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Abstract. This study presents linear trends of coastal up-
welling intensity in the later part of the 20th century (1960–
2001) employing various indices of upwelling, derived from
meridional wind stress and sea surface temperature. The
analysis was conducted in the four major coastal upwelling
regions in the world, which are off North-West Africa,
Lüderitz, California and Peru. The trends in meridional wind
stress showed a steady increase of intensity from 1960–2001,
which was also reflected in the SST index calculated for the
same time period. The steady cooling observed in the instru-
mental records of SST off California substantiated this ob-
servation further. It was also noted that the trends in merid-
ional wind stress obtained from different datasets differ sub-
stantially from each other. Correlation analysis showed that
basin-scale oscillations like the Atlantic Multidecadal Os-
cillation (AMO) and the Pacific Decadal Oscillation (PDO)
could not be directly linked to the observed increase of up-
welling intensity off NW Africa and California respectively.
The relationship of the North Atlantic Oscillation (NAO)
with coastal upwelling off NW Africa turned out to be am-
biguous due to a negative correlation between the NAO index
and the meridional wind stress and a lack of correlation with
the SST index. Our results give additional support to the hy-
pothesis that the coastal upwelling intensity increases glob-
ally because of raising greenhouse gas concentrations in the
atmosphere and an associated increase of the land-sea pres-
sure gradient and meridional wind stress.
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1 Introduction

Coastal upwelling systems are characterized by seasonally
low sea-surface temperature (SST). Coastal upwelling re-
sults from the response of the coastal ocean to alongshore
winds, leading to the production of a relatively intense cur-
rent with a small offshore and a large alongshore component
(e.g. Pedlosky, 1978). This causes the pumping of cooler and
nutrient-rich water from the subsurface (from 50–150 m ap-
proximately) to the ocean surface.

Due to the enhanced primary production, these regions are
economically important, accounting for nearly 20% of the
global fish catch, even though the area constituted by the up-
welling regions are less than 1% of the global ocean (Pauly
and Christensen, 1994). They also play an important role in
the air sea exchange of CO2. Moreover, coastal upwelling
has also a profound effect on local climate.

Based on pre-1985 data, Bakun (1990) observes an in-
crease in coastal upwelling at a global scale. He hypothesizes
that this increase is due to global warming. The underlying
mechanisms involve an intensification of the land-sea pres-
sure gradient due to differential heating, which in turn causes
a strengthening of upwelling-favorable winds.

In support of the “Bakun hypotheis”, a significant cool-
ing of surface waters in the coastal upwelling area off Cape
Ghir (North West Africa near 30.5◦ N) during the later part
of the 20th century has been reconstruced by McGregor et
al. (2007). However, Lemos and Pires (2004) find a de-
crease in coastal upwelling intensity off the coast of Portugal
in the later part of the 20th century. Furthermore, Dunbar
(1983) suggests a decrease of upwelling between 1850 and
the present. While taking into account a longer timescale of
3000 years, Julliet-Leclerc and Schrader (1987) also argue
that the coastal upwelling in the Gulf of California is weaker
today than 1500 to 2000 years before present. These con-
trasting results prompted us to study the change of coastal
upwelling intensity during the 20th century in further detail.
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In this study we test the Bakun hypothesis at a global scale
by exploiting available datasets covering a longer time period
and extending to the present day. To this end, we compared
the linear trends of coastal upwelling intensity, which we de-
rived from meridional wind stress and SST, in the four major
upwelling regions of the world. We also tested if basin-scale
climate oscillations exert a primary control on the intensity of
coastal upwelling. The analysis revealed contrasting trends,
which suggested large discrepancies between the wind-stress
datasets. The datasets that we regard as more reliable support
an increase of coastal upwelling intensity over the later part
of 20th century, which is consistent with the observation by
Bakun (1990).

2 Data and methods

Our analysis focuses on the coastal-upwelling areas off North
West Africa (near 30.5◦ N), California (near 39◦ N), Lüderitz
(near 27.5◦ S) and Peru (near 12.5◦ S). Due to the lack of
long-term and regional-scale measurements of vertical veloc-
ities, we used wind speed and SST as an indirect measure for
assessing upwelling strength. We employed the meridional
wind speed data of the Comprehensive Ocean Atmosphere
Dataset (COADS; Slutz et al., 1985), the National Center for
Environmental Prediction NCEP/NCAR reanalysis (Kalnay
et al., 1996) and the ERA-40 reanalysis (Uppala et al., 2005)
from the European Centre for Medium Range Weather Fore-
cast. The COADS dataset has a spatial resolution of 1◦

×1◦,
while the NCEP/NCAR reanalysis and the ERA-40 reanaly-
sis both have a spatial resolution of 2.5◦

×2.5◦. For obtaining
the timeseries, a small region (3◦ in the cross-shore direction
and 5◦ in the alongshore direction) was defined in each of the
coastal upwelling areas and the meridional wind stress was
area-averaged. The data over land areas were masked out.
All data were obtained at a monthly resolution and averaged
over time to produce annual data. The time period covered by
the wind data is from 1960 to 2001. An increase in equator-
ward meridional wind stress was taken to indicate an increase
in coastal upwelling. Wind stress was calculated from wind
speed using a constant drag coefficient of 1.2. The COADS
wind stress at a monthly resolution was used for calculating
Pearson’s correlation coefficient and the cross-correlation co-
efficients with climatic indices indicative of the Atlantic Mul-
tidecadal Oscillation (AMO), the North Atlantic Oscillation
(NAO), and the Pacific Decadal Oscillation (PDO).

We also used the SST data from the Hadley Centre
(HadISST; Rayner et al., 2003), which is a monthly dataset
with a spatial resolution of 1◦ ×1◦ that covers the time pe-
riod 1870–2006. The monthly data was averaged over time
to produce annual data and was used to calculate an index of
coastal upwelling, which is defined as the difference of SST
from an offshore location to a near shore location at the same
latitude (Nykjaer and Van Camp, 1994). For this purpose,
a series of locations was determined on the coast separated
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Fig. 1. Coastal (black) and offshore (white) data points for the cal-
culation of the SST index from the HadISST dataset for the four
major upwelling regions off NW Africa, California, L̈uderitz and
Peru. The SST index is the difference between the offshore mean
SST and the coastal mean SST. The background is the long-term
SST calculated from the HadISST dataset (Rayner et al., 2003).

by 1◦in the meridional direction. A location 5◦offshore from
the coastal point was taken at the same latitude as the off-
shore data point (Fig. 1). The SST index was calculated by
subtracting the SST at the coastal point from the SST at the
offshore location. Through this method five different time
series were obtained for each upwelling region. The average
of these time series was then taken as the upwelling index.
An increase of this index is taken to indicate an increase of
the upwelling intensity. An SST index with monthly tem-
poral resolution was also calculated by the above method
for the correlation and cross-correlation analysis with vari-
ous climatic indices.

In addition, the instrumental SST dataset provided by the
California Cooperative Fisheries Investigation (CALCOFI;
Bograd et al., 2003) was used in the California upwelling
region to also calculate an upwelling index. The SST data
east of CALCOFI station number 52 were taken as coastal
data and the SST data between west of CALCOFI station
number 80 were considered offshore data (Fig. 2). The data
points in the Sea of Cortez were excluded. An upwelling in-
dex time series was produced by subtracting the coastal SST
from the offshore SST. A time series of temperature of the top
100 m of the water column in the coastal area (east of CAL-
COFI station number 52) was also taken. Though the CAL-
COFI data extends from 1949–2006, there are gaps in the
time series when the CALCOFI cruises were not frequent,
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Fig. 2. CALCOFI (Bograd et al., 2003) data used to calculate the
SST index. It is calculated by subtracting the area-averaged SST
over coastal locations (black) from the area-averaged SST of the
offshore locations (red).

especially between 1970 and 1980. However, overall trends
in the data could be used as shown in the study by Roemmich
(1992). The resulting time series had a temporal resolution
of three months (starting in January) and was area-averaged.

The following climatic indices at monthly resolution were
used in the study:

1. The Atlantic Multi-decadal Oscillation Index (AMOI;
Enfield et al., 2001), calculated from the SST data of
Kaplan et al. (1998) as the de-trended area-weighted av-
erage over the North Atlantic (0◦–70◦ N).

2. The North Atlantic Oscillation Index (NAOI; Barnston
and Livezey, 1987), which is the normalised pressure
difference between the Azores and Iceland averaged
over the months of December, January and February.

3. The Pacific Decadal Oscillation Index (PDOI; Mantua
et al., 1997), derived as the leading principal component
of monthly SST anomalies in the North Pacific Ocean,
poleward of 20◦ N with monthly means removed.

4. The Multivariate El Nĩno Southern Oscillation Index
(MEI; Wolter and Timlin, 1993), based on the sea-level
pressure, zonal and meridional components of the sur-
face wind, sea surface temperature, surface air temper-
ature and the total cloudiness fraction of the sky.

The time series of meridional wind stress and SST index
were low-pass filtered using a Butterworth filter with a cutoff
period of 8 years and order 12. This was done to reduce the
effect of interannual variability on the long term trend. Due
to the presence of gaps in the CALCOFI dataset, the low
pass filtering could not be performed on it and the raw data
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Fig. 3. Linear trends (red line) of meridional wind stress from
COADS (Slutz et al., 1985) calculated by the method of least
squares. All regions show a significant increase of upwelling. In
the Northern Hemisphere a negative slope indicates increase of up-
welling. The value of the slope and its 95% confidence interval
are given in each panel (in units of 10−3 Nm−2 yr−1). A ∗ indi-
cates that the slope is statistically significant at the 0.05 level. Also
shown are the unsmoothed time series (thin lines).

was used for the analysis. Linear trends in time series were
estimated using the method of least squares. The statistical
significance of the trends was estimated using a Student’s t-
test with the null hypothesis of a zero slope of the trend line
at a significance level of 0.05. In order to account for the au-
tocorrelation in the time series, an effective sample size was
used (Dawdy and Matalas, 1964). The correlation between
time series along with the bootstrap confidence interval was
estimated taking into account the serial dependence in the
timeseries (Mudelsee, 2003). The cross-correlation function
was calculated using the algorithm described by Orfanidis
(1996). Linear trends were removed from the datasets before
estimating the cross-correlation function.

3 Results

The COADS wind stress reveals significant increasing trends
in all coastal upwelling regions (Fig. 3, Table 1). In contrast,
the NCEP/NCAR wind stress (Fig. 4, Table 1) indicated a
significant decrease in upwelling off NW Africa, whereas an
increasing trend was observed for Lüderitz. The trends for
California and Peruvian upwelling regions were statistically
insignificant.

The ERA-40 (Fig. 5, Table 1) dataset showed an increasing
trend in the NW African and Peru upwelling regions and a
decreasing trend in the California upwelling region. In the
Lüderitz upwelling region the trend observed is insignificant.
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Table 1. Summary of the inferred changes in 20th century upwelling intensity. A + sign represents an increasing trend, a− sign a decreasing
trend and 0 a statistically insignificant trend. Deviation from analysis done on unsmoothed time series is shown by values in paranthesis.

Region COADS NCEP/ ERA-40 CALCOFI HadISST
NCAR 1870–2006 1960–2006

NW Africa + – + NA – (0) +
California + 0 – (0) + 0 +
Lüderitz + + 0 (+) NA – +

Peru + 0 (–) + NA – –
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Fig. 4. Linear trends (red line) of meridional wind stress from the
NCEP/NCAR reanalysis dataset (Kalnay et al., 1996) calculated by
the method of least squares. NW Africa and Peru show a decrease
of upwelling. There is an increase of upwelling in Lüderitz and an
insignificant trend in California. In the Northern Hemisphere a neg-
ative slope indicates increase of upwelling. The value of the slope
and its 95% confidence interval are given in each panel (in units
of 10−3 Nm−2 yr−1). A ∗ indicates that the slope is statistically
significant at the 0.05 level. Also shown are the unsmoothed time
series (thin lines).

As an additional proxy for upwelling intensity, the SST
index was calculated for the period between 1870 and 2006
and analysed for trends (Fig. 6, Table 1). It revealed signif-
icantly decreasing trends off NW Africa, Lüderitz and Peru.
In contrast, trends in the more recent part of the time series
(from 1960 onwards) suggested an increase in upwelling in
all regions except off Peru (Fig. 7, Table 1).

For the California system, this result is also supported
by the SST index derived from the CALCOFI dataset
(Fig. 8a). The coastal SST indicated a significant cooling
trend throughout the sampling period (Fig. 8b). The time se-
ries produced by averaging the temperature of the top 100 m
of the water column in the California coastal region also
showed a significant cooling (Fig. 8c). Both findings con-
firmed the results obtained by analysing the wind and SST
data from the global datasets.
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Fig. 5. Linear trends (red line) of meridional wind stress from
the ERA-40 dataset (Uppala et al., 2005) estimated by the method
of least squares. NW Africa and Peru show an increase of up-
welling. There is a decrease of upwelling in California and in-
significant trend in L̈uderitz. In the Northern Hemisphere a neg-
ative slope indicates increase of upwelling.The value of the slope
and its 95% confidence interval are given in each panel (in units
of 10−3 Nm−2 yr−1). A ∗ indicates that the slope is statistically
significant at the 0.05 level. Also shown are the unsmoothed time
series (thin lines).

4 Discussion

On one hand, the results from analysing trends in the COADS
wind stress are consistent with the hypothesis by Bakun
(1990), later taken up by McGregor et al. (2007) for NW
Africa, which proposes a general increase in coastal up-
welling in the later part of the 20th century due to global
warming. On the other hand, trends obtained from the
NCEP/NCAR and ERA-40 wind stress for the areas off NW
Africa as well as the study by Lemos and Pires (2004), which
argues that the upwelling intensity has decreased over the
last century at the coast of Portugal, suggest that coastal up-
welling intensity is increasing in some upwelling regions and
decreasing in others.

At first sight the lack of significant trends in the Lüderitz
(ERA-40 dataset) and California (NCEP/NCAR dataset) and
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Fig. 6. Trends of coastal upwelling derived from the HadISST
dataset (Rayner et al., 2003), for the period 1870–2006. Signif-
icant decreasing trends are observed at NW Africa, Lüderitz and
Peru. The value of the slope and its 95% confidence interval are
given in each panel (in units of 10−3 ◦C yr−1). A ∗ indicates that
the slope is statistically significant at the 0.05 level. Also shown are
the unsmoothed time series (thin lines).

the existence of significant decreasing trends revealed by
the NCEP/NCAR dataset for the NW African and Peruvian
upwelling regions indeed seem to contradict the global na-
ture of increasing coastal upwelling intensity as proposed by
Bakun (1990). However, Smith et al. (2001) argue that the
NCEP/NCAR reanalysis dataset underestimates the strength
of wind globally. They also suggest that the surface pressure
is significantly weaker in the tropics, which leads to an under-
estimation of the strength of subtropical highs and the wind
strength, specifically in the subtropics. Moreover, the com-
parison of NCEP/NCAR winds with COADS winds by Wu
and Xie (2003) revealed that the COADS inter-decadal wind
changes are more consistent with independent observations.
Based on these findings we assume that the trends observed
in the COADS dataset are likely to be more reliable.

Ramage (1987) and Cardone (1990) give many reasons for
the likelihood of an artificial long-term trend contaminating
the wind stress time series (especially the COADS dataset),
for example, the one related to the monotonically increas-
ing proportion of anemometer measurements to Beaufort es-
timates in the available distribution of maritime wind reports.
Bakun (1992) analysed the wind stress trends obtained off
the Iberian peninsula and detected that there exist two over-
lapping trends, one related to the artifact and one thought
to be associated with the gradual strengthening of continen-
tal thermal low pressure cells. Since separating the effect of
their respective roles was difficult, Bakun (1992) analyzed
the spatial patterns of the wind stress trend in the periphery
of the North Atlantic gyre and determined that the long-term
trends adjacent to the seasonally heated land masses showed
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Fig. 7. Trends of coastal upwelling derived from the HadISST
dataset (Rayner et al., 2003) for the period 1960–2006. The up-
welling shows an increase after 1960 in all regions except Peru.
The value of the slope and its 95% confidence interval are given in
each panel (in units of 10−3 ◦C yr−1). A ∗ indicates that the slope
is statistically significant at the 0.05 level. Also shown are the un-
smoothed time series (thin lines).

increasing trends, whereas the locations away from these re-
gions showed decreasing trends. Additionally, Mendelssohn
and Schwing (2002) show that the increasing wind stress is
confined to the main upwelling zone as well as the seasonal
period in which the thermal low pressure zone develops. For-
tunately, the problem arising from the increasing proportion
of anemometer measurements to Beaufort estimates is more
prevalent in the time period 1900–1950 (Cardone, 1990).
Since our analysis is mainly based on the data after the 1960s
the effect of the artificially generated trend will be minimal.
The high degree of scatter in the time series which is inde-
pendent of the increasing trends, could be from the above
mentioned reasons.

SST has been used as an indicator of coastal upwelling in
previous studies (Nykjaer and Van Camp (1994) McGregor
et al., 2007). But the SST along the upwelling-affected near-
coastal segment is a mixed signal, which could be altered by
various factors. For example, decrease of surface mixing in
the ocean could affect the offshore SST gradient. Similarly,
intense storm activity in the offshore regions could deepen
the mixed layer offshore while entraining cooler waters into
the surface affecting the SST. Long-term changes, such as
climate change related relaxation of the equatorial Walker
circulation (Vechi et al., 2006) could also change the SST
gradient. Therefore an increase/decrease of SST along the
coastal upwelling zone cannot be used as a primary indicator
of coastal upwelling intensity, but it can be used as a sec-
ondary indicator of coastal upwelling intensity when there is
an associated increase in the upwelling favorable wind.
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Fig. 8. (a) Linear trend of the upwelling index derived from the
CALCOFI (Bograd et al., 2003) SST dataset estimated using the
method of least squares and using the datapoints shown in Fig. 2.
(b) Linear trend of SST in coastal California estimated from the
CALCOFI dataset. The trend indicates a significant cooling over
the last 45 years.(c) Linear trend of the coastal temperature aver-
aged over top 100 m of the water column off California estimated
from the CALCOFI dataset. The value of the slope and its 95% con-
fidence interval are given in each panel (in units of 10−2 ◦C yr−1).
A ∗ indicates that the slope is statistically significant at the 0.05
level.

The trend observed in the SST index derived from the
HadISST in the later part of the 20th century (1960–2006)
also showed a significant increase of upwelling in all regions
except Peru and is thus consistent with the wind stress de-
rived from the COADS data. It should be noted that the trend
obtained from the HadISST data after 1960 off Peru demon-
strates a significant decrease of upwelling even when up-
welling favourable winds derived from the COADS dataset
and the ERA 40 dataset show a significant increase. A com-
parison of the filtered and unfiltered SST index for the Pe-
ruvian upwelling region with the MEI (Fig. 9) reveals that
the time interval 1962–1975 was predominantly in the cooler
than normal (La Nĩna) phase, whereas the MEI indicates pre-
dominantly warmer than normal conditions after 1975. The
presence of a relatively cool phase in the earlier part of the
time series and a relatively warm phase in the later part effec-
tively led to an apparent decrease of coastal upwelling. This
is reflected even in the filtered time series where the peaks
associated with the El Niño/La Niña are removed.

The trends obtained from the CALCOFI SST index and
coastal temperatures indicate a significant cooling trend.
This further substantiates the result obtained from COADS
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Fig. 9. Comparison of filtered (black) and unfiltered (black dash)
SST index (mean removed) off Peru upwelling region with filtered
(red) and unfiltered (red dash) Multivariate ENSO Index (MEI;
Wolter and Timlin, 1993).

wind stress and the HadISST index. It is also consistent with
the increase in net primary production inferred from satellite
observations from 1997 to 2007 (Kahru et al., 2009).

The coastal upwelling areas especially off NW Africa and
California are subject to basin-scale climate oscillations like
the Atlantic Multidecadal Oscillation (AMO), the North At-
lantic Oscillation (NAO) and the Pacific Decadal Oscillation
(PDO). So the trends observed in the upwelling intensity
could be affected by these basin-scale oscillations. In the
following we want to exclude the possibility that these oscil-
lations exert a primary control over the intensity of coastal
upwelling.

With regard to the possible control of the upwelling in-
tensity by basin-scale climate oscillation, Pearson’s correla-
tion coefficient (see Table 2) showed that the correlation be-
tween the upwelling indices off NW Africa and the AMOI
is insignificant. Furthermore, the NAOI shows a significant
negative correlation with the meridional wind stress off NW
Africa, but the correlation with the SST index is insignif-
icant. Finally, the correlation coefficient between the PDOI
and the SST index of coastal upwelling indices off California
showed a weak but significant correlation, but the correlation
with alongshore wind stress was found to be insignificant.

Cross-correlation analyses (not shown) between the up-
welling indices off NW Africa and the AMOI revealed the
lack of correlation at all lags. The cross-correlation between
NAOI and upwelling indices off NW Africa also showed
no significant correlation at any lag. In the North Pacific,
the PDOI and upwelling indices off California also failed to
show any substantial cross-correlation at any lag. Francis
et al. (1998) observed that during the positive phase of the
PDO, salmon fish catches have been significantly reduced in
the California Current System and the associated upwelling
region. Since the PDO reversed its direction in 1977 to its
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Table 2. Pearson’s correlation coefficients for the basin-scale oscillations AMO, NAO with the upwelling indices off NW Africa and PDO
with upwelling index off California. Values in parentheses denote the 95%-bootstrap confidence intervals for the correlation coefficient. A∗

indicates that the correlation is statistically significant at the 0.05 level.

Climate Index Region Wind stress from COADS SST index from HadISST

AMOI NW Africa −0.012 (−0.149, 0.196) 0.040 (−0.045, 0.129)
NAOI NW Africa −0.163 (−0.250,−0.066)∗ 0.069 (−0.126, 0.257)
PDOI California 0.031 (−0.067, 0.118) −0.304 (−0.383,−0.221)∗

positive phase and remained in it until late 1990s, the ma-
jority of the data used in our study originate from a positive
phase of the PDO. Correlation and cross-correlation analyses
were done to check the influence of the PDO on the coastal
upwelling off California. A weak but significant negative
correlation−0.304 (−0.383,−0.221) was observed with the
SST index, that is, weaker upwelling during a positive phase
of the PDO. However, the correlation between the PDO and
wind stress was insignificant. According to Roemmich and
McGowan (1995), the warming associated with the shift to-
wards the positive phase of the PDO increases the stratifica-
tion, which in turn would result in the reduced displacement
of the thermocline and increase the temperature of the up-
welled water. Therefore the PDO may exert a certain amount
of control on SST in the California region, but not neccessar-
ily on the wind stress. In line with the Bakun hypothesis, the
increasing trend in wind stress could be due to global warm-
ing and, hence, exert an independent control on SST.

The North Atlantic Oscillation could influence the coastal
upwelling intensity off the NW-African region because of its
influence on the Azores high (Knippertz et al., 2003). The
NAO also has a very important role in the long-term variabil-
ity of the wind in the North Atlantic (Santos et al., 2005).
The NAO was in the negative phase at the start of the data
used in our analysis, changing to its positive phase during
the early 1980s. Since two different phases of the NAO were
present in the period of our study, we may expect an influ-
ence of the NAO on the trend of coastal upwelling. Hence a
correlation analysis was conducted between the NAO index
and the upwelling indices off NW Africa to disentangle any
plausible relation between the two (Table 2). The correlation
analysis revealed a significant negative correlation with the
alongshore wind stress but an insignificant correlation with
the SST index. The cross-correlation analysis also did not re-
veal any relation between the upwelling index and the NAO.
The lack of correlation between the SST index and the NAO
is quite ambiguous considering a significant negative correla-
tion with the alongshore wind stress. Hence the influence of
the NAO on the increasing trend of coastal upwelling could
not be substantiated.

Similarly, the AMO is also a main factor in the long term
evolution of wind and SST in the North Atlantic. Knight
et al. (2006) argue that during the warm phase of the AMO
there are consistent changes of the trade winds over the Sahel

region and also a northward displacement of the mean Inter
Tropical Convergence Zone. The North Atlantic experienced
a change from a warm phase to a cold phase in the mid-
1960s, and the AMO again shifted to a warm phase during
the mid 1990s. Accordingly, change in the trade-wind pat-
terns associated with the changing phase of the AMO could
be a considerable factor in determining the long-term trend
of coastal upwelling intensity. However, the correlation be-
tween the AMO index and coastal upwelling indices were
statistically insignificant, which allows us to disregard any
primary control of the AMO over the intensity of coastal up-
welling off NW Africa.

The major physical factor that controls coastal upwelling
intensity along the eastern boundaries of the oceans is the
equator-ward alongshore wind stress component. The hy-
pothesis proposed by Bakun (1990) puts forth a mecha-
nism by which the wind stress that favours the upwelling
increases due to the greenhouse gas-induced warming and
subsequent changes in the land-sea pressure gradient. This
mechanism may also serve as an explanation for the trends
in the COADS wind stress data and the SST indices derived
from the HadISST and the CALCOFI SST datasets.

The effect of atmospheric aerosols on the strength of up-
welling favorable winds is not very well understood. How-
ever, atmospheric aerosols that absorb and scatter solar radi-
ation tend to decrease near surface wind speeds by up to 8%
locally (Jacobson and Kaufman , 2006). Therefore, the pres-
ence of aerosols, soot and dust from both anthropogenic and
natural (e.g. volcanism) sources might be an important fac-
tor, which could influence the intensity of coastal upwelling
locally. Similarly, solar insolation variability could also af-
fect upwelling favorable winds, thereby altering the intensity
of coastal upwelling. Stratification is another important fac-
tor in determining the depth from which the water upwells,
which in turn affects the coastal SST and nutrient concen-
tration. Upwelling due to divergence in the alongshore cur-
rent and topographic steering is another possible process by
which the rate of upwelling can be altered over time. But the
effect of these processes on long-term variability in a coastal
upwelling system is not well documented.
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5 Conclusions

From the analysis of trends in wind stress obtained from the
COADS, NCEP/NCAR and ERA 40 datasets, we found that
there were large discrepancies between the datasets. Based
on the comparisons done in previous studies, we consider the
trends obtained from the COADS dataset to be most reliable.
These trends indicate an increase of coastal upwelling in all
major upwelling regions.

The SST index obtained from the HadISST data suggests
a decrease of coastal upwelling after 1870. However, after
1960 the same SST index also shows a significant increase
of coastal upwelling in all regions except for Peru. Addi-
tionally, the CALCOFI dataset presents strong evidence for
the intensification of upwelling in the California upwelling
region.

Our study revealed that the AMO does not directly inter-
act with upwelling off NW Africa. The influence of the NAO
with upwelling off NW Africa seems to be quite ambiguous,
as a negative correlation between the NAOI and meridional
wind stress is observed, but a complete lack of correlation
with the SST index was found. In the Pacific the PDOI also
shows a weak correlation with upwelling off California, in-
dicating a lack of any direct interaction.

In summary, the hypothesis proposed by Bakun (1990) and
later taken up by McGregor et al. (2007), which states there
is an intensification of coastal upwelling in relation to global
climate change, gains some additional support by our anal-
ysis of the COADS wind stress data, the SST index derived
from the HadISST data (after 1960) and the SST index de-
rived from the CALCOFI data set. The lack of correlation
between the basin-scale oscillations like the AMO, the NAO
and the PDO also rules out an alteration of upwelling inten-
sity other than due to enhanced upwelling-favourable winds
by the mechanism proposed by Bakun (1990), although other
physical factors like changes in stratification, atmospheric
aerosols and solar variability could not be excluded.
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