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Abstract. A new seawater standard referred to as the Interna-
tional Thermodynamic Equation of Seawater 2010 (TEOS-
10) was adopted in June 2009 by UNESCO/IOC on its
25th General Assembly in Paris, as recommended by the
SCOR/IAPSO Working Group 127 (WG127) on Thermody-
namics and Equation of State of Seawater. To support the
adoption process, WG127 has developed a comprehensive
source code library for the thermodynamic properties of liq-
uid water, water vapour, ice, seawater and humid air, referred
to as the Sea-Ice-Air (SIA) library. Here we present the back-
ground information and equations required for the determi-
nation of the properties of single phases and components as
well as of phase transitions and composite systems as im-
plemented in the library. All results are based on rigorous
mathematical methods applied to the Primary Standards of
the constituents, formulated as empirical thermodynamic po-
tential functions and, except for humid air, endorsed as Re-
leases of the International Association for the Properties of
Water and Steam (IAPWS). Details of the implementation in
the TEOS-10 SIA library are given in a companion paper.

Correspondence to:R. Feistel
(rainer.feistel@io-warnemuende.de)

1 Introduction

The recent availability of highly accurate mathematical for-
mulations of thermodynamic potentials for fluid water (Wag-
ner and Pruß, 2002; IAPWS, 2009a), air (Lemmon et al.,
2000; Feistel et al., 2010a), ice (Feistel and Wagner, 2006;
IAPWS, 2009b), and of seawater (Feistel, 2003, 2008;
Millero et al., 2008; IAPWS, 2008a; IOC et al., 2010)
permit the description of thermodynamic properties of the
ocean and the atmosphere in an unprecedented comprehen-
sive and consistent manner (Feistel et al., 2008; IOC et al.,
2010). In June 2009 these formulations, jointly referred
to as the International Thermodynamic Equation of Seawa-
ter 2010 (TEOS-10), were adopted by UNESCO/IOC as the
successor of the International Equation of State of Seawa-
ter 1980 (EOS-80). To assist potential users in implement-
ing the new equations of state, the SCOR1/IAPSO2 Work-
ing Group 127 (WG127) on Thermodynamics and Equa-
tion of State of Seawater has developed a source code li-
brary in Fortran and Visual Basic (also for use with Excel)
which provides an extended set of functions for the compu-
tation of numerous properties of the geophysical fluids, their
composites and phase transitions. Equivalent versions of the
SIA library implemented in MatLab and C/C++ are planned.

1SCOR: Scientific Committee on Oceanic Research,
http://www.scor-int.org

2IAPSO: International Association for the Physical Sciences of
the Oceans,http://iapso.sweweb.net
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Additional library versions are available for specific applica-
tion purposes such as the Gibbs SeaWater (GSW) Library for
oceanographic models (IOC et al., 2010), consistent with the
one described in this paper. This SIA library replaces (i.e.,
updates and extends) the code versions published previously
(Feistel, 2005; Feistel et al., 2005).

In this paper we provide formulas, derivations and expla-
nations for the quantities implemented in the library and their
thermodynamic relations to the potential functions. The lat-
ter are basic relations which remain valid independent of any
details of the fits used to approximate the potentials or the
numerics used to evaluate the functional relations; they will
not change when new approximations to the thermodynamic
potentials are determined in the future.

The oceanographic applications of the quantities discussed
here are explained in detail in IOC et al. (2010). Formulas for
seawater properties at the ocean-atmosphere interface such
as the vapour pressure and the latent heat in equilibrium with
humid air consistent with the library functions described here
are developed in a separate article (Feistel et al., 2010a). Ad-
ditional details on the library structure and the numerical im-
plementation are available from a companion paper (Wright
et al., 2010a).

The code is organised in vertical columns representing the
four constituents: fluid water, ice, seawater and air, and in
horizontal levels with increasing complexity at higher lev-
els. The code is hierarchically organised; higher level rou-
tines make use of routines from lower levels but code at each
level neither needs nor has access to procedures from higher
levels. Level 0 provides fundamental constants, mathemat-
ical methods and formulae for conversions between Abso-
lute Salinity and Practical Salinity given the measurement
location plus some general relations. Level 1 contains the
Primary Standards, i.e. the thermodynamic potentials, their
basic constants and coefficients, and further necessary em-
pirical or theoretical functions. Levels 2–4 contain proper-
ties derived directly or indirectly from level 1 by mathemat-
ical and numerical manipulations without additional empiri-
cal formulas or constants. Level 2 contains explicit relations.
Levels 3 and 4 require iteration procedures to numerically
solve implicit equations. Levels 1–3 describe only single-
phase properties, while level 4 procedures calculate phase
equilibria and properties of composite, multi-phase systems.
Level 5 is an additional application layer within which input
and output units may be more convenient for the user than
the basic SI units that are used rigorously at the lower lev-
els. Level 5 also contains additional empirical coefficients in
speed-optimized code, derived as “approximate” correlation
functions representing reduced data sets computed from the
lower, “exact” levels.

The following sections explain the thermodynamic rela-
tions and auxiliary equations implemented in the library level
by level, with the exception of level 0, which provides gen-
eral information required by the library, and level 5, which is
only numerically different from the lower ones. Within each

level, the sections consider the four columns or their combi-
nations. In the appendix, the formulas are described which
are implemented in the library to iteratively solve implicit
equations. When appropriate, function names defined in the
library are mentioned in the text of this paper along with the
related equations; they are emphasized by means of adistinct
font type. The complete list of modules and functions avail-
able from the library is described in the companion paper,
Part 2 (Wright et al., 2010a).

The core levels 1–4 of the SIA library take as input pa-
rameters absolute pressure in Pa, absolute ITS-90 tempera-
ture in K, and Absolute Salinity in kg/kg. Absolute Salin-
ity of Standard Seawater is most accurately estimated by
Reference Salinity (Millero et al., 2008) which is propor-
tional to Practical Salinity in the valid range of the 1978
Practical Salinity Scale (PSS-78). For seawater with com-
position anomalies, estimates for the difference between Ab-
solute and Reference Salinity are available for the global
ocean and the Baltic Sea (McDougall et al., 2009; IOC et
al., 2010; Feistel et al., 2010b). A routine for conversions
between Practical Salinity and Absolute Salinity is included
in the SIA library at level 0 (functionsasal from psal
and psal from asal ) using an algorithm adapted from
the GSW library (McDougall et al., 2009). A function
that permits the computation of Density Salinity as an es-
timate of Absolute Salinity from measured in situ density,
e.g., in the laboratory, is also available in the SIA library
(function sea sa si ). Further details are available from
the companion paper, Part 2 (Wright et al., 2010a). De-
tails on the use and the uncertainties of the different salin-
ity scales are described by Wright et al. (2010b). Con-
version routines between different pressure units (function
cnv pressure ), temperature scales and units (function
cnv temperature ), as well as between various salinity
measures (functioncnv salinity ) are available at level 5
of the library for convenience.

In order to shorten the main article for technical reasons,
29 tables with groups of thermodynamic properties and their
equations were moved to the Digital Supplement of this pa-
per. They are referred to here as Table S1 to S29; their equa-
tions are numbered as S1.1 etc. Because of their key role
in the SIA library, the various potential functions themselves
are summarised in Table 1 rather than in the supplement.

The information provided in this paper is a reference for
mathematical and thermodynamic details of the algorithms
implemented in the SIA library. It is intended to ease the
readability of the open source code and its numerous com-
ment lines, and to encourage users to add new required
properties, correlations or applications to the levels 2–5,
guided by the examples and equations expained here. For
high-speed requirements, tailored look-up tables for arbitrary
property combinations can easily be compiled from the SIA
code which is rather comprehensive but not speed-optimized.

While this paper was under review, the authors of the
dry-air formulation (Lemmon et al., 2000) used in the SIA
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Table 1. Hierarchy of thermodynamic potentials and their elementary constituents implemented in the library.

Potential Level Routine Parent System Reference

f F(T , ρ) 1 flu f si Primary Fluid water Sect. 2.1
gIh(T , P ) 1 ice g si Primary Ice Ih Sect. 2.2
gi(T , P ) 1 sal g term si Primary Seawater Eq. (2.2)
f A(T , ρ) 1 dry f si Primary Dry Air Eq. (2.6)
BAW(T ) 1 air baw m3mol Primary Humid Air Sect. 2.4
CAWW(T ) 1 air caww m6mol2 Primary Humid Air Sect. 2.4
CAAW (T ) 1 air caaw m6mol2 Primary Humid Air Sect. 2.4
gS(SA , T , P ) 2 sal g si gi Seawater Eq. (2.2)
fmix(A, T , ρ) 2 air f mix si BAW , Humid Air Eq. (2.13)

CAWW ,
CAAW

f AV (A, T , ρ) 2 air f si f F, f A , fmix Humid Air Eq. (2.7)
gW(T , P ) 3 liq g si f F Liquid water Eq. (4.2)
gV(T , P ) 3 vap g si f F Water vapour Eq. (4.3)
gSW(SA , T , P ) 3 sea g si gW, gS Seawater Eq. (4.4)
hSW(SA , η, P ) 3 sea h si gSW Seawater Eq. (4.5)
gAV (A, T , P ) 3 air g si f AV Humid Air Eq. (4.37)
hAV (A, η, P ) 3 air h si gAV Humid Air Eq. (4.40)
gSI(SSI, T , P ) 4 sea ice g si gSW, gIh Seawater + Eq. (5.14)

ice
gSV(SSV, T , P ) 4 sea vap g si gSW, gV Seawater Eq. (5.30)

+ water
vapour

gAW(wA , T , P ) 4 liq air g si gW, gAV Liquid water Eq. (5.58)
+ humid air

hAW(wA , η, P ) 4 liq air h si gAW Liquid water Eq. (5.63)
+ humid air

gAI (wA , T , P ) 4 ice air g si gIh, gAV Ice Eq. (5.73)
+ humid air

hAI (wA , η, P ) 4 ice air h si gAI Ice Eq. (5.78)
+ humid air

gW F03(T , P ) 5 fit liq g f03 si Fit of f F Liquid water IAPWS (2009c)
gW IF97(T , P ) 5 fit liq g if97 si Fit of f F Liquid water IAPWS (2007)
gV IF97(T , P ) 5 fit vap g if97 si Fit of f F Water vapour IAPWS (2007)

library decided that the published molar equation can be con-
verted to the mass-based form used here and in the planned
IAPWS document (IAPWS, 2010), and that this should be
implemented using the latest value for the molar mass of dry
air (Picard et al., 2008) rather than the originally published
one. For consistency with the IAPWS formulation, the molar
mass of dry air of the SIA library is updated in the SIA ver-
sion 1.1, attached as a supplement to the companion paper
(Wright et al., 2010a), in contrast to the obsolete value used
in SIA version 1.0 which is consistent with the formulation
of Feistel et al. (2010a).

2 Level 1: Thermodynamic potentials – the primary
standard

As described in the related background articles, the vast
amount of quantitative information available from extensive
sets of experimental thermodynamic data for water, ice, sea-
water and air is represented in a compact way by the em-
pirical coefficients of only four independent functions, a
Helmholtz functionf F(T ,ρ) of fluid water referred to as
IAPWS-95 (IAPWS, 2009a; Wagner and Pruß, 2002), a
Gibbs functiongIh(T ,P ) of ice, referred to as IAPWS-06
(IAPWS, 2009b; Feistel and Wagner, 2006), a Gibbs func-
tion gS(SA,T ,P ) of sea salt dissolved in water which is re-
ferred to as IAPWS-08 (IAPWS, 2008a; Feistel, 2003, 2008),
and a Helmholtz functionf A (T ,ρ) for dry air (Lemmon et

www.ocean-sci.net/6/633/2010/ Ocean Sci., 6, 633–677, 2010
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Fig. 1. Panel(a) Validity region (bounded by bold lines) of the
IAPWS-95 Helmholtz potential for fluid water with isobars as indi-
cated. Panel(b) Magnified view of the small region corresponding
to the standard oceanographic (“Neptunian”) range. TP: triple point
gas-liquid-solid, CP: critical point. The deviation of the vapour-
pressure line from the 101 325 Pa isobar in the liquid region is be-
low the graphical resolution of panel (b). Freezing-point lowering
occurs with the addition of sea salt. To deal with this effect in the
case of seawater, the extension of the pure water properties into the
metastable liquid region just above the line marked “Freezing Point
Lowering” is required.

al., 2000) in combination with air-water cross-virial coeffi-
cients (Hyland and Wexler, 1983; Harvey and Huang, 2007;
Feistel et al., 2010a). These potential functions are used
as the Primary Standard for pure water (liquid, vapour and
solid), seawater and humid air from which all other proper-
ties are derived by mathematical operations, i.e. without the
need for additional empirical functions.
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2.3 Sea Salt Dissolved in Water 

 

The Gibbs function ( )PTSg ,,A
SW  of seawater (IAPWS, 2008a; Feistel, 2008) is expressed as 

the sum of a Gibbs function for pure water, ( )PTg ,W , numerically available from the 

IAPWS-95 formulation, and a saline part, ( )PTSg ,,A
S : 

 

 ( ) ( ) ( )PTSgPTgPTSg ,,,,, A
SW

A
SW +=  .    (2.1) 

 
Here, salinity is expressed as Absolute Salinity SA, the mass fraction of dissolved salt in 
seawater, which for standard seawater equals the Reference-Composition Salinity within 
experimental uncertainty (Millero et al., 2008; Wright et al., 2010b).  
 
In representing the properties of Standard Seawater, the range of validity of the Gibbs 
function for seawater is shown in Fig. 3. For temperatures in the oceanographic standard 
range, salinities up to 40 g/kg are properly described up to 100 MPa. For higher salinities up 
to 120 g/kg and temperatures up to 80 °C, the application is restricted to atmospheric pressure 
(101 325 Pa). Up to saturation, the salinity of cold concentrated brines agrees well with 
Antarctic sea-ice data (Fig. 6). For hot concentrates (region F in Fig. 3) the partial derivatives 
of density are not reliable. New density measurements (Millero and Huang, 2009; Safarov et 
al., 2009) have led to some recent improvements and an option to use an extension introduced 

Fig. 2. Range of validity (bold curves) of the Gibbs function of ice
Ih and uncertainty of density.

2.1 Fluid water

The validity range of the IAPWS-95 Helmholtz potential
f F(T ,ρ) for fluid water (IAPWS, 2009a; Wagner and Pruß,
2002) as a function of temperatureT and densityρ is shown
in Fig. 1a in a density-temperature diagram. It is confined
to the pressure interval between the isobars of 10 nPa and
1 GPa, below the upper temperature bound of 1000◦C and
by the phase transition lines with ice and the liquid-vapour
2-phase region. Below the critical temperature, this region
separates the stable vapour phase at low density from the sta-
ble liquid phase at high density. Only a small fraction of this
region (a subset of the sliver to the right of the high density
side of the phase transition boundary) belongs to the “Nep-
tunian” oceanographic standard range (Fig. 1b). In the pres-
ence of dissolved sea salt, the freezing point is lowered so
that the liquid phase of water is extended into the ice and
vapour regions indicated in Fig. 1b.

The Helmholtz functionf F(T ,ρ) together with its first
and second partial derivatives is implemented as the library
functionflu f si .

2.2 Ice

The IAPWS-06 Gibbs functiongIh(T ,P ) of hexagonal ice Ih
(Feistel and Wagner, 2006; IAPWS, 2009b) covers the entire
region of its stable existence (Fig. 2). In the region of low
temperature and high pressure the function behaves reason-
ably although no experimental data were available when the
function was constructed. Below 100 K, there are still open
scientific questions regarding the possible phase transition to
a proton-ordered ice XI or the existence of a density mini-
mum. The Gibbs function is valid to even lower pressures
(Feistel and Wagner, 2007) not shown here because the sub-
limation curve is restricted by the validity of the IAPWS-95
equation for vapour, Fig. 1a. In the library, an extension of

Ocean Sci., 6, 633–677, 2010 www.ocean-sci.net/6/633/2010/
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by Feistel (2010) is included in the library (Wright et al., 2010a).  Nevertheless,  reliability of 
results for this region remains limited by the sparseness of data and the possibility of 
precipitation of calcium minerals (Marion et al., 2009) which would degrade the accuracy of 
the Reference Composition approximation in this region. 
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Fig. 3. Range of validity of the IAPWS-08 Gibbs function of seawa-
ter and uncertainty of density estimates calculated from this func-
tion. RegionA: oceanographic standard range,B: extension to
higher salinities,C: hot concentrates,D: zero-salinity limit,E: ex-
trapolation into the metastable region below 0◦C.

the vapour equation down to 50 K is implemented that per-
mits the computation of sublimation properties to this limit
(IAPWS, 2008c; Feistel et al., 2010a). Vapour cannot rea-
sonably be expected to exist below 50 K (Feistel and Wag-
ner, 2007). No ice forms other than Ih occur naturally under
oceanographic conditions.

The Gibbs functiongIh(T ,P ) together with its first and
second partial derivatives is implemented as the library func-
tion ice g si .

2.3 Sea salt dissolved in water

The Gibbs functiongSW(SA,T ,P ) of seawater (IAPWS,
2008a; Feistel, 2008) is expressed as the sum of a Gibbs
function for pure water,gW(T ,P ), numerically avail-
able from the IAPWS-95 formulation, and a saline part,
gS(SA,T ,P ):

gSW(SA,T ,P ) = gW(T ,P ) + gS(SA,T ,P ). (2.1)

Here, salinity is expressed as Absolute SalinitySA , the mass
fraction of dissolved salt in seawater, which for standard sea-
water equals the Reference-Composition Salinity within ex-
perimental uncertainty (Millero et al., 2008; Wright et al.,
2010b).

In representing the properties of Standard Seawater, the
range of validity of the Gibbs function for seawater is shown
in Fig. 3. For temperatures in the oceanographic standard
range, salinities up to 40 g/kg are properly described up to
100 MPa. For higher salinities up to 120 g/kg and tempera-
tures up to 80◦C, the application is restricted to atmospheric

pressure (101 325 Pa). Up to saturation, the salinity of cold
concentrated brines agrees well with Antarctic sea-ice data
(Fig. 6). For hot concentrates (region F in Fig. 3) the partial
derivatives of density are not reliable. New density measure-
ments (Millero and Huang, 2009; Safarov et al., 2009) have
led to some recent improvements and an option to use an ex-
tension introduced by Feistel (2010) is included in the library
(Wright et al., 2010a). Nevertheless, reliability of results for
this region remains limited by the sparseness of data and the
possibility of precipitation of calcium minerals (Marion et
al., 2009) which would degrade the accuracy of the Refer-
ence Composition approximation in this region.

The saline partgS(SA,T ,P ) of the Gibbs function to-
gether with its first and second partial derivatives is imple-
mented as the library functionsal g si .

Note that the arguments of the Gibbs function are temper-
ature and pressure rather than temperature and density as in
the Helmholtz function. Since the Gibbs function of pure
water is expressed in terms of the corresponding Helmholtz
function,sea g si is only available at library level 3 where
implicitly determined quantities, such as density in terms of
temperature and pressure, are considered.

The functiongS(SA,T ,P ) is constructed as a series expan-
sion with respect to salinity. Based on the theory of ideal and
electrolytic solutions (Planck, 1888; Landau and Lifschitz,
1964; Falkenhagen et al., 1971), this expansion consists of
salinity-root and logarithmic terms and takes the form

gS
= g1(T )SA ln SA +

7∑
i=2

gi (T ,P )S
i/2
A . (2.2)

Here, the expansion coefficients are defined as

g1(T ) =
gu

2Su
× (g100 + g110τ) (2.3)

g2(T ,P ) =
gu

Su
×

∑
j,k

(
g2jk − 0.5g1jk ln Su

)
τ jπk (2.4)

gi(T ,P ) =
gu

S
i/2
u

×

∑
j,k

gijkτ
jπk, i=3...7 (2.5)

with gu=1 J kg−1, Su=35.16504 g kg−1
×40/35, and the co-

efficients gijk are given in the IAPWS Release 2008.
The reduced temperature isτ=(T−T0)/T

∗, T0=273.15 K,
T ∗

=40 K, the reduced pressure isπ=(P−P0)/P
∗,

P0=101 325 Pa,P ∗
=108 Pa.

The explicit separation of the expansion coefficients of
Eq. (2.2) is required for the accurate determination of cer-
tain properties which in the zero-salinity limit possess a nu-
merical singularity that can be analytically resolved. In some
equations such as for the computation of potential temper-
ature, one or more terms of the expansion (Eq. 2.2) cancel
analytically. Implementing the numerical solution of such an

www.ocean-sci.net/6/633/2010/ Ocean Sci., 6, 633–677, 2010
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equation without the cancelling terms increases speed and ac-
curacy. In such cases a function is more naturally (and easily)
implemented by calling the separate functions (Eqs. 2.3–2.5)
rather than their combination ingS(SA,T ,P ).

The expansion termsgi(T ,P ), Eqs. (2.3–2.5), together
with their partial derivatives are available from the library
functionsal g term si .

2.4 Humid air

For a correct description of the thermodynamic properties at
the ocean-atmosphere interface a thermodynamic potential of
humid air is required and available from the literature (Feis-
tel et al., 2010a). A related document is in preparation by
IAPWS (2010). The Helmholtz function for dry air of Lem-
mon et al. (2000) has the form of the molar Helmholtz en-
ergy,f A,mol

(
T ,ρmol

)
, depending on absolute temperatureT

(ITS-90) and molar air density,ρmol. For its conversion to
the specific Helmholtz energy,f A , depending on the mass
density,ρ,

f A (T ,ρ) =
1

MA
f A,mol

(
T ,

ρ

MA

)
, (2.6)

the molar mass of air,MA=28.965 46 g mol−1, is computed
from the recent highly accurate air composition model of Pi-
card et al. (2008). The dry-air part (Eq. 2.6) can be combined
with the vapour part,f V

≡f F (IAPWS-95, Sect. 2.1), in-
volving the second virial coefficientBAW(T ) of Harvey and
Huang (2007) and the third virial coefficientsCAAW (T ) and
CAWW(T ) of air-vapour interaction reported by Hyland and
Wexler (1983), to obtain the Helmholtz function of humid
air, f AV , as

f AV (A,T ,ρ)=(1−A)f V (T ,(1−A)ρ)+Af A (T ,Aρ) (2.7)

+2A(1−A)ρ
RT

MAMW
×{

BAW (T )+
3

4
ρ

[
A

MA
CAAW (T )+

(1−A)

MW
CAWW (T )

]}
Here, ρ is the density of humid air,A is the mass frac-
tion of dry air in humid air,q=1−A is the specific hu-
midity, (1−A)ρ is the absolute humidity, andr=(1−A)/A

the humidity ratio or mixing ratio (van Wylen and Sonntag,
1965; Gill, 1982; Emanuel, 1994).R=8.314 51 J mol−1 K−1

is the molar (or universal) gas constant used by Lem-
mon et al. (2000), rather than the most recent value
of R=8.314 472 J mol−1 K−1 (Mohr et al., 2008), and
MW=0.018015268 kg mol−1 is the molar mass of pure wa-
ter (IAPWS, 2008b). The effective molar mass of humid air
MAV depends on the mass fractionA in the form

MAV =
1

(1 − A)/MW + A/MA
. (2.8)

The mass fractionA of air is computed from the mole frac-
tion xA of dry air as

A =
xAMA

xAMA + (1 − xA)MW
(2.9)

=
xA

1 − (1 − xA)(1 −MW/MA)
,

and it follows that the mass fraction of vapour is given by

1 − A = 1 −
xAMA

xAMA + (1 − xA)MW
(2.10)

=
1 − xA

1 − xA (1 −MA/MW)
.

The inverse function of Eq. (2.9), i.e., the mole fraction of air
as a function of the mass fraction of air, is

xA = 1 −
(1 − A)/MW

(1 − A)/MW + A/MA
(2.11)

=
A(MW/MA)

1 − A(1 −MW/MA)

and the related mole fraction of vapour is

1 − xA =
(1 − A)/MW

(1 − A)/MW + A/MA
(2.12)

=
1 − A

1 − A(1 −MW/MA)
.

The Helmholtz potential (Eq. 2.7) is formally symmetric in
the fractions of air and of water vapour. We note that the
Helmholtz functionsf V andf A that we have chosen to use
in Eq. (2.7) are complete expressions rather than truncated
expansions in terms of powers of density. Consequently,
they include contributions corresponding to higher powers
of density than included in the cross-virial terms represented
by the third term in Eq. (2.13),fmix

=f AV
−AfA

−(1−A)f V .
Equation (2.7) is thus an inhomogeneous approximation for-
mula with respect to the powers of density and the related
correlation clusters. However, its validity is not restricted to
small specific humidity,q=(1−A), such as some 1–3% of-
ten assumed for empirical equations used in meteorology. It
can even be applied to physical situations in which air is the
minor fraction, such as condensers of desalination plants or
headspaces over subglacial lakes. The mass fractionA rather
than the specific humidityq is chosen as a composition vari-
able of humid air for its analogy to Absolute Salinity; the two
describe the amount of natural mixtures, gases or salts, con-
tained in ambient water in either gaseous or liquid form. This
leads to thermodynamic equations that are formally similar
in A andSA (Feistel et al., 2010a).

The range of validity is bounded by the simultaneous va-
lidity of the vapour formula (IAPWS-95), of the dry-air for-
mula (Lemmon et al., 2000) and of the cross-virial expan-
sion. The dry-air function correctly describes reliable ex-
perimental data for pressures up to 70 MPa and for tempera-
tures from 60 to 873 K; the maximum air density in this re-
gion is 1035.8 kg/m3. The temperature range where all three
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Fig. 4 Validity range of the Helmholtz function for humid air, Eq. (2.7). For 
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temperatures T < Tc, only densities below the dewpoint curve of dry air, indicated by 
“Dewpoint” are permitted. The resulting validity boundary for dry air is shown in 
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required.  The validity range in temperature of the third virial coefficients is shown by 
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condition, Fig. 5. At high total pressures, the restriction to vapour pressures below the 
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achieved in thermodynamic equilibrium. For total pressures below the vapour pressure of 
liquid water or the sublimation pressure of ice at the given temperature, the value of A may 
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Fig. 4. Validity range of the Helmholtz function for humid air,
Eq. (2.7). For oceanographic and meteorological applications it is
unnecessary to consider liquid or solid air. Thus, we restrict consid-
eration of Eq. (4.37) as follows: (i) for temperatures above the crit-
ical temperature of dry air,T>Tc=132.5306 K, all density values
occurring between the pressure bounds are permitted; and (ii) for
subcritical temperaturesT<Tc, only densities below the dewpoint
curve of dry air, indicated by “Dewpoint” are permitted. The re-
sulting validity boundary for dry air is shown in bold. “CP” is the
critical point of dry air. To consider humid air, virial coefficients
are required. The validity range in temperature of the third virial
coefficients is shown by horizontal lines. Additionally, the pressure
on saturated humid air is restricted to 5 MPa (Hyland and Wexler
1983), not shown.

virial coefficients are valid is from−80 to +200◦C, Fig. 4,
(Hyland and Wexler, 1983). Consequently, the most limit-
ing conditions for the validity of Eq. (2.7) are the tempera-
ture restrictions on the viral coefficients and the requirement
for validity of the truncated virial expansion, i.e. the omit-
ted terms off AV proportional toA3(1−A)ρ3,A2(1−A)2ρ3

andA(1−A)3ρ3 must be negligibly small in comparison to
the retained terms. A rough estimate for a maximum valid
density is 100 kg m−3 as concluded from a comparison with
experimental data for saturated air in which substantial frac-
tions of both vapour and air are present (Feistel et al., 2010a;
Fig. 8). When significant amounts of both air and water
vapour are present, the valid temperature range is determined
by the validity range for the virial coefficients. As the den-
sity of either the air or vapour component is decreased, the
contribution from the virial coefficients decreases and the va-
lidity range in temperature extends to higher values, reaching
873 K when water vapour is eliminated and 1273 K when air
is eliminated.

The air fraction is bound between 0 and 1 but is addition-
ally limited by the vapour saturation condition, Fig. 5. At
high total pressures, the restriction to vapour pressures below
the saturation value represents a significant limitation on the
upper limit of 1−A that can be achieved in thermodynamic
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Fig. 5. Saturation curvesAsat(T ,P ) of humid air at
the pressures 101.325, 50, 20 and 10 kPa, as indicated.
Panel (a) shows results for temperatures above the freez-
ing point, computed by solving Eq. (5.48) using the library
function liq air massfraction air si , Eq. (S21.9), and
panel (b) shows results for temperatures below the freez-
ing point, computed by solving Eq. (5.70) using the func-
tion ice air massfraction air si , Eq. (S25.10). Valid
air fraction valuesA are located above the particular satura-
tion curve, A≥Asat(T ,P ), in the region indicated by “HU-
MID AIR”. In the presence of ice-free seawater, the validity
range forA is more restricted,A≥Acond(SA ,T ,P )≥A

sat(T ,P ),
by the condensation valueAcond, computed from the function
sea air massfraction air si , Eq. (S29.1).

equilibrium. For total pressures below the vapour pressure
of liquid water or the sublimation pressure of ice at the given
temperature, the value ofA may take any value between 0
and 1.

The Helmholtz functionf A (T ,ρ) for dry air together with
its partial derivatives is implemented as the library function
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dry f si . The Helmholtz function for air-vapour interac-
tion,

fmix(A,T ,ρ) = 2A(1 − A)ρ
RT

MAMW
(2.13){

BAW (T ) +
3

4
ρ

[
A

MA
CAAW (T ) +

(1 − A)

MW
CAWW (T )

]}
together with its partial derivatives is implemented as the
library function air f mix si . The cross-virial coef-
ficients BAW , CAAW and CAWW are implemented as the
library functions air baw m3mol, air caaw m6mol2
and air caww m6mol2. The Helmholtz function of hu-
mid air, f AV (A,T ,ρ), Eq. (2.7), together with its partial
derivatives is implemented as the library functionair f si .
For convenience of use, some auxiliary conversion functions,
Eqs. (2.9–2.12), are also implemented at level 0, Table S1.
Deviating from the original formulation given by Lemmon
et al. (2000), in the library the adjustable constants of dry
air are specified such that the entropy and the enthalpy of
dry air are zero at the standard ocean state,T =273.15 K and
P=101325 Pa (Feistel et al., 2010a). This choice does not
affect any measurable thermodynamic properties.

3 Level 2: Directly derived properties

From the level-one functions described in Sect. 2, various
thermodynamic properties can be computed directly if the
corresponding independent variables are known. If some of
the input variables need to be derived first from other known
ones, based on thermodynamic relations, then the function
will be found at level 3 (Sect. 4) or higher.

The required input variables for level 2 functions are
temperature and density of fluid pure water, either liq-
uid or vapour (Sect. 3.1), temperature and pressure for ice
(Sect. 3.2), and Absolute Salinity, temperature and pressure
for dissolved sea salt (Sect. 3.3). For moist air, level 2 rou-
tines require inputs of temperature, density and the mass
fraction of (dry) air in the mixture. Specifying the air mass
fraction as 1 gives the dry air limit.

The Jacobi method developed by Shaw (1935) is the math-
ematically most elegant way of transforming the various
partial derivatives of different potential functions into each
other, exploiting the convenient formal calculus of functional
determinants (Margenau and Murphy, 1943; Landau and Lif-
schitz, 1964). Conversion tables (Feistel, 2008) between the
potentialsf (T ,ρ), g(SA,T ,P ) andh(SA,η,P ) are given in
Sect. 5.

3.1 Fluid water

The total differential of the Helmholtz functionf F(T ,ρ) of
fluid water has the form

df F
= − η dT − Pdv = − η dT +

P

ρ2
dρ, (3.1)

where v=1/ρ is the specific volume. Therefore, the first
derivatives off F give the specific entropy,η,

η = −

(
∂f F

∂T

)
ρ

≡ − f F
T (3.2)

and the absolute pressure,P ,

P = −

(
∂f F

∂v

)
T

= ρ2
(
∂f F

∂ρ

)
T

≡ ρ2f F
ρ . (3.3)

A list of properties derived fromf F(T ,ρ) by means of
Eqs. (3.2) and (3.3) is given in Table S2. Partial derivatives
with respect to these two independent variables are written
as subscripts. Whether the property belongs to liquid water
or vapour depends on the density used, i.e. on the location in
the diagram in Fig. 1.

3.2 Ice

The total differential of the Gibbs functiongIh(T ,P ) of ice
Ih has the form

dgIh
= − ηdT + vdP. (3.4)

Its first derivatives give the specific entropy,η,

η = −

(
∂gIh

∂T

)
P

≡ − gIh
T (3.5)

and the specific volume,v,

v =

(
∂gIh

∂P

)
T

≡ gIh
P . (3.6)

A list of properties derived fromgIh(T ,P ) is given in Ta-
ble S3. Partial derivatives with respect to the two indepen-
dent variables are written as subscripts.

3.3 Dissolved sea salt

The total differential of the saline partgS (SA,T ,P ) of the
Gibbs function of seawater has the form

dgS
= − ηSdT + vSdP + µdSA . (3.7)

Its first derivatives give the saline part of the specific entropy,
ηS ,

ηS = −

(
∂gS

∂T

)
S,P

≡ − gST , (3.8)

the saline part of the specific volume,vS,

vS =

(
∂gS

∂P

)
S,T

≡ gSP, (3.9)
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and the relative chemical potential, µ,

µ =

(
∂gS

∂SA

)
T ,P

≡ gSS . (3.10)

The list of properties derived fromgS (SA,T ,P ) is given in
Table S4. Partial derivatives with respect to the three inde-
pendent variables are written as subscripts where the sub-
script ofSA is omitted for simplicity.

Details on the definition of osmotic and activity coeffi-
cients are given by Falkenhagen et al. (1971), Millero and
Leung (1976), Ewing et al. (1994), Lehmann et al. (1996),
IUPAC (1997), Feistel and Marion (2007) and Feistel (2008).

The mean practical activity coefficient lnγ of sea salt
(S4.1) can be computed from the activity potentialψ (S4.2)
as (Feistel and Marion, 2007)

ln
γ

γ id
=

(
∂ (mψ)

∂m

)
T ,P

. (3.11)

Here, m=SA/[(1 − SA)×MS] is the molality (moles of
salt per kg of water) implemented in the library as
sal molality si , andγ id=1 kg mol−1 is the asymptotic
value ofγ at infinite dilution. MS=31.4038218 g mol−1 is
the mean molar mass of sea salt with Reference Composi-
tion (Millero et al., 2008),R=8.314 472 J mol−1 K−1is the
molar gas constant and (1−SA) is the mass fraction of wa-
ter in seawater. The zero-salinity limit of Eq. (3.11) is
lim
SA→0

ln
(
γ /γ id

)
=0.

The activity potentialψ(SA,T ,P ), Eq. (S4.2), describes
the ion-ion interactions and consists of higher salinity powers

O
(
S

3/2
A

)
of the saline part of the Gibbs function (Eq. 2.2) in

the form (Feistel and Marion, 2007)

gS(SA,T ,P ) = SAg2(T ,P ) (3.12)

+ SARST

{
ln

SA

1 − SA
+ ψ(SA,T ,P )

}
.

Here, RS=R/MS=264.7599 J kg−1 K−1 is the specific gas
constant of sea salt. The activity potential is related to the
osmotic coefficientφ and the activity coefficient lnγ by

ψ = 1 − φ + ln
γ

γ id
. (3.13)

The zero-salinity limit is lim
SA→0

ψ=0. The activity potential

vanishes for ideal solutions.
The osmotic coefficientφ , Eq. (S4.11), expresses the ac-

tivity coefficient of water and can be computed from the ac-
tivity potentialψ , Eq. (S4.2), as

φ = 1 + m

(
∂ψ

∂m

)
T ,P

. (3.14)

It is related to the chemical potential of pure water,gW

(Sect. 4), and the chemical potential of water in seawater,
µW, by (Feistel and Marion, 2007)

µW(SA,T ,P ) = gW(T ,P ) − mRT φ(SA,T ,P ). (3.15)

The zero-salinity limit is lim
SA→0

φ=1.

The saline excess chemical potential µWS, Eq. (S4.3), is
the difference between the chemical potentials of water in
seawater and of pure water,

µWS(SA,T ,P ) =µW(SA,T ,P ) −µW(0,T ,P ) = −mRT φ.

(3.16)

The zero-salinity limit is lim
SA→0

µWS=0.

The activity of wateraw, Eq. (S4.3), is related to the os-
motic coefficient by

aW = exp (− mMWφ) = exp

{
µWS

RWT

}
. (3.17)

Here,MW=18.015268 g mol−1 is the molar mass of water
(IAPWS, 2008b) andRW=R/MW=461.523 64 J kg−1 K−1 is
the specific gas constant of water. The zero-salinity limit is
lim
SA→0

aW=1. At low vapour pressures,aW equals the relative

humidity of sea air (Feistel et al., 2010a).
The relative chemical potential µ, Eq. (S4.5), describes the

change of the Gibbs energy of a seawater parcel if at constant
temperature and pressure a small mass fraction of water is re-
placed by salt. Its zero-salinity limit possesses a logarithmic
singularity, lim

SA→0
µ=RST ln SA .

The dilution coefficientD, Eq. (S4.6), describes the
change of salinity in relation to freezing or evaporation pro-
cesses, (Feistel and Hagen, 1998; Feistel et al., 2010a), as
e.g. in Eqs. (A28), (4.44) or (A38). The zero-salinity limit
(Raoult’s law) is lim

SA→0
D=RST . The chemical coefficient

(S4.6),DS=SAD, is used for the description of sea air (Feis-
tel et al., 2010a).

The specific enthalpy, entropy and volume of sea salt,
Eqs. (S4.12)–(S4.14), provide the enthalpy, entropy and vol-
ume per mass of sea-salt particles dissolved in water. The
zero-salinity limits are lim

SA→0
hS=g2(T ,P )−T (∂g2/∂T )P,

lim
SA→0

ηS = − RS ln SA and lim
SA→0

vS=(∂g2/∂P )T. The loga-

rithmic singularity of entropy reflects the empirical fact that
rigorous purification of a mixture, i.e., complete desalination,
is impossible by thermodynamic processes.

Mixing enthalpy, entropy and volume, Eqs. (S4.12)–
(S4.14), provide the change of enthalpy, entropy or specific
volume if two seawater samples with absolute salinitiesS1,
S2 and mass fractionsw1,w2 are mixed at constant tempera-
ture and pressure. If the mixing occurs adiabatically at con-
stant pressure, the enthalpy remains constant while entropy
is produced and the temperature changes. Since such effects
do not occur in ideal solutions, the related quantities can
be computed from the activity potentialψ(SA,T ,P ) alone
(Feistel and Marion, 2007). They disappear at infinite dilu-
tion.
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3.4 Humid air

The Helmholtz function f AV (A,T ,ρ) of humid air,
Eq. (2.7), permits the direct computation of all thermody-
namic properties if temperatureT , densityρ and air fraction
A are either given or can be obtained from similar quanti-
ties such as the specific humidity,q=1−A or the mixing ra-
tio r=(1−A)/A. This does not include properties at given
relative humidity which requires the knowledge of vapour
saturation, i.e. of the phase equilibrium between vapour and
liquid water which is a composite system considered later in
Sect. 5.8. A list of equations for the computation of humid-
air properties from Eq. (2.7) is given in Table S5.

4 Level 3: Functions involving numerical solution of
implicit equations

If quantities other than the natural independent variables of
the three potential functions of Sect. 2 are given, in particular,
if the pressure is known rather that the density of pure water,
or the entropy rather than the temperature of seawater, the
relevant thermodynamic equations must be inverted analyt-
ically or numerically. These steps inevitably add larger nu-
merical uncertainties to all properties that depend on these in-
versions, and hence on the settings chosen for the associated
iteration algorithms. Default values for iteration number or
tolerance are specified in the SIA library routines that should
be appropriate for most purposes; if necessary, they can be
modified by related “set ” procedures of the library (Wright
et al., 2010a). Quantities that require such inversions appear
in the libraries as level-3 procedures. To ensure the stability
and uniqueness of the numerical solutions, initial conditions
must be chosen appropriately. Various empirical functions
are used to provide suitable initial values as discussed in the
appendices referenced in Sect. 4.1–4.3. While the algorith-
mic success and speed are sensitive to these choices, the final
quantitative results are, within their numerical uncertainty,
independent of the details of the initial “guess” functions.
Therefore, if desired for certain applications, these auxiliary
functions implemented in the library and described in this pa-
per may be replaced by more suitable or effective customised
ones without affecting the correctness of the final results.

4.1 Gibbs functions for liquid water and water vapour

To compute properties of fluid water at givenT andP from
its Helmholtz potential,f F(T ,ρ), it is necessary to solve
Eq. (S2.11),

ρ (T ,P ) = g−1
P , (4.1)

for the density. Except for spurious or unstable numerical so-
lutions outside the validity range, Fig. 1a, there is exactly one
physically meaningful solution at supercritical temperatures.

Depending on the pressure, there may be one or two stable
solutions below the critical temperature, given by the inter-
section points of isobars with isotherms illustrated in Fig. 1,
providing the density of liquid water,ρW(T ,P ), and/or of
water vapour,ρV (T ,P ).

Consequently, there cannot exist a single-valued Gibbs
function g(T ,P) that fully represents the properties of the
Helmholtz functionf F(T ,ρ) of fluid water. Rather, there
are two different Gibbs functions,

gW(T ,P ) = f F
(
T ,ρW

)
+ P/ρW (4.2)

for liquid water and

gV (T ,P )= f F
(
T ,ρV

)
+P/ρV (4.3)

for water vapour, which coincide under supercritical condi-
tions. Interestingly, critical conditions can be encountered at
hydrothermal vents in the abyssal ocean (Reed, 2006; Sun et
al., 2008).

To implement the above expressions for the Gibbs func-
tions we must determine the liquid and vapour densities cor-
responding to the temperature and pressure inputs. This re-
quires iterative solution of Eq. (4.1), with considerable care
required to select the appropriate root for each case. De-
tails on the iterative numerical method and the conditions
used to initialize the iteration procedure are provided in Ap-
pendix A1.

Once the liquid or vapour density of water is computed
from the Helmholtz functionf F at given temperature and
pressure, the numerical values of the Gibbs function of wa-
ter and its partial derivatives can be computed from the for-
mulas of Table S6. The equations given there for water,
gW, Eq. (4.2), apply in an analogous manner to vapour,gV ,
Eq. (4.3), if only the densityρ of liquid water is replaced by
that of vapour.

Note that the above procedure is required to ensure ar-
bitrarily precise consistency between the Gibbs function of
pure water and the corresponding Helmholtz function. As
long as this consistency is demanded, determination of the
Gibbs function and its derivatives requires an iterative nu-
merical procedure to determine the density argument of the
Helmholtz function, so no explicit algebraic expression is
possible. Thus, the pure water component of the Gibbs func-
tion must be determined at level 3 and it is only at this level
that the Gibbs function for seawater can be completely de-
termined. However, once the liquid pure water density is
determined, the corresponding Gibbs potential is fully deter-
mined and it can be used in the seawater functions described
in Sect. 4.2 and 4.3.

Finally, note that the library functions listed in Table S2 for
pure fluid water in terms of temperature and density are avail-
able as similar functions of temperature and pressure with the
prefix liq for liquid water andvap for water vapour, re-
spectively, rather than with the prefixflu given in Table S2.
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4.2 Gibbs function of seawater

The Gibbs function of seawater, Eq. (2.1), is reproduced here
as,

gSW(SA,T ,P ) = gW(T ,P ) + gS(SA,T ,P ), (4.4)

and is directly available from the sum of the Gibbs function
of pure water computed at level 3, Table S6, and the saline
part from the Primary Standard, level 1, Eq. (2.2). Properties
of seawater can be computed from the partial derivatives of
gS andgSW as given in Tables 4 and 7.

The Gibbs functiongSW(SA,T ,P ) of seawater, Eq. (4.4),
together with its first and second partial derivatives is imple-
mented as the library functionsea g si .

4.3 Enthalpy of seawater

Besides the Gibbs and the Helmholtz functions, the specific
enthalpyhSW(SA,η,P ) of seawater, expressed in terms of
Absolute SalinitySA , specific entropy,η, and absolute pres-
sureP is a third important thermodynamic potential, useful
in oceanography in particular for the computation of proper-
ties related to adiabatic processes (Feistel and Hagen, 1995;
McDougall, 2003; Feistel, 2008; IOC et al., 2010).

To compute this potential and its partial derivatives from
the Gibbs functiongSW(SA,T ,P ) of seawater, the indepen-
dent variableT appearing in the expression for the enthalpy,

hSW
= gSW

− T

(
∂gSW

∂T

)
S,P

(4.5)

must be determined from knowledge of salinity, entropy and
pressure. Given values ofSA , η andP , the corresponding
value ofT is obtained by numerically solving the equation

η = −

(
∂gSW

∂T

)
S,P

(4.6)

to provide the implicit relationT=T (SA,η,P ). Details on
the iterative solution method used in the libraries are given in
Appendix A2.

The specific enthalpy hSW(SA,η,P ) of seawater,
Eq. (4.5), as a thermodynamic potential is implemented in
the library as the functionsea h si .

Once the value ofT has been determined as described in
the appendix, the partial derivatives ofhSW(SA,η,P ) are ob-
tained from those ofgSW(SA,T ,P ) as given in Table S8.

From the enthalpy and its derivatives, all thermodynamic
properties can be computed. A selection is given in Table S9
and additional quantities are given in Table S10 after so-
called “potential” properties are introduced.

Many oceanic processes like pressure excursions of a sea-
water parcel conserve salinity and entropy to very good ap-
proximation. In particular, if a parcel is moved this way to

some reference pressureP=Pr, the thermodynamic proper-
ties given in Table S9 can be computed at that reference level
from the partial derivatives ofhSW(SA,η,Pr). Such proper-
ties derived from the potential functionhSW at the reference
pressure are commonly referred to as “potential” properties
in meteorology and oceanography. Originally introduced by
von Bezold (1888), potential temperature is defined as the
temperature that a fluid parcel takes if it is moved adiabat-
ically from its in situ pressure to a reference pressure level,
which is often specified as the ocean surface. Analogous def-
initions hold for the potential density and potential enthalpy
(IOC et al., 2010).

The potential enthalpy,hθ , is obtained from Eq. (S8.2),

hθ = hSW(SA,η,Pr), (4.7)

the absolute potential temperature,θ , in K, is obtained from
Eq. (S9.2),

θ =

(
∂hSW(SA,η,Pr)

∂η

)
S,Pr

≡ hθη, (4.8)

and the potential density,ρθ , is obtained from Eq. (S9.1),

(
ρθ
)−1

= vθ =

(
∂hSW(SA,η,P )

∂P

)
S,η

∣∣∣∣∣∣
P

=Pr ≡ hθP . (4.9)

Evidently, for any fixed reference pressure,Pr, the values
of hSW(SA,η,Pr) and its partial derivatives, as well as any
other arbitrary function depending on this triple of variables,
remain unchanged during isentropic (η = const) and isohaline
(SA = const) processes.

Derived from Eqs. (4.7) and (4.8), three kinds of thermal
expansion and haline contraction coefficients are important
for numerical models (IOC et al., 2010) and these are con-
sidered below as the cases (i) to (vi). In these cases, we have
omitted the superscripts SW on the seawater potential func-
tions for simplicity of the expressions. As well, we have al-
ways regarded the reference pressurePr as a constant value
in each derivative considered here, without explicitly indicat-
ing this in the formulas. This implies that potential enthalpy,
Eq. (4.7), and potential temperature, Eq. (4.8), are pressure-
independent functions of salinity and entropy, and in partic-
ular, that any derivatives taken at constant (SA , η) can equiv-
alently be taken at constant (SA , θ ) or constant (SA , hθ ). An
example is the isentropic compressibility,

κs=−
1

v

(
∂v

∂P

)
S,η

=−
1

v

(
∂v

∂P

)
S,θ

=−
1

v

(
∂v

∂P

)θ
S,h

. (4.10)

(i) The thermal expansion coefficient,αT, is defined as:

αT
=

1

v

(
∂v

∂T

)
S,P

(4.11)
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It is expressed in terms of derivatives of enthalpy by means
of the Jacobi method and Eqs. (S9.1), (S9.2), as

αT =
1

v

∂ (v,SA,P )

∂ (T ,SA,P )
=

1

v

∂ (v,SA,P )

∂ (η,SA,P )

/
∂ (T ,SA,P )

∂ (η,SA,P )
(4.12)

=
1

v

(∂v/∂η)S,P

(∂T /∂η)S,P
=

hηP

hPhηη
.

Using Table S8, the partial derivatives ofh can be substituted
by those ofg, with the result

αT =
hηP

hPhηη
=
gT P

gP
. (4.13)

(ii) The thermal expansion coefficient with respect to poten-
tial temperature,αθ , is defined as:

αθ =
1

v

(
∂v

∂θ

)
S,P

(4.14)

Similar to Eq. (4.12), with the help of Eq. (4.8) we compute

αθ =
1

v

∂ (v,SA,P )

∂ (θ,SA,P )
=

1

v

∂ (v,SA,P )

∂ (η,SA,P )

/
∂ (θ,SA,P )

∂ (η,SA,P )
(4.15)

=
1

v

(∂v/∂η)S,P

(∂θ/∂η)S,P
=

hηP

hPhθηη
.

Using Table S8, the partial derivatives ofh can be substituted
by those ofg, with the result

αθ =
hηP

hPhθηη
=
gT P g

θ
θθ

gP gT T
. (4.16)

Here, gθ is the potential Gibbs energy defined asgθ ≡

g(SA,θ,Pr).
(iii) The thermal expansion coefficient with respect to po-

tential enthalpy,αh, is defined as:

αh =
1

v

(
∂v

∂hθ

)
S,P

(4.17)

Similar to Eq. (4.12), with the help of Eq. (4.7) we compute

αh=
1

v

∂ (v,SA,P )

∂
(
hθ ,SA,P

)=1

v

∂ (v,SA,P )

∂ (η,SA,P )

/
∂
(
hθ ,SA,P

)
∂ (η,SA,P )

(4.18)

=
1

v

(∂v/∂η)S,P(
∂hθ/∂η

)
S,P

=
hηP

hPhθη
.

Using Table S8, the partial derivatives ofh can be substituted
by those ofg, with the result

αh =
hηP

hPhθη
= −

gT P

gPgT T θ
. (4.19)

The thermal expansion coefficient with respect to conser-
vative temperature,α2, is related to Eq. (4.19) by a con-
stant conversion factor,c0

P=3991.86795711963 J kg−1 K−1,

asα2=c0
Pα

h (IOC et al., 2010). Conservative temperature,
2, is potential specific enthalpy,hθ , Eq. (4.7), expressed in
terms of an arbitrarily defined temperature unit,2=hθ/c0

P

(McDougall, 2003; IOC et al., 2010); as such, it belongs
to level 5 of the library where non-basic-SI units and user-
defined functions are implemented. In contrast, potential en-
thalpy itself is defined at the core level 3 of the SIA library.

(iv) The isothermal haline contraction coefficient,β, is de-
fined as:

β = −
1

v

(
∂v

∂SA

)
T ,P

. (4.20)

Similar to Eq. (4.12) we write Eq. (4.20) in terms of Jaco-
bians

β=−
1

v

∂ (v,T ,P )

∂ (SA,T ,P )
=−

1

v

∂ (v,T ,P )

∂ (SA,η,P )

/
∂ (SA,T ,P )

∂ (SA,η,P )
.

(4.21)

Expanding the functional determinant in the numerator
yields, with the help of Eqs. (S9.1) and (S9.2)

β = −
1

v

(
∂v
∂SA

)
η,P

(
∂T
∂η

)
S,P

−

(
∂v
∂η

)
S,P

(
∂T
∂SA

)
η,P(

∂T
∂η

)
S,P

(4.22)

= −
1

hP

hSPhηη − hηPhSη

hηη
.

Using Table S8, the partial derivatives ofh can be substituted
by those ofg, with the result

β =
hSηhηP − hSPhηη

hPhηη
= −

gSP

gP
. (4.23)

(v) The haline contraction coefficient with respect to poten-
tial temperature,βθ , is defined as:

βθ = −
1

v

(
∂v

∂SA

)
θ,P

(4.24)

Similar to Eq. (4.12) we write Eq. (4.24) in terms of Jaco-
bians

βθ=−
1

v

∂ (v,θ,P )

∂ (SA,θ,P )
=−

1

v

∂ (v,θ,P )

∂ (SA,η,P )

/
∂ (SA,θ,P )

∂ (SA,η,P )
. (4.25)

Expanding the functional determinant in the numerator
yields, with the help of Eqs. (S9.1) and (S9.2)

βθ = −
1

v

(
∂v
∂SA

)
η,P

(
∂θ
∂η

)
S,P

−

(
∂v
∂η

)
S,P

(
∂θ
∂SA

)
η,P(

∂θ
∂η

)
S,P

(4.26)

= −
1

hP

hSPh
θ
ηη − hηPh

θ
Sη

hθηη
.
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Using Table S8, the partial derivatives ofh can be substituted
by those ofg, with the result

βθ=
hθSηhηP−hSPh

θ
ηη

hPhθηη
=
gT P

(
gST−gθSθ

)
−gSP gT T

gP gT T
. (4.27)

(vi) The haline contraction coefficient with respect to poten-
tial enthalpy,β2, is defined as:

β2 = −
1

v

(
∂v

∂SA

)
hθ ,P

(4.28)

Similar to Eq. (4.12) we write Eq. (4.28) in terms of Jaco-
bians

β2 = −
1

v

∂
(
v,hθ ,P

)
∂
(
SA,hθ ,P

) (4.29)

= −
1

v

∂
(
v,hθ ,P

)
∂ (SA,η,P )

/
∂
(
SA,h

θ ,P
)

∂ (SA,η,P )
.

Expanding the functional determinant in the numerator
yields, with the help of Eq. (4.7)

β2 = −
1

v

(
∂v
∂SA

)
η,P

(
∂hθ

∂η

)
S,P

−

(
∂v
∂η

)
S,P

(
∂hθ

∂SA

)
η,P(

∂hθ

∂η

)
S,P

(4.30)

= −
1

hP

hSPh
θ
η − hηPh

θ
S

hθη
.

Using Table S8, the partial derivatives ofh can be substituted
by those ofg, with the result

β2=
hθShηP−hSPh

θ
η

hPhθη
=
gST gT P−gSP gT T−gθSgT P /θ

gP gT T
.

(4.31)

The latter equalities in Eqs. (4.13), (4.16), (4.19), (4.23),
(4.27) and (4.31) are the results given earlier in Table S7.
The potential quantities written in terms of the enthalpy of
seawater are listed in Table S10.

Entropy as a function of salinity, temperature and pressure
is available from Eq. (S7.2). Potential temperature is defined
by the relationη(SA,T ,P )=η(SA,θ,Pr), therefore the same
function (Eq. S7.2) can be used to compute entropy as a func-
tion of salinity, potential temperature and reference pressure.
Since the cases (i) to (vi) above, Eqs. (4.13), (4.16), (4.19),
(4.23), (4.27) and (4.31), specify the different expansion and
contraction coefficients as functions of entropy, these coeffi-
cients are available as functions of potential temperature, too,
by means of Eq. (S7.2).

From the enthalpy definition Eq. (4.5) and the differential
Eq. (3.7) of the Gibbs function, the relation

dηSW
=

1

T
dh −

v

T
dP −

µ

T
dSA (4.32)

can be inferred. Hence, when enthalpy is used as an inde-
pendent thermal variable in combination with salinity and
pressure, the responsible thermodynamic potential function
is entropy,ηSW(SA,h,P ). Note that the superscript “SW”
on η is included here to indicate its use as a thermodynamic
potential function for seawater, consistent with the inclusion
of “SW” on both the Gibbs functiongSW and the enthalpy
hSW when used as a potential function for seawater. To ob-
tain this function value numerically from its arguments, the
Eq. (S8.2)

h = hSW(SA,η,P ) (4.33)

must be solved forη. Because of Eq. (4.7), if the potential
enthalpy valuehθ is given, the same algorithm can be used
to get the related entropy from

hθ = hSW(SA,η,Pr). (4.34)

The inversions of Eqs. (4.33) and (4.34) give respectively

η = ηSW(SA,h,P ) (4.35)

and

η = ηSW(SA,h
θ ,Pr

)
, (4.36)

which are really the same functions with different ar-
guments. The iterative inversion algorithm is straight
forward and is implemented as the library function
sea eta entropy si . It provides entropyη in the form
of eitherηSW(SA,h,P ) or ηSW

(
SA,h

θ ,Pr
)
, from which in

turn all properties listed in Tables S9, S10 can be determined.
Note, however, that we have not implemented an explicit

routine for entropy, Eq. (4.35), as a potential function in the
library. That is, the functionsea eta entropy si pro-
vides entropy as a function of salinity, enthalpy and pres-
sure, but it does not provide the partial derivatives of entropy
with respect to those variables, nor does it take any orders of
derivatives as input parameters. As such, the thermodynamic
potential “entropy” is not available in the present SIA library
version in the same form as the other potential functions that
are summarised in Table 1. Nevertheless, various properties
(Tables S9, S10) derived from it are implemented at level 3
and evaluated from indirect algorithms, just as if the potential
“entropy” were available. The corresponding routines can be
identified in the implementation of the library discussed in
Part 2 (Wright et al., 2010a) by aneta instead of anh
in the function names given in Table S10, which indicates
the implicit use of entropy as the potential function. Conse-
quently, these routines take enthalpy or potential enthalpy as
the thermal input parameter rather than entropy.

4.4 Gibbs function of humid air

In many practical situations the pressure rather than the
density of humid air is available from observations. For
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this purpose, the appropriate thermodynamic potential is the
Gibbs functiongAV (A,T ,P ) of humid air, computed from
the Helmholtz functionf AV (A,T ,ρ) of humid air, Eq. (2.7),
by the Legendre transform (Alberty, 2001)

gAV
=f AV

− v

(
∂f AV

∂v

)
A,T

=f AV
+ρ

(
∂f AV

∂ρ

)
A,T

, (4.37)

and the subsequent substitution of the independent variable
ρ by P , obtained from solving numerically the equation

P = ρ2
(
∂f AV

∂ρ

)
A,T

. (4.38)

For oceanographic and meteorological applications it is not
necessary to consider liquid or solid air. Therefore, we re-
strict consideration of Eq. (4.37) to the following regions:
(i) for temperatures above the critical temperature of dry
air, T>Tc=132.5306 K, all pressures in the range shown in
Fig. 4 are included; and (ii) at subcritical temperaturesT<Tc
only temperatures higher than the dewpoint temperatureTD,
i.e. the condensation point of liquid air, are included. The
function TD is available from Lemmon et al. (2000) and is
shown in Fig. 4.

As a starting value for the density iteration of Eq. (4.38)
at given pressureP , air fractionA and temperatureT , the
ideal-gas equation is suitable:

ρ ≈
MAV (A)

RT
P. (4.39)

The molar mass of humid airMAV is given by Eq. (2.8), and
R=8.314472 J mol−1 K−1 is the molar gas constant. Insert-
ing the numerical result forρ into Eq. (4.37) provides the
required function value ofgAV at givenA, T , P . For the nu-
merical computation of partial derivatives of the Gibbs func-
tion, algebraic combinations of analytical derivatives of the
Helmholtz function are implemented as given in Table S11.

Thermodynamic properties of humid air at givenA, T ,
P are computed from the Gibbs function (Eq. 4.37) and its
partial derivatives, Table S11, as given in Table S12. The
deviation of the compressibility factorZAV from unity de-
scribes the non-ideal behaviour. The adiabatic lapse rate is
given with respect to pressure rather than altitude and refers
to subsaturated humid air, often referred to as “dry-adiabatic”
in the meteorological literature. The air contraction coef-
ficient, β=−

1
v

(
∂v
∂A

)
T ,P

, is the relative density increase if a
small mass of vapour in a sample is replaced by air. Ad-
ditional equations for humid-air properties are discussed in
Feistel et al. (2010a).

4.5 Enthalpy of humid air

When humid air is lifted adiabatically from the surface to a
certain pressure level, its air fraction and its entropy can of-
ten be considered as conservative during this process. Thus,
the entropyη rather than the temperatureT is known for a

parcel at some given altitude if the initial entropy was com-
puted at the surface. For this application purpose, the ap-
propriate thermodynamic potential is the specific enthalpy
hAV (A,η,P ) of humid air, computed from the Gibbs func-
tion gAV (A,T ,P ) of humid air, Eq. (4.37), by the Legendre
transform (Alberty, 2001)

hAV
= gAV

− T

(
∂gAV

∂T

)
A,P

. (4.40)

The subsequent substitution of the independent variableT by
η is obtained numerically from solving Eq. (S12.2) forT :

η = −

(
∂gAV

∂T

)
A,P

. (4.41)

As a starting value for the iterative solution of Eq. (4.41) for
T at given pressureP , air fractionA and entropyη, we use
an ideal-gas approximation of Eq. (S12.2) in the vicinity of
the IAPWS-95 triple point (Tt, Pt) of water:

T≈Ttexp

{
η − ηt + RAV ln (P/Pt)

A
(
cA
P + RA

)
+ (1 − A)

(
cV
P + RW

)}. (4.42)

This expression does not depend on the particular
choice made for the adjustable coefficients of the en-
tropy. The constants areηt=η(A,Tt,Pt) computed
from Eq. (S12.2) at Tt=273.16 K, Pt=611.654771 Pa,
cA
P=1003.69 J kg−1 K−1, cV

P=1884.352 J kg−1 K−1,
RA=R/MA , RW=R/MW and RAV=R/MAV . The mo-
lar mass of air isMA=0.02896546 kg mol−1, that of water is
MW=0.018015268 kg mol−1,MAV is given by Eq. (2.8), and
R=8.314472 J mol−1 K−1 is the molar gas constant.

Once the value ofT has been determined from solving
Eq. (4.41), the partial derivatives ofhAV (A,η,P ) are ob-
tained from those ofgAV (A,T ,P ) as given in Table S13.
Thermodynamic properties as given in Table S14 can be cal-
culated from algebraic combinations of these derivatives.

If a humid-air parcel is moved adiabatically to some refer-
ence pressureP=Pr below its isentropic condensation level
(ICL, Emanuel, 1994; Feistel et al., 2010a), all its thermody-
namic properties given in Table S14 can be computed at that
reference level from the partial derivatives ofhAV (A,η,Pr)

and the in situ entropyη(A,T ,P ), Eq. (S13.1). As discussed
for seawater in Sect. 4.3, properties derived from the poten-
tial functionhAV at the reference pressure (frequently speci-
fied as the surface pressure) are commonly referred to as “po-
tential” properties in meteorology. Examples are the poten-
tial enthalpy,hθ , library functionair potenthalpy si ,

hθ = hAV (A,η,Pr), (4.43)

the potential temperature from Eq. (S14.2),θ , in ◦C, library
functionair pottemp si ,

T0 + θ =

(
∂hAV (A,η,Pr)

∂η

)
A,P r

, (4.44)
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and the potential density from Eq. (S14.1),ρθ , library func-
tion air potdensity si ,

ρ−1
θ =

(
∂hAV (A,η,Pr)

∂Pr

)
A,η

. (4.45)

Evidently, for any fixed reference pressure,Pr, the value of
hAV (A,η,Pr) and its partial derivatives, as well as any other
arbitrary function depending on this triple of variables, re-
main unchanged during isentropic processes (η = const) at
constant specific humidity (A = const).

Physically reasonable values of the entropy to be used
as an independent variable of the enthalpy are restricted to
ranges depending on humidity and pressure, between the par-
ticular limits given by dry and saturated air, see Sect. 5.8.

5 Level 4: Phase equilibria and composite systems

Equilibrium properties at phase transition boundaries or of
coexisting phases are often characterized by drastic spatial
or temporal changes, and large values of latent heat exchange
or volume expansion, e.g. if seawater freezes or evaporates.
Such multi-phase and multi-component properties are avail-
able from combinations of the thermodynamic potentials if
they are consistently adjusted to reference state conditions
which fix the absolute energies and entropies of the sub-
stances involved (Feistel et al., 2008). Gibbs functions can
be constructed for composite systems such as sea ice (Feistel
and Hagen, 1998, Sect. 5.4) that contain two stable phases
(e.g. ice and seawater). When the temperature, the volume
or the pressure of a composite system is changed, mass is
transferred from one phase to the other; for example if sea
water freezes or evaporates, brine salinity or vapour pressure
adjust to the new conditions imposed and the heat capacity
or the thermal expansion of the whole system exhibits very
large changes resulting from the changes in latent heat contri-
butions. By utilizing mutually consistent potential functions,
rigorous mathematical formulae can be determined for the
numerical calculation of latent properties depending on the
particular conditions such as isobaric, isochoric or isentropic
processes.

5.1 Equilibrium liquid water-vapour: saturation

The saturation point of pure water is usually computed at
a given temperatureT , providing the vapour pressureP =

P vap(T ), or at a given pressureP providing the boiling tem-
peratureT = T boil(P ). The defining condition is equality of
the chemical potentials of liquid and vapour, which equal the
Gibbs functions in the case of pure phases,

gW(T ,P ) = gV (T ,P ). (5.1)

In terms of the Primary Standard functions and their indepen-
dent variables (Sect. 2), Eq. (5.1) is expressed by the system

f F
(
T ,ρW

)
+ ρWf F

ρ

(
T ,ρW

)
(5.2)

= f F
(
T ,ρV

)
+ ρVf F

ρ

(
T ,ρV

)
(
ρW
)2
f F
ρ

(
T ,ρW

)
= P (5.3)

(
ρV
)2
f F
ρ

(
T ,ρV

)
= P (5.4)

which exploits the relations (Eqs. S2.6 and S2.11) to avoid
stacked numerical iterations. Eq. (5.2) is equivalent to
Eq. (5.1) and is also known as the “Maxwell condition” in

the form
ρW∫
ρV

[
f F
ρ −

P

ρ2

]
dρ=0. Equations (5.2)–(5.4) provide

three equations for the four unknownsT , P , ρV andρW.
Any one of these quantities can be specified independently
to complete the system and permit the numerical solution as
discussed in Appendix A3.

Once the values ofT , P , ρV andρW are computed from
the iteration of Eqs. (5.2)–(5.4) at the specified saturation
condition, various equilibrium properties can be determined
from the formulae given in Table S15.

5.2 Equilibrium water-ice: melting and freezing

The melting pressure of ice is usually computed at a given
temperatureT , givingPmelt(T ). Similarly, the freezing tem-
perature of water is normally determined at a given pressure
P , giving T frz(P ), which also gives the melting temperature
of ice. In either case, the defining condition is equality of the
chemical potentials of liquid water and ice,

gW(T ,P ) = gIh(T ,P ). (5.5)

In terms of the Primary Standard functions and their indepen-
dent variables (Sect. 2), Eq. (5.5) is represented as the system

f F
(
T ,ρW

)
+ ρWf F

ρ

(
T ,ρW

)
= gIh(T ,P ) (5.6)

(
ρW
)2
f F
ρ

(
T ,ρW

)
= P, (5.7)

which exploits the relations (Eqs. S2.6 and ES2.11) to avoid
stacked numerical iterations. Equations (5.6) and (5.7) sup-
ply two equations for the three unknownsT , P and ρW.
Specifying any one of these quantities completes the deter-
mination of the system which can then be solved as discussed
in Appendix A4.

Once the values ofT , P andρW are computed from the
iteration of Eqs. (5.6), (5.7) at the specified melting condi-
tion, various equilibrium properties can be determined from
the formulae given in Table S16.
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5.3 Sublimation equilibrium ice-vapour

The sublimation pressure of ice is usually computed at a
given temperatureT , giving P subl(T ). Similarly, the sub-
limation temperature of ice is usually computed at a given
pressureP , giving T subl(P ), which also gives the ice-point
temperature of vapour at which frost is formed. The defin-
ing condition is equality of the chemical potentials of water
vapour and ice,

gV (T ,P ) = gIh(T ,P ). (5.8)

In terms of the Primary Standard functions and their inde-
pendent variables (Sect. 2), Eq. (5.8) is represented by the
system

f F
(
T ,ρV

)
+ ρVf F

ρ

(
T ,ρV

)
= gIh(T ,P ) (5.9)

(
ρV
)2
f F
ρ

(
T ,ρV

)
= P, (5.10)

which exploits the relations (Eqs. S2.6 and S2.11) to avoid
stacked numerical iterations. Specifying any one ofT , P
andρV , completes the system and allows numerical solution
as discussed in Appendix A5.

Once the values ofT , P andρV are computed from the
iteration of Eqs. (59) and (5.10) at the given sublimation
condition, various equilibrium properties can be determined
from the formulae given in Table S17.

5.4 Equilibrium seawater-ice: sea ice

The freezing temperature of seawater with absolute salin-
ity SA is usually computed at a specified pressureP giving
T frz(SA , P ). Similarly, the brine salinity of sea ice is cal-
culated at a specified temperatureT and pressureP giving
Sbrine

A (T ,P ), and the melting pressure at which the solid frac-
tion of sea ice disappears is calculated at specifiedSA andT
givingPmelt(SA ,T ). The defining condition for each of these
is equality of the chemical potentials of ice and of water in
seawater,

gIh(T ,P ) = gSW(SA,T ,P ) − SA

(
∂gSW

∂SA

)
T ,P

. (5.11)

In terms of the Primary Standard functions and their inde-
pendent variables (Sect. 2), Eq. (5.11) is represented as the
system

gIh
= fW

+ ρWfW
ρ + gS − SAg

S
S (5.12)

(
ρW
)2
fW
ρ = P, (5.13)

which exploits the relations Eqs. (S2.6), (S2.11), (4.4)
and (S7.12) to avoid stacked numerical iterations. The func-
tion f F

(
T ,ρW

)
is abbreviated here byfW, and similarly for

its partial derivatives. Equations (5.12) and (5.13) provide
two conditions for the four unknownsSA , T , P andρW. To
complete the system, two of these variables must be speci-
fied, usually out of the tripleSA , T or P . Once two of these
variables are specified, the system may be solved iteratively
as discussed in Appendix A6.

Once the values ofSA , T , P andρW are computed from
the iteration of Eqs. (5.12) and (5.13) for the specified choice
of parameters, varioussingle-phaseequilibrium properties
can be determined from the formulae given in Table S18.

The composite system “sea ice” consisting of seawater and
ice can be described by a suitable Gibbs functiongSI(SSI,
T , P) which is available from the equilibrium solution of
Eq. (5.11) and can be used to compute all thermodynamic
properties of this two-phase system, in particular its latent
heat (for details see Feistel and Hagen, 1998):

gSI(SSI,T ,P )=(1−b)gIh(T ,P )+bgSW(SA,T ,P ). (5.14)

Here,b=SSI/SA≤1 is the mass fraction of brine andSSI is
the given “bulk” or sea-ice salinity, i.e. the mass fraction of
salt in sea ice, in contrast to the brine salinitySA(T ,P ), the
mass fraction of salt in the liquid part, which is a function
of temperature and pressure controlled by the equilibrium
Eq. (5.11). For a compact writing of the partial derivatives
of Eq. (5.14) it is useful to define a formal latency operator
of sea ice,

3SI[z] ≡ zSW
− SA

(
∂zSW

∂SA

)
T ,P

− zIh. (5.15)

Here,z is a certain thermodynamic function. For example,
the equilibrium condition (Eq. 5.11) can be written in the
form

3SI[g] = 0. (5.16)

The total differential of Eq. (5.16) is commonly known as the
Clausius-Clapeyron differential equation of this phase tran-
sition:(
∂3SI[g]

∂SA

)
T ,P

dSA +

(
∂3SI[g]

∂T

)
S,P

dT (5.17)

+

(
∂3SI[g]

∂P

)
S,T

dP= 0.

The first term yields the chemical coefficient, Eq. (S4.6),

DS = − SA

(
∂3SI[g]

∂SA

)
T,P

= S2
Ag

S
SS, (5.18)

which has a positive sign as can be concluded from the Sec-
ond Law of Thermodynamics (Landau and Lifschitz, 1964;
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IOC et al., 2010). From the second and third terms of
Eq. (5.17) we infer the derivatives of the brine salinity to be(
∂SA

∂T

)
P

= − SA
3SI[η]

DS
, (5.19)

(
∂SA

∂P

)
T

= SA
3SI[v]

DS
. (5.20)

With the help of these relations we can compute thermody-
namic properties of sea ice from the partial derivatives of the
Gibbs function (Eq. 5.14) as given in Table S7 for seawa-
ter if the salinitySA considered there is substituted by the
sea-ice salinitySSI and the Gibbs functiongSW(SA,T ,P ) by
gSI(SSI,T ,P ). The Gibbs function of sea ice, Eq. (5.14), is
implemented as the functionsea ice g si in the library.

Related to the intrinsic phase transition, certain properties
of interest are very specific for a composite system like sea
ice and not listed in Table S7. Using Eq. (5.19), the isobaric
melting rate, i.e. the increase of the brine fractionb=SSI/SA
upon warming is(
∂b

∂T

)
SSI,P

=
b3SI[η]

DS
. (5.21)

The isobaric heat capacity of sea ice computed from
Eqs. (5.14), (S7.6) and (5.19),

cP = − T

(
∂2gSI

∂T 2

)
SSI,P

(5.22)

= (1 − b)cIh
P + bcSW

P + LSI
P

(
∂b

∂T

)
SSI,P

,

consists of the single-phase contributions of ice,cIh
P , and

brine, cSW
P , as well as a latent part, and is implemented as

sea ice cp seaice si . In the latter term, the coefficient
LSI
P in front of the melting rate, Eq. (5.21), is the isobaric la-

tent heat of sea ice,

LSI
P = T3SI[η] = 3SI[h] ≡ (5.23)

hSW
− SA

(
∂hSW

∂SA

)
T ,P

− hIh,

and is available from the function
sea ice enthalpy melt si in the library. The enthalpy
of the brine,hSW, is computed from Eq. (S7.3), and the
enthalpy of ice,hIh, is computed from Eq. (S3.4).

Similarly, the thermal expansion of sea ice is computed
from Eqs. (5.14), (S7.15) and (5.19),(
∂vSI

∂T

)
SSI,P

=

(
∂2gSI

∂T ∂P

)
SSI

= (1 − b)

(
∂vIh

∂T

)
P

(5.24)

+ b

(
∂vSW

∂T

)
SA ,P

+ V SI
P

(
∂b

∂T

)
SSI,P

,

and is available from the function
sea ice expansion seaice si in the library. The
third term on the right hand side of Eq. (5.24) is the melting
rate, Eq. (5.21), multiplied by the isobaric melting volume
of sea ice, functionsea ice volume melt si ,

V SI
P = 3SI[v] ≡ vSW

− SA

(
∂vSW

∂SA

)
T ,P

− vIh. (5.25)

The specific volume of the brine,vSW, is computed from
Eq. (S7.1), and that of ice,vIh, from Eq. (S3.13).

Since the freezing-point lowering due to pressure always
exceeds the adiabatic lapserate of seawater, cold seawater
may freeze and decompose into ice and brine during adia-
batic uplift but this can never happen to a sinking parcel. This
freezing process can destabilize the water column, e.g. off the
Antarctic shelf (Foldvik and Kvinge, 1974), since the ther-
mal expansion of sea ice,αSI

=gSI
T P /g

SI
P , Eq. (5.24), func-

tion sea ice expansion seaice si in the library, and
consequently also the adiabatic lapserate (McDougall and
Feistel, 2003) of sea ice,0SI

=−gSI
T P /g

SI
T T , Eq. (S18.14),

possess large negative values near the freezing point (Feis-
tel and Hagen, 1998). These and related properties can be
evaluated directly from the partial derivatives of the Gibbs
function of sea ice, Eq. (5.14), implemented as the function
sea ice g si in the library, in terms of the in situ tem-
perature. For a seawater parcel, the potential temperature
that corresponds to the freezing point under pressure is some-
what ill-defined physically since it is practically impossible
to lift a parcel at the freezing point to the surface isentropi-
cally without decomposition into ice and brine. Freezing of
a seawater parcel cannot occur at any depth as long as its
potential temperature referenced to the surface is higher than
its freezing point temperatureT frz(SA , PSO) computed from
Eq. (5.11) at the surface pressurePSO, as discussed by Jack-
ett et al. (2006).

As an observational example, the brine salinity,
Eq. (S18.2), of Antarctic sea ice at normal pressure is
shown in Fig. 6 in comparison to measurements of con-
centrated brines by Gleitz et al. (1995) and Fischer (2009).
Note that only freezing point measurements at salinities less
than 40 g kg−1 were used for the construction of IAPWS-08
(Feistel, 2008).

5.5 Equilibrium seawater-vapour

The vapour pressure of seawater is usually computed as
a function of temperatureT and Absolute SalinitySA ,
givingP vap(SA,T ). Similarly, the boiling temperature of
seawater is computed as a function of absolute pressureP

and Absolute SalinitySA , giving T boil(SA,P ), and the equi-
librium brine salinity is computed as a function ofT and
P , giving Sbrine

A (T ,P ). The defining condition for each of
these quantities is equality of the chemical potentials of water
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Fig. 6 Brine salinity computed from Eq. (S18.2) at given temperature and normal pressure, 
compared with measured results for Antarctic sea ice. Symbol “F”: data of Fischer (2009), 
“G”: data of Gleitz et al. (1995). 
 
 
 
 

5.5 Equilibrium Seawater-Vapour 

 
The vapour pressure of seawater is usually computed as a function of temperature T and 
Absolute Salinity SA, giving P

vap(SA, T).  Similarly, the boiling temperature of seawater is 
computed as a function of absolute pressure P and Absolute Salinity SA, giving Tboil(SA, P), 

and the equilibrium brine salinity is computed as a function of  T and P, giving  ),(brine
A PTS . 

The defining condition for each of these quantities is equality of the chemical potentials of 
water vapour and of water in seawater, 
 

 ( ) ( )
PT

S

g
SPTSgPTg

,A

SW

AA
SWV ,,, 









∂

∂
−= .    (5.26) 

 
In terms of the Primary Standard functions and their independent variables (Sect. 2), Eq. 
(5.26) is expressed as the system 
 

S
A

SWWWVVV
SgSgffff −++=+ ρρ ρρ     (5.27) 

Fig. 6. Brine salinity computed from Eq. (S18.2) at given tem-
perature and normal pressure, compared with measured results for
Antarctic sea ice. Symbol “F”: data of Fischer (2009), “G”: data of
Gleitz et al. (1995).

vapour and of water in seawater,

gV (T ,P ) = gSW(SA,T ,P ) − SA

(
∂gSW

∂SA

)
T ,P

. (5.26)

In terms of the Primary Standard functions and their indepen-
dent variables (Sect. 2), Eq. (5.26) is expressed as the system

f V
+ ρVf V

ρ = fW
+ ρWfW

ρ + gS
− SAg

S
S (5.27)

(
ρV
)2
f V
ρ = P (5.28)

(
ρW
)2
fW
ρ = P, (5.29)

which exploits the relations (Eqs. S2.6, S2.11, 4.4 and
S7.12) to avoid stacked numerical iterations. The function
f F
(
T ,ρV

)
is abbreviated here byf V , and similarly forfW

and their partial derivatives. Equations (5.27), (5.28), (5.29)
provide three conditions for the five unknownsSA , T , P , ρV

andρW, so two of these parameters must be specified, usu-
ally from the setSA , T , P , to complete the system. Once
this choice is made, the system can be solved as discussed in
Appendix A7.

Once the values ofSA , T , P , ρV andρW are computed
from the iteration of Eqs. (5.27)–(5.29) at the given evapora-
tion conditions, various equilibrium properties can be deter-
mined from the formulae given in Table S19.

We use the name “sea vapour” to refer to a composite
system consisting of seawater and vapour in thermodynamic
equilibrium. Its Gibbs functiongSV(SSV,T ,P ) depends on
absolute temperatureT , absolute pressureP and the mass
fraction of salt, which is the “bulk” or “sea-vapour” salinity
SSV; the Gibbs function is expressed as

gSV(SSV,T ,P ) (5.30)

= (1 − b)gV (T ,P ) + bgSW(SA,T ,P ).

Here,b=SSV/SA≤1 is the mass fraction of brine. The brine
salinity SA(T ,P ) is a function of temperature and pressure
controlled by the equilibrium Eq. (5.26). For a compact writ-
ing of the partial derivatives of Eq. (5.30) it is useful to define
a formal latency operator of sea vapour,

3SV[z] ≡ zSW
− SA

(
∂zSW

∂SA

)
T ,P

− zV . (5.31)

Here,z is a certain thermodynamic function. For example,
the equilibrium condition Eq. (5.26) can be written in the
form

3SV[g] = 0. (5.32)

The total differential of Eq. (5.32) is commonly known as the
Clausius-Clapeyron differential equation of this phase tran-
sition:(
∂3SV[g]

∂SA

)
T ,P

dSA +

(
∂3SV[g]

∂T

)
S,P

dT (5.33)

+

(
∂3SV[g]

∂P

)
S,T

dP = 0

The first term is the chemical coefficient (Eq. S4.6),

DS = − SA

(
∂3SV[g]

∂SA

)
T ,P

= S2
Ag

S
SS . (5.34)

From the second and third terms of Eq. (5.32) we infer the
derivatives of the brine salinity,(
∂SA

∂T

)
P

= − SA
3SV[η]

DS
, (5.35)

(
∂SA

∂P

)
T

= SA
3SV[v]

DS
. (5.36)

With the help of these relations we can compute thermo-
dynamic properties of sea vapour from the partial deriva-
tives of the Gibbs function (Eq. 5.30) as given in Table S7
for seawater if the salinitySA considered there is substi-
tuted by the sea-vapour salinitySSV and the Gibbs func-
tion gSW(SA,T ,P ) by gSV(SSV,T ,P ). The Gibbs function
of sea vapour, Eq. (5.30), is implemented as the function
sea vap g si in the library.
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Certain properties of interest are very specific for a com-
posite system and not listed in Table S7. Using Eq. (5.35),
the isobaric evaporation rate, i.e. the decrease of the brine
fractionb=SSV/SA upon warming is

−

(
∂b

∂T

)
SSV,P

= −
b3SV[η]

DS
. (5.37)

The isobaric heat capacity of sea vapour computed from
Eqs. (5.30), (S7.6) and (5.35),

cP = − T

(
∂2gSV

∂T 2

)
SSV,P

(5.38)

= (1 − b)cV
P + bcSW

P + LSV
P

(
∂b

∂T

)
SSV,P

,

consists of the single-phase contributions of vapour,cV
P , and

brine, cSW
P , as well as a latent part, and is implemented as

sea vap cp seavap si . In the latter term, the coefficient
in front of the evaporation rate (Eq. 5.37) is the isobaric latent
heatLSV

P of seawater,

LSV
P = − T3SV[η] = − 3SV[h] (5.39)

≡ hV
− hSW

+ SA

(
∂hSW

∂SA

)
T ,P

,

which is available from the function
sea vap enthalpy evap si in the library. The brine
enthalpy,hSW, is computed from Eq. (S7.3), and the vapour
enthalpy,hV , from Eq. (S2.3).

5.6 Osmotic equilibrium seawater-liquid

If pure water is separated from seawater by a semi-permeable
membrane which lets water molecules pass but not salt parti-
cles, water will penetrate into the seawater, this way diluting
it and possibly increasing its pressure, until the chemical po-
tential of water in both boxes will be the same (or the pure
water reservoir is exhausted). In the usual model configura-
tion, the two samples are thermally coupled but may possess
different pressures; the resulting pressure difference required
to maintain equilibrium is the osmotic pressure of seawater.
An example is desalination by reverse osmosis; if the pres-
sure on seawater in a vessel exceeds its osmotic pressure,
freshwater can be squeezed out of the solution through suit-
able membrane walls (Sherwood et al., 1967).

The defining condition for the osmotic equilibrium is
equality of the chemical potentials of pure water at the pres-
surePW and of water in seawater at the pressurePS,

gW
(
T ,PW

)
=gSW

(
SA,T ,P

S
)
−SA

(
∂gSW

∂SA

)
T ,PS

. (5.40)

In terms of the Primary Standard functions and their indepen-
dent variables (Sect. 2), Eq. (5.40) is expressed as the system

fW
+ ρWfW

ρ = f S
+ ρSf S

ρ + gS
− SAg

S
S (5.41)

(
ρW
)2
fW
ρ = PW (5.42)

(
ρS
)2
f S
ρ = PS, (5.43)

which exploits the relations (Eqs. S2.6, S2.11, 4.4 and S7.12)
to avoid stacked numerical iterations. The function
f F
(
T ,ρW

)
is abbreviated here byfW, and similarly for

f S computed at the liquid-water densityρS related to the
pressurePS, as well as their partial derivatives. Equa-
tions (5.41), (5.42), (5.43) provide three conditions for the
six unknownsSA , T , PS, PW, ρS andρW, so three of these
parameters must be specified to complete the system. Once
this choice is made, the remaining parameters can be deter-
mined as in Appendix A8.

Once the solution forSA , T , PS, PW, ρS andρW has been
found, the desired properties of the equilibrium can be com-
puted, in particular the osmotic pressure,P osm

=P S−PW.
The related functionsea liq osmoticpressure si is
implemented in the library.

5.7 Triple point sea ice – vapour

The equilibrium between sea ice and vapour includes three
phases, solid, liquid and gas, and two components, water
and salt. Air is not involved. This equilibrium state extends
the ordinary triple point of pure water to non-zero salini-
ties, i.e. along a one-dimensional manifold. This curve is
shown in Fig. 3 by the “Triple Line” which has the same
T−P relation as the sublimation line because ice is in sub-
limation equilibrium with water vapour at any given brine
salinity. Note that saturation is defined as the equilibrium
state between water vapour and liquid water above the freez-
ing point of pure water, or, below that temperature, between
water vapour and ice (IAPWS, 2010). Hence, as soon as ice
is present in an equilibrium system, the water vapour in the
gas phase is regarded as saturated.

The equilibrium conditions for temperature, pressure and
chemical potentials that determine the locus of triple points
are expressed in terms of the Primary Standard as

f V
+ ρVf V

ρ = fW
+ ρWfW

ρ + gS
− SAg

S
S (5.44)

f V
+ ρVf V

ρ = gIh (5.45)

P =

(
ρV
)2
f V
ρ (5.46)
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IhVVV
gff =+ ρρ         (5.45) 

 

( ) V2V
ρρ fP =         (5.46) 

 

( ) W2W
ρρ fP = .        (5.47) 

 

Equations (5.44)-(5.47) provide four conditions for the five unknowns SA, T, P, Vρ  and Wρ .  

Any one of the five parameters may be specified to complete the system which may then be 
solved as discussed in Appendix A.9. 
 
If any one of the three variables SA, T, P is specified, the other two are determined by the 
above conditions. Fig. 7 shows the displacement of the triple point along the sublimation line 
as a function of salinity. 
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Fig. 7: Temperature-pressure phase diagram of seawater in the vicinity of the triple point. At 
different salinities, the triple point (TP), i.e. the equilibrium between liquid seawater, ice and 
vapour is displaced along the sublimation line (in bold) of the ice-vapour equilibrium. Note 
that the triple-point pressure can change by a factor of 2 while the vapour-pressure lowering at 
constant temperature is only of order 10% or less. 
 
 
In the library, the equilibrium properties P, T and SA of sea-ice vapour are available from the 
functions sea_ice_vap_pressure_si, sea_ice_vap_temperature_si and 
sea_ice_vap_salinity_si. Note that the equilibrium conditions are actually determined by 

Fig. 7. Temperature-pressure phase diagram of seawater in the
vicinity of the triple point. At different salinities, the triple point
(TP), i.e. the equilibrium between liquid seawater, ice and vapour
is displaced along the sublimation line (in bold) of the ice-vapour
equilibrium. Note that the triple-point pressure can change by a fac-
tor of 2 while the vapour-pressure lowering at constant temperature
is only of order 10% or less.

P =

(
ρW
)2
fW
ρ . (5.47)

Equations (5.44)–(5.47) provide four conditions for the five
unknownsSA , T ,P , ρV andρW. Any one of the five parame-
ters may be specified to complete the system which may then
be solved as discussed in Appendix A9.

If any one of the three variablesSA , T , P is specified, the
other two are determined by the above conditions. Figure 7
shows the displacement of the triple point along the sublima-
tion line as a function of salinity.

In the library, the equilibrium propertiesP , T andSA of
sea-ice vapour are available from the functions
sea ice vap pressure si ,
sea ice vap temperature si and
sea ice vap salinity si . Note that the equilibrium
conditions are actually determined by calling one of
set sea ice vap eq at p,
set sea ice vap eq at t or
set sea ice vap eq at s , depending on which of
pressure, temperature or salinity is specified. Thus, one of
these ”set ”-routines must be called before accessingP ,
T or SA using the above function calls, but all three equi-
librium properties corresponding to the specified parameter
choice are available once the appropriate ”set ”-routine is
executed.

5.8 Equilibrium humid air – liquid water

The state in which humid air is in equilibrium with liquid wa-
ter is commonly referred to as “saturated air”, the “dewpoint”

or the “condensation point”. The condition for this equilib-
rium is equal chemical potentials of liquid water, Eq. (4.2),
and of water in humid air, Eq. (S12.15),

gAV
− A

(
∂gAV

∂A

)
T ,P

= gW. (5.48)

In terms of the Primary Standard functions and their inde-
pendent variables (Sect. 2), Eq. (5.48) is expressed using the
relations

gW(T ,P ) = f F
(
T ,ρW

)
+ P/ρW (5.49)

P =

(
ρW
)2
(
∂f F

∂ρW

)
(5.50)

gAV
= f AV

(
A,T ,ρAV

)
+ P/ρAV (5.51)

P =

(
ρAV

)2
(
∂f AV

∂ρAV

)
A,T

. (5.52)

The independent variables in this scheme are the total pres-
sure,P , the liquid density,ρW, the humid-air density,ρAV ,
the temperature,T , and the air fraction,A. Using Eqs. (5.49)
and (5.51) to eliminate the Gibbs potential in favour of the
Helmholtz potentials results in three equations for these five
unknowns.

For the numerical solution, two of the five unknowns as
well as starting values for the remaining unknowns must be
specified. Four important cases are considered in detail in
Appendix A10.

No matter which of the four cases considered in the ap-
pendix is applied to compute the equilibrium between liquid
water and humid air, the numerical solution of Eqs. (5.48)–
(5.52) provides a consistent set of equilibrium values forA,
T ,P , ρW andρAV which is then available for the computa-
tion of any other property of either saturated humid air or
liquid water in this state.

For example, at given temperatureT and total pressureP ,
the partial vapour pressure of saturated air is available in the
form

P sat, calc
= xAV

V P (5.53)

from the solution obtained forA (T , P), using
library functionliq air massfraction air si
and then converting to the mole fraction of vapour,
xAV

V =1−xAV
A (A), Eq. (S1.5), using the library function

air molfraction vap si . The comparison with ex-
perimental data for the saturated vapour pressure (Feistel et
al., 2010a), Fig. 8, permits an estimate of the effect of the
cross-virial coefficientsBAW(T ), CAAW (T ) andCAWW(T )
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on the validity of this formulation at higher densities.
From the data scatter at low densities we may estimate the
experimental uncertainty to be better than 0.5%. Ambient
air has a density of typically 1 kg m−3 or less. At about
10 kg m−3 , an error of about 2% must be expected if the
second virial coefficientsBAW(T ) is omitted. The same
error occurs at 100 kg m−3 with BAW(T ) included but is
reduced to 1% if the coefficientsCAAW (T ) andCAWW(T )

are considered, too.
A practically important quantity is the relative humid-

ity, RH, which expresses the deviation of the air fraction
A of a given sample of humid air from the saturation value
Asat(T ,P ) belonging to the same temperature and pressure,
computed as the solution of Eq. (5.48) in the scenario of
case 3 from Appendix A10. Out of several options available
from the literature, two different definitions are implemented
and attributed here to the WMO3 and to the CCT4,

RHWMO(A,T ,P ) =
1/A − 1

1/Asat(T ,P ) − 1
(5.54)

and

RHCCT(A,T ,P ) =
xAV

V (A)

xAV
V

(
Asat(T ,P )

) . (5.55)

with the mole fractionxAV
V =1−xAV

A (A) from Eq. (2.12). Ac-
cording to Jacobson (2005), the WMO defines the relative
humidity as given in Eq. (5.54). This definition is also given
by other sources such as Gill (1982). Alternatively, internal
discussion documents of BIPM CCT-WG6 (Jeremy Lovell-
Smith, private communication, 2010) consider as a suitable
option for the definition of relative humidity the commonly
used formula (Eq. 5.55). This definition is also recom-
mended in a recent document of WMO (2008), in contrast to
Eq. (5.54). The definition of relative humidity given by the
International Union of Pure and Applied Chemistry (IUPAC,
1997) is similar to Eq. (5.55) but uses the ratio of the partial
pressure of water vapour in humid air to the pressure of sat-
urated, air-free vapour, and does not exactly match 100% at
saturation.

In the library, the conversion functions from air fraction
to relative humidity are implemented as
liq air rh wmofrom a si and
liq air rh cct from a si . Their inverse functions are

A =
1

1 + RHWMO ×
(
1/Asat(T ,P ) − 1

) (5.56)

and, from Eqs. (2.9) and (2.11),

A=
1−RHCCT×x

AV
V

(
Asat(T ,P )

)
1−RHCCT×x

AV
V

(
Asat(T ,P )

)
× (1−MW/MA)

. (5.57)

3WMO: World Meteorological Organisation,www.wmo.int
4CCT: Consultative Committee for Thermometry,

www.bipm.org/en/committees/cc/cct/
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a) Vapour Pressure Data of Saturated Humid Air
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b) Vapour Pressure Data of Saturated Humid Air, magnified
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Fig. 8 Experimental data for the saturated vapour pressure expsat,P  of humid air at 
different pressures P and temperatures T as reported in (Feistel et al., 2010a), in 
comparison to calcsat,P  computed from Eqs. (5.53), (S21.9) and (S1.5). Symbol “o”: 
formula (2.7) without cross-virial coefficients, “B”: formula with the second cross-
virial coefficient BAW(T), “C”: formula with the second and third cross-virial 
coefficients BAW(T), CAAW(T), CAWW(T). The smaller scatter is magnified in panel b). 
The improvement realized by including the C coefficients is effective mainly at 
densities higher than 100 kg m–3.  

 
 
A practically important quantity is the relative humidity, RH, which expresses the deviation of 
the air fraction A of a given sample of humid air from the saturation value Asat(T, P) belonging 
to the same temperature and pressure, computed as the solution of Eq. (5.48) in the scenario 
of case 3 from Appendix A.10. Out of several options available from the literature, two 
different definitions are implemented and attributed here to the WMO3 and to the CCT4, 
 

( )
( ) 1,/1

1/1
,,

satWMO
−

−
=

PTA

A
PTARH       (5.54) 

 
and 
 

                                                 
3 WMO: World Meteorological Organisation, www.wmo.int  
4 CCT: Consultative Committee for Thermometry, www.bipm.org/en/committees/cc/cct/  

Fig. 8. Experimental data for the saturated vapour pressureP sat,exp

of humid air at different pressuresP and temperaturesT as reported
in (Feistel et al., 2010a), in comparison toP sat,calc computed from
Eqs. (5.53), (S21.9) and (S1.5). Symbol “o”: formula Eq. (2.7)
without cross-virial coefficients, “B”: formula with the second
cross-virial coefficientBAW(T ), “C”: formula with the second and
third cross-virial coefficientsBAW(T ), CAAW (T ), CAWW(T ). The
smaller scatter is magnified in panel(b). The improvement real-
ized by including theC coefficients is effective mainly at densities
higher than 100 kg m−3.

They are implemented in the library as
liq air a from rh wmosi and
liq air a from rh cct si .

With “wet air” we refer to a composite system of liquid
water and humid air with the mass fractionswA of dry air,
wV of vapour andwW of liquid water, wA

+wV
+wW=1.

The mutual equilibrium requiresAsat(T ,P )=wA /wAV , with
wAV

=wA
+wV=1−wW being the gaseous mass fraction.

The Gibbs function of wet air reads (Feistel et al., 2010a)

www.ocean-sci.net/6/633/2010/ Ocean Sci., 6, 633–677, 2010
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gAW
(
wA,T ,P

)
=

wA

Asat(T ,P )
gAV (Asat,T ,P

)
(5.58)

+

(
1 −

wA

Asat(T ,P )

)
gW(T ,P )

and is a linear function of the air fraction,wA . Various
wet-air properties are available from combinations of par-
tial derivatives of the potential (Eq. 5.58) withAsat(T ,P )

computed from Eqs. (5.48)–(5.52) as in case 3 from Ap-
pendix A10, see Table S21. For the computation of the
partial T−P derivatives ofgAW , the first derivatives of
Asat(T ,P ) are required. Taking the respective derivatives of
Eq. (5.48) we get the isobaric drying rate,

−

(
∂Asat

∂T

)
P

= Asat3AW [η]

DA
, (5.59)

and the isothermal drying rate,

−

(
∂Asat

∂P

)
T

= − Asat3AW [v]

DA
(5.60)

of humid air, i.e. the decrease of its saturated air fractionAsat

due to heating or compression. The chemical coefficientDA
is defined in Eq. (S12.16). The latency operator3AW of wet
air used here is defined for the specific entropy,ηAW

=−gAW
T ,

of the form

3AW[η] = ηAV
− A

(
∂ηAV

∂A

)
T ,P

− ηW, (5.61)

and for the specific volumevAW
=gAW

P of the form

3AW[v] = vAV
− A

(
∂vAV

∂A

)
T ,P

− vW. (5.62)

The partial derivatives of the Gibbs functiongAW
(
wA,T ,P

)
,

Eq. (5.58), of wet air are given in Table S20. Properties of
wet air computed from this Gibbs function are given in Ta-
ble S21.

For the description of isentropic processes such as the up-
lift of wet air in the atmosphere, enthalpyhAW

(
wA,η,P

)
computed from the Gibbs function (Eq. 5.58) is a useful ther-
modynamic potential:

hAW
= gAW

− T

(
∂gAW

∂T

)
wA ,P

. (5.63)

For this purpose, the temperatureT corresponding to a given
entropyη, must be determined to evaluate the right side of
Eq. (5.63). The appropriate value ofT must be obtained by
numerically solving the equation

η = −

(
∂gAW

∂T

)
wA ,P

. (5.64)

This is not a trivial task because a good analytical estimate
for T AW

(
wA,η,P

)
is not available, and the Newton iteration

of Eq. (5.64) tends to be unstable so that the range of starting
parameters that yields convergent solutions of Eq. (5.64) is
rather restricted. An interval method like Brent’s algorithm
appeared to be the best choice in this case, applied between
upper and lower temperature bounds. These limits follow
from the physical conditions that wet air can only exist be-
tween freezing and complete evaporation of the liquid water
part. Thus, the lower temperature boundTmin(w

A,P ) for the
solution of Eq. (5.64) is the freezing temperatureTmelt(P ) of
water under the pressureP ,

gW(Tmin,P ) = gIh(Tmin,P ), (5.65)

computed from Eq. (5.5). The upper temperature bound
Tmax(w

A,P ) is computed from Eq. (5.48) in case 2 from
Appendix A10 for a vanishing liquid fraction, Eq. (S21.9),
i.e., the air fractionA of humid air equal to that of wet air,
wA

=A:[
gAV

−A

(
∂gAV

∂A

)
T ,P

]
A=wA ,T=Tmax

=gW(Tmax,P ) (5.66)

The entropy range corresponding to the intervalTmin–Tmax is
shown in Fig. 9.

The partial derivatives of the enthalpyhAW
(
wA,η,P

)
are

computed from those of the Gibbs function, Table S20, as
given in Table S22.

Selected properties of wet air computed from the en-
thalpy (Eq. 5.63) and its partial derivatives are given in Ta-
ble S23.

Many meteorological processes such as adiabatic uplift
of a wet-air parcel conserve specific humidity and entropy
to very good approximation. In particular, if a parcel is
moved this way to some reference pressureP=Pr, all its
thermodynamic properties given in Table S23 can be com-
puted at that reference level from the partial derivatives of
hAW

(
wA,η,Pr

)
. Such properties derived from the potential

function hAW at the reference pressure are commonly re-
ferred to as “potential” properties in meteorology (von Be-
zold 1888, von Helmholtz 1888). Examples are the potential
enthalpy,hθ ,

hθ = hAW
(
wA,η,Pr

)
, (5.67)

the potential temperature,θ , in ◦C, obtained from Eq. (S23.2)

T0 + θ =

(
∂hAW

(
wA,η,Pr

)
∂η

)
wA ,Pr

, (5.68)

and the potential density,ρθ , obtained from Eq. (S23.1)

ρ−1
θ =

(
∂hAW

(
wA,η,Pr

)
∂Pr

)
wA ,Pr

. (5.69)
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computed from Eq. (5.5). The upper temperature bound Tmax (w
A, P) is computed from Eq. 

(5.48) in case 2 from Appendix A.10 for a vanishing liquid fraction, Eq. (S21.9), i.e., the air 
fraction A of humid air equal to that of wet air, wA = A: 
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The entropy range corresponding to the interval Tmin – Tmax is shown in Fig. 9.  
 

The partial derivatives of the enthalpy ( )Pwh ,,AAW η  are computed from those of the Gibbs 

function, Table S20, as given in Table S22. 
 
 
 
Selected properties of wet air computed from the enthalpy (5.63) and its partial derivatives are 
given in Table S23. 
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Fig. 9 Valid entropy values of wet air computed from Eq. (5.64) as arguments of enthalpy 

( )Pwh ,,AAW η  are restricted to triangular regions, depending on the air fraction wA between 0 

and 100% for selected pressures P as shown. At the upper entropy bound, the liquid phase is 
completely evaporated, given by the solution T(A, P) of case 2 in Appendix A.10, indicated as 
the “Dewpoint” lines in the figure. At the lower bound, the condensate of the wet-air sample 
starts freezing, Eq. (5.5), indicated here as the lines radiating from (η, A), and referred to as  
“Ice Formation” lines. The envelop on which the triangles’ air-fraction maxima are located is 

Fig. 9. Valid entropy values of wet air computed from Eq. (5.64) as

arguments of enthalpyhAW
(
wA , η, P

)
are restricted to triangular

regions, depending on the air fractionwA between 0 and 100% for
selected pressuresP as shown. At the upper entropy bound, the liq-
uid phase is completely evaporated, given by the solutionT (A, P )

of case 2 in Appendix A10, indicated as the “Dewpoint” lines in the
figure. At the lower bound, the condensate of the wet-air sample
starts freezing, Eq. (5.64), indicated here as the lines radiating from
(η, A), and referred to as “Ice Formation” lines. The envelop on
which the triangles’ air-fraction maxima are located is the triple
line, shown dashed, where ice, liquid water and vapour coexist in
the presence of air, as described in Sect. 5.10, Eq. (S28.8). Note
that the vapour-pressure lowering of water due to dissolved air is
neglected in the equations. Freezing curves were computed with
the library functions ice liq meltingtemperature si
and liq air g entropy si , dewpoint curves using
liq air dewpoint si and air g entropy si .
For running wA , the triple line is computed by
calling the sequence set liq ice air eq at a,
liq ice air temperature si ,
liq ice air pressure si andair g entropy si .

The related library functions are
liq air potenthalpy si , Eq. (5.67),
liq air pottemp si , Eq. (5.68), and
liq air potdensity si , Eq. (5.69).

Potential enthalpy is a measure of the “heat content” of wet
air in the sense of von Helmholtz’ (1888) suggestion and was
introduced into oceanography by McDougall (2003). The
formula for the computation of the meteorological wet-bulb
temperature from the enthalpy of humid air is given on page
I.4–28 of WMO (2008).

5.9 Equilibrium humid air – ice

When humid air is in equilibrium with ice, its state is referred
to as “saturated ice air” or the “frost point”. The thermody-
namic relations for this state are quite similar to those of the
previous Sect. 5.8 except that the Gibbs functiongW of liquid

water is replaced by the Gibbs functiongIh of ice. The condi-
tion for this equilibrium is equality of the chemical potentials
of ice, Sect. 2.2, and of water in humid air, Eq. (S12.15):

gAV
− A

(
∂gAV

∂A

)
T ,P

= gIh. (5.70)

In terms of the Primary Standard functions and their indepen-
dent variables (Sect. 2), Eq. (5.70) is expressed by the system

gAV
= f AV

(
A,T ,ρAV

)
+ P/ρAV (5.71)

P =

(
ρAV

)2
(
∂f AV

∂ρAV

)
A,T

. (5.72)

The independent variables in this scheme are the total pres-
sure, P , the humid-air density,ρAV , the temperature,T ,
and the air fraction,A. Expressing the chemical potential
in Eq. (5.70) by means of Eq. (5.71) gives two equations in
these four unknowns. Once two of the unknowns are spec-
ified, then the system is closed and may be solved numer-
ically. Four important cases are discussed in detail in Ap-
pendix A11.

No matter which of the cases 1–4 considered in Ap-
pendix A11 is applied to compute the equilibrium between
ice and humid air, the numerical solution of Eqs. (5.70)–
(5.72) results in a consistent set of equilibrium values forA,
T , P andρAV which is then available for the computation of
any other property of either saturated humid air or ice in this
state.

The definitions (Eqs. 5.54, 5.55) and their inverse func-
tions (Eqs. 5.56, 5.57) remain unchanged below the freezing
temperature except thatAsat(T ,P ) must now be computed
from Eqs. (5.71), (5.72). The related library functions
areice air rh wmofrom a si ,
ice air rh cct from a si ,
ice air a from rh wmosi and
ice air a from rh cct si .

With “ice air” we refer to a composite system of ice
and humid air (e.g. a cirrus cloud) with the mass frac-
tions wA of dry air, wV of vapour andwIh of ice satis-
fying wA

+wV
+wIh=1. The mutual equilibrium requires

Asat(T ,P )=wA /wAV , withwAV
=wA+wV

=1−wIh being the
gaseous mass fraction. The Gibbs function of ice air reads
(Feistel et al., 2010a),

gAI
(
wA,T ,P

)
=

wA

Asat(T ,P )
gAV (Asat,T ,P

)
(5.73)

+

(
1 −

wA

Asat(T ,P )

)
gIh(T ,P ),

and is a linear function of the air fraction,wA . Various ice-air
properties are available from combinations of partial deriva-
tives of the potential (Eq. 5.73) withAsat(T ,P ) computed
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from Eqs. (5.70)–(5.72) and case 3 from Appendix A11, see
Table S25. For the computation of the partialT−P deriva-
tives of gAI , the first derivatives ofAsat(T ,P ) are required.
Taking the respective derivatives of Eq. (5.70) we get the iso-
baric drying rate,

−

(
∂Asat

∂T

)
P

= Asat3AI [η]

DA
(5.74)

and the isothermal drying rate,

−

(
∂Asat

∂P

)
T

= − Asat3AI [v]

DA
(5.75)

of humid air, i.e. the decrease of its saturated air fractionAsat

due to heating or compression. The chemical coefficientDA
is defined in Eq. (S12.16). The latency operator3AI of ice
air used here is defined for the specific entropy,ηAI

=−gAI
T ,

of the form

3AI [η] = ηAV
− A

(
∂ηAV

∂A

)
T ,P

− ηIh, (5.76)

and for the specific volumevAI
=gAI

P of the form

3AI [v] = vAV
− A

(
∂vAV

∂A

)
T ,P

− vIh. (5.77)

The partial derivatives of the Gibbs functiongAI
(
wA,T ,P

)
,

Eq. (5.73), of ice air are given in Table S24. Properties of
ice air computed from this Gibbs function are given in Ta-
ble S25.

For the description of isentropic processes such as the up-
lift of ice air in the atmosphere, enthalpyhAI

(
wA,η,P

)
com-

puted from the Gibbs function (Eq. 5.73) is a useful thermo-
dynamic potential:

hAI
= gAI

− T

(
∂gAI

∂T

)
wA ,P

. (5.78)

For this purpose, temperatureT in Eq. (5.78) must be deter-
mined from entropyη by numerically solving the equation

η = −

(
∂gAI

∂T

)
wA ,P

. (5.79)

The partial derivatives of the enthalpyhAI
(
wA,η,P

)
are

computed from those of the Gibbs function, Table S24, as
given in Table S26.

Selected properties of ice air computed from the enthalpy
(Eq. 5.78) and its partial derivatives are given in Table S27.

Many meteorological processes such as adiabatic uplift
of an ice-air parcel conserve specific humidity and entropy
to very good approximation. In particular, if a parcel is
moved this way to some reference pressureP=Pr, all of
the thermodynamic properties given in Table S27 can be

computed at that reference level from the partial derivatives
of hAI

(
wA,η,Pr

)
. Such properties derived from the poten-

tial functionhAI at the reference pressure are commonly re-
ferred to as “potential” properties in meteorology (von Be-
zold, 1888; von Helmholtz, 1888). Examples are the poten-
tial enthalpy,hθ ,

hθ = hAI
(
wA,η,Pr

)
, (5.80)

the potential temperature,θ , in ◦C, obtained from Eq. (S27.2),

T0 + θ =

(
∂hAI

(
wA,η,Pr

)
∂η

)
wA ,Pr

, (5.81)

and the potential density,ρθ , from Eq. (S27.1),

ρ−1
θ =

(
∂hAI

(
wA,η,Pr

)
∂Pr

)
wA ,Pr

. (5.82)

The related library functions are
ice air potenthalpy si , Eq. (5.80),
ice air pottemp si , Eq. (5.81), and
ice air potdensity si , Eq. (5.82). Ice air can exist
only below an upper bound of entropy as shown in Fig. 10,
given by either melting or the complete sublimation of the
ice phase.

5.10 Equilibrium humid air – liquid water – ice

With the additional presence of air in the gas phase, the com-
mon triple point of water is expanded to a triple line in the
A−T−P phase space, similar to the triple line of seawater,
Fig. 3, in which the amount of salt present adds a new in-
dependent degree of freedom. When humid air, liquid wa-
ter and ice coexist, the given conditions simultaneously sat-
isfy the equilibrium conditions (Eqs. 5.48 and 5.70) of equal
chemical potentials of water in all three phases:

gAV
− A

(
∂gAV

∂A

)
T ,P

= gW
= gIh. (5.83)

In terms of the Primary Standard functions and their indepen-
dent variables (Sect. 2), Eq. (5.83) is expressed by the system

gW(T ,P ) = f F
(
T ,ρW

)
+ P/ρW (5.84)

P =

(
ρW
)2
(
∂f F

∂ρW

)
(5.85)

gAV
= f AV

(
A,T ,ρAV

)
+ P/ρAV (5.86)
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and the potential density, ρθ, from Eq. (S27.1), 

( )
r

A ,r

r
AAI

1 ,,

Pw
P

Pwh









∂

∂
=

− η
ρθ .       (5.82) 
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the ice phase.  

 

0 10 20 30 40 50 60 70 80 90 100
-2000

-1000

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

S
pe

ci
fi

c 
E

nt
ro

py
   

 η
 /

 (
J 

kg
-1
 K

-1
)

Air Fraction in %

Upper Entropy Bound of Ice Air

1000 P
a

1000 P
a

1000 P
a

1000 P
a

10000 Pa10000 Pa10000 Pa10000 Pa
101325 Pa101325 Pa101325 Pa101325 Pa

1 MPa1 MPa1 MPa1 MPa

Triple Line

Triple Line

Triple Line

Triple Line

ICE AIRICE AIRICE AIRICE AIR

Frost Point

Frost Point

Frost Point

Frost Point

Meltin
g

Meltin
g

Meltin
g

Meltin
g

HUMID AIRHUMID AIRHUMID AIRHUMID AIR

 
 
Fig. 10 Valid entropy values of ice air computed from Eq. (5.79) as arguments of enthalpy 

( )Pwh ,,AAI η  are bounded above by roof-shaped curves, depending on the air fraction wA 

between 0 and 100% for selected pressures P as shown. At the entropy bound on the right, the 
ice phase is completely sublimated, given by the solution T = Tsubl(Pvap) of case 2 in Appendix 
A.11, and labelled “Frost Point” in the figure. At the left boundary lines radiating from the 
lower left portion of the figure, the ice phase starts melting, Eq. (5.5), labelled here as 
“Melting” lines. The locus of the roof tops at various pressures is the triple line, shown 
dashed, at which ice, liquid water and vapour coexist in the presence of air, as described in 
Sect. 5.10, Eq. (S28.8). Freezing curves were computed with the library functions 
ice_liq_meltingtemperature_si and ice_air_g_entropy_si, and frost point curves were 
determined using ice_air_frostpoint_si and air_g_entropy_si. For running wA, the triple 
line is computed by calling the sequence set_liq_ice_air_eq_at_a, 
liq_ice_air_temperature_si, liq_ice_air_pressure_si and air_g_entropy_si. 
 
 

Fig. 10. Valid entropy values of ice air computed from Eq. (5.79)

as arguments of enthalpyhAI
(
wA , η, P

)
are bounded above

by roof-shaped curves, depending on the air fractionwA be-
tween 0 and 100% for selected pressuresP as shown. At the
entropy bound on the right, the ice phase is completely sub-
limated, given by the solutionT=T subl(P vap) of case 2 in
Appendix A11, and labelled “Frost Point” in the figure. At
the left boundary lines radiating from the lower left portion
of the figure, the ice phase starts melting, Eq. (5.5), labelled
here as “Melting” lines. The locus of the roof tops at various
pressures is the triple line, shown dashed, at which ice, liquid
water and vapour coexist in the presence of air, as described in
Sect. 5.10, Eq. (S28.8). Freezing curves were computed with
the library functionsice liq meltingtemperature si
andice air g entropy si , and frost point curves
were determined usingice air frostpoint si and
air g entropy si . For runningwA , the triple line is com-
puted by calling the sequenceset liq ice air eq at a,
liq ice air temperature si ,
liq ice air pressure si andair g entropy si .

P =

(
ρAV

)2
(
∂f AV

∂ρAV

)
A,T

. (5.87)

The independent variables in this scheme are the total pres-
sure,P , the liquid density,ρW, the humid-air density,ρAV ,
the temperature,T , and the air fraction,A. Expressing the
chemical potentials in Eq. (5.83) by means of Eqs. (5.84)
and (5.86), gives four equations in these five unknowns so
that one of the independent variables must be specified to
complete the system. Once this is done, the remaining
variables may be solved for iteratively as discussed in Ap-
pendix A12. Three important cases of different initially
known properties corresponding to this system are discussed
there. If the relative mass fractions of the three phases are
required, then an additional condition is required to fix these
quantities, since at constantT andP the water-ice mass ratio
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Fig. 11: Temperature of wet ice air as a function of the air fraction, T(A), computed as 
described under case 1, Appendix A.12. 
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Fig. 11. Temperature of wet ice air as a function of the air fraction,
T (A), computed as described under case 1, Appendix A12.

can still change. The two additional cases, 4 and 5, consid-
ered in Appendix A12 address this requirement.

Figure 11 corresponds to case 1 in the Appendix A12 with
fixed dry air fraction,A. It illustrates that the temperature
of wet ice air differs only very little from the triple-point
temperature of water, almost independent of pressure, caus-
ing the adiabatic lapse rate under these conditions to be very
small. Note that the curve shown here neglects the solubility
of air in water which could result in temperature effects of
similar order.

Figure 12 shows results corresponding to case 5 from Ap-
pendix A12 in which the dry-air fraction,wA , entropy,η, and
the liquid fraction of the condensed part,w=wW/(wW

+wIh)
are specified. If an air parcel is lifted with the first two quanti-
ties fixed, thenw varies between 0 at the melting level (com-
pletely frozen condensate), and 1 at the freezing level (com-
pletely molten condensate). Four valid wedge-shaped Wet-
Ice-Air (WIA) regions are shown in this figure correspond-
ing to pressures of 1000, 10 000, 101 325 and 1 000 000 Pa.
Only points (wA , η) selected from these wedge-shaped re-
gions permit valid solutions in this case.

Selected properties of wet ice air included as library rou-
tines are listed in Table S28.

5.11 Equilibrium humid air – seawater

Humid air in equilibrium with seawater, referred to as sea
air, is subsaturated because the vapour pressure of seawater
is lower than that of pure water.

In contrast to wet air, the liquid part of sea air can nei-
ther entirely evaporate nor freeze, i.e., as long as there is salt
in the system there will always be a liquid fraction. Since
there must be a gas fraction, too, whenever air is present,
the composite system seawater – humid air can exist under
ambient conditions only in two forms, with or without ice.

www.ocean-sci.net/6/633/2010/ Ocean Sci., 6, 633–677, 2010
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Fig. 12 Valid entropy values of wet ice air, “WIA”, computed from Eq. (S28.8) are restricted 
to narrow wedge-shaped regions depending on the air fraction wA between 0 and 100% for 
selected pressures P as shown. Only points (wA, η) selected from these regions permit valid 
solutions of case 5 discussed in Appendix A.12. At the upper entropy bound of wet ice air, 
wet air starts freezing, indicated as “Freezing” on the 1000 Pa case in the diagram. At the 
lower entropy bound of wet ice air, ice air starts melting, indicated as “Melting”. The locus of 
the wedge tips at various pressures is the triple line, shown dashed, at which ice, liquid water 
and water vapour coexist in the presence of air, Eq. (S28.8). Freezing and melting curves were 
computed with the library functions ice_liq_meltingtemperature_si in conjunction with 
ice_air_g_entropy_si and liq_air_g_entropy_si. For running wA, the triple line is computed 
by calling the sequence set_liq_ice_air_eq_at_a, liq_ice_air_temperature_si, 
liq_ice_air_pressure_si and air_g_entropy_si. 
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water, almost independent of pressure, causing the adiabatic lapse rate under these conditions 
to be very small. Note that the curve shown here neglects the solubility of air in water which 
could result in temperature effects of similar order. 
 
Fig. 12 shows results corresponding to case 5 from Appendix A.12 in which the dry-air 
fraction, wA, entropy, η, and the liquid fraction of the condensed part, w = wW / (wW + wIh) are 
specified. If an air parcel is lifted with the first two quantities fixed, then w varies between 0 
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Fig. 12. Valid entropy values of wet ice air, “WIA”, computed
from Eq. (S28.8) are restricted to narrow wedge-shaped regions
depending on the air fractionwA between 0 and 100% for
selected pressuresP as shown. Only points (wA , η) selected
from these regions permit valid solutions of case 5 discussed in
Appendix A12. At the upper entropy bound of wet ice air, wet
air starts freezing, indicated as “Freezing” on the 1000 Pa case in
the diagram. At the lower entropy bound of wet ice air, ice air
starts melting, indicated as “Melting”. The locus of the wedge
tips at various pressures is the triple line, shown dashed, at which
ice, liquid water and water vapour coexist in the presence of air,
Eq. (S28.8). Freezing and melting curves were computed with
the library functions ice liq meltingtemperature si
in conjunction withice air g entropy si and
liq air g entropy si . For runningwA , the triple line is com-
puted by calling the sequenceset liq ice air eq at a,
liq ice air temperature si ,
liq ice air pressure si andair g entropy si .

The first case is considered in Sect. 5.12. Note that sea air
does not contain ice at temperatures above the freezing point
of seawater. Nonetheless, air saturation and relative humid-
ity of humid air is defined relative to ice if the temperature
is below the freezing point of pure water, even though no
stable ice phase is present in the interval between the freez-
ing temperatures of pure water and of the system’s seawater
component.

Similar to Eq. (5.26), the condition for this equilibrium is
equal chemical potentials of water in seawater, Eq. (S7.12),
and of water in humid air, Eq. (S12.15):

gAV
− A

(
∂gAV

∂A

)
T ,P

= gSW
− SA

(
∂gSW

∂SA

)
T ,P

. (5.88)

In terms of the Primary Standard functions and their indepen-
dent variables (Sect. 2), Eq. (5.88) is expressed by the system

gSW(SA,T ,P )=f
F
(
T ,ρW

)
+P/ρW

+gS(SA,T ,P ) (5.89)

P =

(
ρW
)2
(
∂f F

∂ρW

)
(5.90)

gAV
= f AV

(
A,T ,ρAV

)
+ P/ρAV (5.91)

P =

(
ρAV

)2
(
∂f AV

∂ρAV

)
A,T

. (5.92)

The independent variables in this scheme are the total pres-
sure,P , the pure-water density,ρW, the humid-air density,
ρAV , the temperature,T , the Absolute Salinity,SA , and
the air fraction,A. Note thatρW is merely a formal prop-
erty here – the density that liquid pure water has at givenT

andP . Expressing the chemical potentials in Eq. (5.88) by
means of Eqs. (5.89) and (5.91), provides three equations in
the six unknowns so three of the independent variables must
be specified to complete the system. Once this is done, the
remaining unknowns may be determined by iterative numer-
ical methods. Two important cases are considered in detail
in Appendix A13.

Selected properties of sea air are given in Table S29. The
latent heatLSA

P of sea air is defined here as the enthalpy re-
quired to evaporate a small amount of water from seawater to
humid air by heating at constant pressure. A derivation of the
latent-heat equation is given in (Feistel et al., 2010a), similar
to the latent heat of melting sea ice, Eq. (5.23).

5.12 Equilibrium humid air – seawater – ice

In contrast to sea air, Sect. 5.11, humid air in equilibrium
with sea ice, referred to as sea-ice air here, is saturated be-
cause it is in equilibrium with salt-free ice, Sect. 5.9. The
phases of sea-ice air are simultaneously in pairwise mutual
equilibria, seawater with ice (sea ice, Sect. 5.4), ice with hu-
mid air (ice air, Sect. 5.9), and seawater with humid air (sea
air, Sect. 5.11). Most of the properties of sea-ice air are avail-
able from the related library functions described in those sec-
tions, therefore we have refrained from implementing a spe-
cial sea-ice-air module. For completeness, we mention that
the equilibrium conditions for sea-ice air consist of two equa-
tions between the chemical potentials of water in the three
present phases, Eqs. (5.11), (5.70) and (5.88):

gIh
=gSW

−SA

(
∂gSW

∂SA

)
T ,P

=gAV
−A

(
∂gAV

∂A

)
T ,P

. (5.93)

The latent heat of sea-ice air includes the transfer of water
between the phases by melting, evaporation and sublimation.
The resulting isobaric latent heat of sea-ice air is, expressed
per kg of molten ice (Feistel et al., 2010a),

LSIA
P =

wAV (3AI [h])2/DA + wSW(3SI[h])2/DS

wAV3AI [h]/DA + wSW3SI[h]/DS
. (5.94)
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Here, the latency operators are defined as

3AI [h] ≡ hAV
− A

(
∂hAV

∂A

)
T ,P

− hIh, (5.95)

3SI[h] ≡ hSW
− SA

(
∂hSW

∂SA

)
T ,P

− hIh. (5.96)

Here,A is the saturation air fraction from Eq. (5.70),SA
the brine salinity from Eq. (5.11),DA and DS are the
chemical coefficients Eqs. (S4.6), (S12.16),wAV

=wA /A and
wSW

=wS/SA are the gaseous and the liquid fractions, and
wA andwS are the given constant mass fractions of air and
of salt in the sea-ice-air sample.

6 Summary and short discussion

The mutually consistent formulations of thermodynamic po-
tentials for liquid water, water vapour, ice, seawater and hu-
mid air are now available and permit the numerical compu-
tation of a wealth of thermodynamic properties of the geo-
physical fluids, their mixtures, composites and phase tran-
sitions. The new seawater standard TEOS-10 (IOC et al.,
2010) together with its collection of background papers de-
veloped by WG127 in cooperation with IAPWS is based on
this physically and mathematically rigorous building-block
concept (Feistel et al., 2008). To support the practical use
and general implementation of TEOS-10, WG127 has devel-
oped a source code library that provides easy access to a large
selection of properties and may serve as a guide for writing
customized application code using the new standard.

The library is hierachically organized; all available prop-
erties are computed exclusively from the Primary Standard,
i.e., level 1 of the code, by merely mathematical and nu-
merical methods. The concept of the Primary Standard is
intentionally similar to axiomatic systems in mathematics
which possess the general properties of consistency, inde-
pendence and completeness. These properties ensure that
the Primary Standard contains all necessary but no redundant
components, and prevents the computation of contradicting
results. The higher levels obey the conditions of a mathe-
matical semi-order structure; code of a given level does not
refer to code of higher levels, thus avoiding direct or indirect
recursion.

In the case of seawater, it would be most natural to provide
access to only the saline component of the Gibbs function
(Eq. 2.2) at level 1 and not permit access to the individual co-
efficients (Eqs. 2.3–2.5) of the salinity expansion. However,
it is necessary to have access to the individual temperature
and pressure dependent coefficients in order to rigorously
consider numerical limits asSA tends to zero. Thus, these
fundamental building blocks are made individually available
at level 1. To obey the independence rule for level 1 routines,

it is then necessary to place the Gibbs function (Eq. 2.2) at
level 2, which is not subject to this condition. A similar situ-
ation appears in the case of humid air. The Primary Stan-
dard provides the Helmholtz function of dry air (Eq. 2.6)
together with the air-water virial coefficients as the funda-
mental information from which the properties of humid air
can be computed. To ensure independence for level 1 rou-
tines, the Helmholtz function of humid air, Eq. (2.7), and
the cross-over Helmholtz function (Eq. 2.13) are then imple-
mented in level 2 of the library. Note that while the library
is constructed to strictly adhere to the development based on
axiomatic results at level 1, we have discussed the potentials
of seawater and humid air together with the level-1 functions
in Sect. 2 of this paper because of their close logical relations.

In addition to the Primary Standard, the library provides
easy access to other thermodynamic potential functions de-
rived from the Primary Standard. Available are Helmholtz
functions that are computed from temperature and density,
Gibbs functions computed from temperature and pressure,
enthalpy functions computed from entropy and pressure, and
implicitly entropy as a potential computed from enthalpy and
pressure. A list of explicitly implemented potential functions
is given in Table 1. From each of these potential functions,
all thermodynamic properties of the particular system can be
computed; the library provides an extensive but still selective
set of relevant properties. For additional composite systems
such as seawater with humid air, several properties are avail-
able from the library even though related potential functions
were not implemented explicitly.

Further details on organization, content and access to the
library are contained in the companion paper (Wright et al.,
2010a).

Appendix A

A1 Densities of liquid water and water vapour
(Sect. 4.1)

As discussed in the text of Sect. 4.1, there cannot exist a
single-valued Gibbs functiong(T ,P ) that fully represents
the properties of the Helmholtz functionf F(T ,ρ) of fluid
water. Rather, there are two different Gibbs functions,

gW(T ,P ) = f F
(
T ,ρW

)
+ P/ρW (A1)

for liquid water and

gV (T ,P ) = f F
(
T ,ρV

)
+ P/ρV (A2)

for vapour.
To implement the above expressions for the Gibbs func-

tions we must determine the liquid and vapour densities cor-
responding to the temperature and pressure inputs. This re-
quires iterative solution of Eq. (A1), with considerable care
required to select the appropriate root for each case.
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We begin with a first guess for the density and linearize
Eq. (3.3) with respect to changes of density under the as-
sumption that our first guess is sufficiently near the desired
root that the linearization is valid. This gives

P/ρ + ρf F
ρ +

(
2f F
ρ + ρf F

ρρ

)
1ρ (A3)

which, by Newton iteration, permits the computation of a
density improvement1ρ from a given estimateρ at fixed
values ofT andP . The iteration will converge to a sin-
gle fluid value for supercritical conditions, and to one or the
other of the distinct vapour and liquid density values, de-
pending on the initial density estimate, for subcritical con-
ditions. Once the solutionρ is known, all thermodynamic
properties of fluid, liquid or vapour, can be computed by ei-
ther of two formally different methods:

(i) For the direct access to liquid water or vapour proper-
ties, the required function ofT and ρ is called from
Sect. 3.1, Table S2.

(ii) For the indirect use of water properties as a part of
e.g. seawater properties, the Gibbs function, Eqs. (A1)
or (A2) and its derivatives must be made available to
the related calling functions, see Eq. (2.1), Sect. 4.2 and
Table S7.

To determine liquid or vapour solutions of Eq. (A1) where ei-
ther one or both of these may exist along with possible spuri-
ous numerical solutions, the choice of an initial starting point
must be made carefully to lie inside the “convergence radius”
of the desired attractor. It is therefore useful to consider liq-
uid and vapour separately in each of the subcritical range,
the critical region and the supercritical range, as shown in
Fig. A1.

Liquid and vapour can be distinguished from each other
by their different densities and entropies in the vicinity of
the saturation line which is the curve connecting the triple
point (TP) with the critical point (CP) in Fig. A1. On the
saturation line, both phases can coexist in physical space,
separated by an interface (the “water surface”) across which
the properties change abruptly. The saturation line is defined
by equal chemical potentials, i.e. equal specific Gibbs ener-
gies (Eqs. A1, A2) of the two phases. Except for this mutual
equality, there is no particular distinguishing property within
either phase which might separate the saturation state from
its surroundingT−P states (Landau and Lifschitz, 1964). In
the vicinity of the saturation line, the phase with the lower
Gibbs energy (Eqs. A1, A2) is stable, the other state exists,
but is metastable. Here, metastable means stable with re-
spect to infinitesimal fluctuations but unstable with respect
to certain macroscopic perturbations, namely the emergence
of finite volumes of the coexisting phase (nucleation of su-
percritical bubbles or droplets). At a greater distance from
the saturation line, the state with higher Gibbs energy may
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Fig. A1. Initial estimates used in the library for the numerical com-
putation of density from pressure by iteratively solving Eq. (A3),
either for liquid water, panel(a), or water vapour, panel(b). The
region surrounding the critical point (CP) is treated separately, as
shown in Fig. A3. Here we make use of the Gibbs functions
“g(p, T )” in two of the five regions defined in IF-97, region 1 (liq-
uid/fluid) and region 2 (vapour/fluid) as shown in Fig. A2. Pan-
els (a) and (b) differ only for subcritical conditionsT<Tc and
P<Pc; otherwise there is only one solution corresponding to the
unique Gibbs function for fluid water. TP is the ice-liquid-vapour
triple point. The saturation curve connects TP with CP and sepa-
rates liquid above from vapour below. To the far left, ice Ih (ICE) is
separated from the liquid by the melting curve, above TP, and from
the vapour by the sublimation curve, below TP. Note that the melt-
ing curve above 200 MPa belongs to forms of ice other than Ih, the
ambient hexagonal phase. For vapour below 273.15 K, the ideal-gas
equation is used.
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be unstable if thermodynamic stability criteria such as posi-
tive compressibility are violated. (Independent of any simul-
taneous existence of other phases, a negative compressibil-
ity would amplify any pressure-density fluctuation, causing
the fluid to collapse.) The boundary between metastable and
unstable existence is regarded as the spinodal line beyond
which the phase can no longer stably and homogeneously
exist.

Since it is practically impossible to measure thermody-
namic properties on or beyond the spinodal, its location
in the phase diagram is not exactly known from empirical
equations of state. Even though the IAPWS-95 formulation
extrapolates well into the metastable regions (Wagner and
Pruß, 2002; Feistel et al., 2008), with increasing distance
from the saturation line the values computed from the
Helmholtz function outside its validity range will become
unreliable. This turns out not to be a major issue for de-
termination of the seawater Gibbs function since we require
only relatively small excursions into the metastable regions
to deal with the effects of shifted phase transition boundaries
in the presence of sea salt.

Panels a and b of Fig. A1 indicate the initializations used in
the library for our iterative solutions for the liquid and vapour
phases, respectively. Figure A2 provides additional infor-
mation regarding the industrial formulation IF-97 (IAPWS,
2007; Wagner and Kretzschmar, 2008) referred to in Fig. A1.

Starting in either fluid state at a point near CP located
along the saturation line joining TP and CP, we may circum-
scribe the critical point along a closedT−P path. Along
any such curve, the properties change only gradually; noth-
ing like a transition point between liquid and vapour is en-
countered. Since, for numerical purposes, we distinguish be-
tween the Gibbs functions of liquid, Eq. (A1), and vapour,
Eq. (A2), we need to specify such a transition point for tech-
nical rather than for physical reasons. Here we define the
Gibbs functions Eqs. (A1) and (A2) to be different at sub-
critical conditions (T<TC andP<PC) and to be identical at
supercritical conditions (T≥TC or P≥PC). The critical tem-
perature of water isTC=647.096 K and the critical density
is ρC=322 kg m−3 (IAPWS, 2009a); the critical pressure fol-
lows from Eq. (4.1) to bePC=22.064 MPa. In order to cover
metastable states of liquid water as required in the regions of
vapour-pressure lowering or freezing-point lowering caused
by the presence of dissolved sea salt, the Gibbs function for
liquid water is also available forT andP in regions extend-
ing somewhat beyond the saturation curve and beyond the
melting curve.

According to our numerical definition of liquid, vapour
and fluid states, the initial values required for the iteration of
Eq. (A3) can be chosen identically for the fluid density in the
supercritical region (T≥TC or P≥PC), as shown in Fig. A1,
but must be different for liquid and vapour in the subcritical
quarter (T<TC andP<PC). In the subcritical region, sepa-
rate Gibbs functions are available from the industrial formu-
lation IF-97 (IAPWS, 2007; Wagner and Kretzschmar, 2008)
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have been determined by regression to IAPWS-95 data points in the stable liquid, vapour and 
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Fig. A2. Thermodynamic relations available from the Industrial
Formulation IF-97 (IAPWS, 2007; Wagner and Kretzschmar, 2008)
defined in different temperature-pressure regions, derived with re-
duced accuracy from the IAPWS-95 Helmholtz function for differ-
ent independent variables. Here we make use of the Gibbs func-
tions “g(p, T )” available in region 1 (liquid/fluid) and in region 2
(vapour/fluid) as shown in Fig. A1. In region 3, separate equations
for the specific volume are available for various subregions which
are not used here. Region 4 is the saturation curve. Graphics repro-
duced from IAPWS (2007), with permission of IAPWS.

in regions 1 and 2 (Fig. A2) as defined therein which pro-
vide excellent starting values for the liquid and the vapour
state. These Gibbs functions can also be used for the fluid,
region 1 below 623.15 K and 100 MPa, and region 2 between
273.15 K and 1073.15 K, and below 16.529 MPa. In the sub-
limation region and in the supercritical region, the ideal-gas
density,ρ=P/(RWT ), provides a sufficient starting estimate
below 273.15 K and above 650 K, and a constant value of
ρ=1000 kg m−3 can be used below 650 K, Fig. A1. These
latter choices are sufficient to ensure numerical convergence
but do not necessarily optimize the speed of the code. Addi-
tional considerations apply to the immediate neighbourhood
of the critical point as discussed below. Note that all of these
rules are built into the library routines discussed in Part 2
(Wright et al., 2010a) so that the user can make use of the
routines without dealing with (or even being fully aware of)
the details.

The critical region is defined here as theT−P rectangle
623.15–650 K and 16.529–35 MPa, Fig. A1. The coefficients
of an auxiliary cubic polynomial equation of state

PC

P
− 1 =

∑
i,j

aij

(
T

TC
− 1

)i(
ρ

ρC
− 1

)j
(A4)

have been determined by regression to IAPWS-95 data
points in the stable liquid, vapour and fluid region with an
r.m.s. deviation of 1% or less for each phase; the resulting
coefficients are given in Table A1. The cubic polynomial
used for Eq. (A4) permits analytical inversion to determine
ρ(T ,p) for both the liquid and the vapour branches. The
critical point of Eq. (A4) was chosen to be identical with the
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was chosen to be identical with the IAPWS-95 critical point (Fig. A3) through the 
specifications of Tc, Pc, and Cρ . 

 
 

100 150 200 250 300 350 400 450 500 550 600
10

15

20

25

30

35

40

P
re

ss
ur

e 
   

P
/ 

M
P

a

Density    ρ /(kg m -3 )

Critical Region: Auxiliary Cubic Equation of State

16.529 MPa16.529 MPa16.529 MPa16.529 MPa

35 MPa35 MPa35 MPa35 MPa

22.064 MPa22.064 MPa22.064 MPa22.064 MPa

623.15 K623.15 K623.15 K623.15 K

630 K630 K630 K630 K

640 K640 K640 K640 K

647.096 K647.096 K647.096 K647.096 K

650 K650 K650 K650 K

322 kg/m
³

322 kg/m
³

322 kg/m
³

322 kg/m
³

 
 
Fig. A3: Selected isotherms of the auxiliary cubic equation of state, Eq. (A4), in the critical 
region 623.15 < T < 650 K, 16.529 < P < 35 MPa. Shown in bold is the saturation-pressure 
curve of IAPWS-95, separating the single-phase region above from the two-phase region 
below. The critical point is at TC = 647.096 K, ρC =  322 kg m–3, PC = 22.064 MPa. Given a 
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positive slopes provide either the density estimate for ρV(T, P) of vapour (on the left branch) 
or for ρW(T, P) of the liquid (on the right), separated from each other by the unstable region of 
negative slopes. 
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Fig. A3. Selected isotherms of the auxiliary cubic equation
of state, Eq. (A4), in the critical region 623.15<T<650 K,
16.529<P<35 MPa. Shown in bold is the saturation-pressure curve
of IAPWS-95, separating the single-phase region above from the
two-phase region below. The critical point is atTC=647.096 K,
ρC=322 kg m−3, PC=22.064 MPa. Given a line of constant sub-
critical pressureP and an isothermT , their intersection points with
positive slopes provide either the density estimate forρV(T , P ) of
vapour (on the left branch) or forρV(T , P ) of the liquid (on the
right), separated from each other by the unstable region of negative
slopes.

IAPWS-95 critical point (Fig. A3) through the specifications
of TC, PC, andρC.

The initial densities for the iteration, Eq. (A3), in the
critical region are computed from the intersection points
of the horizontal isobars with the isotherms as shown in
Fig. A3. In the subcritical range,T<TC andP<PC, there
exist three solutions, the vapour density to the left of the
isotherm maximum, the liquid density to the right of the min-
imum, and an extraneous unstable solution in between the
extrema. The curve (not shown) connecting the minima and
the maxima of adjacent isotherms, which passes smoothly
through the critical point, is the spinodal of the auxiliary
equation. Beneath the spinodal, the compressibility is neg-
ative,(∂ρ/∂P )T <0, thermodynamic stability is violated and
no stable single-phase states can exist. By means of this sta-
bility gap, the spinodal separates low-density vapour from
high-density liquid on the particular isotherm. At the criti-
cal point, maximum, minimum and inflection point coincide,
and at supercritical temperatures only one fluid solution ex-
ists for any given pressure. Below the critical temperature, a
single solution from the liquid branch is computed forP>PC
which is considered a supercritical fluid state according to
our numerical definition of the liquid and vapour functions
(Eqs. A1 and A2). Very close to the critical point, initial
densities computed from the auxiliary cubic equation of state
may falsely be located inside the spinodal of IAPWS-95 and

Table A1. Coefficients of the auxiliary critical equation of state,
Eq. (A4).

i j aij i j aij

0 3 −0.602044738250314 2 0 118.661872386874
1 0 −7.60041479494879 2 1 186.040087842884
1 1 −17.463827264079 2 2 25.5059905941023
1 2 0.69701967809328 2 3 14.4873846518829
1 3 30.8633119943879

thus prevent convergent iteration. In this highly specialized
case, applications may need better starting values than those
from the cubic polynomial, e.g. find exact densities at the gas
and liquid spinodal points from the condition(∂P/∂ρ)T =0
and use one of them to confineρ(T ,P ) for a bisection itera-
tion method such as the secant or Brent algorithms. Details
of the universal critical properties are available from Stan-
ley (1971), Anisimov (1991), Kurzeja et al. (1999), Skripov
and Faizullin (2006), or Ivanov (2008).

A2 Seawater temperature from salinity, entropy and
pressure (Sect. 4.3)

To compute the specific enthalpy potential and its partial
derivatives from the Gibbs functiongSW(SA,T ,P ) of sea-
water, the value ofT appearing in the expression for the en-
thalpy, Eq. (4.5), must be obtained from knowledge of the
entropy,η, along with the salinity and pressure values. The
required temperature is obtained by numerically solving the
Eq. (4.6) to giveT=T (SA,η,P ).

To solve Eq. (4.6) we first linearizeη=−gSW
T with respect

to small changes of temperature to obtain the equation

− gSW
T T 1T = η + gSW

T , (A5)

which can be used to iteratively update the value ofT at given
values ofSA , η, P . Since the heat capacity of water is rather
constant under different oceanic conditions and Eq. (A5) has
an unambiguous solution in the region of oceanographic in-
terest, the simple linear estimate

T = 273.15 K +
η

4000 J kg−1 K−2
(A6)

provides a sufficiently accurate initial temperature to ensure
convergent iteration of Eq. (A5).

A3 Saturated water vapour conditions (Sect. 5.1)

To numerically determine the conditions corresponding to
the saturation point (frequently referred to as the boiling
point or dewpoint) of pure water, we first linearize the three
Eqs. (5.2)–(5.4) with respect to small changes of the four
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unknownsT , P , ρV andρW, which gives:(
f V
T − fW

T

)
1T +

(
1

ρV −
1

ρW

)
1P (A7)

= fW
− f V

+

(
1

ρW −
1

ρV

)
P

− ρWfW
Tρ1T +

1P

ρW −

(
2fW
ρ + ρWfW

ρρ

)
1ρW (A8)

= ρWfW
ρ −

P

ρW

− ρVf V
Tρ1T +

1P

ρV −

(
2f V
ρ + ρVf V

ρρ

)
1ρV (A9)

= ρVf V
ρ −

P

ρV .

For brevity,f F
(
T ,ρW

)
is abbreviated here byfW, and sim-

ilarly for f V as well as their partial derivatives. To obtain
Eq. (A7), Eq. (5.2) was first expanded and then simplified
by using Eqs. (A8) and (A9). When the equilibrium point is
reached, Eq. (A7) takes the form of the Clausius-Clapeyron
equation as its right-hand side vanishes.

To solve the system (Eqs. A7–A9) forT , P , ρV andρW,
a fourth equation must be added which specifies an addition-
ally imposed condition, usually one of1T=0 (for specified
temperature) or1P=0 (for specified pressure).

Auxiliary empirical equations are used to determine initial
estimates forT , P , ρV andρW.

For T<640 K, an initial estimate of the boiling tempera-
ture or the vapour pressure on the saturation curve is esti-
mated from the Clausius-Clapeyron-type correlation polyno-
mial

ln
P

Pt
≈ a1

(
Tt

T
− 1

)
+ a2

(
Tt

T
− 1

)2

(A10)

with an rms error in ln(P /Pt) equal to 0.01. The constants
arePt=611.654 771 007 894 Pa,Tt=273.16 K,
a1=−19.873 100 570 911 6,a2=−3.089 754 373 529 98.

ForT<350 K, an estimate of the liquid densityρW on the
saturation curve is available from the correlation polynomial

ρW

ρW
t

− 1 ≈

5∑
i=1

ai

(
T

Tt
− 1

)i
(A11)

with an rms error of 0.002 kg m−3. The constants
areρW

t =999.792 520 031 621 kg m−3,
a1=1.80066818428501E−02, a2=−0.648 994 409 718 973,
a3=1.565 947 649 083 47,a4=−3.18 116 999 660 964,
a5=2.985 909 770 932 95.

Over the higher temperature range 300 K<T<TC, an es-
timate of the liquid densityρW on the saturation curve is

available from the cubic correlation polynomial

T

TC
− 1 ≈

3∑
i=1

ai

(
ρW

ρC
− 1

)3i

(A12)

with an rms error of 1 K. The constants areρC=322 kg m−3,
TC=647.096 K,a1=−7.340 173 295 988 58E–02,
a2=5.705 164 877 110 65E–03,
a3=−4.313 138 469 559 49E–04.

For T<50 K, an initial estimate of vapour densityρV on
the saturation curve is available from the correlation polyno-
mial

ln

(
ρV

ρV
t

)
≈

3∑
i=1

ai

(
Tt

T
− 1

)i
(A13)

with an rms error of 0.01 in ln
(
ρV/ρV

t
)
. The constants

areρV
t =4.85457572477859×10−3 kg m−3,

a1=−19.223 508 686 606 3,a2=−6.157 701 933 029 55,
a3=−4.965 736 126 494.

For 550 K<T<TC, an estimate of the vapour densityρV

on the saturation curve is available from the cubic correlation
polynomial

T

TC
− 1 ≈

3∑
i=1

ai

(
ρV

ρC
− 1

)4i

(A14)

with an rms error of 0.4 K. The constants are
a1=−0.237 216 002 18 091,a2=0.186 593 118 426 901,
a3=−0.258 472 040 504 799.

A4 Melting and freezing conditions for pure water
(Sect. 5.2)

To iteratively determine freezing and melting conditions for
pure water, we first linearize the two Eqs. (5.6), (5.7) with
respect to small changes of the three unknownsT , P and
ρWto obtain:(
fW
T −gIh

T

)
1T+

(
1

ρW −gIh
P

)
1P=gIh

−fW
−
P

ρW (A15)

− ρWfW
Tρ1T +

1P

ρW −

(
2fW
ρ + ρWfW

ρρ

)
1ρW (A16)

= ρWfW
ρ −

P

ρW .

The functionf F
(
T ,ρW

)
is abbreviated here byfW, and sim-

ilarly for its partial derivatives. To iteratively solve the sys-
tem (Eqs. 5.9, 5.10) forT , P and ρW using Eqs. (A15),
(A16), a third equation must be added which specifies an ad-
ditionally imposed condition, usually1T=0 (if the temper-
ature is specified) or1P=0 (if the pressure is specified).

Auxiliary empirical equations are used to determine initial
estimates forT , P andρW.
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An estimate of the freezing temperatureT in K as a func-
tion of the absolute pressureP in Pa is obtained from a cor-
relation fit between 252 and 273 K:

T

Tt
− 1 ≈ a1

(
P

Pt
− 1

)
+ a2

(
P

Pt
− 1

)2

(A17)

with an rms error equal to 1.4E–5 inT /Tt . The constants
arePt=611.654 771 007 894 Pa,Tt=273.16 K,
a1=−1.673 297 591 763 51E–07,
a2=−2.022 629 299 996 58E–13.

An estimate of the densityρW in kg m−3 of the freezing
liquid as a function of absolute temperatureT in K is ob-
tained from a correlation fit between 252 and 273 K:

ρW

ρW
t

−1 = a1

(
T

Tt
−1

)
+a2

(
T

Tt
−1

)2

+a3

(
T

Tt
−1

)3

(A18)

with rms error equal to 1.2 E–4 inρW/ρW
t . The

constants areρW
t =999.792 520 031 621 kg m−3,

a1=−1.785 829 814 921 13,a2=−12.232 508 430 673 4,
a3=−52.823 693 643 352 9.

A5 Equilibrium conditions for ice and water vapour –
sublimation (Sect. 5.3)

To determine conditions for sublimation, we first linearize
the two Eqs. (5.9, 5.10) with respect to small changes of the
three unknownsT , P andρV to obtain:(
f V
T −gIh

T

)
1T+

(
1

ρV −gIh
P

)
1P=gIh

−f V
−
P

ρV (A19)

− ρVf V
Tρ1T +

1P

ρV −

(
2f V
ρ + ρVf V

ρρ

)
1ρV (A20)

= ρVf V
ρ −

P

ρV .

The functionf F
(
T ,ρV

)
is abbreviated here byf V , and simi-

larly for its partial derivatives. To iteratively solve the system
(Eqs. 5.9, 5.10) forT , P andρV using Eqs. (A19), (A20), a
third equation must be added which specifies an addition-
ally imposed condition, usually1T=0 (if the temperature is
specified) or1P=0 (if the pressure is specified).

Auxiliary empirical equations are used to determine initial
estimates forT , P andρV .

The sublimation temperatureT in K as a function of the
absolute pressureP in Pa is estimated using the Clausius-
Clapeyron equation (for details see Feistel and Wagner,
2007):

1

T
≈

1

Tt
−
RW

1h
ln
P

Pt
. (A21)

The constants arePt=611.654 771 007 894 Pa,Tt=273.16 K,
the sublimation heat,1h=2 834 359.445 433 54 J kg−1

and the specific gas constant of water,
RW=461.518 05 J kg−1 K−1.

The densityρV in kg m−3 of the condensing vapour is es-
timated as a function of absolute temperatureT in K from
the Clausius-Clapeyron, Eq. (A21), in combination with the
ideal-gas equation:

ρV
≈

Pt

RWT
exp

{
1h

RW

(
1

Tt
−

1

T

)}
. (A22)

The constants are the same as for Eq. (A21).

A6 Equilibrium conditions for ice in seawater
(Sect. 5.4)

To determine the conditions under which ice exists in equi-
librium with seawater, we first linearize the two Eqs. (5.12),
(5.13) with respect to small changes of the four unknowns
SA , T , P andρW to obtain:

SAg
S
SS1SA −

(
fW
T + gS

T − SAg
S
ST − gIh

T

)
1T (A23)

−

(
1

ρW + gS
P − SAg

S
SP − gIh

P

)
1P

= fW
+

P

ρW + gS
− SAg

S
S − gIh

− ρWfW
Tρ1T +

1P

ρW −

(
2fW
ρ + ρWfW

ρρ

)
1ρW (A24)

= ρWfW
ρ −

P

ρW .

To iteratively solve the system (Eqs. 5.12, 5.13) forSA , T ,
P andρW using Eqs. (A23), (A24), two further equations
must be added which specify an additionally imposed pair
of conditions, commonly taken to be1T=0 and1SA=0 (if
the temperature and the salinity are specified) or1P=0 and
1SA=0 (if the pressure and the salinity are specified).

Auxiliary empirical equations are used to determine initial
estimates forSA , T , P andρW.

In the oceanographic range, the pure-water part Eq. (A25)
of the International Equation of State of Seawater EOS-80
provides a very good estimate of the densityρW

=1/vW as a
function of temperature and pressure (Millard, 1987):

vW
=

1

ρW ≈
1

5∑
i=0
riτ i

(A25)

1 −
π

4∑
i=0
kiτ i + π

3∑
i=0
aiτ i + π2

2∑
i=0
biτ i

.
The reduced variables areτ=(T68−273.15 K)/(1 K) and
π=(P−101325 Pa)/

(
105 Pa

)
, and the coefficients are given

in Table A2.
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Table A2. Coefficients of Eq. (A25)

i ri ki ai bi

0 0.999842594E+3 0.1965221E+5 0.3239908E+1 0.850935E–4
1 0.6793952E–1 0.1484206E+3 0.143713E–2−0.612293E–5
2 −0.909529E–2 −0.2327105E+1 0.116092E–3 0.52787E–7
3 0.1001685E–3 0.1360477E–1−0.577905E–6
4 −0.1120083E–5 −0.5155288E–4
5 0.6536332E–8

Equation (A18) provides an estimate of the densityρW

in kg m−3 of freezing pure water as a function of absolute
temperatureT in K from a correlation fit between 252 and
273 K.

Equation (A26) provides an estimate of the brine salinity
SA in kg kg−1 of sea ice at given absolute temperatureT in
K and absolute pressureP in Pa from the empirical laws of
Clausius-Clapeyron and Raoult:

SA ≈
T − Tt − χ (P − Pt)

αT
. (A26)

The IAPWS-95 triple point isPt=611.654 771 007 894 Pa,
Tt=273.16 K, the Raoult coefficient isα=−0.217 (Feis-
tel et al., 2008) and the Clausius-Clapeyron coefficient is
χ=−74.3×10−9 K Pa−1 (Feistel and Wagner, 2006). When
solved for the freezing temperatureT (SA,P ), Eq. (A26)
gives

T ≈
Tt + χ (P − Pt)

1 − αSA
, (A27)

and when solved for the melting pressureP (SA,T ), it gives

P ≈ Pt +
1

χ
(T − Tt − αT SA). (A28)

A7 Conditions for seawater in equilibrium with water
vapour (Sect. 5.5)

To determined conditions under which water vapour will
be in equilibrium with seawater, we first linearize the three
Eqs. (5.27)–(5.29) with respect to small changes of the five
unknownsSA , T , P , ρV andρW to obtain:

SAg
S
SS1SA −

(
fW
T − f V

T + gS
T − SAg

S
ST

)
1T (A29)

−

(
1

ρW −
1

ρV + gS
P − SAg

S
SP

)
1P

= fW
− f V

+ gS
− SAg

S
S −

P

ρV +
P

ρW

− ρVf V
Tρ1T +

1P

ρV −

(
2f V
ρ + ρVf V

ρρ

)
1ρV (A30)

= ρVf V
ρ −

P

ρV

− ρWfW
Tρ1T +

1P

ρW −

(
2fW
ρ + ρWfW

ρρ

)
1ρW (A31)

= ρWfW
ρ −

P

ρW .

To iteratively solve the system (Eqs. 5.27, 5.28, 5.29) for
SA , T , P , ρV andρW using Eqs. (A29)–(A31), two further
equations must be added which specify an additionally im-
posed pair of conditions, commonly1T=0 and1SA=0 (if
the temperature and the salinity are specified) or1P=0 and
1SA=0 (if the pressure and the salinity are specified).

Auxiliary empirical equations are used to determine initial
estimates forSA , T , P , ρV andρW.

The function (Eq. A32) is the inverse of Eq. (A10) and
estimates the boiling temperatureT in K of the seawater-
vapour equilibrium at given brine salinitySA in kg kg−1 and
absolute pressureP in Pa from the Clausius-Clapeyron and
Raoult laws forT<640 K:

Tt

T
−1≈−

a1

2a2
+

√(
a1

2a2

)2

+
1

a2
ln

[
P

Pt
(1−αSA)

]
(A32)

with an rms error equal to 0.01 in ln(P /Pt). The constants
are Pt=611.654 771 007 894 Pa,Tt=273.16 K, α=−0.57,
a1=−19.873 100 570 911 6,a2=−3.089 754 373 529 98.

The empirical formulaP≈PWP80(SP,T48) of Weiss and
Price (1980)

ln
PWP80

101 325 Pa
= 24.4543− 67.4509

100 K

T48
(A33)

− 4.8489 ln
T48

100 K
− 0.000544SP

for the vapour pressure of seawater with Practical Salinity
0<SP<40 and IPTS-48 temperature 273 K<T48<313 K is
very accurate (Feistel, 2008). For the estimates required here,
the raw conversionT48≈T andSP≈1000SA is sufficiently
precise.

Formula (Eq. A34), obtained from Eq. (A33) and Raoult’s
law, computes a brine salinity estimateSA in kg kg−1 for
seawater-vapour equilibrium at given absolute temperature
T in K and absolute pressureP in Pa:

SA ≈
1

α

(
PWP80(0,T )

P
− 1

)
. (A34)

www.ocean-sci.net/6/633/2010/ Ocean Sci., 6, 633–677, 2010



666 R. Feistel et al.: Oceanographic application and numerical implementation of TEOS-10: Part 1

The Raoult constant isα=−0.57 (Feistel et al., 2008).
The density of ideal-gas vapour as a function of temper-

ature and pressure is estimated from the ideal-gas equation,

ρV
≈

P

RWT
. (A35)

The specific gas constant of water is
RW=461.518 05 J kg−1 K−1.

A8 Conditions for seawater in equilibrium with liquid
water (Sect. 5.6)

To determine equilibrium conditions for two samples of wa-
ter and seawater that are separated by a semi-permeable
membrane and have different pressures,PW andPS, respec-
tively, we first linearize the three Eqs. (5.41)–(5.43) with re-
spect to small changes of the six unknownsSA , T , PS, PW,
ρS andρW to obtain:

SAg
S
SS1SA +

(
fW
T − f S

T − gS
T + SAg

S
ST

)
1T (A36)

−

(
1

ρS
+ gS

P − SAg
S
SP

)
1PS

+
1PW

ρW

= − fW
+ f S

+ gS
− SAg

S
S +

PS

ρS
−
PW

ρW

− ρWfW
Tρ1T +

1PW

ρW −

(
2fW
ρ + ρWfW

ρρ

)
1ρW (A37)

= ρWfW
ρ −

PW

ρW

− ρSf S
Tρ1T +

1PS

ρS
−

(
2f S
ρ + ρSf S

ρρ

)
1ρS (A38)

= ρSf S
ρ −

PS

ρS
.

Here,ρS is the density of pure water under the pressurePS

of seawater, andf S is the related Helmholtz function of liq-
uid water. To iteratively solve the system (Eqs. 5.41–5.43)
for SA , T , PS, PW, ρS andρW using Eqs. (A36)–(A38),
three further equations must be added which specify addi-
tional conditions such as1T=0,1PW

=0 and1SA=0 cor-
responding to the temperature, the pressure of the pure-water
sample and the salinity of the seawater being specified.

Trivial estimates such asPS
=PW orSA=0 suffice as initial

values to start the iteration of Eqs. (5.41–5.43).

A9 Equilibrium conditions for seawater, ice and water
vapour (Sect. 5.7)

To determine conditions under which seawater, ice and wa-
ter vapour exist in equilibrium, we first linearize the four

Eqs. (5.44)–(5.47) with respect to small changes in the in-
dependent variablesSA , T , P , ρV andρW to obtain:

SAg
S
SS1SA −

(
fW
T − f V

T + gS
T − SAg

S
ST

)
1T (A39)

−

(
1

ρW −
1

ρV + gS
P − SAg

S
SP

)
1P

= fW
− f V

+ gS
− SAg

S
S −

P

ρV +
P

ρW

(
f V
T − gIh

T

)
1T +

(
1

ρV − gIh
P

)
1P (A40)

= gIh
− f V

−
P

ρV

− ρVf V
Tρ1T +

1P

ρV −

(
2f V
ρ + ρVf V

ρρ

)
1ρV (A41)

= ρVf V
ρ −

P

ρV

− ρWfW
Tρ1T +

1P

ρW −

(
2fW
ρ + ρWfW

ρρ

)
1ρW (A42)

= ρWfW
ρ −

P

ρW .

To obtain the Eqs. (A39) and (A40), we first expanded
Eqs. (5.44) and (5.45) and then simplified them by using
Eqs. (A41) and (A42). To compute the triple point, an ar-
bitrary independent fifth condition is required. If e.g. the
salinity is given, this additional equation is1SA=0; if the
pressure or the temperature is known, one uses1P=0 or
1T =0, respectively. With this condition specified, the four
relations (Eqs. A39–A42) can be used to iteratively deter-
mine the other four seawater triple-point properties.

Suitable initial values can be obtained from approxi-
mate equations which link salinity, freezing temperature and
vapour pressure, roughly estimated from Fig. 7, as,

P ≈ Pt − SA × 3000 Pa (A43)

T ≈ Tt − SA × 60 K. (A44)

The starting value for the vapour densityρV is taken from the
ideal-gas law,ρV

≈P/(RWT ), and the liquid-water density is
initialized with its pure-water triple-point value,ρW

=ρW
t .

A10 Equilibrium conditions for liquid water and water
vapour in air (Sect. 5.8)

To determine conditions for equilibrium between water
vapour in air and pure liquid water, we express the chemical
potentials in Eq. (5.48) by means of Eqs. (5.49) and (5.51),
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and expand the resulting three Eqs. (5.48), (5.50) and (5.52)
with respect to small changes of the five variables:

− Af AV
AA1A +

(
f AV
T − Af AV

AT − fW
T

)
1T (A45)

+

(
1

ρAV −
1

ρW

)
1P+

(
f AV
ρ − Af AV

Aρ −
P(
ρAV

)2
)

1ρAV
−

(
fW
ρ −

P(
ρW
)2
)
1ρW

= P

(
1

ρW −
1

ρAV

)
+ fW

− f AV
+ Af AV

A

ρAVf AV
Aρ 1A + ρAVf AV

Tρ 1T −
1P

ρAV (A46)

+

(
2f AV
ρ + ρAVf AV

ρρ

)
1ρAV

=
P

ρAV − ρAVf AV
ρ

ρWfW
Tρ1T −

1P

ρW +

(
2fW
ρ + ρWfW

ρρ

)
1ρW (A47)

=
P

ρW − ρWfW
ρ .

For brevity, f F
(
T ,ρW

)
is abbreviated here byfW as

well as its partial derivatives. For the numerical solution,
two additional conditions are required, such as specifying
the temperature and pressure, so that1T =0 and1P=0.
Appropriate starting values of the remaining unknowns must
be specified for their iterative determination. Four important
special cases are considered in the following.

Case 1: Equilibrium at given air fraction, A, and
temperature, T

At given A andT , humid air can approximately be con-
sidered as an ideal mixture of air and vapour. The partial
pressureP vap of vapour is computed from the vapour pres-
sure of liquid water at givenT by solving Eq. (5.1). The
vapour density follows from Eq. (4.3) asρV

=1/gV
P (T ,P

vap).
For the dry-air density we haveρA

=ρV
×A/(1−A). The

partial pressure of dry air is computed from Eq. (S5.11)

as P air
=
(
ρA
)2
f AV
ρ

(
1,T ,ρA

)
. This provides an estimate

for the total pressure,P=P vap
+P air. With A, T and

P available, the required density estimate of liquid water,
ρW

=1/gW
P (T ,P ), and of humid air,ρAV

=1/gAV
P (A,T ,P ),

are easily calculated from the Gibbs functions, Eqs. (4.2)
and (4.37). Using1A=0 and1T =0, the linear system
(Eqs. A45–A47) can now be solved iteratively forP , ρW and
ρAV .

In particular, this solution provides the pressureP(A,T )
of saturated humid air as a function of the air fraction and the
temperature.

The equilibrium is computed this way by the library
call set liq air eq at a t or by the function
liq air condensationpressure si .

Case 2: Equilibrium at given air fraction, A, and
pressure,P

At givenA andP , humid air can approximately be con-
sidered as an ideal mixture of air and vapour. The partial
pressureP vap

=xAV
V P of vapour is computed from the total

pressureP and the mole fractionxAV
V (A), Eq. (2.11). In turn,

the boiling temperatureT =T boil(P vap) of water is computed
from Eq. (5.1). WithA, T andP available, the required den-
sity estimate of liquid water,ρW

=1/gW
P (T ,P ), and of humid

air,ρAV
= 1/gAV

P (A,T ,P ), are easily calculated from the re-
lated Gibbs functions, Eqs. (4.2) and (4.37). Using1A=0
and1P=0, the linear system (Eqs. A45–A47) can now be
solved iteratively forT , ρW andρAV .

In particular, this solution provides the dewpoint temper-
atureT (A,P ) of humid air as a function of the air fraction
and the pressure.

This approach is used to compute the equilibrium with the
library callset liq air eq at a p or using the function
liq air dewpoint si .

Case 3: Equilibrium at given temperature,T , and
pressure,P

At given T andP , humid air can approximately be con-
sidered as an ideal mixture of air and vapour. The partial
pressureP vap of vapour is computed from the vapour pres-
sure of liquid water at givenT from solving Eq. (5.1). The
vapour density follows from Eq. (4.3) asρV

=1/gV
P (T ,P

vap)

and the air density fromρA
=1/gAV

P (1,T ,P−P vap). Now the
air fraction is available fromA=ρA/

(
ρA

+ρV
)
. With A, T

andP available, the required density estimate of liquid water,
ρW

=1/gW
P (T ,P ), and of humid air,ρAV

=1/gAV
P (A,T ,P ),

are easily calculated from the related Gibbs functions,
Eqs. (4.2) and (4.37). Using1T =0 and1P=0, the linear
system (Eqs. A45–A47) can now be solved iteratively forA,
ρW andρAV .

In particular, this solution provides the specific humidity
q=1 − A(T ,P ) of saturated humid air as a function of the
temperature and the pressure.

The equilibrium is computed using this approach with the
library callset liq air eq at t p or using the function
liq air massfraction air si .

Case 4: Equilibrium at given air fraction, A, and
entropy, η

At given A and η, we use the approximate Clausius-
Clapeyron equation to relate the partial vapour pressure at
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the dewpoint,P vap, to the temperature,T :

ln
P vap

Pt
≈

L

RWTt

(
1 −

Tt

T

)
. (A48)

The vapour pressure is approximately equal to the partial
pressure of vapour in humid air,P vap

=xAV
V P , computed

from the total pressureP and the mole fractionxAV
V (A),

Eq. (2.11). As an analytical estimate to be used below, we
modify Eq. (A48) by means of the relation lnx≈1−1/x:

ln
P

Pt
≈

L

RWTt
ln
T

Tt
− ln xAV

V . (A49)

Assuming constant heat capacities, the ideal-gas entropy
η(A,T ,P ) of humid air is determined relative to the triple
point (Tt, Pt) of water,

η = ηt + A

(
cA
P ln

T

Tt
− RA ln

P

Pt

)
(A50)

+ (1 − A)

(
cV
P ln

T

Tt
− RW ln

P

Pt

)
.

We insertP from Eq. (A56) into Eq. (A57) and get the isen-
tropic condensation temperature estimateT=TICT(A,η):

TICT(A,η)≈Tt exp
η−ηt(A)−[ARA+(1−A)RW] ln xAV

V (A)

A
(
cA
P−

RAL
RWTt

)
+ (1−A)

(
cV
P−

L
Tt

) . (A51)

Here, at the given air fractionA, the triple-point
entropy ηt(A)=η(A,Tt,Pt)=−gAV

T (A,Tt,Pt) is computed
from Eq. (S12.2), the mole fractionxAV

V (A) from Eq. (2.11).
The constants take the rounded numerical triple-point values
Tt=273.16 K, Pt=611.654771 Pa,cA

P=1003.69 J kg−1 K−1,
cV
P=1884.352 J kg−1 K−1, RA=R/MA , RW = R/MW, and
L=2500915 J kg−1 is the evaporation enthalpy. The molar
mass of air isMA=0.02896546 kg mol−1, that of water is
MW=0.018015268 kg mol−1, andR=8.314472 J mol−1 K−1

is the molar gas constant.
With A and an estimatedT available, we can now pro-

ceed as in case 1 to compute the remaining starting values for
the iterative solution of the linear system (Eqs. A45–A47) of
three equations for the four unknownsT , P , ρW andρAV us-
ing 1A=0. A fourth equation must be added to the system,
adjusting the humid-air entropy to the given value,η:

− f AV
AT 1A − f AV

T T 1T − f AV
Tρ 1ρ

AV
= η + f AV

T (A52)

This equation is valid for humid air at the dewpoint, i.e. wet
air with a vanishing liquid fraction. If the sample contains
a finite amount of liquid water, its entropy must additionally
be considered in Eq. (A52).

In particular, the solution of case 4 provides the isentropic
condensation levelP(A,η) of lifted humid air as a function
of the air fraction and the entropy.

The equilibrium is computed using this approach with the
library callset liq air eq at a eta . Alternatively,

this state may be computed fromA, T andP of a subsat-
urated humid-air parcel having the same entropy and air
fraction as the final saturated one by calling the functions
liq air icl si or liq air ict si to determine its
isentropic condensation level or temperature.

A11 Equilibrium conditions for ice and water vapour in
air (Sect. 5.9)

To determine conditions for which water vapour in air will
be in equilibrium with ice, we first expand the two Eq. (5.70)
(with Eq. 5.71) used to eliminate the Gibbs potential) and
Eq. (5.72) with respect to small changes of the four indepen-
dent variables:

− Af AV
AA1A +

(
f AV
T − Af AV

AT − gIh
T

)
1T (A53)

+

(
1

ρAV −gIh
P

)
1P+

(
f AV
ρ −Af AV

Aρ −
P(
ρAV

)2
)
1ρAV

= gIh
− f AV

−
P

ρAV + Af AV
A

ρAVf AV
Aρ 1A + ρAVf AV

Tρ 1T −
1P

ρAV (A54)

+

(
2f AV
ρ +ρAVf AV

ρρ

)
1ρAV

=
P

ρAV − ρAVf AV
ρ .

For the numerical solution, two additional conditions must
be specified. For example, if we specify temperature and
pressure then1T =0 and1P=0. Starting values are then
required for the iterative determination of the remaining
unknowns. Four important such cases are considered in the
following.

Case 1: Equilibrium at given air fraction, A, and
temperature, T

At givenA andT , humid air can approximately be consid-
ered as an ideal mixture of air and vapour. The partial pres-
sureP vap of vapour is computed from the sublimation pres-
sure of ice at givenT by solving Eq. (5.8). The vapour den-
sity follows from Eq. (4.3) asρV

=1/gV
P (T ,P

vap). The dry-
air density is then estimated asρA

= ρV
×A/(1−A). The

partial pressure of dry air is computed from Eq. (S5.11) as

P air
=
(
ρA
)2
f AV
ρ

(
1,T ,ρA

)
. Using this approach, we obtain

an estimate for the total pressure,P=P vap
+P air. With A, T

andP available, the required density estimate of humid air,
ρAV

=1/gAV
P (A,T ,P ), is easily calculated from the related

Gibbs function, Eq. (4.37). Using1A=0 and1T =0, the lin-
ear system (Eqs. A53, A54) can now be solved iteratively for
P andρAV .

In particular, this solution provides the pressureP(A,T )
of saturated humid air as a function of the air fraction and the
temperature.
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The equilibrium is computed using this approach with the
library callset ice air eq at a t or using the function
ice air condensation pressure si .

Case 2: Equilibrium at given air fraction, A, and
pressure,P

At givenA andP , humid air can approximately be con-
sidered as an ideal mixture of air and vapour. The partial
pressureP vap

=xAV
V P of vapour is computed from the total

pressureP and the mole fractionxAV
V (A), Eq. (2.11). In turn,

the sublimation temperatureT =T subl(P vap) of water is com-
puted from Eq. (5.8). WithA, T andP available, the required
density estimate of humid air,ρAV

=1/gAV
P (A,T ,P ), is eas-

ily calculated from the related Gibbs function, Eq. (4.37).
Using1A=0 and1P=0, the linear system (Eqs. A53, A54)
can now be solved iteratively forT andρAV .

In particular, this solution provides the frost point temper-
atureT (A,P ) of humid air as a function of the air fraction
and the pressure.

The equilibrium is computed using this approach with the
library callset ice air eq at a p or using the function
ice air frostpoint si .

Case 3: Equilibrium at given temperature,T , and
pressure,P

At given T andP , humid air can approximately be con-
sidered as an ideal mixture of air and vapour. The partial
pressureP vap of vapour is computed from the sublimation
pressure of ice at givenT by solving Eq. (5.8). The vapour
density follows from Eq. (4.3) asρV

=1/gV
P (T ,P

vap) and the
air density fromρA

=1/gAV
P (1,T ,P−P vap). The air frac-

tion is then available fromA=ρA/
(
ρA

+ρV
)
. With A, T

andP available, the required density estimate of humid air,
ρAV

=1/gAV
P (A,T ,P ), is easily calculated from the related

Gibbs function, Eq. (4.37). Using1T =0 and1P=0, the lin-
ear system (Eqs. A53, A54) can now be solved iteratively for
A andρAV .

In particular, this solution provides the specific humid-
ity q=1−A(T ,P ) of saturated humid air below the freezing
point as a function of the temperature and the pressure.

The equilibrium is computed using this approach with the
library callset ice air eq at t p or using the function
ice air massfraction air si .

Case 4: Equilibrium at given air fraction, A, and
entropy, η

At given A and η, we use the approximate Clausius-
Clapeyron equation to relate the partial vapour pressure at
the frost point,P vap, to the temperature,T :

ln
P vap

Pt
≈

L

RWTt

(
1 −

Tt

T

)
. (A55)

The vapour pressure is approximately equal to the partial
pressure of vapour in humid air,P vap

=xAV
V P , computed

from the total pressureP and the mole fractionxAV
V (A),

Eq. (2.11). As an analytical estimate to be used below, we
modify Eq. (A55) by means of the relation lnx≈1−1/x:

ln
P

Pt
≈

L

RWTt
ln
T

Tt
− ln xAV

V . (A56)

Assuming constant heat capacities, the ideal-gas entropy
η(A,T ,P ) of humid air is, relative to the triple point (Tt,
Pt) of water,

η = ηt + A

(
cA
P ln

T

Tt
− RA ln

P

Pt

)
(A57)

+ (1 − A)

(
cV
P ln

T

Tt
− RW ln

P

Pt

)
.

We insertP from Eq. (A56) into Eq. (A57) and get the isen-
tropic condensation temperature estimateT=TICT(A,η):

TICT(A,η) ≈ Tt exp (A58)

η − ηt(A) − [ARA + (1 − A)RW] ln xAV
V (A)

A
(
cA
P −

RAL
RWTt

)
+ (1 − A)

(
cV
P −

L
Tt

) .

Here, at the given air fractionA, the triple-point
entropy ηt(A)=η(A,Tt,Pt)=−gAV

T (A,Tt,Pt) is computed
from Eq. (S12.2), the mole fractionxAV

V (A) from Eq. (2.11),
the constants take the rounded numerical triple-point values
Tt=273.16 K, Pt=611.654771 Pa,cA

P=1003.69 J kg−1 K−1,
cV
P=1884.352 J kg−1 K−1, RA=R/MA , RW = R/MW, and
L=2834359 J kg−1 is the sublimation enthalpy. The molar
mass of air isMA=0.02896546 kg mol−1, that of water is
MW=0.018015268 kg mol−1, andR=8.314472 J mol−1 K−1

is the molar gas constant.
With A and an estimatedT available, we can now proceed

as in case 1 to compute the remaining starting values for the
iterative solution of the linear system (Eqs. A53, A54) of two
equations for the three unknownsT ,P andρAV using1A=0.
A third equation must be added to the system, adjusting the
humid-air entropy to the given value,η:

− f AV
AT 1A − f AV

T T 1T − f AV
Tρ 1ρ

AV
= η + f AV

T . (A59)

This equation is valid for humid air at the frost point, i.e. ice
air with a vanishing ice fraction. If the sample contains a
finite amount of ice, its entropy must additionally be consid-
ered in Eq. (A59).

In particular, the solution of case 4 provides the isentropic
ice condensation levelP(A,η) of lifted humid air as a func-
tion of the air fraction and the entropy.

The equilibrium is computed using this approach with
the library call set ice air eq at a eta . Alterna-
tively, this state is computed fromA, T andP of a sub-
saturated humid-air parcel having the same entropy and
air fraction as the final saturated one by calling the func-
tions ice air icl si or ice air ict si to deter-
mine the isentropic condensation level or temperature.
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A12 Equilibrium conditions for liquid water, ice and
water vapour in air (Sect. 5.10)

To determine equilibrium conditions for liquid water, ice
and water vapour in air, we first expand the resulting four
Eqs. (5.83; two equations), (Eqs. 5.85 and 587) with respect
to small changes of the five independent variables:

− Af AV
AA1A +

(
f AV
T − Af AV

AT − fW
T

)
1T (A60)

+

(
1

ρAV −
1

ρW

)
1P+

(
f AV
ρ −Af AV

Aρ −
P(
ρAV

)2
)
1ρAV

−

(
fW
ρ −

P(
ρW
)2
)
1ρW

=P

(
1

ρW −
1

ρAV

)
+fW

−f AV
+Af AV

A

− Af AV
AA1A +

(
f AV
T − Af AV

AT − gIh
T

)
1T (A61)

+

(
1

ρAV − gIh
P

)
1P+

(
f AV
ρ − Af AV

Aρ −
P(
ρAV

)2
)

1ρAV
= gIh

− f AV
−

P

ρAV + Af AV
A

ρAVf AV
Aρ 1A + ρAVf AV

Tρ 1T −
1P

ρAV (A62)

+

(
2f AV
ρ + ρAVf AV

ρρ

)
1ρAV

=
P

ρAV − ρAVf AV
ρ

ρWfW
Tρ1T −

1P

ρW +

(
2fW
ρ + ρWfW

ρρ

)
1ρW (A63)

=
P

ρW − ρWfW
ρ .

For brevity, f F
(
T ,ρW

)
is abbreviated here byfW and

similarly for its partial derivatives. For the numerical
solution, one additional condition is needed, such as
specification of temperature or pressure,1T =0 or 1P=0.
Then appropriate starting values are required to initialize
the iterative determination of the remaining unknowns.
Three important cases are considered in the following. The
solution of Eqs. (A60)–(A63) does not provide the relative
mass fractions of the three phases. Two more conditions are
required to fix the latter quantities. Cases 4 and 5 address
this issue.

Case 1: Equilibrium at given dry-air fraction of the
humid-air part, A

The temperature of wet ice air is only slightly different
from the triple-point temperature,T=Tt=273.16 K, which is
used as an initial estimate. The partial pressure of vapour
is close to the triple-point pressure,Pt=611.654771 Pa.

The total pressure is estimated from the mole fraction
xAV

V (A), Eq. (2.11), asP=Pt/x
AV
V (A). With A, T andP

available, the required density estimates for liquid water,
ρW

=1/gW
P (T ,P ), and for humid air,ρAV

=1/gAV
P (A,T ,P ),

are easily calculated from the related Gibbs functions,
Eqs. (4.2) and (4.37).

The equilibrium of wet ice air is computed using this ap-
proach with the library callset liq ice air eq at a.

Case 2: Equilibrium at given pressure,P

The temperature of wet ice air is only slightly different
from the triple-point temperature,T = Tt=273.16 K, which
is used as an initial estimate. The partial pressure of vapour
is close to the triple-point pressure,Pt=611.654771 Pa. From
the related mole fraction estimate,xV=Pt/P , the mass frac-
tionA is computed, Eq. (2.9). WithA, T andP available, the
required density estimate for liquid water,ρW

=1/gW
P (T ,P ),

and for humid air,ρAV
=1/gAV

P (A,T ,P ), are easily calcu-
lated from the related Gibbs functions, Eqs. (4.2) and (4.37).

The equilibrium of wet ice air is computed using this ap-
proach with the library callset liq ice air eq at p.

Case 3: Equilibrium at given temperature,T

At the temperatureT , the pressure of wet ice air equals
the melting pressure of ice,P=Pmelt(T ), as the solution of
Eq. (5.5). The partial pressure of vapour is close to the triple-
point pressure,Pt=611.654771 Pa. From the related mole
fraction estimate,xV=Pt/P , the mass fractionA is com-
puted, Eq. (2.9). WithA, T andP available, the required
density estimate for liquid water,ρW

=1/gW
P (T ,P ), and for

humid air,ρAV
=1/gAV

P (A,T ,P ), are easily calculated from
the related Gibbs functions, Eqs. (4.2) and (4.37).

The equilibrium of wet ice air is computed using this ap-
proach with the library callset liq ice air eq at t .

In the cases 1–3 above, the solution of Eqs. (A60)–(A63)
defines the intensive propertiesA, T , P of the equilib-
rium but does not provide the relative mass fractions of
the three phases present. The nonnegative fractions of dry
air, wA , vapour,wV , liquid water,wW, and ice,wIh, are
subject to only two equations,wA

+wV
+wW+wIh=1, and

wA /(wA
+wV)=A. Thus, two additional conditions beyond

those used in cases 1–3 are required to specify the state of
the parcel completely.

Alternatively, three conditions independent of the cases 1–
3 may be given. Two important cases, 4 and 5, are considered
in the following.

Case 4: Equilibrium at given dry-air fraction, wA , liquid
fraction, wW and ice fraction, wIh

In this case, the fractions of the sample’s phases are given
and the necessaryT−P conditions are calculated.
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The air fractionA=wA/
(
wA

+wV
)
=wA/

(
1−wW

−wIh
)

is immediately and exactly computed from the input values.
Case 3 above provides the algorithm to deriveT andP from
A.

The equilibrium of wet ice air is computed using this
approach with the library call
set liq ice air eq at wa wl wi .

Case 5: Equilibrium at given dry-air fraction, wA ,
entropy, η, and the liquid fraction of the
condensed part,w=wW /(wW+wIh )

This case is relevant to adiabatically lifted air parcels with
conservative values of the first two parameters, the dry-
air fraction, wA , and the entropy,η. The third parame-
ter,w=wW/(wW

+wIh), varies betweenw=0, i.e., the melt-
ing level (completely frozen condensate), andw=1, i.e., the
freezing level (completely molten condensate). Only points
(wA , η) selected from the regions shown in Fig. 12 permit
valid solutions in this case.

The temperature of wet ice air is only slightly dif-
ferent from the triple-point temperature,T≈Tt=273.16 K,
which is used here as an initial estimate for the itera-
tive solution. Lacking a better simple estimate, we set
the initial vapour fraction,wV , to 50% (or another frac-
tion) of the total water fraction,wV

+wW
+wIh=1−wA ,

i.e., wV
≈
(
1−wA

)
/2. The related air fraction of the gas

phase is thenA=wA/
(
wA

+wV
)
≈2wA/

(
1+wA

)
. The par-

tial pressure of vapour is close to the triple-point pressure,
Pt=611.654771 Pa. The total pressure is estimated from
the mole fractionxAV

V (A), Eq. (2.11), asP=Pt/x
AV
V (A).

With A, T and P available, the required density esti-
mates of liquid water,ρW

=1/gW
P (T ,P ), and of humid air,

ρAV
=1/gAV

P (A,T ,P ), are calculated from the related Gibbs
functions, Eqs. (4.2) and (4.37). Finally, the given en-
tropy, η, and the liquid fraction of the condensed part,
w=wW/(wW

+wIh), are used to adjust the phase fractions
to the entropy balanceη=wWηW

+wIhηIh+(wA
+wV)ηAV ,

which can be written in the form

η = − w

(
1 −

wA

A

)
fW
T − (1 − w) (A64)(

1 −
wA

A

)
gIh
T −

wA

A
f AV
T .

Expanded with respect to small changes of the independent
variables, this equation is added to the system (Eqs. A60–
A63) in the form

[
w
(
A−wA

)
fW
T T+(1−w)

(
A−wA

)
gIh
T T+wAf AV

T T

]
(A65)

1T + (1 − w)
(
A−wA

)
gIh
T P1P+w

(
A−wA

)
fW
Tρ1ρ

W
+wAf AV

Tρ 1ρ
AV

+

[
wfW

T +(1−w)gIh
T +wAf AV

AT

]
1A

=−w
(
A−wA

)
fW
T −(1−w)

(
A−wA

)
gIh
T −wAf AV

T −Aη.

The resulting system of five Eqs. (A60)–(A63), Eq. (A65)
can be solved iteratively for the five unknownsA, T , P , ρW,
ρAV , from which in turn all other properties can be evaluated.

The equilibrium of wet ice air is computed using this
approach with the library call
set liq ice air eq at wa eta wt or using the func-
tions liq ice air ifl si or liq ice air iml si .

A13 Equilibrium conditions for seawater and water
vapour in air (Sect. 5.11)

To determine conditions under which water vapour in air ex-
ists in equilibrium with seawater, we first linearize the three
Eqs. (5.88), (5.90) and (5.92) with respect to small changes
of the six variables:

SAg
S
SS1SA − Af AV

AA1A + (A66)(
f AV
T −Af AV

AT −fW
T −gS

T+SAg
S
ST

)
1T

+

(
1

ρAV −
1

ρW −gS
P+SAg

S
SP

)
1P

+

(
f AV
ρ −Af AV

Aρ −
P(
ρAV

)2
)
1ρAV

−

(
fW
ρ −

P(
ρW
)2
)
1ρW

= P

(
1

ρW −
1

ρAV

)
+fW

−f AV
+Af AV

A +gS
−SAg

S
S

ρAVf AV
Aρ 1A + ρAVf AV

Tρ 1T −
1P

ρAV (A67)

+

(
2f AV
ρ + ρAVf AV

ρρ

)
1ρAV

=
P

ρAV − ρAVf AV
ρ

ρWfW
Tρ1T −

1P

ρW +

(
2fW
ρ + ρWfW

ρρ

)
1ρW (A68)

=
P

ρW − ρWfW
ρ

For brevity, f F
(
T ,ρW

)
is abbreviated here byfW and

similarly for its partial derivatives. For the numerical
solution, three additional conditions must be specified. For
example, salinity, temperature and pressure may be specified
so1SA=0, 1T =0 and1P=0. Appropriate starting values
for the iterative determination of the remaining unknowns
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Table A12.Alphabetic index of single-phase properties

Quantity Symbol Unit Eq. Comment

Absolute pressure P Pa (S2.11) of fluid water
(S5.11) of humid air

Absolute temperature T K (S9.2) of seawater
(S14.2) of humid air

Activity coefficient lnγ 1 (S4.1) of seawater

Activity of water in seawater aW 1 (S4.3)

Activity potential ψ 1 (S4.2) of seawater

Adiabatic lapse rate 0 K
Pa (S2.10) of fluid water

(S3.11) of ice
(S5.10) of humid air
(S12.14) of humid air
(S14.10) of humid air
(S7.11) of seawater
(S9.10) of seawater

Air contraction coefficient β 1 (S12.17) of humid air

Barodiffusion ratio kP 1 (S7.14) of seawater

Chemical coefficient DA
J

kg (S12.16)

of air in humid air

Chemical coefficient DS
J

kg (S4.6)

of sea salt

Chemical potential µW J
kg (S7.12) of seawater

of water in seawater

Chemical potential µS J
kg (S7.13) of seawater

of sea salt in seawater

Chemical potential µW J
kg (S12.15)

of vapour in humid air

Chemical potential µ J
kg (S3.1) of ice

Compressibility factor ZAV 1 (S12.12) of humid air

Density ρ
kg
m3 (S3.3) of ice

(S7.1) of seawater
(S9.1) of seawater
(S12.1) of humid air
(S14.1) of humid air

Dilution coefficient D J
kg (S4.7) of seawater

Haline contraction coefficient β 1 (S7.18) of seawater

Haline contraction coefficient β2 1 (S7.20) of seawater
w.r.t. potential enthalpy (S10.9) of seawater
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Table A12.Continued.

Quantity Symbol Unit Eq. Comment

Haline contraction coefficient βθ 1 (S7.19) of seawater
w.r.t. potential temperature (S10.8) of seawater

Isentropic compressibility κs
1
Pa (S2.8) of fluid water

(S3.9) of ice
(S5.8) of humid air
(S12.11) of humid air
(S14.8) of humid air
(S7.9) of seawater
(S9.8) of seawater

Isochoric pressure coefficient β Pa
K (S3.12) of ice

Isothermal compressibility κT
1
Pa (S2.9) of fluid water

(S3.10) of ice
(S5.9) of humid air
(S12.10) of humid air
(S7.8) of seawater

Mass fraction of dry air A
kg
kg (S1.2) mass of dry air per

in humid air mass of humid air

Mixing enthalpy 1h J
kg (S4.8) of seawater

Mixing entropy 1η J
kg, K (S4.9) of seawater

Mixing volume 1v m3

kg (S4.10) of seawater

Molar mass of humid air MAV
kg

mol (S1.1)

Osmotic coefficient φ 1 (S4.11) of seawater
Partial enthalpy of vapour hW J

kg (S12.4)

in humid air

Potential density ρθ
kg
m3 (S10.3) of seawater

Potential enthalpy hθ J
kg (S10.1) of seawater

Potential temperature θ K (S10.2) of seawater

Relative chemical potential µ J
kg (S9.3) of seawater

(S14.3) of humid air

Saline excess µWS J
kg (S4.4)

chemical potential

Sound speed c m
s (S2.12) of fluid water

(S5.12) of humid air
(S12.13) of humid air
(S14.9) of humid air
(S7.10) of seawater
(S9.9) of seawater

Specific enthalpy h J
kg (S2.3) of fluid water

(S3.4) of ice
(S5.3) of humid air
(S12.3) of humid air
(S7.3) of seawater
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Table A12.Continued.

Specific enthalpy of sea salt hS
J

kg (S4.12)

Specific entropy η J
kg K (S2.4) of fluid water

(S3.5) of ice
(S7.2) of seawater
(S12.2) of humid air

Specific entropy of sea salt ηS
J

kg K (S4.13)

Specific Gibbs energy g J
kg (S2.6) of fluid water

(S5.6) of humid air
(S14.4) of humid air
(S9.4) of seawater

Specific Helmholtz energy f J
kg (S3.7) of ice

(S7.5) of seawater
(S9.6) of seawater
(S12.6) of humid air
(S14.6) of humid air

Specific internal energy u J
kg (S2.7) of fluid water

(S3.8) of ice
(S5.7) of humid air
(S12.5) of humid air
(S14.5) of humid air
(S7.4) of seawater
(S9.5) of seawater

Specific isobaric heat capacity cP
J

kg K (S2.1) of fluid water

(S3.2) of ice
(S5.1) of humid air
(S12.7) of humid air
(S14.7) of humid air
(S7.6) of seawater
(S9.7) of seawater

Specific isochoric heat capacity cV
J

kg K (S2.2) of fluid water

(S5.2) of humid air
(S12.8) of humid air
(S7.7) of seawater

Specific volume v m3

kg (S3.13) of ice

Specific volume of sea salt vS
m3

kg (S4.14)

Thermal expansion coefficient α, αT 1
K (S2.5) of fluid water

(S3.6) of ice
(S5.5) of humid air
(S12.9) of humid air
(S7.15) of seawater
(S10.4) of seawater

Thermal expansion coefficient αh J
kg (S7.17) of seawater

w.r.t. potential enthalpy (S10.6) of seawater

Thermal expansion coefficient αθ 1
Pa (S7.16) of seawater

w.r.t. potential temperature (S10.5) of seawater
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must then be specified. Two important cases are considered
in the following.

Case 1: Equilibrium at given salinity, SA , temperature,
T , and pressure,P

At given T andP , humid air can approximately be con-
sidered as an ideal mixture of air and vapour. The partial
pressureP vap of vapour is computed from the vapour pres-
sure of liquid water at givenT by solving Eq. (5.1), neglegt-
ing the effect of salt in the water. The vapour density fol-
lows from Eq. (4.3) asρV

=1/gV
P (T ,P

vap) and the air den-
sity from ρA

=1/gAV
P (1,T ,P − P vap). The air fraction is

then computed fromA=ρA/
(
ρA

+ρV
)
. With A, T andP

available, the required liquid water density estimate can be
specified as,ρW

=1/gW
P (T ,P ), and the humid air density es-

timate asρAV
=1/gAV

P (A,T ,P ), which are easily calculated
from the related Gibbs functions, Eqs. (4.2) and (4.37). The
saline partgS(SA,T ,P ) of the Gibbs function (Eq. 2.2) and
its derivatives can be computed directly with the given pa-
rametersSA , T andP . Using1SA=0,1T =0 and1P=0, the
linear system (Eqs. A66–A68) can now be solved iteratively
for A, ρW andρAV .

In particular, this solution provides the specific humidity
q=1 −A(SA,T ,P ) of subsaturated humid air in equilibrium
with seawater as a function of salinity, temperature and pres-
sure (see Feistel et al., 2010a for details).

The equilibrium is computed in this way by the library
call set sea air eq at s t p or by the functions
sea air massfraction air si or
sea air entropy air si .

Case 2: Equilibrium at given salinity, SA , air fraction,
A, and pressure,P

At given A andP , humid air can be considered approx-
imately as an ideal mixture of air and vapour. The partial
pressureP vap

=xAV
V P of vapour is computed from the to-

tal pressureP and the mole fractionxAV
V (A), Eq. (2.11).

In turn, the boiling temperatureT =T boil(P vap) of water is
computed from Eq. (5.1), neglecting here the lowering due
to dissolved salt. WithA, T andP available, the density
estimate of liquid water,ρW

=1/gW
P (T ,P ), and of humid

air, ρAV
=1/gAV

P (A,T ,P ), is easily calculated from the re-
lated Gibbs functions, Eqs. (4.2) and (4.37), as well as the
saline partgS(SA,T ,P ) of the Gibbs function (Eq. 2.2) and
its derivatives. Using1SA=0,1A=0 and1P=0, the linear
system (Eqs. A66–A68) can now be solved iteratively forT ,
ρW andρAV .

In particular, the solution of case 2 provides the conden-
sation temperatureT=T cond(SA,A,P ) of humid air in con-
tact with seawater, as a function of salinity, air fraction and
pressure. The condensation temperatureT cond is higher than
the dewpoint temperature of humid air. Humid air with a

temperatureT>T condcauses water to evaporate from the sea
surface. Humid air with a temperatureT<T cond results in
condensation of water at the sea surface (for details, see Feis-
tel et al., 2010a).

This equilibrium is computed by the library
call set sea air eq at s a p or by the function
sea air condense temp si .

Supplementary material related to this
article is available online at:
http://www.ocean-sci.net/6/633/2010/
os-6-633-2010-supplement.pdf.
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Adélie Land, Antarctica, University of Leipzig, Diploma thesis,
2009.

Foldvik, A. and Kvinge, T.: Conditional instability of sea water at
the freezing point, Deep-Sea Res., 21, 169–174, 1974.

Gill, A. E.: Atmosphere Ocean Dynamics, Academic Press, San
Diego, 1982.

Gleitz, M., Rutgers van der Loeff, M. M., Thomas, D. N., Dieck-
mann, G. S., and Millero, F. J.: Comparison of summer and
winter inorganic carbon, oxygen and nutrient concentrations in
Antarctic sea ice brine, Mar. Chem., 51, 81–91, 1995.

Harvey A. H. and Huang, P. H.: First-Principles Calculation of the
Air – Water Second Virial Coefficient, Int. J. Thermophys., 28,
556–565, 2007.

Hyland, R. W. and Wexler, A.: Formulations for the thermodynamic
properties of dry air from 173.15 K to 473.15 K, and of saturated
moist air from 173.15 K to 372.15 K, at pressures up to 5 MPa,
ASHRAE Transact., 89, 520–535, 1983.

IAPWS: Revised Release on the IAPWS Industrial Formulation
1997 for the Thermodynamic Properties of Water and Steam,
The International Association for the Properties of Water and
Steam, Lucerne, Switzerland, August 2007, available at:http:
//www.iapws.org, last access: July 2010, 2007.

IAPWS: Release on the IAPWS Formulation 2008 for the Ther-
modynamic Properties of Seawater, The International Associa-
tion for the Properties of Water and Steam, Berlin, Germany,
September 2008, available at:http://www.iapws.org, last access:
July 2010, 2008a.

IAPWS: Guideline on the Use of Fundamental Physical Constants
and Basic Constants of Water, The International Association
for the Properties of Water and Steam, Gaithersburg, Maryland,
USA, September 2001, available at:http://www.iapws.org, last
access: July 2010, 2008b.

IAPWS: Revised Release on the Pressure along the Melting and
Sublimation Curves of Ordinary Water Substance, The Interna-
tional Association for the Properties of Water and Steam, Berlin,
Germany, September 2008, available at:http://www.iapws.org,
last access: July 2010, 2008c.

IAPWS: Revised Release on the IAPWS Formulation 1995 for
the Thermodynamic Properties of Ordinary Water Substance for
General and Scientific Use. The International Association for the
Properties of Water and Steam, Doorwerth, The Netherlands,
September 2009, available at:http://www.iapws.org, last access:
July 2010, 2009a.

IAPWS: Revised Release on the Equation of State 2006 for H2O Ice
Ih, The International Association for the Properties of Water and
Steam, Doorwerth, The Netherlands, September 2009, available
at: http://www.iapws.org, last access: July 2010, 2009b.

IAPWS: Supplementary Release on a Computationally Efficient
Thermodynamic Formulation for Liquid Water for Oceano-
graphic Use, The International Association for the Prop-
erties of Water and Steam, Doorwerth, The Netherlands,
September 2009,available at:http://www.iapws.org, last access:
July 2010, 2009c.

IAPWS: Guideline on an Equation of State for Humid Air in Con-
tact with Seawater and Ice, Consistent with the IAPWS Formu-
lation 2008 for the Thermodynamic Properties of Seawater, The
International Association for the Properties of Water and Steam,
Niagara Falls, Canada, July 2010, to be adopted, 2008.

IOC, SCOR and IAPSO: The international thermodynamic equation
of seawater – 2010: Calculation and use of thermodynamic prop-
erties, Intergovernmental Oceanographic Commission, Manuals
and Guides No. 56, available fromhttp://www.TEOS-10.org, last
access: July 2010, UNESCO, Paris, in press, 196 pp., 2010.

IUPAC: Compendium of Chemical Terminology, 2nd edition, the
“Gold Book”, compiled by McNaught, A. D. and Wilkin-
son, A., XML on-line corrected version:http://goldbook.iupac.
org, last access: July 2010, (2006-), created by Nic, M.,
Jirat, J., and Kosata, B., updates compiled by Jenkins, A.,
ISBN 0-9678550-9-8, Blackwell Scientific Publications, Oxford,
doi:10.1351/goldbook, 1997.

Ivanov, D. Yu.: Critical Behavior of Non-Ideal Systems, Wiley-
VCH, 257 pp., 2008.

Jackett, D. R., McDougall, J. M., Feistel, R., Wright, D. G., and
Griffies, S. M.: Algorithms for Density, Potential Temperature,
Conservative Temperature, and the Freezing Temperature of Sea-
water, J. Atmos. Ocean. Tech., 23, 1709–1728, 2006.

Jacobson, M. Z.: Fundamentals of Atmospheric Modeling, 2nd Edi-
tion, University Press, Cambridge, 2005.

Kurzeja, N., Tielkes, T., and Wagner, W.: The Nearly Classical Be-
havior of a Pure Fluid on the Critical Isochore Very Near the Crit-
ical Point Under the Influence of Gravity, Int. J. Thermophys.,
20, 531–561, 1999.

Landau, L. D. and Lifschitz, E. M.: Statistische Physik, Akademie-
Verlag, Berlin, 1964.

Ocean Sci., 6, 633–677, 2010 www.ocean-sci.net/6/633/2010/

http://www.iapws.org
http://www.iapws.org
http://www.iapws.org
http://www.iapws.org
http://www.iapws.org
http://www.iapws.org
http://www.iapws.org
http://www.iapws.org
http://www.TEOS-10.org
http://goldbook.iupac.org
http://goldbook.iupac.org


R. Feistel et al.: Oceanographic application and numerical implementation of TEOS-10: Part 1 677

Lehmann, H. P., Fuentes-Arderiu, X., and Bertello, L. F.: Glossary
of terms in quantities and units in Clinical Chemistry (IUPAC-
IFCC Recommendations 1996), Pure Appl. Chem., 68, 957–
1000, 1996.

Lemmon, E. W., Jacobsen, R. T., Penoncello, S. G., and Friend, D.
G.: Thermodynamic Properties of Air and Mixtures of Nitrogen,
Argon and Oxygen From 60 to 2000 K at Pressures to 2000 MPa,
J. Phys. Chem. Ref. Data, 29, 331–362, 2000.

Margenau, H. and Murphy, G. M.: The Mathematics of Physics and
Chemistry, D. van Nostrand Company, Inc., New York, 1943.

Marion, G. M., Millero, F. J., and Feistel, R.: Precipitation of solid
phase calcium carbonates and their effect on application of sea-
waterSAT P models, Ocean Sci., 5, 285–291, doi:10.5194/os-5-
285-2009, 2009.

McDougall, T. J.: Potential enthalpy: A conservative oceanic
variable for evaluating heat content and heat fluxes, J. Phys.
Oceanogr., 33, 945–963, 2003.

McDougall, T. J. and Feistel, R.: What Causes the Adiabatic Lapse
Rate?, Deep-Sea Res., 50, 1523–1535, 2003.

McDougall, T. J., Jackett, D. R., and Millero, F. J.: An algorithm
for estimating Absolute Salinity in the global ocean, Ocean Sci.
Discuss., 6, 215–242, doi:10.5194/osd-6-215-2009, 2009.

Millard Jr., R. C.: International Oceanographic Tables Vol. 4, Un-
esco Techn. Pap., available at:http://unesdoc.unesco.org/images/
0007/000763/076307mb.pdf, Mar. Sci., 40, 1–193, 1987.

Millero, F. J., Feistel, R., Wright, D. G., and McDougall, T. J.:
The composition of Standard Seawater and the definition of the
Reference-Composition Salinity Scale, Deep-Sea Res. Pt. I, 55,
50–72, 2008.

Millero, F. J. and Huang, F.: The density of seawater as a function of
salinity (5 to 70 g kg−1) and temperature (273.15 to 363.15 K),
Ocean Sci., 5, 91–100, doi:10.5194/os-5-91-2009, 2009.

Millero, F. J. and Leung, W. H.: The thermodynamics of seawater
at one atmosphere, Am. J. Sci., 276, 1035–1077, 1976.

Mohr, P. J., Taylor, B. N., and Newell, D. B.: CODATA
recommended values of the fundamental physical constants:
2006, Data available athttp://physics.nist.gov/cuu/Constants/
index.html, last access: July 2010, Rev. Mod. Phys., 80, 633–
730, 2008, also published in J. Phys. Chem. Ref. Data, 37, 1187–
1284, 2008.
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