years were
used.

eigenvectors. Thus, we created a data matrix with 399
× 365 rows (corresponding to the spatial coordinates of
the SST measurements) and 1092 columns (corresponding
to the weekly measurements), and computed its SVD de-
composition. Rows corresponding to points on land were
deleted from the matrix in order to save memory. The
time-dependent amplitudes were obtained directly from the
decomposition. We then plotted the four most dominant
time-dependent amplitudes together with the STC values in
Fig. 10. The figure shows that STC has the same periodic
pattern as EOF modes 1 and 2 for the SST data. The orthogo-
nality of modes 1 and 2 in the figure is not apparent since we
mean-centered the time-dependent amplitudes. Differences
between the EOF and STC could be seen with modes 3 and
4. Similar to the SST plots, mode 1 of the SST EOF shows
a different profile than the STC during the SW monsoon (see
also the plots of the STC and SST EOFs in the next section).

3.2 EOF analysis of the Philippine region STC

EOF analysis of the STC values for El Niño, La Nĩna and
normal years indicated that the most dominant mode cap-
tures at least 84% of the year-to-year variability. Table3
summarizes the percentage of the variability of the data set
captured by the first 4 EOF modes for each of the ENSO
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(a) Mode 1 (b) Mode 2

(c) Mode 3 (d) Mode 4

Fig. 10. The STC over 21 years (s = 3,c = 3,j = 2, overlapping time-slices) together with the time-dependent amplitudes of first four EOF
modes (a–d) of the SST. The STC and the time-dependent amplitudes of the SST were mean-centered and divided by their maxima. El Niño
years are highlighted in blue, La Niña in red and normal years in green.

groups. This percentage is computed by taking the ratio(∑K
i=1λi

)
/
(∑M

i=1λi

)
, whereλi are the eigenvalues from

the EOF calculations (arranged in decreasing order).

The time dependent amplitudes (Eq.4) of the dominant
modes are plotted in Fig.11, while the time dependent am-
plitudes of mode 2 are depicted in Fig.12. We obtained sim-
ilar results using different moving window threshold sizes,
different time slices,s = 3,4,5, and different moving thresh-
old averages,j = 0,...,3 (Supplement Figs. 8 and 9). Also
plotted in Figs.11and12are the time dependent amplitudes
from the EOF analysis of the SST data. The EOF of the SST
was computed by obtaining the average SST values of the
whole region at each time point, and then performing EOF
calculations as in the STC data (which is different from, and
not as computationally intensive, as the calculations of the
SST EOF in Fig.10).

Figure 11 reflects the observation from the time-history
STC plots that the STC is lowest at the start and at the end
of each year, during the NE monsoon (Fig.8), and is high
during the SW monsoon. Also, the SST is higher during the
start of the SW monsoon, while the STC is higher during the
end of the SW monsoon.

Table 3. The percentage of the variability of the set captured by the
first four EOF modes for the Philippine region STC during the El
Niño, La Nĩna and Normal years (top) and for each of the thermal
regions (bottom). For El Niño and La Nĩna, all strong, moderate
and weak ENSO years were used. STC parameters:s = 3, c = 3
and moving average thresholdj = 2.

Variability Captured by FirstK Modes

K 1 2 3 4

EOF of Philippine Region STC

El Niño 88.7% 93.2% 95.8% 97.3%
La Niña 84.8% 92.5% 96.8% 98.6%
Normal 89.3% 92.4% 95.3% 97.0%
All 86.6% 89.2% 91.5% 93.6%

EOF of Thermal Region STC

TR1 28.1% 44.0% 52.8% 60.2%
TR2 22.9% 39.7% 52.5% 61.8%
TR3 23.5% 37.8% 49.3% 57.2%
TR4 19.9% 36.5% 50.0% 60.3%
TR5 29.2% 45.2% 56.1% 65.8%
TR6 17.8% 32.9% 44.9% 54.8%
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SST, strong ENSO SST, strong+moderate ENSO SST, strong+moderate+weak ENSO

STC, strong ENSO STC, strong+moderate ENSO STC, strong+moderate+weak ENSO

Fig. 11. Time-dependent amplitudes of the most dominant mode obtained from EOF analysis of SST (top) and STC values (bottom). Strong
El Niño and La Nĩna years (left column), strong + moderate (middle column) and strong + moderate + weak ENSO years are used (Table1).
In all plots, the normal and all year groups do not vary (Table1). STC parameters:s = 3, c = 3 and moving average thresholdj = 2.

Figure12suggests that EOF mode 2 could potentially dif-
ferentiate ENSO years since El Niño and La Nĩna have dif-
ferent peaks (see the right-most column of the figure con-
taining strong, moderate and weak ENSO years), and that
the profiles of the STC and SST differ. An analysis of EOF
mode 2 using more years (say 30 years instead of 21 years
used in this study) which includes more strong ENSO years
could provide further insights in the use of STC in identify-
ing ENSO years.

3.3 EOF analysis of the thermal region STCs

We next sought to determine if the STC could detect differ-
ences between the spatio-temporal patterns of regions which
are affected by different oceanographic conditions. The clus-
tering methodology yielded six thermal regions whose loca-
tions are indicated in Fig.2. Thermal region 1 is located
north of Luzon, region 2 is located in the northern part of
the Philippine Sea, region 3 is located in the southern part of
the Philippine Sea, region 4 is in the west of the Philippines
facing the South China Sea, region 5 is in the Sulu Sea and
region 6 is south of Mindanao facing the Sulawesi/Celebes
Sea.

For each thermal region, the plot of the STC and the mean
SST of the time-slice, together with the moving average
threshold used in converting the SST data to binary, are plot-
ted in Fig.13 (plots using other STC parameters are given

in Supplement Figs. 10, 11, 12). Unlike the analogous fig-
ure for the whole Philippine region in Fig.7, the STC and
SST plots of the thermal regions are distinct. However, the
21-year plots could not reveal the differences in the thermal
regions. Furthermore, unlike the Philippine region, the lin-
ear relationship between the STC value at a certain week and
the mean of the time slice used in computing the STC value
of that week is not present in the scatter plots of the thermal
regions (Supplement Figs. 13 and 14).

We next employed EOF analysis on the STC of each ther-
mal region. The time dependent amplitudes (Eq.4) of the
first 4 dominant modes are plotted in Fig.14 . Results using
different time slices (s = 3,4,5), moving average threshold
j = 0,1,2,3 and moving cube size ofc = 3 for the first two
modes are similar and are presented in Supplement Figs. 15
and 16. The percent of variability captured by the most dom-
inant mode of each region is around 20%, which is much
lower than the whole country EOF (Table3).

We note that the mode 1 EOF of Thermal region 1 (Fig.14,
red lines) is similar to the Philippine region EOF (Fig.11).
This can be explained by the strong influence of the intrusion
of the Kurushio current and of the NE monsoon. The intru-
sion is most significant during the winter months (Centurioni
et al., 2004) dominating the upper 300 m of the water col-
umn from the Pacific until the western continental slope of
the northern South China Sea (Shaw and Chao, 1994), thus
resulting in much lower STC compared to the other regions
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SST, strong ENSO SST, strong+moderate ENSO SST, strong+moderate+weak ENSO

STC, strong ENSO STC, strong+moderate ENSO STC, strong+moderate+weak ENSO

Fig. 12.Time-dependent amplitudes of the second most dominant mode obtained from EOF analysis of SST (top) and STC values (bottom).
Strong El Nĩno and La Nĩna years (left column), strong + moderate (middle column) and strong + moderate + weak ENSO years are used
(Table1). In all plots, the normal and all year groups do not vary (Table1). STC parameters:s = 3, c = 3 and moving average threshold
j = 2. There is only one strong La Niña year hence its EOF does not have mode 2 (left column).

at this time. This causes the different STC pattern from the
other thermal regions, but since the signals (with the Ku-
rushio intrusion being stronger than the NE monsoon) change
with monsoon, then its EOF follows that of the Philippine
region EOF (which is monsoon driven). Therefore, even
though the EOF of Thermal region 1 follows the Philippine
region, the underlying physical events are different. Lastly,
we note the very different patterns in the second EOF mode
for each of the thermal regions. These differences suggest
that it may be possible to differentiate the dynamics of the
regions with this mode.

The time-dependent amplitudes of the EOF analysis of the
thermal regions grouped according to ENSO years are pre-
sented in Supplement Figs. 17 and 18 (using strong and mod-
erate ENSO years) and Supplement Figs. 19 and 20 (using
strong, moderate and weak ENSO years).

4 Conclusions

We have discussed the prevailing meteorology and oceanog-
raphy system of the Philippines as it correlates with observa-
tions from the STC signals. STC analysis of the Philippine
SST data was able to capture the two monsoonal weather
systems experienced by the country every year. In partic-
ular: (1) there was a predominant seasonal variation in the

yearly STC plots of the Philippine SST data with STC be-
ing relatively lower during the start and towards the end of
the year, (2) the highest variability of STC values for most
regions was found during the inter-monsoon, and (3) the rel-
atively weaker SW monsoon during the middle of the year
coincides with higher STC values.

The high STC (> 0.90) observed in the Philippine region
during the middle of each year is indicative of scale-invariant
dynamics in the SST at this time. This is perhaps a sign that
the system is maintained at the edge of a phase-transition or
in a self-organized critical state.

The second most-dominant EOF of the Philippine region
STC seems to indicate that this mode could potentially dif-
ferentiate ENSO years since the time-dependent amplitudes
are clearly different between the EOF of the STC and the
EOF of the SST (which is not the case with mode 1), and
since the time-dependent amplitudes of the the second most
dominant mode of the EOF-STC of each ENSO group are
distinguishable. This could be investigated by including a
longer number of years in the study.

The STC of the thermal regions did not follow the SST
mean, in contrast to the STC of the Philippine region. The
dominant modes of the EOF of the STC of the thermal re-
gions capture less variability than the dominant modes of the
Philippine region EOF, indicating that the first few dominant
modes (in our case, at least the first (4) contain information
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Fig. 13. The STC of each thermal region, plotted with the mean of the time slice used in computing the STC, and with the moving average
threshold. The STC, slice window mean and the moving average threshold are fist mean-centered and then divided by their maximum to
normalize the values. Overlapping time slices,s = 3, j = 2, c = 3. El Niño years are highlighted in blue, La Niña in red, and normal years in
green.

that could be used for studying the STC values. Therefore,
thermal region analysis suggests that if ever STC is not able
to determine temporal differences from a given data set, one
can zoom in on specific areas and explore if STC will be able
to present temporal variations at a finer scale.

Although STC was applied only to binary data in this pa-
per, the formula for STC can be modified to be able to in-
clude application to multi-valued matrices. To do this, one
can consider a matrix ofn values where each matrix entry
depends on the satisfaction of one ofn conditions. In addi-
tion, we also showed that despite this binary limitation, STC
for the Philippine wide SSTs was still able to differentiate
El Niño from La Nĩna and normal years. We conclude that
the STC measure is thus potentially useful for the analysis of

many different types of remotely sensed data in which the ob-
jective is to detect and characterize areas of spatio-temporal
variability in the environment.

Supplementary material related to this
article is available online at:
http://www.ocean-sci.net/6/933/2010/
os-6-933-2010-supplement.pdf.
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(a) Mode 1 (b) Mode 2

(c) Mode 3 (d) Mode 4

Fig. 14. The first four EOF modes of the thermal regions usings = 3, c = 3 and a moving window average threshold of 5 weeks.
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