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Abstract. A new seawater standard referred to as the Internad  Introduction
tional Thermodynamic Equation of Seawater 2010 (TEOS-
10) was adopted in June 2009 by UNESCO/IOC on itsThe recent availability of highly accurate mathematical for-
25th General Assembly in Paris, as recommended by thenulations of thermodynamic potentials for fluid water (Wag-
SCOR/IAPSO Working Group 127 (WG127) on Thermody- ner and Pru3, 2002; IAPWS, 2009a), air (Lemmon et al.,
namics and Equation of State of Seawater. To support th000; Feistel et al., 2010a), ice (Feistel and Wagner, 2006;
adoption process, WG127 has developed a comprehensiM&PWS, 2009b), and of seawater (Feistel, 2003, 2008;
source code library for the thermodynamic properties of lig- Millero et al., 2008; IAPWS, 2008a; IOC et al., 2010)
uid water, water vapour, ice, seawater and humid air, referreghermit the description of thermodynamic properties of the
to as the Sea-Ice-Air (SIA) library. Here we present the back-ocean and the atmosphere in an unprecedented comprehen-
ground information and equations required for the determi-sive and consistent manner (Feistel et al., 2008; 10C et al.,
nation of the properties of single phases and components 8&010). In June 2009 these formulations, jointly referred
well as of phase transitions and composite systems as imto as the International Thermodynamic Equation of Seawa-
plemented in the library. All results are based on rigorouster 2010 (TEOS-10), were adopted by UNESCO/IOC as the
mathematical methods applied to the Primary Standards ofuccessor of the International Equation of State of Seawa-
the constituents, formulated as empirical thermodynamic poter 1980 (EOS-80). To assist potential users in implement-
tential functions and, except for humid air, endorsed as Reing the new equations of state, the SCORPSC? Work-
leases of the International Association for the Properties ofing Group 127 (WG127) on Thermodynamics and Equa-
Water and Steam (IAPWS). Details of the implementation intion of State of Seawater has developed a source code li-
the TEOS-10 SIA library are given in a companion paper. brary in Fortran and Visual Basic (also for use with Excel)
which provides an extended set of functions for the compu-
tation of numerous properties of the geophysical fluids, their
composites and phase transitions. Equivalent versions of the
SIA library implemented in MatLab and C/C++ are planned.

1SCOR: Scientific Committee on Oceanic Research,
http://www.scor-int.org
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Additional library versions are available for specific applica- level, the sections consider the four columns or their combi-
tion purposes such as the Gibbs SeaWater (GSW) Library fonations. In the appendix, the formulas are described which
oceanographic models (I0C et al., 2010), consistent with theare implemented in the library to iteratively solve implicit
one described in this paper. This SIA library replaces (i.e.,equations. When appropriate, function names defined in the
updates and extends) the code versions published previouslibrary are mentioned in the text of this paper along with the
(Feistel, 2005; Feistel et al., 2005). related equations; they are emphasized by meansdisfiact
In this paper we provide formulas, derivations and expla-font type The complete list of modules and functions avail-
nations for the quantities implemented in the library and theirable from the library is described in the companion paper,
thermodynamic relations to the potential functions. The lat-Part 2 (Wright et al., 2010a).
ter are basic relations which remain valid independent of any The core levels 1-4 of the SIA library take as input pa-
details of the fits used to approximate the potentials or therameters absolute pressure in Pa, absolute ITS-90 tempera-
numerics used to evaluate the functional relations; they willture in K, and Absolute Salinity in kg/kg. Absolute Salin-
not change when new approximations to the thermodynamidty of Standard Seawater is most accurately estimated by
potentials are determined in the future. Reference Salinity (Millero et al., 2008) which is propor-
The oceanographic applications of the quantities discussetional to Practical Salinity in the valid range of the 1978
here are explained in detail in IOC et al. (2010). Formulas forPractical Salinity Scale (PSS-78). For seawater with com-
seawater properties at the ocean-atmosphere interface sug@osition anomalies, estimates for the difference between Ab-
as the vapour pressure and the latent heat in equilibrium wittsolute and Reference Salinity are available for the global
humid air consistent with the library functions described hereocean and the Baltic Sea (McDougall et al., 2009; 10C et
are developed in a separate article (Feistel et al., 2010a). Adal., 2010; Feistel et al., 2010b). A routine for conversions
ditional details on the library structure and the numerical im- between Practical Salinity and Absolute Salinity is included
plementation are available from a companion paper (Wrightin the SIA library at level 0 (functionasal _from _psal
etal., 2010a). and psal _from _asal ) using an algorithm adapted from
The code is organised in vertical columns representing thehe GSW library (McDougall et al., 2009). A function
four constituents: fluid water, ice, seawater and air, and inthat permits the computation of Density Salinity as an es-
horizontal levels with increasing complexity at higher lev- timate of Absolute Salinity from measured in situ density,
els. The code is hierarchically organised; higher level rou-e.g., in the laboratory, is also available in the SIA library
tines make use of routines from lower levels but code at eaclffunction sea _sa _si ). Further details are available from
level neither needs nor has access to procedures from highéne companion paper, Part 2 (Wright et al., 2010a). De-
levels. Level 0 provides fundamental constants, mathemattails on the use and the uncertainties of the different salin-
ical methods and formulae for conversions between Absoity scales are described by Wright et al. (2010b). Con-
lute Salinity and Practical Salinity given the measurementversion routines between different pressure units (function
location plus some general relations. Level 1 contains thecnv _pressure ), temperature scales and units (function
Primary Standards, i.e. the thermodynamic potentials, theicnv _temperature ), as well as between various salinity
basic constants and coefficients, and further necessary enmeasures (functioonv _salinity ) are available at level 5
pirical or theoretical functions. Levels 2—4 contain proper- of the library for convenience.
ties derived directly or indirectly from level 1 by mathemat-  In order to shorten the main article for technical reasons,
ical and numerical manipulations without additional empiri- 29 tables with groups of thermodynamic properties and their
cal formulas or constants. Level 2 contains explicit relations.equations were moved to the Digital Supplement of this pa-
Levels 3 and 4 require iteration procedures to numericallyper. They are referred to here as Table S1 to S29; their equa-
solve implicit equations. Levels 1-3 describe only single-tions are numbered as S1.1 etc. Because of their key role
phase properties, while level 4 procedures calculate phasi the SIA library, the various potential functions themselves
equilibria and properties of composite, multi-phase systemsare summarised in Table 1 rather than in the supplement.
Level 5 is an additional application layer within which input ~ The information provided in this paper is a reference for
and output units may be more convenient for the user thamathematical and thermodynamic details of the algorithms
the basic Sl units that are used rigorously at the lower lev-implemented in the SIA library. It is intended to ease the
els. Level 5 also contains additional empirical coefficients inreadability of the open source code and its numerous com-
speed-optimized code, derived as “approximate” correlatiorment lines, and to encourage users to add new required
functions representing reduced data sets computed from thgroperties, correlations or applications to the levels 2-5,
lower, “exact” levels. guided by the examples and equations expained here. For
The following sections explain the thermodynamic rela- high-speed requirements, tailored look-up tables for arbitrary
tions and auxiliary equations implemented in the library level property combinations can easily be compiled from the SIA
by level, with the exception of level 0, which provides gen- code which is rather comprehensive but not speed-optimized.
eral information required by the library, and level 5, whichis  While this paper was under review, the authors of the
only numerically different from the lower ones. Within each dry-air formulation (Lemmon et al., 2000) used in the SIA
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Table 1. Hierarchy of thermodynamic potentials and their elementary constituents implemented in the library.

Potential Level Routine Parent System Reference
fF(T, 0) 1 flu _f _si Primary Fluid water Sect. 2.1
gh(r, P) 1 ice _g.si Primary Ice Ih Sect. 2.2
gi(T, P) 1 sal _g_term _si Primary Seawater Eq. (2.2)
FAT, p) 1 dry f.si Primary Dry Air Eq. (2.6)
Baw (T) 1 air _baw_m3mol Primary Humid Air Sect. 2.4
Caww (T) 1 air _caww-m6émol2 Primary Humid Air Sect. 2.4
Caaw (T) 1 air _caaw_m6mol2 Primary Humid Air Sect. 2.4
gS(Sa. T, P) 2  sal g.si gi Seawater Eq. (2.2)
FMXA T, p) 2 air f_mix_si Baw, Humid Air Eq. (2.13)
Caww,
Caaw _

VA, T, p) 2 air f.si FF A, FMX Humid Air Eq. (2.7)
WV, P 3 lig _g.si fF Liquid water  Eq. (4.2)
gV(T, P) 3  vap.gsi fF Water vapour  Eq. (4.3)
gSW(Sa, T, P) 3 sea_g.si W, ¢S Seawater Eq. (4.4)
WSW(SA, 1, P) 3  sea_hsi gSW Seawater Eq. (4.5)
NA, T, P) 3  ar gsi Viad Humid Air Eq. (4.37)
(A, n, P) 3  air _hsi e Humid Air Eq. (4.40)
¢S(Sg), T, P) 4  sea.ce g.si gSW glh Seawater + Eq. (5.14)

ice
¢V(Ssy, T, P) 4  sea_vap _g.si gSW gV Seawater Eq. (5.30)

+ water

vapour
g Wwa, T, P) 4 lig _air _g.si gV, v Liquid water  Eq. (5.58)

+ humid air
W wa, n, P) 4 lig _air _h_si gW Liquid water  Eq. (5.63)

+ humid air
¢MN(wa, T, P) 4  ice _air _g.si g, g~V Ice Eq. (5.73)

+ humid air
WA (wa, 1, P) 4  ice _air _h_si N Ice Eq. (5.78)

+ humid air
gW-FO3(T, p) 5 fit _liq _g_f03 si Fit of £F Liquid water  IAPWS (2009c)
gWHF (T p) 5 fit _iq _g.ifo7 si  Fitof fF Liquid water  IAPWS (2007)
gVIF(T, P) 5  fit _vap_g.if97 si  Fitof fF Water vapour  IAPWS (2007)

library decided that the published molar equation can be con2 Level 1: Thermodynamic potentials — the primary

verted to the mass-based form used here and in the planned standard

IAPWS document (IAPWS, 2010), and that this should be

implemented using the latest value for the molar mass of dry

air (Picard et al., 2008) rather than the originally publishedAs described in the related background articles, the vast
one. For consistency with the IAPWS formulation, the molar @amount of quantitative information available from extensive
mass of dry air of the SIA library is updated in the SIA ver- sets of experimental thermodynamic data for water, ice, sea-
sion 1.1, attached as a supplement to the companion pap#&yater and air is represented in a compact way by the em-
(Wright et al., 2010a), in contrast to the obsolete value usedirical coefficients of only four independent functions, a

in SIA version 1.0 which is consistent with the formulation Helmholtz function fF (T, p) of fluid water referred to as
of Feistel et al. (2010a). IAPWS-95 (IAPWS, 2009a; Wagner and Pruf3, 2002), a

Gibbs functiong™ (T, P) of ice, referred to as IAPWS-06
(IAPWS, 2009b; Feistel and Wagner, 2006), a Gibbs func-
tion gS(SA, T, P) of sea salt dissolved in water which is re-
ferred to as IAPWS-08 (IAPWS, 2008a; Feistel, 2003, 2008),
and a Helmholtz functiorf” (T, p) for dry air (Lemmon et

Www.ocean-sci.net/6/633/2010/ Ocean Sci., 6, ®33%-2010



636 R. Feistel et al.: Oceanographic application and numerical implementation of TEOS-10: Part 1

a) Density - Temperature Diagram of Liquid Water and Vapour Phase Diagram of Ice Ih
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b) Density - Temperature Diagram of Liquid Water Fig. 2. Range qf validity (bpld curves) of the Gibbs function of ice
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| 360
] +350
j 340 2.1 Fluid water
¥ 330
S 320 The validity range of the IAPWS-95 Helmholtz potential
% o 310 FE(T, p) for fluid water (IAPWS, 2009a; Wagner and Pruf3,
i o 300 2002) as a function of temperatufeand densityp is shown
g 290 in Fig. 1a in a density-temperature diagram. It is confined
& 280 to the pressure interval between the isobars of 10nPa and
| e 1 GPa, below the upper temperature bound of FD@nd
| | zg’g by the phase transition lines with ice and the liquid-vapour
N 2-phase region. Below the critical temperature, this region
950 1000 1050 1100 1150 1200 1250 separates the stable vapour phase at low density from the sta-
Density  p/(kgm *) ble liquid phase at high density. Only a small fraction of this

_ . _ _ region (a subset of the sliver to the right of the high density
Fig. 1. Panel(a) Validity region (bounded by bold lines) of the gjde of the phase transition boundary) belongs to the “Nep-
IAPWS-95 Helmholtz potential for fluid water with isobars as indi- tunian” oceanographic standard range (Fig. 1b). In the pres-
cated. Panglb) Magnified view of the small region corresponding ence of dissolved sea salt, the freezing point is lowered so

to the standard oceanographic (“Neptunian”) range. TP: triple point, S - - -
gas-liquid-solid, CP: critical point. The deviation of the vapour- that the liquid phase of water is extended into the ice and

pressure line from the 101325 Pa isobar in the liquid region is be-VAPOUr régions indicated in lf'g' 1b. L

low the graphical resolution of panel (b). Freezing-point lowering 1 h€ Helmholtz functionf™ (7', p) together with its first
occurs with the addition of sea salt. To deal with this effect in the @nd second partial derivatives is implemented as the library
case of seawater, the extension of the pure water properties into thiginctionflu  _f _si .

metastable liquid region just above the line marked “Freezing Point

Lowering” is required. 2.2 lIce

The IAPWS-06 Gibbs functiop'" (7, P) of hexagonal ice Ih
al., 2000) in combination with air-water cross-virial coeffi- (Feistel and Wagner, 2006; IAPWS, 2009b) covers the entire
cients (Hyland and Wexler, 1983; Harvey and Huang, 2007;region of its stable existence (Fig. 2). In the region of low
Feistel et al., 2010a). These potential functions are usedemperature and high pressure the function behaves reason-
as the Primary Standard for pure water (liquid, vapour andably although no experimental data were available when the
solid), seawater and humid air from which all other proper- function was constructed. Below 100K, there are still open
ties are derived by mathematical operations, i.e. without thescientific questions regarding the possible phase transition to
need for additional empirical functions. a proton-ordered ice Xl or the existence of a density mini-
mum. The Gibbs function is valid to even lower pressures
(Feistel and Wagner, 2007) not shown here because the sub-
limation curve is restricted by the validity of the IAPWS-95
equation for vapour, Fig. 1a. In the library, an extension of
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pressure (101 325 Pa). Up to saturation, the salinity of cold
concentrated brines agrees well with Antarctic sea-ice data
(Fig. 6). For hot concentrates (region F in Fig. 3) the partial
derivatives of density are not reliable. New density measure-
ments (Millero and Huang, 2009; Safarov et al., 2009) have
led to some recent improvements and an option to use an ex-
tension introduced by Feistel (2010) is included in the library
(Wright et al., 2010a). Nevertheless, reliability of results for
this region remains limited by the sparseness of data and the
possibility of precipitation of calcium minerals (Marion et
al., 2009) which would degrade the accuracy of the Refer-
ence Composition approximation in this region.

The saline partgS(Sa,7, P) of the Gibbs function to-
gether with its first and second partial derivatives is imple-
mented as the library functicsal _g_si .

Note that the arguments of the Gibbs function are temper-
ature and pressure rather than temperature and density as in
the Helmholtz function. Since the Gibbs function of pure
Fig. 3. Range of validity of the IAPWS-08 Gibbs function of seawa- Watef IS eXpreSSF."d.m terms o.f the Cor.respondlng Helmholtz

function,sea _g_si is only available at library level 3 where

ter and uncertainty of density estimates calculated from this func-, o . L .
tion. RegionA: oceanographic standard rangg:, extension to implicitly determined quantities, such as density in terms of

higher salinitiesC: hot concentrated): zero-salinity limit,E: ex- temperaturg ang pressure, are considered. _
trapolation into the metastable region belo&@ The functiong>(Sa, 7, P) is constructed as a series expan-

sion with respect to salinity. Based on the theory of ideal and
electrolytic solutions (Planck, 1888; Landau and Lifschitz,
the vapour equation down to 50K is implemented that per-1964; Falkenhagen et al., 1971), this expansion consists of
mits the computation of sublimation properties to this limit salinity-root and logarithmic terms and takes the form
(IAPWS, 2008c; Feistel et al., 2010a). Vapour cannot rea-
sonably be expected to exist below 50K (Feistel and Wag- ¢ ! i/2
ner, 2007). No ice forms other than Ih occur naturally under$ = 81(7) Sa In Sa + Zgi(T, P)Sxy™. (2.2)
oceanographic conditions. i=2
The Gibbs functiong'" (T, P) together with its first and  Here, the expansion coefficients are defined as
second partial derivatives is implemented as the library func- 2

tionice _g.si . g1(T) = 55 (g100 + g1107) (2.3)
u

lePER) | QUDWATER -

VAPOUR

Sa/(gkg™)

2.3 Sea salt dissolved in water

The Gibbs functiongSW(Sa, T, P) of seawater (IAPWS, g2(T,P) = L Z(gzj'k — 0.5g1,k In S) /7t (2.4)
I

X
2008a; Feistel, 2008) is expressed as the sum of a Gibbs Su
function for pure water, g™ (T, P), numerically avail-
able from the IAPWS-95 formulation, and a saline part, gu e
gS(SA,T,P): gl(T,P) = W X Xk:gijkfjﬂ , i=3...7 (25)
u Js
sw w s

#0aLE) =" (L) +£7Ca. 1L ). @L ith e=1JkgL, 5,=35.16504 g kg x40/35, and the co-
Here, salinity is expressed as Absolute Salisity the mass  efficients g;;x are given in the IAPWS Release 2008.
fraction of dissolved salt in seawater, which for standard seaThe reduced temperatureis=(T—Tp) /T*, To=27315 K,
water equals the Reference-Composition Salinity within ex-T*=40 K, the reduced pressure is=(P—Pp)/P*,
perimental uncertainty (Millero et al., 2008; Wright et al., P;=101325Pap*=1C¢ Pa.
2010b). The explicit separation of the expansion coefficients of

In representing the properties of Standard Seawater, th&q. (2.2) is required for the accurate determination of cer-
range of validity of the Gibbs function for seawater is shown tain properties which in the zero-salinity limit possess a nu-
in Fig. 3. For temperatures in the oceanographic standardnerical singularity that can be analytically resolved. In some
range, salinities up to 40 g/kg are properly described up toequations such as for the computation of potential temper-
100 MPa. For higher salinities up to 120 g/kg and tempera-ature, one or more terms of the expansion (Eq. 2.2) cancel
tures up to 80C, the application is restricted to atmospheric analytically. Implementing the numerical solution of such an

Www.ocean-sci.net/6/633/2010/ Ocean Sci., 6, ®33%-2010
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equation without the cancelling terms increases speed and ad-he mass fractiom of air is computed from the mole frac-
curacy. In such cases a function is more naturally (and easilyjion xa of dry air as
implemented by calling the separate functions (Eqgs. 2.3-2.5)

xaM
rather than their combination ig©(Sa, 7, P). A= ATA (2.9)
: xaMa + (1 — xp) Mw
The expansion termg; (T, P), Egs. (2.3-2.5), together XA

with their partial derivatives are available from the library =

1-(1- 1— Mw/Mp)’
functionsal _g_term _si . (1 =xa)( W/ M)

and it follows that the mass fraction of vapour is given by

2.4 Humid air 1o A—1— xaMp

xaMa + (1 — xa) Mw
For a correct description of the thermodynamic properties at 1—xa
the ocean-atmosphere interface a thermodynamic potential of 1" "1 — yn/Mw)’
humid air is required and available from the literature (Feis- _ . . . .
tel et al., 2010a). A related document is in preparation byThe INVerse function of Eq. (2'9)’ €., t.he_ mole fraction of air
IAPWS (2010). The Helmholtz function for dry air of Lem- as a function of the mass fraction of air, is
mon et al. (2000) has the form of the molar Helmholtz en- ~_ (1-A)/Mw

(2.10)

ergy, A (T, p™)), depending on absolute temperatdre "~~~ (1— A)/My + A/Ma (2.11)
(ITS-90) and molar air densityy™'. For its conversion to B A(Mwy/Mp)
the specific Helmholtz energy®, depending on the mass ~— 71 _ A(l— Mw/Mp)
density.p, and the related mole fraction of vapour is
1 0 (1-A)/Mw

A _ _~ ¢Amol P 1—xa = 2.12

(T, p) A b (T, MA>’ (2.6) A (1—A)/Mw+ A/Mp (212)
B 1-A

the molar mass of aif)/a=28.965 46 gmotl, is computed 1 — A(1— Mw/Mp)’

from the recent highly accurgte air composition model of Pi-The Helmholtz potential (Eq. 2.7) is formally symmetric in
card etal. (2008). The dry-air part (Eq. 2.6) can be combinedng fractions of air and of water vapour. We note that the

with the vapour partf¥=/f" (IAPWS-95, Sect. 2.1), in-  Heimholtz functionsf¥ and f* that we have chosen to use
volving the second virial coefficieaw (T) of Harvey and i, ¢ (2.7) are complete expressions rather than truncated
Huang (2007) and the third virial coefficierfaw (T) and gypansions in terms of powers of density. Consequently,
Caww (T) of air-vapour interaction reported by Hyland and hey include contributions corresponding to higher powers
V\{exli\r/ (1983), to obtain the Helmholtz function of humid ¢ gensity than included in the cross-virial terms represented
air, f°, as by the third term in Eq. (2.13)/™X=fA —AfA—(1—-A) fV.

A v A Equation (2.7) is thus an inhomogeneous approximation for-
AT, p)=A-A) f7(T,(1=A) p)+Af7(T, Ap) (2.7)  mula with respect to the powers of density and the related

+2A(1—A)p RT % correlation clusters. However, its validity is not restricted to
MaMwy small specific humidityg=(1—A), such as some 1-3% of-
3 A (1-A) ten assumed for empirical equations used in meteorology. It
{BAW(T)‘I‘Z,O |:M_ACAAW )+ My CAWW(T)]} can even be applied to physical situations in which air is the

minor fraction, such as condensers of desalination plants or
Here, p is the density of humid airA is the mass frac- headspaces over subglacial lakes. The mass fragtiather
tion of dry air in humid air,g=1—A is the specific hu- than the specific humidity is chosen as a composition vari-
midity, (1—A)p is the absolute humidity, ang=(1—A)/A able of humid air for its analogy to Absolute Salinity; the two
the humidity ratio or mixing ratio (van Wylen and Sonntag, describe the amount of natural mixtures, gases or salts, con-
1965; Gill, 1982; Emanuel, 1994R=8.314 51 Jmotl K1 tained in ambient water in either gaseous or liquid form. This
is the molar (or universal) gas constant used by Lem-leads to thermodynamic equations that are formally similar
mon et al. (2000), rather than the most recent valuein A andSa (Feistel etal., 2010a).
of R=8.314 472JmoltK~-1 (Mohr et al., 2008), and The range of validity is bounded by the simultaneous va-
Mw=0.018015268 kg mol is the molar mass of pure wa- lidity of the vapour formula (IAPWS-95), of the dry-air for-
ter IAPWS, 2008b). The effective molar mass of humid air mula (Lemmon et al., 2000) and of the cross-virial expan-

Mpay depends on the mass fractidrin the form sion. The dry-air function correctly describes reliable ex-
perimental data for pressures up to 70 MPa and for tempera-

1 tures from 60 to 873 K; the maximum air density in this re-

May = (1— A)/Mw + A/Mp~ (28)  gion is 1035.8 kg/rh The temperature range where all three

Ocean Sci., 6, 63377, 2010 Www.ocean-sci.net/6/633/2010/
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Density - Temperature Diagram of Dry Air a) Dry-Air Fraction Range above the Freezing Point
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Fig. 4. Validity range of the Helmholtz function for humid air,

- . - . b) Dry-Air Fraction Range below the Freezing Point
Eq. (2.7). For oceanographic and meteorological applications it is ) Dry-Air Fraction Range below © Teezing Tom

. T L. . i ————— | HUMIDARR 100
unnecessary to consider liquid or solid air. Thus, we restrict consid- | oo T — 3 o
eration of Eq. (4.37) as follows: (i) for temperatures above the crit- [~ 4 oo b do S T s r99.5
ical temperature of dry aiff >7=132.5306 K, all density values Db NG
occurring between the pressure bounds are permitted; and (i) for | ¢ 0T N TN %
subcritical temperatureB <7, only densities below the dewpoint T | 11 1L LN B lggs
curve of dry air, indicated by “Dewpoint” are permitted. The re- ¢ ‘ N
sulting validity boundary for dry air is shown in bold. “CP"isthe 5§ - ittt o108
critical point of dry air. To consider humid air, virial coefficients =& ‘ ‘ ‘ j ‘ j ‘ ‘ ‘ ‘ ‘
are required. The validity range in temperature of the third virial Z ||| icE conpeNsaTioN 1973
coefficients is shown by horizontal lines. Additionally, the pressure | @ L b S\ gy
on saturated humid air is restricted to 5 MPa (Hyland and Wexler | i oo b
1983), not shown. o 1965

: 96

60 55 -50 45 40 35 30 25 20 -15 10 -5 0
virial coefficients are valid is from-80 to +200°C, Fig. 4, Temperature ¢ /°C

(Hyland and Wexler, 1983). Consequently, the most limit-

ing conditions for the validity of Eq. (2.7) are the tempera- Fig. 5. Saturation curvesAS3{(T, P) of humid air at
ture restrictions on the viral coefficients and the requirementhe pressures 101.325, 50, 20 and 10kPa, as indicated.
for validity of the truncated virial expansion, i.e. the omit- Panel (a) shows results for temperatures above the freez-
ted terms offA proportional toA3(1—A) p3, A2(1—A)2p3 ing point_, computed by sqlving Eg. (5_.48) using the library
andA(l—A)3p3 must be negligibly small in comparison to function liq _air _massfraction  _air _si , Eq. (S21.9), and
the retained terms. A rough estimate for a maximum Va”dpanel (.b) shows - results  for temperatures belqw the freez-
density is 100 kg m? as concluded from a comparison with ng_point, .CompUted b.y SOlvm.g Eq. (5.70) using the mnc'

. L . . tion ice _air _massfraction _air _si , Eq. (S25.10). Valid
e_xperlmental data for satu-rated arin Wh'Ch_ substantial fraC'air fraction valuesA are located above the particular satura-
tions of both vapour and air are present (Feistel et al., 2010&0n curve, A>453(T, P), in the region indicated by “HU-
Fig. 8). When significant amounts of both air and water mip AIR”. In the presence of ice-free seawater, the validity
vapour are present, the valid temperature range is determine@dnge forA is more restricted A>A"d(Sp, T, P)>AS(T, P),
by the validity range for the virial coefficients. As the den- by the condensation valua®"d computed from the function
sity of either the air or vapour component is decreased, thesea _air _massfraction  _air _si , Eq. (S29.1).
contribution from the virial coefficients decreases and the va-
lidity range in temperature extends to higher values, reaching
873 K when water vapour is eliminated and 1273 K when air
is eliminated. equilibrium. For total pressures below the vapour pressure

The air fraction is bound between 0 and 1 but is addition_Of ||qU|d water or the sublimation pressure of ice at the given
ally limited by the vapour saturation condition, Fig. 5. At temperature, the value of may take any value between 0
high total pressures, the restriction to vapour pressures belognd 1.
the saturation value represents a significant limitation on the The Helmholtz functiory (T, p) for dry air together with
upper limit of 1— A that can be achieved in thermodynamic its partial derivatives is implemented as the library function
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dry _f _si . The Helmholtz function for air-vapour interac- where v=1/p is the specific volume. Therefore, the first

tion, derivatives offF give the specific entropy;,
: RT E
mix — _ ) 0
F™AT ) =24 = Hp 213, __ (%) __F (3.2)
P

1-4)

3 A
{BAW(T) + 2P |:M—ACAAW (T) + Caww (T)“

and the absolute pressui®,
together with its partial derivatives is implemented as the afF X afF

library function air _f _mix _si . The cross-virial coef- P =— (W) = <—>
ficients Baw, Caaw and Caww are implemented as the T T
library functionsair _baw_m3mol, air _caaw_m6mol2

and air _caww_.mémol2. The Helmholtz function of hu-
mid air, 2V (A,T,p), Eq. (2.7), together with its partial

— 2¢F

A list of properties derived fromfF(T,p) by means of

Egs. (3.2) and (3.3) is given in Table S2. Partial derivatives
Lo ) C. i with respect to these two independent variables are written
derivatives is implemented as the library functan f _si . as subscripts. Whether the property belongs to liquid water

For convenience of use, some auxiliary conversion functionsOr vapour depends on the density used, i.e. on the location in
Egs. (2.9-2.12), are also implemented at level 0, Table SL;,. diagram in Fig. 1 T

Deviating from the original formulation given by Lemmon

et al. (2000), in the library the adjustable constants of dryg o> |ce

air are specified such that the entropy and the enthalpy of

dry air are zero at the standard ocean stAte273.15K and  The total differential of the Gibbs functiogl" (T, P) of ice
P=101325Pa (Feistel et al., 2010a). This choice does noth has the form

affect any measurable thermodynamic properties.

dg'" = — ndT + vdP. (3.4)
3 Level 2: Directly derived properties Its first derivatives give the specific entropy,
From the level-one functions described in Sect. 2, various 3g|h n
thermodynamic properties can be computed directly if then = — S ] =& (3.5)
corresponding independent variables are known. If some of P

the input variables need to be dprived .first from other knovynand the specific volume,
ones, based on thermodynamic relations, then the function
will be found at level 3 (Sect. 4) or higher. th

The required input variables for level 2 functions are v = ( ) = gg‘. (3.6)
temperature and density of fluid pure water, either lig- T
uid or vapour (Sect. 3.1), temperature and pressure for ice
(Sect. 3.2), and Absolute Salinity, temperature and pressuré list of properties derived frong'" (7, P) is given in Ta-
for dissolved sea salt (Sect. 3.3). For moist air, level 2 rou-ble S3. Partial derivatives with respect to the two indepen-
tines require inputs of temperature, density and the mas§ent variables are written as subscripts.
fraction of (dry) air in the mixture. Specifying the air mass
fraction as 1 gives the dry air limit.

The Jacobi method developed by Shaw (1935) is the math
ematically most elegant way of transforming the various
partial derivatives of different potential functions into each
other, exploiting the convenient formal calculus of functional
determinants (Margenau and Murphy, 1943; Landau and Lif-
schitz, 1964). Conversion tables (Feistel, 2008) between thes first derivatives give the saline part of the specific entropy,
potentialsf (T, p), g(Sa, T, P) andh(Sa,n, P) are givenin S
Sect. 5.

3.3 Dissolved sea salt

The total differential of the saline pagt® (Sa, T, P) of the
Gibbs function of seawater has the form

dgS = — #°dT + vSdP + pudSa. 3.7)

s dg° _ S
3.1 Fluid water Nt =- 3T = - g7, (3.8)
S, P

The total differential of the Helmholtz functiofi™ (7', p) of

fluid water has the form the saline part of the specific volume,

F P s _ (08° _ s
df" =—ndl — Pdv=—1ndl + —dp, 31) v=|=5 = gp, (3.9)
o 0P /s 1
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and the relative chemical potential, 1, The zero-salinity limit isS Iirrg)qb:l.
A—>
_(3&° _ s (3.10) The saline excess chemical potenti¥{Si Eq. (S4.3), is
m= aSa)rp % ' the difference between the chemical potentials of water in

] ) ) o ] seawater and of pure water,
The list of properties derived from’ (Sa, T, P) is given in

Table S4. Pgrual der|vat|yes with respec.t to the three |nde-Mws(SA’ T.P) = uw(Sa. T, P) — uw (0. T, P) = — mRT .
pendent variables are written as subscripts where the sub-
script of Sp is omitted for simplicity. (3.16)
Details on the definition of osmotic and activity coeffi- The zero-salinity limitis_limuVS=0
cients are given by Falkenhagen et al. (1971), Millero and Sa—0 '
Leung (1976), Ewing et al. (1994), Lehmann et al. (1996), The activity of watera,, Eq. (S4.3), is related to the os-
IUPAC (1997), Feistel and Marion (2007) and Feistel (2008). motic coefficient by
The mean practical activity coefficient in of sea salt

- ws
(S4.1) can be computed from the activity potentia{S4.2) . _ _ n
as (Feistel and Marion, 2007) aw = exp (- mMw¢) = exp RwT | (3.17)
14 a(myr)
In Jid = ( om ) . (3.11)  Here, My=18.015268 g mot! is the molar mass of water
T,P

(IAPWS, 2008b) an®yw=R /Mw=461.52364 Jkg* K~Lis
Here, m=Sa/[(1 — Sa) xMs] is the molality (moles of the specific gas constant of water. The zero-salinity limit is
salt per kg of water) implemented in the library as lim ayw=1. Atlow vapour pressuresy equals the relative
sal _molality  _si , andy'9=1kgmol? is the asymptotic = SA—0

value ofy at infinite dilution. Ms=31.4038218 gmoi! is huTrphldltyloi_sea ﬁ'r (I_:ellsteltet ‘?.l"l 20é0a).s4 &) describes th
the mean molar mass of sea salt with Reference Composi- € relative chemical potential b, Eg. (S4.5), describes the

tion (Millero et al., 2008),R=8.314 472 J moit K—lis the change of the Gibbs energy of a seawater parcel if at constant

molar gas constaHt and{’]SA) i's the mass fraction of wa- €mperature and pressure a small mass fraction of water is re-

ter in seawater. The zero-salinity limit of Eq. (3.11) is placed by salt. Its zero-salinity limit possesses a logarithmic
. i T singularity, lim p=RsT In Sa.

SETO In (y/y'd)zo. 9 ysA—>0u s A

The activity potentiaky (Sa, T, P), Eq. (S4.2), describes The dilution coefficientD, Eq. (S4.6), describes the

the ion-ion interactions and consists of higher salinity powersChange of salinity in relation to freezing or evaporation pro-

cesses, (Feistel and Hagen, 1998; Feistel et al., 2010a), as

3/2 . . ) .
0 (SA ) of the saline parF of the Gibbs function (Eq. 2.2)in ¢ 4 in Eqs. (A28), (4.44) or (A38). The zero-salinity limit
the form (Feistel and Marion, 2007) (Raoults law) is _lim D=RsT. The chemical coefficient
A—>
g5(Sa.T.P) = Saga(T. P) (3.12)  (S4.6),Ds=SaD, is used for the description of sea air (Feis-
SA tel et al., 2010a).
+ SARST{'” 1— S + WSA’T’P)}' The specific enthalpy, entropy and volume of sea salt,

1 . Egs. (S4.12)—(S4.14), provide the enthalpy, entropy and vol-
_ - 1-1

Here, Rs=R/Ms=264.7599J k.g. K™ Is t.he.specn‘lc 935 me per mass of sea-salt particles dissolved in water. The
constant of sea salt. The activity potential is related to the

. o . . zero-salinity limits are limhs=g2(T, P)—T (3g2/9T)p,
osmotic coefficieny and the activity coefficient Iy by Y Sa—0 s=s2( )=T(0982/0T)p

y lim ns=— RsIn Sa and lim vs=(dg2/d P)t. The loga-
v=1—¢+In . (3.13)  Sa—0 . SA—0 iy
yid rithmic singularity of entropy reflects the empirical fact that

rigorous purification of a mixture, i.e., complete desalination,

] ] ] is impossible by thermodynamic processes.

vanishes for ideal solutions. Mixing enthalpy, entropy and volume, Egs. (S4.12)—
The osmotic coefficienp , Eq. (S4.11), expresses the ac- (s4.14), provide the change of enthalpy, entropy or specific

tivity coefficient of water and can be computed from the ac-y,o|ume if two seawater samples with absolute salinifies

The zero-salinity limit isS ””(1)1#=0- The activity potential
A—>

tivity potentialy, Eq. (S4.2), as S, and mass fractions1, w» are mixed at constant tempera-
EY ture and pressure. If the mixing occurs adiabatically at con-
p=1+m <%)T . (3.14) stant pressure, the enthalpy remains constant while entropy

is produced and the temperature changes. Since such effects
It is related to the chemical potential of pure watel’ do not occur in ideal solutions, the related quantities can
(Sect. 4), and the chemical potential of water in seawaterbe computed from the activity potentigd(Sa, T, P) alone
W, by (Feistel and Marion, 2007) (Feistel and Marion, 2007). They disappear at infinite dilu-

ww(Sa T, P) = ¢V(T,P) —mRT$(Sa,T,P).  (3.15) Uon
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3.4 Humid air Depending on the pressure, there may be one or two stable
solutions below the critical temperature, given by the inter-

The Helmholtz function fA (A,T,p) of humid air,  section points of isobars with isotherms illustrated in Fig. 1,

Eq. (2.7), permits the direct computation of all thermody- providing the density of liquid wategp" (T, P), and/or of

namic properties if temperatufe densityp and air fraction  water vapourpV (T, P).

A are either given or can be obtained from similar quanti- Consequently, there cannot exist a single-valued Gibbs

ties such as the specific humidity=1—A or the mixing ra-  function g(7,P) that fully represents the properties of the

tio r=(1—A)/A. This does not include properties at given Helmholtz function 7 (7, p) of fluid water. Rather, there
relative humidity which requires the knowledge of vapour gre two different Gibbs functions,
saturation, i.e. of the phase equilibrium between vapour and

liquid water which is a composite system considered later ing™ (7, p) = fF(T,pW) +pP/pWV (4.2)
Sect. 5.8. A list of equations for the computation of humid-
air properties from Eq. (2.7) is given in Table S5. for liquid water and
Vv F v Y
T,P)= T, P 4.3
4 Level 3: Functions involving numerical solution of 8" ( )=/ ( P )+ /P (4.3)

implicit equations for water vapour, which coincide under supercritical condi-

ions. Interestingly, critical conditions can be encountered at

" : . [
If quantities oth_er than _the natural mdependent_vanables 0ﬁydrothermal vents in the abyssal ocean (Reed, 2006; Sun et
the three potential functions of Sect. 2 are given, in parUcuIar,aI 2008)

if the pressure is known rather that the density of pure water, To implement the above expressions for the Gibbs func-

or the entropy rather than the temperature of seawater, th{e : T .
: . . ions we must determine the liquid and vapour densities cor-
relevant thermodynamic equations must be inverted analyt-

. : L responding to the temperature and pressure inputs. This re-
ically or numerically. These steps inevitably add larger nu- " . : . . .
; - . . _quires iterative solution of Eq. (4.1), with considerable care
merical uncertainties to all properties that depend on thesein- =~ - :
. . .__required to select the appropriate root for each case. De-
versions, and hence on the settings chosen for the associated . . : L
) ) . ) : alls on the iterative numerical method and the conditions
iteration algorithms. Default values for iteration number or S . . . X
P . . used to initialize the iteration procedure are provided in Ap-
tolerance are specified in the SIA library routines that should endix Al
be appropriate for most purposes; if necessary, they can bg ‘

b R ; . Once the liquid or vapour density of water is computed
modified by relatedset _” procedures of the library (Wright from the Helmholtz functionfF at given temperature and

et al., 2010a). Quantities that require such inversions appear . . .
) ) ) .- pressure, the numerical values of the Gibbs function of wa-
in the libraries as level-3 procedures. To ensure the stabilit : . N

. . . s .. _“ter and its partial derivatives can be computed from the for-
and uniqueness of the numerical solutions, initial conditions . .

. . L .~ “mulas of Table S6. The equations given there for water,
must be chosen appropriately. Various empirical functions y .
, Eq. (4.2), apply in an analogous manner to vapetir,

are used to provide suitable initial values as discussed in th (4.3), if only the density of liquid water is replaced b
appendices referenced in Sect. 4.1-4.3. While the algorithihq't of.va, our y y q P y
mic success and speed are sensitive to these choices, the finar. pour. : .
o " . . . Note that the above procedure is required to ensure ar-
guantitative results are, within their numerical uncertainty, .. . . . i X
bitrarily precise consistency between the Gibbs function of

independent of the details of the initial “guess” functions. : .
. . : o . pure water and the corresponding Helmholtz function. As

Therefore, if desired for certain applications, these auxiliary . . . o
long as this consistency is demanded, determination of the

functions implemented in the library and described in this pa-

. . ; ibbs function and its derivatives requires an iterative nu-
per may be replaced by more suitable or effective customise . : :
d : . merical procedure to determine the density argument of the
ones without affecting the correctness of the final results.

Helmholtz function, so no explicit algebraic expression is
possible. Thus, the pure water component of the Gibbs func-
tion must be determined at level 3 and it is only at this level

To compute properties of fluid water at giv@nandp from that the Gibbs function for seawater can be Completely de-
its Helmholtz potential,fF (T, p), it is necessary to solve termined. However, once the liquid pure water density is

4.1 Gibbs functions for liquid water and water vapour

Eg. (52.11), determined, the corresponding Gibbs potential is fully deter-
mined and it can be used in the seawater functions described
p (T,P) =gpt, (4.1)  inSect. 4.2 and 4.3.

Finally, note that the library functions listed in Table S2 for
for the density. Except for spurious or unstable numerical sopure fluid water in terms of temperature and density are avail-
lutions outside the validity range, Fig. 1a, there is exactly oneable as similar functions of temperature and pressure with the
physically meaningful solution at supercritical temperatures.prefix liq _ for liquid water andvap _ for water vapour, re-

spectively, rather than with the prefiy  _given in Table S2.
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4.2 Gibbs function of seawater some reference pressuPe=P;, the thermodynamic proper-
ties given in Table S9 can be computed at that reference level

The Gibbs function of seawater, Eq. (2.1), is reproduced hergrom the partial derivatives afSW(Sa, 7, P;). Such proper-

as, ties derived from the potential functigr?V at the reference

pressure are commonly referred to as “potential” properties

in meteorology and oceanography. Originally introduced by

and is directly available from the sum of the Gibbs function YO Bezold (1888), potential temperature is defined as the

of pure water computed at level 3, Table S6, and the salind€mperature that a fluid parcel takes if it is moved adiabat-

part from the Primary Standard, level 1, Eq. (2.2). Propertieéca"y from its in S”H pressure to a reference pressure level,

of seawater can be computed from the partial derivatives ofVNich is often specified as the ocean surface. Analogous def-

¢S andgSW as given in Tables 4 and 7. initions hold for the potential density and potential enthalpy
The Gibbs functiosSW(Sa, T, P) of seawater, Eq. (4.4), (1OC etal., 2010). . _

together with its first and second partial derivatives is imple- '€ Potential enthalpy,”, is obtained from Eq. (S8.2),

mented as the library functicsea g_si .

¢W(Sa, T, P) = g™V (T, P) + ¢5(SA, T, P), (4.4)

h? = hSW(Sa,n, Pr), 4.7)

4.3 Enthalpy of seawater . ) ) i
Py the absolute potential temperatuejn K, is obtained from

Besides the Gibbs and the Helmholtz functions, the specifi€d- (59.2),

enthalpyhSW(Sa,n, P) of seawater, expressed in terms of

Absolute SalinitySa, specific entropyy, and absolute pres- , _ oSV (Sa,n, Pr) _ 0 (4.8)
sure P is a third important thermodynamic potential, useful an o p ”

in oceanography in particular for the computation of proper- '

ties related to adiabatic processes (Feistel and Hagen, 1998 the potential density?, is obtained from Eq. (S9.1),
McDougall, 2003; Feistel, 2008; I0C et al., 2010).

To compute this potential and its partial derivatives from (3 WSW (S 0. P)

the Gibbs functiorgSW(Sa, T, P) of seawater, the indepen- (p")fl =7 = op

) =P = h%. (4.9)
dent variableT appearing in the expression for the enthalpy, S p
sw Evidently, for any fixed reference pressuig, the values
hSW _ gSW _ T (38 ) (4.5) of BSW(Sa,n, P;) and its partial derivatives, as well as any
S,P

oT other arbitrary function depending on this triple of variables,
remain unchanged during isentropic const) and isohaline
must be determined from knowledge of salinity, entropy and(Sa = const) processes.
pressure. Given values 6k, n and P, the corresponding Derived from Egs. (4.7) and (4.8), three kinds of thermal
value of7 is obtained by numerically solving the equation  expansion and haline contraction coefficients are important
for numerical models (IOC et al., 2010) and these are con-

_ ﬂv (4.6) sidered below as the cases (i) to (vi). In these cases, we have
= aT o p ' omitted the superscripts SW on the seawater potential func-

tions for simplicity of the expressions. As well, we have al-
to provide the implicit relatio=T (Sa,n, P). Details on  ways regarded the reference pressBras a constant value
the iterative solution method used in the libraries are given inin each derivative considered here, without explicitly indicat-
Appendix A2. ing this in the formulas. This implies that potential enthalpy,

The specific enthalpy nSW(Sa,n, P) of seawater, Eq. (4.7), and potential temperature, Eq. (4.8), are pressure-
Eq. (4.5), as a thermodynamic potential is implemented inindependent functions of salinity and entropy, and in partic-
the library as the functiosea _h_si . ular, that any derivatives taken at consta§i,(n) can equiv-

Once the value of” has been determined as described in alently be taken at constarsix, ) or constant §a, 2%). An
the appendix, the partial derivativesiotV(Sa,n, P) are ob-  example is the isentropic compressibility,
tained from those 0§SW(Sa, T, P) as given in Table S8.

From the enthalpy and its derivatives, all thermodynamic 1/ dv _1/0v 1/ 0v ¢
properties can be computed. A selection is given in Table S¢5~ (ﬁ) v (ﬁ)s ; (ﬁ)
and additional quantities are given in Table S10 after so-
called “potential” properties are introduced. (i) The thermal expansion coefficient!, is defined as:

Many oceanic processes like pressure excursions of a sea-
water parcel conserve salinity and entropy to very good ap_ 1 _ 1 ( Bv)

S, P

(4.10)

v

S,y v S,h

proximation. In particular, if a parcel is moved this way to T

o7 (4.11)
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It is expressed in terms of derivatives of enthalpy by meansas(x@:c%ah (IOC et al., 2010). Conservative temperature,
of the Jacobi method and Egs. (S9.1), (§9.2), as ®, is potential specific enthalpy’, Eq. (4.7), expressed in
terms of an arbitrarily defined temperature urtt=h? /c%

r_13wSa.P) 10(Sa.P) [I(T.Sn.P) (4.12)  (McDougall, 2003; 10C et al., 2010); as such, it belongs

v O(T.SA.P)  vO(n.Sa.P)/ 0(n.SA.P) to level 5 of the library where non-basic-SI units and user-
1 (dv/an)s p hyp defined functions are implemented. In contrast, potential en-
- (3T /9n)g p - hphyy’ thalpy itself is defined at the core level 3 of the SIA library.

) . o ) (iv) The isothermal haline contraction coefficiefit,is de-
Using Table S8, the partial derivatives/otan be substituted  fined as:

by those ofg, with the result
1/ ov
h p=—- (—) . (4.20)
of = fnb 8T (4.13) v\dSa /7 p
hPhrm gpr

Similar to Eq. (4.12) we write Eq. (4.20) in terms of Jaco-
(i) The thermal expansion coefficient with respect to poten-y . ns a- ( ) a- ( )

tial temperatureg?, is defined as:
10(wT,P) _ 10w, T,P) d(Sa,T,P)

1/0v - - = .
o === (4.14) A va(SA,T,P)  vd(Sa,n,P)/ 3(Sa,n,P)
v\d6 /g p

(4.21)
Similar to Eq. (4.12), with the help of Eq. (4.8) we compute
Expanding the functional determinant in the numerator
o_19w,Sa.P) 19w, Sp,P) [3(0,5a,P) (4.15)  Yields, with the help of Egs. (S9.1) and (S9.2)
vd(0,5a,P)  vam,Sa,P)[ 3(n,SA,P)

? T d 9T
_1@v/owsp _ hye 1 (ﬁ> P(W)s P (ﬁ)s P(m> P
= = hoht p=—= = ’ ’ - (4.22)
v (00/9n)g p hph,m -0 (3T> :
)5 p

Using Table S8, the partial derivatives/o€an be substituted
by those ofg, with the result - —

ihSPhnn — hyphsy

hp him
6 hyp 8TP839 . . . .
a’ = — = . (4.16)  Using Table S8, the partial derivativesiotan be substituted
hphy, — gp8rT by those ofg, with the result
HzaSre,egQPi)s the potential Gibbs energy defined gé= _ hsyhyp —hsphyy  gsp (4.23)
g A,U, Iy). - h h - . .
(iii) The thermal expansion coefficient with respect to po- P sF
tential enthalpya", is defined as: (v) The haline contraction coefficient with respect to poten-
tial temperatureg?, is defined as:
o 1/ 0v
ol = ;(W> (4.17) 17 o
Similar to Eq. (4.12), with the help of Eq. (4.7) we compute v AJo.p
Similar to Eq. (4.12) we write Eq. (4.24) in terms of Jaco-
ah=} 0(v.5a, P) _19(v.5a, P) 9(h”.5a. P) (4.18)  bians o @12 o @29
va(h?,Sa,P) vd®,Sa.P)/ 9(n,Sa,P)
1 @v/dmsp  hyp poo 1 0@O.P) _ 10@0.P) [0(Sa0.P) o
:;(ahg/an)SP:hPh?’ Ua(SA’QaP) Ua(SAJIvP) 3(SAJ7,P)
Using Table S8, the partial derivativesioéan be substituted EXpanding the functional determinant in the numerator
by those ofg, with the result yields, with the help of Egs. (S9.1) and (S9.2)
e ___sre (3%),.0 (8)5, ~ ()., (%)
h n
o = = — . 4.19 1\95a P an S, P o S, P 9SA P
hphf gperT 0 (4-19) pl=-= i 17 (4.26)

T ®

. - . an
The thermal expansion coefficient with respect to conser- ) 0 S.F
vative temperatureg®, is related to Eq. (4.19) by a con- _ 1 hsphy, — hyrhy,

stant conversion factory,=399186795711963Jkg' K1,  —  n, ho,
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Using Table S8, the partial derivatives/o€an be substituted can be inferred. Hence, when enthalpy is used as an inde-
by those ofg, with the result pendent thermal variable in combination with salinity and
pressure, the responsible thermodynamic potential function
0 hznth—hSPh?m gTP(gST_ggg)—gSPgTT is entropy,nSW(Sa,h, P). Note that the superscript “SW”
- hPhgn - gPETT - (4.27) onn is included here to indicate its use as a thermodynamic
potential function for seawater, consistent with the inclusion
(vi) The haline contraction coefficient with respect to poten- of “SW” on both the Gibbs functiogSV and the enthalpy

tial enthalpy,8®, is defined as: when used as a potential function for seawater. To ob-
ial enthalpy,8®, is defined hSW wh d ial function f To ob
tain this function value numerically from its arguments, the
O — _ }< ov ) (428) EG(S8.2)
OSA J o p
h=h3"(Sp,n, P) (4.33)
Similar to Eq. (4.12) we write Eqg. (4.28) in terms of Jaco-
bians must be solved for. Because of Eq. (4.7), if the potential
enthalpy valug:? is given, the same algorithm can be used
1 9(v,h% P)
gO—_ = T (4.29) togetthe related entropy from
v 3 (Sa.h?, P) o sw
18(v,h9,P) 8(SA,h9,P) h” =h (SAJ%Pr)~ (434)
v o(Sa.n.P) 0(Sa.n.P) The inversions of Egs. (4.33) and (4.34) give respectively
Expanding the functional determinant in the numerator)7 = pSW(Sa. h, P) (4.35)

yields, with the help of Eq. (4.7)

. , d
1(?’%\)” P(%)SP B (g_)sp(%> P "

e —— ~ : L2 4.30) o =n"W(sa,n%, P), (4.36)

R
3
o "/s.p which are really the same functions with different ar-
1 hsphl) — hyphS guments. The iterative inversion algorithm is straight
 hp ho ’ forward and is implemented as the library function

) ! _ o ) sea _eta _entropy _si . It provides entropy in the form
Using Table S8, the partial derivativesiotan be substituted  f gjther ,SW(S,, 4, P) or nSW(Sa,h?, Py), from which in

by those ofg, with the result turn all properties listed in Tables S9, S10 can be determined.
Note, however, that we have not implemented an explicit
@_hgth—hSPh?y _gSTgTP_gSPgTT_gg*gTP/G routine for entropy, Eq. (4.35), as a potential function in the
B hph N gPETT ‘ library. That is, the functiorsea _eta _entropy _si pro-

(4.31) vides entropy as a function of salinity, enthalpy and pres-
sure, but it does not provide the partial derivatives of entropy
The latter equalities in Egs. (4.13), (4.16), (4.19), (4.23),With respect to those variables, nor does it take any orders of
(4.27) and (4.31) are the results given earlier in Table S7derivatives as input parameters. As such, the thermodynamic
The potential quantities written in terms of the enthalpy of Potential “entropy” is not available in the present SIA library
seawater are listed in Table S10. version in the same form as the other potential functions that
Entropy as a function of salinity, temperature and pressuréif€ summarised in Table 1. Nevertheless, various properties
is available from Eq. (S7.2). Potential temperature is definedTables S9, S10) derived from it are implemented at level 3
by the relation; (Sa, T, P)=1(Sa, 0, P;), therefore the same and evaluated from indirect algorithms, just as if the potential
function (Eq. S7.2) can be used to compute entropy as a func-entropy” were available. The corresponding routines can be
tion of salinity, potential temperature and reference pressuredentified in the implementation of the library discussed in
Since the cases (i) to (vi) above, Egs. (4.13), (4.16), (4.19)Part 2 (Wright et al., 2010a) by aeta _ instead of anh_
(4.23), (4.27) and (4.31), specify the different expansion andn the function names given in Table S10, which indicates
contraction coefficients as functions of entropy, these coeffithe implicit use of entropy as the potential function. Conse-
cients are available as functions of potential temperature, tooduently, these routines take enthalpy or potential enthalpy as
by means of Eq. (S7.2). the thermal input parameter rather than entropy.
From the enthalpy definition Eq. (4.5) and the differential
Eq. (3.7) of the Gibbs function, the relation

aw 1 m In many practical situations the pressure rather than the
dn>" = —dh — —dP — —dSa (4.32)  density of humid air is available from observations. For
T T T

4.4 Gibbs function of humid air

Www.ocean-sci.net/6/633/2010/ Ocean Sci., 6, ®33%-2010



646 R. Feistel et al.: Oceanographic application and numerical implementation of TEOS-10: Part 1

this purpose, the appropriate thermodynamic potential is thgarcel at some given altitude if the initial entropy was com-
Gibbs functiong”V (A4, T, P) of humid air, computed from puted at the surface. For this application purpose, the ap-
the Helmholtz functionf”V (A, T, p) of humid air, Eq. (2.7), propriate thermodynamic potential is the specific enthalpy
by the Legendre transform (Alberty, 2001) ™ (A,n, P) of humid air, computed from the Gibbs func-
tion g”V (A, T, P) of humid air, Eq. (4.37), by the Legendre

9 AV P AV
GV A v( J; ) =fAerp< g ) . (a37) transform (Alberty, 2001)
vV /Jar O Jar

P AV
I . i =g - T LS (4.40)
and the subsequent substitution of the independent variabl T )4 p

p by P, obtained from solving numerically the equation o ]
The subsequent substitution of the independent varifibie

_ 2 <8fAV> . 438 " is obtained numerically from solving Eq. (S12.2) for
o Jar 50AV
| | o p=-— (g—) : (4.41)
For oceanographic and meteorological applications it is not oT Jap

ne_cessary_to Co.”s'der liquid or solid air. Ther_efore, we ”_a'As a starting value for the iterative solution of Eq. (4.41) for
strict consideration of Eq. (4.37) to the following regions: T at given pressur®, air fractionA and entropyy, we use

(i) for temperatures above the critical temperature of dryan ideal-gas approximation of Eq. (S12.2) in the vicinity of
air, T>T:=132.5306 K, all pressures in the range shown inthe IAPWS-95 triple pointT;, P) of water:

Fig. 4 are included; and (ii) at subcritical temperatufesT,

only temperatures higher than the dewpoint temperafyre AT n—nt+ Rav In (P/P)

i.e. the condensation point of liquid air, are included. The texp A(A + Ra) + (L— A)(c% + Rw)

function Tp is available from Lemmon et al. (2000) and is

shown in Fig. 4. This expression does not depend on the particular
As a starting value for the density iteration of Eq. (4.38) choice made for the adjustable coefficients of the en-

at given pressuré®, air fraction A and temperaturd, the tropy. The constants arejp=n(A,T;, P1) computed

}. (4.42)

ideal-gas equation is suitable: from Eq. (S12.2) at7;=273.16K, P=611.654771Pa,
¢$5=1003.69 Jkg* K1, ¢}/=1884.352 kgt K1,
~ M (A) (4.39) Ra=RIMa, Rw=RIMy and Ray=R/Ma,. The mo-
RT lar mass of air is¥A=0.02896546 kg mot, that of water is

The molar mass of humid aiay is given by Eq. (2.8), and Mw=0.018015268 kg mof', May is given by Eq. (2.8), and
R=8.314472 Jmoi* K1 is the molar gas constant. Insert- R=8.314472Jmol K~ is the molar gas constant.
ing the numerical result fop into Eq. (4.37) provides the ~ Once the value of" has been determined from solving
required function value ofV at givenA, T, P. Forthe nu-  EQ. (4.41), the partial derivatives @f" (A,n, P) are ob-
merical computation of partial derivatives of the Gibbs func- tained from those og”V(A,T, P) as given in Table S13.
tion, algebraic combinations of analytical derivatives of the Thermodynamic properties as given in Table S14 can be cal-
Helmholtz function are implemented as given in Table S11. culated from algebraic combinations of these derivatives.
Thermodynamic properties of humid air at given 7, If a humid-air parcel is moved adiabatically to some refer-
P are computed from the Gibbs function (Eq. 4.37) and itsence pressur@=PF; below its isentropic condensation level
partial derivatives, Table S11, as given in Table S12. The(ICL, Emanuel, 1994; Feistel et al., 2010a), all its thermody-
deviation of the compressibility factdfa, from unity de- ~ namic properties given in Table S14 can be computed at that
scribes the non-ideal behaviour. The adiabatic lapse rate igeference level from the partial derivativesigt (A7, Pr)
given with respect to pressure rather than altitude and refergnd the in situ entropy (A, 7, P), Eq. (S13.1). As discussed
to subsaturated humid air, often referred to as “dry-adiabatic’for seawater in Sect. 4.3, properties derived from the poten-

in the meteorological literature. The air contraction coef- tial function2”V at the reference pressure (frequently speci-
ficient, 5=_% (g_z)T p» is the relative density increase if a fied as the surface pressure) are commonly referred to as “po-
small mass of vapour in a sample is replaced by air. Ad-tential” properties in meteorology. Examples are the poten-
ditional equations for humid-air properties are discussed irfial enthalpy,i, library functionair _potenthalpy  _si ,
Feistel et al. (2010a).

A
4.5 Enthalpy of humid air he = h"" (A,n, Pr), (4.43)

o . . the potential temperature from Eq. (S142)jn °C, library
When humid air is lifted adiabatically from the surface to a ,ctionair pottemp _si ,

certain pressure level, its air fraction and its entropy can of-
ten be considered as conservative during this process. Thu§,0 o <8hAV (A,n, P,))
APy

the entropyn rather than the temperatuieis known for a an (4.44)
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and the potential density from Eq. (S14.4), library func- In terms of the Primary Standard functions and their indepen-
tionair _potdensity si, dent variables (Sect. 2), Eq. (5.1) is expressed by the system
F w W ,F w
1 (ahAV (A,n,Pr)> (4.45) ! (T’P ) +o7fp (Tap ) (5.2)
P =|\——F5 . .
o Py A ZfF(T’IOV) +10Vf,(!:(T’pV>

Evidently, for any fixed reference pressuf, the value of 2

W™ (A,n, Py) and its partial derivatives, as well as any other (pW> £ (T, pW> =P (5.3)

arbitrary function depending on this triple of variables, re-

main unchanged during isentropic processgs (const) at )

constant specific humidity4( = const). (pV> fF(T,pV) —p (5.4)
Physically reasonable values of the entropy to be used . _ ) i

as an independent variable of the enthalpy are restricted t§/N1ch €xploits the relations (Egs. S2.6 and S2.11) to avoid

ranges depending on humidity and pressure, between the paptacked numerical iterations.  Eq. (5.2) is equivalent to

ticular limits given by dry and saturated air, see Sect. 5.8. Eq. (5.1) and is also known as the *Maxwell condition” in

oW
the form [ [f/f—ﬁ]dpzo. Equations (5.2)—(5.4) provide
oV

5 Level 4: Phase equilibria and composite systems three equations for the four unknowis P, oV and p"".
Any one of these quantities can be specified independently

fto complete the system and permit the numerical solution as
zﬂiscussed in Appendix A3.
Once the values df, P, pV andp" are computed from

Equilibrium properties at phase transition boundaries or o
coexisting phases are often characterized by drastic spati

or temporal changes, and large values of latent heat exchan% iterati fE 5 2)(5.4) at th ified saturati
or volume expansion, e.g. if seawater freezes or evaporate 1€ Wteration of EQs. (_ y )._( 4) & '€ Specitied saturation
condition, various equilibrium properties can be determined

Such multi-phase and multi-component properties are avail- . X
able from combinations of the thermodynamic potentials if from the formulae given in Table S15.
they are consistently adjusted to reference state conditiong 5 Equilibrium water-
which fix the absolute energies and entropies of the sub-

stances involved (Feistel et al., 2008) Gibbs functions Canrhe me|t|ng pressure of ice is usua”y Computed at a given
be constructed for composite systems such as sea ice (Feisi@mperaturd”, giving P™(T). Similarly, the freezing tem-
and Hagen, 1998, Sect. 5.4) that contain two stable phase@serature of water is normally determined at a given pressure
(e.g. ice and seawater). When the temperature, the volume  giving 72(P), which also gives the melting temperature
or the pressure of a composite system is changed, mass ¥ ice. In either case, the defining condition is equality of the
transferred from one phase to the other; for example if seghemical potentials of liquid water and ice,

water freezes or evaporates, brine salinity or vapour pressure,,, h
adjust to the new conditions imposed and the heat capacity (T.P)=g"(T.P). (5.5)

or the thermal expansion of the whole system exhibits veryin terms of the Primary Standard functions and their indepen-
large changes resulting from the changes in latent heat contrident variables (Sect. 2), Eq. (5.5) is represented as the system
butions. By utilizing mutually consistent potential functions,

ice: melting and freezing

rigorous mathematical formulae can be determined for the W W oF w\ _ ih
numerical calculation of latent properties depending on th (T’p ) +ootp (T’p ) =g (T.P) (5:6)
particular conditions such as isobaric, isochoric or isentropic
processes. 2
(") sE(T.0%) =P, (5.7)
5.1 Equilibrium liquid water-vapour: saturation which exploits the relations (Egs. S2.6 and ES2.11) to avoid

stacked numerical iterations. Equations (5.6) and (5.7) sup-
The saturation point of pure water is usually computed atply two equations for the three unknowrds P and p\V.
a given temperatur@, providing the vapour pressum = Specifying any one of these quantities completes the deter-
PVaP(T), or at a given pressur@ providing the boiling tem-  mination of the system which can then be solved as discussed
peraturel’ = T°°!( P). The defining condition is equality of in Appendix A4.
the chemical potentials of liquid and vapour, which equal the Once the values of, P andp"V are computed from the

Gibbs functions in the case of pure phases, iteration of Egs. (5.6), (5.7) at the specified melting condi-
tion, various equilibrium properties can be determined from
¢V(r,P) =gV (T, P). (5.1) the formulae given in Table S16.
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5.3 Sublimation equilibrium ice-vapour which exploits the relations Eqgs. (S2.6), (S2.11), (4.4)
and (S7.12) to avoid stacked numerical iterations. The func-
The sublimation pressure of ice is usually computed at ation fF(T,pW) is abbreviated here by, and similarly for
given temperaturd’, giving PSU(T). Similarly, the sub- its partial derivatives. Equations (5.12) and (5.13) provide
limation temperature of ice is usually computed at a giventwo conditions for the four unknown$a, 7, P andp". To
pressureP, giving 75U P), which also gives the ice-point complete the system, two of these variables must be speci-
temperature of vapour at which frost is formed. The defin-fied, usually out of the triplé§a, 7 or P. Once two of these
ing condition is equality of the chemical potentials of water variables are specified, the system may be solved iteratively

vapour and ice, as discussed in Appendix A6.
v h Once the values ofa, 7, P andp"V are computed from
g (T,P)=g"(T,P). (5.8)  the iteration of Egs. (5.12) and (5.13) for the specified choice

, ) . of parameters, variousingle-phasesquilibrium properties
In terms of 'Fhe Primary Standard funcyons and their mde—Can be determined from the formulae given in Table S18.
pendent variables (Sect. 2), Eq. (5.8) is represented by the 11,4 composite system “sea ice” consisting of seawater and

system ice can be described by a suitable Gibbs functih(Ss),
. v v E v n T, P) which is available from the equilibrium solution of
f (T,;O ) +p" [ (T,,O ) =g (T,P) (5.9)  Eq. (5.11) and can be used to compute all thermodynamic

properties of this two-phase system, in particular its latent
heat (for details see Feistel and Hagen, 1998):

2
(oY) £5(1.0Y) = P. (510)  §%(Ss1.T.P)=(1-0)g" (T. P)+bg™"(Sa.T.P). (5.14)

which exploits the relations (Eqs. S2.6 and S2.11) to avoidHere, b=Ss/Sa<1 is the mass fraction of brine arf; is
stacked numerical iterations. Specifying any onerofP the given “bulk” or sea-ice salinity, i.e. the mass fraction of
andpV, completes the system and allows numerical solutionsalt in sea ice, in contrast to the brine salinfiy(7', P), the
as discussed in Appendix A5. mass fraction of salt in the liquid part, which is a function
Once the values of, P andp" are computed from the Of temperature and pressure controlled by the equilibrium
iteration of Egs. (59) and (5.10) at the given sublimation Ed- (5.11). For a compact writing of the partial derivatives
condition, various equilibrium properties can be determined©f EQ. (5.14) it is useful to define a formal latency operator
from the formulae given in Table S17. of sea ice,

5.4 Equilibrium seawater-ice: sea ice Asi[z] = 25V — Sa (3ZSW> _h (5.15)
aSa

The freezing temperature of seawater with absolute salin- I.p

ity Sa is usually computed at a specified pressfrgiving  Here, 7 is a certain thermodynamic function. For example,

T"2(Sa, P). Similarly, the brine salinity of sea ice is cal- the equilibrium condition (Eq. 5.11) can be written in the

culated at a specified temperatufeand pressure® giving form

SR””e(T, P), and the melting pressure at which the solid frac-

tion of sea ice disappears is calculated at specHfiedndT Asi[g] = 0. (5.16)

giving PMe!(S,T). The defining condition for each of these

is equality of the chemical potentials of ice and of water in The total differential of Eq. (5.16) is commonly known as the

seawater, Clausius-Clapeyron differential equation of this phase tran-
sition:

Ih SW 9g5W A dA

TP =gVSa TP = Sa () - 61 <_S'[g]) dSa + ( S'[g]) dr (5.17)
AJrrp SaJr.p T Jsp
. . L. dAsi[g]

In terms of the Primary Standard functions and their inde-+ dP=0.
pendent variables (Sect. 2), Eq. (5.11) is represented as the 8. T
system The first term yields the chemical coefficient, Eq. (S4.6),

Ih W W W S S
g =f"+p"f, +8 —Sag (5.12) dA

g g Ds=— SA< S'[g]> = S3eSs, (5.18)
ISa J1p

WA2 which has a positive sign as can be concluded from the Sec-
(p ) fp =P, (5.13)  ond Law of Thermodynamics (Landau and Lifschitz, 1964;
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I0C et al.,, 2010). From the second and third terms ofand is available from the function
Eq. (5.17) we infer the derivatives of the brine salinity to be sea _ice _expansion _seaice _si inthe library. The
third term on the right hand side of Eq. (5.24) is the melting

(%) = — SAAL[”], (5.19)  rate, Eq. (5.21), multiplied by the isobaric melting volume
oT ) p Ds of sea ice, functiosea _ice _volume _melt si ,
aUSW
(%) = sp 2ol (620) V§'=Asil] = % -Sa| o - (5.25)
aP )y Ds AJrp

With the help of these relations we can compute thermody- . oW
namic properties of sea ice from the partial derivatives of thel '€ SPecific volume of tr}ﬁ brine;>™, is computed from
Gibbs function (Eq. 5.14) as given in Table S7 for seawa-E0- (S7-1), and that of ice,", from Eq. (S3.13).
ter if the salinity Sa considered there is substituted by the ~ Since the freezing-point lowering due to pressure always
sea-ice salinitys and the Gibbs functiogSW(Sa, T, P) by exceeds the adiabatic lapserate of seawater, cold seawater
¢5!(Ss1, T, P). The Gibbs function of sea ice, Eq. (5.14), is May freeze and decompose into ice and brine during adia-
implemented as the functissea _ice _g_si in the library. batic uplift but this can never happen to a sinking parcel. This
Related to the intrinsic phase transition, certain propertiedT€€zing process can destabilize the water column, e.g. off the
of interest are very specific for a composite system like sea\ntarctic shelf (Foldvik and Kvinge, 1974), since the ther-
ice and not listed in Table S7. Using Eq. (5.19), the isobaric™al expansion of sea 'C@g:g%/é’?! Eg. (5.24), func-
melting rate, i.e. the increase of the brine fractienSs /S, ~ tionsea_ice _expansion _seaice _si inthe library, and

upon warming is consequently also the adiabatic lapserate (McDougall and
Feistel, 2003) of sea ice;S'=—g3, /g3, Eq. (S18.14),

<%> _ bAs[n] (5.21) possess large negative values near the freezing point (Feis-

T ) s p ~ Ds ' tel and Hagen, 1998). These and related properties can be

) . ) . evaluated directly from the partial derivatives of the Gibbs
The isobaric heat capacity of sea ice computed fromsynction of sea ice, Eq. (5.14), implemented as the function

Egs. (5.14), (S7.6) and (5.19), sea_ice _g_si in the library, in terms of the in situ tem-
92gS perature. For a seawater parcel, the potential temperature
cp=— T( 972 ) (5.22) thatcorresponds to the freezing point under pressure is some-
Ssi, P what ill-defined physically since it is practically impossible

i SW s ( b to lift a parcel at the freezing point to the surface isentropi-
=1 =Db)cp +bcp” + Lp (ﬁ) ’ cally without decomposition into ice and brine. Freezing of
Ssi. P a seawater parcel cannot occur at any depth as long as its
consists of the single-phase contributions of icﬁ, and  potential temperature referenced to the surface is higher than
brine, c$W, as well as a latent part, and is implemented asits freezing point temperatufE™(Sa, Pso) computed from
sea_ice _cp_seaice _si . Inthe latterterm, the coefficient Ed. (5.11) at the surface pressutep, as discussed by Jack-
LS'in front of the melting rate, Eq. (5.21), is the isobaric la- ett etal. (2006).
tent heat of sea ice, As an observational example, the brine salinity,
Eq. (518.2), of Antarctic sea ice at normal pressure is
shown in Fig. 6 in comparison to measurements of con-
ansSW h centrated brines by Gleitz et al. (1995) and Fischer (2009).
ISh —h", Note that only freezing point measurements at salinities less
r.p than 40 g kg?! were used for the construction of IAPWS-08
and is available from the function (Feistel, 2008).
sea _ice _enthalpy _melt _si inthe library. The enthalpy
of the brine, SV, is computed from Eq. (S7.3), and the 5.5 Equilibrium seawater-vapour
enthalpy of ice'", is computed from Eq. (S3.4).
Similarly, the thermal expansion of sea ice is computedThe vapour pressure of seawater is usually computed as
from Egs. (5.14), (S7.15) and (5.19), a function of temperaturd” and Absolute SalinitySa,
si » sl h givingPV8P(Sa,T). Similarly, the boiling temperature of
av °g av ; ;
( ) — ( ) = (1— b)( ) (5.24)  Seawater is computed as a function of absolute presBure
Ssi, P Sl

LY = TAsi[n] = Asi[h] = (5.23)

hSW— SA<

oT oToP T and Absolute Salinitya, giving 7P%!(Sa, P), and the equi-
SW librium brine salinity is computed as a function &f and
b2V Vg'(%) , P, giving S&™M&(7", P). The defining condition for each of
or /o 0T / ss.p these quantities is equality of the chemical potentials of water
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Brine Salinity of Antarctic Sea Ice We use the name “sea vapour” to refer to a composite
A N N S S B B e system consisting of seawater and vapour in thermodynamic
S~ e equilibrium. Its Gibbs functiorzSY(Ssy, T, P) depends on
SRS S SO S S S S SO SR L absolute temperaturg, absolute pressur® and the mass
ol e by fraction of salt, which is the “bulk” or “sea-vapour” salinity
= s G A Ssv; the Gibbs function is expressed as
T Y )
© | | | F | ) | | | | |
Bl Fl o Mg il &¥V(Ssv.T.P) (5.30)
Bl TR = A= h)g (T P) +bg% A, T, P).
15} 1 1 1 1 1 1 1 1 . 1
R e R S Sl S s S G P 267 Here,b=Ssv/Sa<1 is the mass fraction of brine. The brine
T T e T salinity Sa(T, P) is a function of temperature and pressure
e s controlled by the equilibrium Eq. (5.26). For a compact writ-
ing of the partial derivatives of Eq. (5.30) it is useful to define
T T T T T T T T T T T 264
0 10 20 30 40 50 60 70 80 90 100 110 120 a formal latency operator of sea vapour,
Salinity ~ Sx /(g kg™)
Sw 9z5W %
Fig. 6. Brine salinity computed from Eq. (S18.2) at given tem- Asvlz] = 277 — Sa ISA < (5.31)
T,P

perature and normal pressure, compared with measured results for
Antarctic sea ice. Symbol “F": data of Fischer (2009), “G”: data of

Gleitz et al, (1995), Here,z is a certain thermodynamic function. For example,

the equilibrium condition Eqg. (5.26) can be written in the

form
vapour and of water in seawater, Asv[g] =0. (5.32)
9gSW The total differential of Eq. (5.32) is commonly known as the
gV(T,P) = gSW(SA,T,P) — SA( 2s ) (5.26) Clausius-Clapeyron differential equation of this phase tran-
Alre sition:
In terms of the Primary Standard functions and theirindepen-'(jaASV[g]> dSa + <3ASV[«S’]> dr (5.33)
dent variables (Sect. 2), Eq. (5.26) is expressed as the system dSA /7. p oT S.P
A
+ (5—)}"]) dP =0
YAV = VN + g5 - Sags (5.27) ST
The first term is the chemical coefficient (Eq. S4.6),
3Asv[g]) 2 s
2 Ds=— Spa| ——— =S . 5.34
(f’v> f, =P (5.28) s A( oS ) p ASSS (5.34)
From the second and third terms of Eq. (5.32) we infer the
5 derivatives of the brine salinity,
(pW) =P, (5.29)

%) —— S Asv[n] (5.35)
p

which exploits the relations (Egs. S2.6, S2.11, 4.4 and( oT Ds

S7.12) to avoid stacked numerical iterations. The function

fF(T.p") is abbreviated here by, and similarly for £ ag A

and their partial derivatives. Equations (5.27), (5.28), (5.29)(—A> = SALM. (5.36)

provide three conditions for the five unknowsis, 7', P, pV P/t Ds

andp", so two of these parameters must be specified, usuy the help of these relations we can compute thermo-

ally from the setSa, 7', P, to complete the system. Once qynamic properties of sea vapour from the partial deriva-

this choice is made, the system can be solved as discussed {es of the Gibbs function (Eq. 5.30) as given in Table S7

Appendix A7. v w for seawater if the salinitysa considered there is substi-
Once the values ofa, 7, P, p” andp™ are computed  (1eq by the sea-vapour salinitysy and the Gibbs func-

from the iteration of Egs. (5.27)—(5.29) at the given evapora-;s, ¢SW(Sa, T, P) by ¢5V(Ssv, T, P). The Gibbs function

tion conditions, various equilibrium properties can be deter-o¢ gaq vapour, Eq. (5.30), is implemented as the function
mined from the formulae given in Table S19. sea_vap .g.si "inthe Iibrar’y.
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Certain properties of interest are very specific for a com-
posite system and not listed in Table S7. Using Eq. (5.35),
the isobaric evaporation rate, i.e. the decrease of the brind * + 0" f5' = f>+ p°f5 + &% — Sag§ (5.41)
fractionb=Ssy/Sa upon warming is

b bAsv[n] 2
- (= == 5.37 W\“ W _ pW
(8T>SSV,P Ds (5.37) (p ) W_p (5.42)

The isobaric heat capacity of sea vapour computed from

Egs. (5.30), (S7.6) and (5.35), (,os>2fps _pS (5.43)
52,SV

cp=-— T( 5772 ) (538)  which exploits the relations (Egs. S2.6, S2.11, 4.4 and S7.12)

Ssv, P to avoid stacked numerical iterations.  The function

— (- b)Y+ beSWV 4 LSV< Bb) fF(1,pV) is abbreviated here by™, and similarly for

P P T ) s p’ S computed at the liquid-water densip? related to the

) ) o pressurePS, as well as their partial derivatives. Equa-
consists of the single-phase contributions of vapoxlr and  tions (5.41), (5.42), (5.43) prowde three conditions for the
brine,cP , as well as a latent part, and is implemented assix unknownsa, 7, PS, PV, pS andpW, so three of these
sea_vap -cp _seavap _si . Inthe latter term, the coefficient parameters must be specified to complete the system. Once
in front of the evaporation rate (Eq. 5.37) is the isobaric latentthis choice is made, the remaining parameters can be deter-
heatL3" of seawater, mined as in Appendix A8. .

Once the solution fosa, T, PS, PV, pSandp"W has been
L3 == TAsvln] = - Asvlh] (5.39) found, the desired properties of the equilibrium can be com-
_ VS <8hSW) puted, in particular the osmotic prgssufé?s”EPS—PW.
3Sa ’ The related functiosea _lig _osmoticpressure  _si is
r.p implemented in the library.

which is available from the function

sea_vap _enthalpy _evap _si in the library. The brine 5.7 Triple point sea ice — vapour

enthalpy,2S%W, is computed from Eq. (S7.3), and the vapour . _ .

enthalgzjzv from Eqp(SZ 3) a- ( ) P The equilibrium between sea ice and vapour includes three
’ T phases, solid, liquid and gas, and two components, water

5.6 Osmotic equilibrium seawater-liquid and salt. Air is not involved. This equilibrium state extends

the ordinary triple point of pure water to non-zero salini-
If pure water is separated from seawater by a semi-permeabliges, i.e. along a one-dimensional manifold. This curve is
membrane which lets water molecules pass but not salt partishown in Fig. 3 by the “Triple Line” which has the same
cles, water will penetrate into the seawater, this way diluting7 — P relation as the sublimation line because ice is in sub-
it and possibly increasing its pressure, until the chemical podimation equilibrium with water vapour at any given brine
tential of water in both boxes will be the same (or the puresalinity. Note that saturation is defined as the equilibrium
water reservoir is exhausted). In the usual model configurastate between water vapour and liquid water above the freez-
tion, the two samples are thermally coupled but may posses#g point of pure water, or, below that temperature, between
different pressures; the resulting pressure difference requiredater vapour and ice (IAPWS, 2010). Hence, as soon as ice
to maintain equilibrium is the osmotic pressure of seawateris present in an equilibrium system, the water vapour in the
An example is desalination by reverse osmosis; if the presgas phase is regarded as saturated.
sure on seawater in a vessel exceeds its osmotic pressure, The equilibrium conditions for temperature, pressure and
freshwater can be squeezed out of the solution through suitthemical potentials that determine the locus of triple points

able membrane walls (Sherwood et al., 1967). are expressed in terms of the Primary Standard as
The defining condition for the osmotic equilibrium is v v W W AW
equality of the chemical potentials of pure water at the pres~/ + 2 Vi =40V Y + g% - Sags (5.44)
surePY and of water in seawater at the pressBre
w W) __sw s ag>" FVogpV Y =gh (5.45)
g (T,P ):g (SA,T,P )—SA . (5.40) P fy =8 :
YN  pS

In terms of the Primary Standard functions and their indepen- 2
dent variables (Sect. 2), Eq. (5.40) is expressed as the systef = (pv> N (5.46)
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1 ! . 1 800 or the “condensation point”. The condition for this equilib-
o of 5 M° rium is equal chemical potentials of liquid water, Eq. (4.2),
e TE gt gl | v & La00 and of water in humid air, Eq. (S12.15),
| S T N A
S 2 I & N 9gV W
SR IR R N7 I LU o A(—) = g". (5.48)
N e & | A | A Jr.p
£ AR : T Ny S T R B In terms of the Primary Standard functions and their inde-
E | pendent variables (Sect. 2), Eq. (5.48) is expressed using the

SRRt FERREE Ry e e R SET T e TR 1111 A
! ! ‘ ! ! VAPOUR | relations

e e TS, (P, B 549
i i i i i i i —L200
263 265 267 269 271 273 275 277 E
Temperature 7 /K 2/0f
p= (pW> <8,0_W> (5.50)

Fig. 7. Temperature-pressure phase diagram of seawater in the
vicinity of the triple point. At different salinities, the triple point

(TP), i.e. the equilibrium between liquid seawater, ice and vapour ay AV( AV) AV
is displaced along the sublimation line (in bold) of the ice-vapour =f A.T.p +P/p (5.51)
equilibrium. Note that the triple-point pressure can change by a fac-
tor of 2 while the vapour-pressure lowering at constant temperature
is only of order 10% or less. 2/ 9~
pP= (pAV) ( fAV) . (5.52)
dp AT

5 The independent variables in this scheme are the total pres-
P <pw) . (5.47)  sure,P, the liquid densityp", the humid-air densityp®,
the temperaturef, and the air fractiond. Using Egs. (5.49)

Equations (5.44)—(5.47) provide four conditions for the five and (5.51) to eliminate the Gibbs potential in favour of the
unknownsSa, T, P, p¥ andp"’. Any one of the five parame- Helmholtz potentials results in three equations for these five
ters may be specified to complete the system which may theanknowns.
be solved as discussed in Appendix A9. For the numerical solution, two of the five unknowns as

If any one of the three variable&, T, P is specified, the  well as starting values for the remaining unknowns must be
other two are determined by the above conditions. Figure %&pecified. Four important cases are considered in detail in
shows the displacement of the triple point along the sublima-Appendix A10.

tion line as a function of salinity. No matter which of the four cases considered in the ap-
In the library, the equilibrium propertie®, T andSa of pendix is applied to compute the equilibrium between liquid

sea-ice vapour are available from the functions water and humid air, the numerical solution of Egs. (5.48)—

sea_ice _vap _pressure i, (5.52) provides a consistent set of equilibrium valuesAor

sea_ice _vap _temperature _si and T,P, pW andp”V which is then available for the computa-

sea _ice _vap _salinity  _si . Note that the equilibrium tion of any other property of either saturated humid air or

conditions are actually determined by calling one of liquid water in this state.

set _sea_ice _vap _eq.at p, For example, at given temperatufeand total pressure,

set _sea_ice _vap _eq._at _t or the partial vapour pressure of saturated air is available in the

set _sea_ice _vap _eq_at _s, depending on which of form

pressure, temperature or salinity is specified. Thus, one of

these %et _"-routines must be called before accessing P sat cale
T or Sa using the above function calls, but all three equi-
librium properties corresponding to the specified paramete

choice are available once the appropriaget” "-routine is
executed.

VP (5.53)

From the solution obtained fot (T, P), using

library functionlig _air _massfraction _air _si

and then converting to the mole fraction of vapour,

xfV=1-x4" (A), Eq. (S1.5), using the library function

5.8 Equilibrium humid air — liquid water air _molfraction  _vap _si . The comparison with  ex-
perimental data for the saturated vapour pressure (Feistel et

The state in which humid air is in equilibrium with liquid wa- al., 2010a), Fig. 8, permits an estimate of the effect of the

teris commonly referred to as “saturated air”, the “dewpoint” cross-virial coefficientBaw (7)), Caaw (T) and Caww (T)
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on the validity of this formulation at higher densities. a) Vapour Pressure Data of Saturated Humid Air
From the data scatter at low densities we may estimate the e !
experimental uncertainty to be better than 0.5%. Ambient
air has a density of typically 1kgn? or less. At about
10kgnt3 | an error of about 2% must be expected if the
second virial coefficient8Baw (T) is omitted. The same
error occurs at 100kgn? with Baw(7) included but is
reduced to 1% if the coefficientGaaw (T) and Caww (T)
are considered, too.

A practically important quantity is the relative humid- P b el
ity, RH, which expresses the deviation of the air fraction & [ 1 1 T g0
A of a given sample of humid air from the saturation value ! T
AS(T, P) belonging to the same temperature and pressure,
computed as the solution of Eq. (5.48) in the scenario of ‘ S N S S SO SN SN N 50
case 3 from Appendix A10. Out of several options available 0 25 50 75 100 125 150 175 200 225 250 275 300

i . L . Densit /(kgm *)
from the literature, two different definitions are implemented P s .
- ’ b) Ve Pressure Data of Saturated Humid Air, magnified
and attributed here to the WMGnd to the CCT, ) Vapour Pressure Data of Saturated Humid Air, magnifie

1/A —1

B g

ic

e R S e e S Bl

N 2 s S T R
(A S XA S S N S 11

sat, cale sat, exp sat, exp
P - P )/ P

100
o

I I I I I I I I I I
I I I I I I I I I

,,,,,,,,,,, T4
\ \ I \ \ i \ I \ I

x§Y (AsaY(T, P))

RHwmo (A, T,P) = — = —— 554)
o ( ) LA P) — 1 (5.54) :

a,

and =
AV £

A N

RHccT(A,T,P) = W (A) (5.55) 4

with the mole fractione}Y =1—x4V (A) from Eq. (2.12). Ac-
cording to Jacobson (2005), the WMO defines the relative °~
humidity as given in Eq. (5.54). This definition is also given g
by other sources such as Gill (1982). Alternatively, internal
discussion documents of BIPM CCT-WG6 (Jeremy Lovell- ‘ S S SR S NS N N S s
Smith, private communication, 2010) consider as a suitable o 25 50 75 100 125 150 175 200 225 250 275 300
option for the definition of relative humidity the commonly Density  p/(kgm )
used formula (Eg. 5.55). This definition is also recom-
mended in a recent document of WMO (2008), in contrast to
Eq. (5'5.4)' The.deflnltlon of relatlve_humldlty given by the in (Feistel et al., 2010a), in comparison}?éatcaccomputed from
International Union of Pure and Applied Chemistry (IUPAC, E

gs. (5.53), (521.9) and (S1.5). Symbol “0™: formula Eq. (2.7)
1997) is similar to Eq. (5.55) but uses the ratio of the pa'rt'alwnhout cross-virial coefficients, “B”: formula with the second
pressure of water vapour in humid air to the pressure of satzross.virial coefficienBay (T), “C™: formula with the second and
urated, air-free vapour, and does not exactly match 100% aird cross-virial coefficient8aw (T), Caaw (T), Caww (T). The

Fig. 8. Experimental data for the saturated vapour presB§aexP
of humid air at different pressurésand temperaturéE as reported

saturation. smaller scatter is magnified in pan@). The improvement real-
In the library, the conversion functions from air fraction ized by including theC coefficients is effective mainly at densities
to relative humidity are implemented as higher than 100 kg m>.

lig _air _—rh wmafrom _a_si and

liq _air _rh _cct _from _a_si . Their inverse functions are They are implemented in the library as

lig _air _a_from _rh _wmasi and

_ 1 (5.56) lig _air _a_from _rh _cct si .
1+ RHwmo X (1/Asat(T,P) — 1) With “wet air” we refer to a composite system of liquid
water and humid air with the mass fractiom$ of dry air,
and, from Egs. (2.9) and (2.11), wY of vapour andw"W of liquid water, w”+w" +wW=1.
1-RHcerxxlY (AS(T, P)) The mutual equilibrium requireaS3{(T, P)=w”/w?, with

(5.57)  wWA=pA4+wV=1—-wW being the gaseous mass fraction.

1 AV ( psat _
1-RHecrxxy (A (T’P)) x (1=Mw/Mp) The Gibbs function of wet air reads (Feistel et al., 2010a)

3WMO: World Meteorological Organisatiomww.wmo.int
4CCT: Consultative Committee for Thermometry,
www.bipm.org/en/committees/cc/cct/
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AW (A wh AV ( ssat
A
1— —— ) g%V T,P
+ ( Asat(T,P)>g ( )

and is a linear function of the air fraction,®. Various
wet-air properties are available from combinations of par-
tial derivatives of the potential (Eq. 5.58) withS3(T, P)
computed from Egs. (5.48)-(5.52) as in case 3 from Ap-

R. Feistel et al.: Oceanographic application and numerical implementation of TEOS-10: Part 1

This is not a trivial task because a good analytical estimate
for 7AW (w”, 5, P) is not available, and the Newton iteration
of Eq. (5.64) tends to be unstable so that the range of starting
parameters that yields convergent solutions of Eq. (5.64) is
rather restricted. An interval method like Brent’s algorithm
appeared to be the best choice in this case, applied between
upper and lower temperature bounds. These limits follow
from the physical conditions that wet air can only exist be-
tween freezing and complete evaporation of the liquid water
part. Thus, the lower temperature boukgl,(w”, P) for the
solution of Eq. (5.64) is the freezing temperati@ifée't P) of

pendix A10, see Table S21. For the computation of thewater under the pressur,

partial 7—P derivatives of g"W, the first derivatives of
AS(T, P) are required. Taking the respective derivatives of
Eq. (5.48) we get the isobaric drying rate,

8Asat A
_ _ gealawln] (5.59)
oT Jp D
and the isothermal drying rate,
3Asat A
_ __ yeaawlv] (5.60)
oP Jr D

of humid air, i.e. the decrease of its saturated air fractief
due to heating or compression. The chemical coeffid&nt
is defined in Eq. (S12.16). The latency operatagy of wet
air used here is defined for the specific entrogyy =—g7\,

of the form

9 AV
Aawinl =0 — A (g—A> — ", (5.61)
T,P
and for the specific volume®W =gV of the form
) AV
Apwlv] = & — A( v ) - (5.62)
A Jrp

The partial derivatives of the Gibbs functighV (w”, T, P),

Eq. (5.58), of wet air are given in Table S20. Properties of
wet air computed from this Gibbs function are given in Ta-
ble S21.

For the description of isentropic processes such as the up?

lift of wet air in the atmosphere, enthalg™V (w”,n, P)
computed from the Gibbs function (Eq. 5.58) is a useful ther-
modynamic potential:

)wA,P .

For this purpose, the temperatfeorresponding to a given
entropyn, must be determined to evaluate the right side of
Eq. (5.63). The appropriate value Bfmust be obtained by
numerically solving the equation

T
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agAW
aT

WW = AW _ T< (5.63)

8gAW
aT

(5.64)

&V (Twin, P) = " (Tiin. P).,

computed from Eq. (5.5). The upper temperature bound
Tmax(w™, P) is computed from Eq. (5.48) in case 2 from
Appendix A10 for a vanishing liquid fraction, Eq. (S21.9),
i.e., the air fractionA of humid air equal to that of wet air,
wt=

(5.65)

—) } =gV (Tmax P)  (5.66)
T.P | p=wA, T=Tmax

The entropy range corresponding to the intefgh—Tmax iS
shown in Fig. 9.

The partial derivatives of the enthalpfV (w”, 5, P) are
computed from those of the Gibbs function, Table S20, as
given in Table S22.

Selected properties of wet air computed from the en-
thalpy (Eq. 5.63) and its partial derivatives are given in Ta-
ble S23.

Many meteorological processes such as adiabatic uplift
of a wet-air parcel conserve specific humidity and entropy
to very good approximation. In particular, if a parcel is
moved this way to some reference pressarep;, all its
thermodynamic properties given in Table S23 can be com-
puted at that reference level from the partial derivatives of
h™W (w”,n, Pr). Such properties derived from the potential
function W at the reference pressure are commonly re-
ferred to as “potential” properties in meteorology (von Be-
zold 1888, von Helmholtz 1888). Examples are the potential
enthalpy g,

hyg = /’lAW (U)A,n, Pl’)v

the potential temperature, in °C, obtained from Eq. (523.2)

< )wA,Pr

and the potential density,, obtained from Eq. (S23.1)

wA, Py

Www.ocean-sci.net/6/633/2010/
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AW (wh,n, Py)

To+6=
0+ an

(5.68)

onAW (wA, n, Pr)

o (5.69)
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Entropy Bounds of Wet Air water is replaced by the Gibbs functight of ice. The condi-
| | | | | | | 10000 tion for this equilibrium is equality of the chemical potentials
9000 of ice, Sect. 2.2, and of water in humid air, Eq. (S12.15):
o o
gV — A <—> =g". (5.70)
L6000 0A Jrp

5000
+4000

In terms of the Primary Standard functions and their indepen-

dent variables (Sect. 2), Eq. (5.70) is expressed by the system
3000

2000

Lo &Y=V (AT o)+ Y (5.71)
0
0 10 20 3‘0 zio ;0 go 7;0 s;o ;0 1061000 2/
Air Fraction in % P = (,OAV) (—) . (5.72)
apAV AT

Fig. 9. Valid entropy values of wet air computed from Eq. (5.64) as

N ] ) The independent variables in this scheme are the total pres-
arguments of enthalpl‘yA (w .1, P) are restricted to triangular

sure, P, the humid-air densityp”, the temperature7’,
regions, depending on the air fractied* between 0 and 100% for and the air fractionA. Expressing the chemical potential
selected pressurgsas shown. At the upper entropy bound, the lig- jn Eq. (5.70) by means of Eqg. (5.71) gives two equations in
uid phase is completely evaporated, given by the solulioh, P)  these four unknowns. Once two of the unknowns are spec-
of case 2 in Appendix A10, indicated as the “Dewpoint” lines in the ified, then the system is closed and may be solved numer-
figure. At the lower bound, the condensate of the wet-air sample

starts freezing, Eq. (5.64), indicated here as the lines radiating frorr%C::él'iX ';ollir important cases are discussed in detail in Ap-

(n, A), and referred to as “Ice Formation” lines. The envelop on P hich of th . .
which the triangles’ air-fraction maxima are located is the triple No matter which of the cases 1-4 considered in Ap-

line, shown dashed, where ice, liquid water and vapour coexist inpendix A1l is applied to compute the equilibrium between
the presence of air, as described in Sect. 5.10, Eq. (S28.8). Notic€ and humid air, the numerical solution of Egs. (5.70)-
that the vapour-pressure lowering of water due to dissolved air is(5.72) results in a consistent set of equilibrium valuesAor
neglected in the equations. Freezing curves were computed witl’, P andp”Y which is then available for the computation of

the library functions ice _liq _meltingtemperature  _si any other property of either saturated humid air or ice in this
and lig _air _g-entropy _si, dewpoint curves using state.
liq _air _dewpoint _si and air _g-entropy .si. The definitions (Egs. 5.54, 5.55) and their inverse func-

For running w”, the triple line is computed by
calling the sequence set lig _ice _air _eq.at _a,
lig .ice _air _temperature _si,

lig _ice _air _pressure _si andair _g_entropy _si .

tions (Egs. 5.56, 5.57) remain unchanged below the freezing
temperature except thats2(7, P) must now be computed
from Egs. (5.71), (5.72). The related library functions
areice _air _rh .wmafrom _a_si ,

ice _air _rh _cct from _a_si ,

The related library functions are ice air .afrom rh_wmasi and

lia _air _potenthal si | Eq. (5.67), ice Tair .,a,frc_)m rh _cct si . _ .

14 -arporenthalpy - st , =4 ( ) With “ice air” we refer to a composite system of ice

lig _air _pottemp _si , Eg. (5.68), and S . .

: : : - and humid air (e.g. a cirrus cloud) with the mass frac-

lig _air _potdensity _si , Eq. (5.69). : A NARY: h . .
tions w” of dry air, w¥ of vapour andw™ of ice satis-

Potential enthalpy is a measure of the “heat content” of we ing wh+wY+wh=1. The mutual equilibrium requires
gir in the sense of von Helmholtz’ (1888) suggestion and WasAsat?T Py=wA ™ With wAV:wA+wVil—wlh beingthe
introduced into oceanog_raphy by McDougall .(2003)' The gaseous mass fraction. The Gibbs function of ice air reads
formula for the computation of the meteorological wet-bulb :

A (Feistel et al., 2010a),
temperature from the enthalpy of humid air is given on page
1.4—28 of WMO (2008). wh

Al A _ AV sat
g (w ,T,P)_—Asat(T’P)g (AT, P) (5.73)
5.9 Equilibrium humid air —ice A n
1— —— P
+ (1= g )P

When humid air is in equilibrium with ice, its state is referred
to as “saturated ice air” or the “frost point”. The thermody- and is a linear function of the air fractiom?. Various ice-air
namic relations for this state are quite similar to those of theproperties are available from combinations of partial deriva-
previous Sect. 5.8 except that the Gibbs funcg$hof liquid tives of the potential (Eqg. 5.73) witdS8{(7, P) computed
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from Egs. (5.70)—(5.72) and case 3 from Appendix Al1l, seecomputed at that reference level from the partial derivatives

Table S25. For the computation of the parffal P deriva-
tives of ¢, the first derivatives ofAS3{(T', P) are required.

of Kl (w”,n, P;). Such properties derived from the poten-
tial function»”!' at the reference pressure are commonly re-

Taking the respective derivatives of Eq. (5.70) we get the isoferred to as “potential” properties in meteorology (von Be-

baric drying rate,

aAsat A
_ ( T ) — Asat g[’?] (5.74)
P A
and the isothermal drying rate,
JAS A
_ ( = ) —_ Asat—’;[”] (5.75)
T A

of humid air, i.e. the decrease of its saturated air fractief
due to heating or compression. The chemical coefficdgnt
is defined in Eq. (S12.16). The latency operatqy of ice

air used here is defined for the specific entrogyf=—g%"',

of the form

P AV
Aailnl =™ — A(g—A) — ', (5.76)
T.P
and for the specific volume*' =g4' of the form
9 AV
Aa[v] =™V — A< v ) —'h (5.77)
A Jr.p

The partial derivatives of the Gibbs functigf! (w”, T, P),

Eq. (5.73), of ice air are given in Table S24. Properties of
ice air computed from this Gibbs function are given in Ta-

ble S25.

For the description of isentropic processes such as the up

lift of ice air in the atmosphere, enthalpg' (w”, 5, P) com-

puted from the Gibbs function (Eq. 5.73) is a useful thermo-

dynamic potential:

A G T<38AI) .
oT wA, P

For this purpose, temperatufein Eq. (5.78) must be deter-
mined from entropy; by numerically solving the equation

agA|
().
oT wA, P

The partial derivatives of the enthalpy/' (w”,n, P) are

(5.78)

(5.79)

computed from those of the Gibbs function, Table S24, asg™W (T, P) = fF(T,pW) + P/pW

given in Table S26.

zold, 1888; von Helmholtz, 1888). Examples are the poten-
tial enthalpyg,
hg = h™ (wA, n, Pr), (5.80)

the potential temperaturé, in °C, obtained from Eq. (S27.2),

ahA| A, ,P
To+0 = (M> , (5.81)
on wA, Py
and the potential densityy, from Eq. (S27.1),
_ anAl wA,n,P
pyt = (% : (5.82)
r wA, Py

The related library functions are

ice _air _potenthalpy _si , Eq. (5.80),

ice _air _pottemp _si , Eq. (5.81), and

ice _air _potdensity _si , Eq. (5.82). Ice air can exist
only below an upper bound of entropy as shown in Fig. 10,
given by either melting or the complete sublimation of the
ice phase.

5.10 Equilibrium humid air — liquid water — ice

With the additional presence of air in the gas phase, the com-
mon triple point of water is expanded to a triple line in the
A—T—P phase space, similar to the triple line of seawater,
Fig. 3, in which the amount of salt present adds a new in-
dependent degree of freedom. When humid air, liquid wa-
ter and ice coexist, the given conditions simultaneously sat-
isfy the equilibrium conditions (Egs. 5.48 and 5.70) of equal
chemical potentials of water in all three phases:

AV agAV W Ih
gV —Al=— =g" =g" (5.83)
T,P

0A

In terms of the Primary Standard functions and their indepen-
dent variables (Sect. 2), Eq. (5.83) is expressed by the system

(5.84)

Selected properties of ice air computed from the enthalpy

(Eq. 5.78) and its partial derivatives are given in Table S27.

Many meteorological processes such as adiabatic upliftp —
of an ice-air parcel conserve specific humidity and entropy

to very good approximation. In particular, if a parcel is
moved this way to some reference pressirepP;, all of

the thermodynamic properties given in Table S27 can beg”’ = (A,T,pAV> + P/

Ocean Sci., 6, 63377, 2010

(5.85)

) (35)
(5.86)
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Upper Entropy Bound of Ice Air Temperature of Wet Ice Air

Temperature ¢t / °C

0 10 20 f;O 40 50 60 70 80 90 106 0 10 20 30 40 50 60 70 80 90 100
Air Fraction in % Air Fraction A in %

Fig. 10. Valid entropy values of ice air computed from Eq. (5.79) Fig. 11. Temperature of wet ice air as a function of the air fraction,
as arguments of enthalpy™ (wA’ 7, P) are bounded above T (A), computed as described under case 1, Appendix A12.

by roof-shaped curves, depending on the air fractioh be-

tween 0 and 100% for selected pressuress shown. At the . . .
entropy bound on the right, the ice phase is completely sub-C20 still change. The two additional cases, 4 and 5, consid-

limated, given by the solutiorT=TSUblp¥ap) of case 2 in  €redin Appendix A12 address this requirement.

Appendix Al1, and labelled “Frost Point” in the figure. At  Figure 11 corresponds to case 1 in the Appendix A12 with
the left boundary lines radiating from the lower left portion fixed dry air fraction,A. It illustrates that the temperature

of the figure, the ice phase starts melting, Eq. (5.5), labelledof wet ice air differs only very little from the triple-point
here as “Melting” lines. The locus of the roof tops at various temperature of water, almost independent of pressure, caus-
pressures is the triple line, shown dashed, at which ice, liquiding the adiabatic lapse rate under these conditions to be very
water and vapour coexist in the presence of air, as described igmga||. Note that the curve shown here neglects the solubility
Sect. 5.10, Eq. (S28.8). Freezing curves were computed Withyt o5 iy water which could result in temperature effects of
the library functionsce _lig _meltingtemperature _Si similar order.

andice _air _g_entropy _si , and frost point curves . .
Figure 12 shows results corresponding to case 5 from Ap-

were determined usirige _air _frostpoint _si and ) i : ) ;

air _g.entropy _si . For runningw®, the triple line is com- pendix A12 in which the dry-air fractiony®, entropy,;, and
puted by caling the sequenceet liq _ice air eq.at a,  theliquid fraction of the condensed part=w"V/(wW+w'M)

lig _ice _air _temperature _si, are specified. If an air parcel is lifted with the first two quanti-
lig _ice _air _pressure _si andair _g.entropy _si . ties fixed, therw varies between 0 at the melting level (com-

pletely frozen condensate), and 1 at the freezing level (com-
pletely molten condensate). Four valid wedge-shaped Wet-
Ice-Air (WIA) regions are shown in this figure correspond-
, A ing to pressures of 1000, 10000, 101 325 and 1 000000 Pa.
P (pAV) <i> _ (5.87)  Only points (", n) selected from these wedge-shaped re-
o™ J a1 gions permit valid solutions in this case.
Selected properties of wet ice air included as library rou-
The independent variables in this scheme are the total predines are listed in Table S28.
sure, P, the liquid densityo", the humid-air densityp?,
the temperatureT, and the air fractionA. Expressing the 5.11 Equilibrium humid air — seawater
chemical potentials in Eq. (5.83) by means of Egs. (5.84)
and (5.86), gives four equations in these five unknowns sdiumid air in equilibrium with seawater, referred to as sea
that one of the independent variables must be specified t@ir, is subsaturated because the vapour pressure of seawater
complete the system. Once this is done, the remainings lower than that of pure water.
variables may be solved for iteratively as discussed in Ap- In contrast to wet air, the liquid part of sea air can nei-
pendix A12. Three important cases of different initially ther entirely evaporate nor freeze, i.e., as long as there is salt
known properties corresponding to this system are discusseih the system there will always be a liquid fraction. Since
there. If the relative mass fractions of the three phases aréhere must be a gas fraction, too, whenever air is present,
required, then an additional condition is required to fix thesethe composite system seawater — humid air can exist under
quantities, since at constafitand P the water-ice mass ratio ambient conditions only in two forms, with or without ice.
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Entropy Bounds of Wet Ice Air

T e 550
I T 0" |
z
S V= V(AT M)+ PN (5.91)
3
B 2 afAV
< _ (A :
58 AT
& The independent variables in this scheme are the total pres-
‘ ‘ 1 1 sure, P, the pure-water density"V, the humid-air density,
o 10 30 30 40 20 0 0 s so 102 o™V, the temperatureT , the Absolute Salinity,Sa, and
Air Fraction in % the air fraction,A. Note thatp"V is merely a formal prop-

erty here — the density that liquid pure water has at gien
Fig. 12. Valid entropy values of wet ice air, “WIA", computed and p. Expressing the chemical potentials in Eq. (5.88) by
from Eq. (S28.8) are.restricged 'tAo narrow wedge-shaped region$neans of Egs. (5.89) and (5.91), provides three equations in
depending on the air fractions™ between OAand 100% for  tha six unknowns so three of the independent variables must
selected pressures as S.hown.' On'Y pointsu(®, n) S.eIeCted . be specified to complete the system. Once this is done, the
from these regions permit valid solutions of case 5 discussed in emaining unknowns may be determined by iterative numer-

Appendix Al12. At the upper entropy bound of wet ice air, wet r : . . .
air starts freezing, indicated as “Freezing” on the 1000 Pa case irﬁcal methods. Two important cases are considered in detail

the diagram. At the lower entropy bound of wet ice air, ice air IN Appendix A13.

starts melting, indicated as “Melting”. The locus of the wedge Selected properties of sea air are given in Table S29. The
tips at various pressures is the triple line, shown dashed, at whictiatent heath;A of sea air is defined here as the enthalpy re-

ice, liquid water and water vapour coexist in the presence of air,quired to evaporate a small amount of water from seawater to
Eq. (S28.8). Freezing and melting curves were computed withhumid air by heating at constant pressure. A derivation of the
the library functions ice _lig _meltingtemperature  _si latent-heat equation is given in (Feistel et al., 2010a), similar

in conjunction withice air _g.entropy si and to the latent heat of melting sea ice, Eq. (5.23).
lig _air _g-entropy _si . Forrunningw”™, the triple line is com-

puted by calling the sequenceet _liq .ice _air _eq.at _a, 5.12  Equilibrium humid air — seawater — ice

lig _ice _air _temperature _si,

lig .ice .air pressure _si andair .g.entropy .si . In contrast to sea air, Sect. 5.11, humid air in equilibrium
with sea ice, referred to as sea-ice air here, is saturated be-
cause it is in equilibrium with salt-free ice, Sect. 5.9. The

The first case is considered in Sect. 5.12. Note that sea ajghases of sea-ice air are simultaneously in pairwise mutual
does not contain ice at temperatures above the freezing po”gquilibria, seawater with ice (sea ice, Sect. 5.4), ice with hu-
of seawater. Nonetheless, air saturation and relative humidz,iq i (ice air, Sect. 5.9), and seawater with humid air (sea

ity of humid air is defined relative to ice if the temperature 4 gect 5.11). Most of the properties of sea-ice air are avail-
is below the freezing point of pure water, even though Noype from the related library functions described in those sec-
stable ice phase is present in the interval between the freezu-onS' therefore we have refrained from implementing a spe-
ing temperatures of pure water and of the system’'s seawalgljg| sea-ice-air module. For completeness, we mention that
compqnent. B _ _ theequilibrium conditions for sea-ice air consist of two equa-
Similar to Eq. (5.26), the condition for this equilibrium is tjons petween the chemical potentials of water in the three

equal chemical potentials of water in seawater, Eq. (S7.12)present phases, Egs. (5.11), (5.70) and (5.88):
and of water in humid air, Eq. (S12.15):

h_ Sw 9gSW AV ag™V
agAV BgSW &= —SA EAYN =8¢ -4 W - (599
A - A (W) = gSW - SA 3 . (588) T,P T.p
Lr r.p The latent heat of sea-ice air includes the transfer of water

In terms of the Primary Standard functions and their indepen-between the p_hases_ by melting, evaporation a_nql sublimation,
dent variables (Sect. 2), Eq. (5.88) is expressed by the syster-#;he resulting isobaric latent heat of sea-ice air is, expressed
’ per kg of molten ice (Feistel et al., 2010a),

AV 2 SW 2
sia_ W (Aal [A])*/Da + w>" (Asi[h])*/Ds
gV(Sa. T, P)= fF(T, ,0W>+P/pW+gS(SA,T, P) (589) Lp"=—1g Am[hl/Da+ wSWag[h]/Ds (5.94)
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Here, the latency operators are defined as it is then necessary to place the Gibbs function (Eq. 2.2) at
A level 2, which is not subject to this condition. A similar situ-

9 ) . SO X i

Anlh] = W™ — A _ph, (5.95) ation appears in the case of humlq air. The P'rlmary Stan
dA Jrp dard provides the Helmholtz function of dry air (Eq. 2.6)

together with the air-water virial coefficients as the funda-
mental information from which the properties of humid air
ahSW> h can be computed. To ensure independence for level 1 rou-
T.P

— 3 SW
Asilh] = b= — SA( IS (5.96) tines, the Helmholtz function of humid air, Eq. (2.7), and

the cross-over Helmholtz function (Eq. 2.13) are then imple-
Here, A is the saturation air fraction from Eq. (5.70ya mented in level 2 of_ the library. Note that while the library
the brine salinity from Eq. (5.11)Da and Ds are the is (_:onstr_ucted to strictly adhere to the _development based_ on
chemical coefficients Eqs. (S4.6), (S12.16}Y =w™/A and axiomatic results at Igvel_l, we have cﬁscussed the poteptlals
wSW—yS/Ss are the gaseous and the liquid fractions, and_Of seawaterarjd humid air together w_|th the Ievell—l funct!ons
w” andwS are the given constant mass fractions of air andin Sect. gqfthls paper pecause of their close ]oglcal reIa’Flons.
of salt in the sea-ice-air sample. In addition to the Primary Standa_rd, the I|_brary pr_owdes
easy access to other thermodynamic potential functions de-
rived from the Primary Standard. Available are Helmholtz
6 Summary and short discussion functions that are computed from temperature and density,
Gibbs functions computed from temperature and pressure,
The mutually consistent formulations of thermodynamic po- enthalpy functions computed from entropy and pressure, and
tentials for liquid water, water vapour, ice, seawater and hu4implicitly entropy as a potential computed from enthalpy and
mid air are now available and permit the numerical compu-pressure. A list of explicitly implemented potential functions
tation of a wealth of thermodynamic properties of the geo-is given in Table 1. From each of these potential functions,
physical fluids, their mixtures, composites and phase tranall thermodynamic properties of the particular system can be
sitions. The new seawater standard TEOS-10 (IOC et al.computed; the library provides an extensive but still selective
2010) together with its collection of background papers de-set of relevant properties. For additional composite systems
veloped by WG127 in cooperation with IAPWS is based onsuch as seawater with humid air, several properties are avail-
this physically and mathematically rigorous building-block able from the library even though related potential functions
concept (Feistel et al., 2008). To support the practical usavere not implemented explicitly.
and general implementation of TEOS-10, WG127 has devel- Further details on organization, content and access to the
oped a source code library that provides easy access to a largjierary are contained in the companion paper (Wright et al.,
selection of properties and may serve as a guide for writing2010a).
customized application code using the new standard.
The library is hierachically organized; all available prop- .
erties are computed exclusively from the Primary Standard”APPeNdix A
i.e.,_level 1 of the code, by merely math.ematical and NU-71  Densities of liquid water and water vapour
merical methods. The concept of the Primary Standard is (Sect. 4.1)
intentionally similar to axiomatic systems in mathematics o
which possess the general properties of consistency, indéxg giscussed in the text of Sect. 4.1, there cannot exist a
pendence and completeness. These properties ensure thafqie.valued Gibbs functiog(T, P) that fully represents
the Primary Standard contains all necessary but no redundagt properties of the Helmholtz functioff (T, p) of fluid

components, and prevents the computation of contradictingster. Rather. there are two different Gibbs functions
results. The higher levels obey the conditions of a mathe-

matical semi-order structure; code of a given level does notW (7, p) = fF(T,pW) + P/ (A1)
refer to code of higher levels, thus avoiding direct or indirect
recursion. for liquid water and
In the case of seawater, it would be most natural to provide
access to only the saline component of the Gibbs functiorg" (T, P) = fF(T,pV) + P/pY (A2)

(Eq. 2.2) at level 1 and not permit access to the individual co-

efficients (Egs. 2.3-2.5) of the salinity expansion. However,for vapour.

it is necessary to have access to the individual temperature To implement the above expressions for the Gibbs func-
and pressure dependent coefficients in order to rigorousl§ions we must determine the liquid and vapour densities cor-
consider numerical limits a$a tends to zero. Thus, these responding to the temperature and pressure inputs. This re-
fundamental building blocks are made individually available quires iterative solution of Eq. (A1), with considerable care
at level 1. To obey the independence rule for level 1 routinesrequired to select the appropriate root for each case.
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We begin with a first guess for the density and linearize
Eq. (3.3) with respect to changes of density under the as-
sumption that our first guess is sufficiently near the desired

root that the linearization is valid. This gives a) Liquid Water: Initial Density Estimates )
Plp+ pff + (215 + pff, ) v (A3) (i 8 e S s oo S
| IF97Regiont, | &CP esowa
which, by Newton iteration, permits the computation ofa = | o/ 71 | | T 2
density improvemeni\p from a given estimate at fixed < g 4 N L — R A N A — L1
values of 7 and P. The iteration will converge to a sin- - | S| |
gle fluid value for supercritical conditions, and to one or the ~ § R T o
other of the distinct vapour and liquid density values, de- £ | | IS Regn2
pending on the initial density estimate, for subcritical con- 3 ! ! ! ! ! !
ditions. Once the solutiop is known, all thermodynamic ~ ~ e g é -2
properties of fluid, liquid or vapour, can be computed by ei- / 77777777777777777777 8. i s ] | 5
ther of two formally different methods: 3
i i i i i i i i i 1 -4
(i) For the direct access to liquid water or vapour proper- 200 300 400 500 600 700 800 900 1000 1100 1200
ties, the required function of and p is called from Temperature  7'/K
Sect. 3.1, Table S2. b) Water Vapour: Initial Density Estimates .
(i) For the indirect use of water properties as a part of ( P
e.g. seawater properties, the Gibbs function, Egs. (A1) 'Toy:jw;m1§ # ””” S
or (A2) and its derivatives must be made available t0 | Tmmr | oaonesmswe L4

R P e S B e S S e L

the related calling functions, see Eq. (2.1), Sect. 4.2 and =
Table S7. =

To determine liquid or vapour solutions of Eq. (A1) where ei-

lg( P/P,
<

ther one or both of these may exist along with possible spuri- £ | _ |/ [ 1 . '”7"’9"’"‘ ,,,,,, A U L
ous numerical solutions, the choice of an initial starting point 3

must be made carefully to lie inside the “convergence radius” * |5y ST -2
of the desired attractor. It is therefore useful to consider lig- / 77777 I T N R - |
uid and vapour separately in each of the subcritical range, 3 | | | | | | |

the critical region and the supercritical range, as shown in E ‘ -4

Fig. Al 200 300 400 500 600 700 800 900 1000 1100 1200
L . . Temperature 7 /K
Liquid and vapour can be distinguished from each other

by their different densities and entropies in the vicinity of rig a1, Initial estimates used in the library for the numerical com-
the saturation line which is the curve ConneCtIng the tr|p|6putati0n of density from pressure by iterative|y so|ving Eq (A3)’
point (TP) with the critical point (CP) in Fig. A1l. On the either for liquid water, panefa), or water vapour, panéb). The
saturation line, both phases can coexist in physical spaceggion surrounding the critical point (CP) is treated separately, as
separated by an interface (the “water surface”) across whiclshown in Fig. A3. Here we make use of the Gibbs functions
the properties change abruptly. The saturation line is definedg(p, T)" in two of the five regions defined in IF-97, region 1 (lig-
by equal chemical potentials, i.e. equal specific Gibbs eneruid/fluid) and region 2 (vapour/fluid) as shown in Fig. A2. Pan-
gies (Egs. AL, A2) of the two phases. Except for this mutualels (a) and (b_) differ or_1|y for subcrltlca_l condltlons<TC_ and
equality, there is no particular distinguishing property within ©<7c: otherwise there is only one solution corresponding to the
either phase which might separate the saturation state fro unique Gibbs function for fluid water. TP is the ice-liquid-vapour

. . . . rpriple point. The saturation curve connects TP with CP and sepa-
its surrounding?’ — P states (Landau and Lifschitz, 1964). In rates liquid above from vapour below. To the far left, ice Ih (ICE) is

the vicinity of the saturation line, the phase with the lower sgparated from the liquid by the melting curve, above TP, and from

Gibbs energy (Egs. Al, A2) is stable, the other state existsihe vapour by the sublimation curve, below TP. Note that the melt-
but is metastable. Here, metastable means stable with réng curve above 200 MPa belongs to forms of ice other than Ih, the

spect to infinitesimal fluctuations but unstable with respectambient hexagonal phase. For vapour below 273.15 K, the ideal-gas
to certain macroscopic perturbations, namely the emergencequation is used.

of finite volumes of the coexisting phase (nucleation of su-

percritical bubbles or droplets). At a greater distance from

the saturation line, the state with higher Gibbs energy may
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be unstable if thermodynamic stability criteria such as posi- p/mpa

tive compressibility are violated. (Independent of any simul- 100 1

taneous existence of other phases, a negative compressibi

ity would amplify any pressure-density fluctuation, causing 1 3 / 2

the fluid to collapse.) The boundary between metastable anc lote.T)] o7l fop.T)]

unstable existence is regarded as the spinodal line beyont

which the phase can no longer stably and homogeneously 50 T(p.h) T(p.h) t

exist. T(p.s) T(p.s) S
Since it is practically impossible to measure thermody- J

namic properties on or beyond the spinodal, its location bk «é‘) 4

in the phase diagram is not exactly known from empirical | "

0 {
equations of state. Even though the IAPWS-95 formulation 21315 623.15 1073.15 227315
extrapolates well into the metastable regions (Wagner an

Fru& ﬁOOZ; FeIS'teI elt al., hZOOB)I, With Increasggf dIStar;feFormulation IF-97 (IAPWS, 2007; Wagner and Kretzschmar, 2008)
rom the saturation line the values computed from t € defined in different temperature-pressure regions, derived with re-

Helmholtz function outside its validity range will become qced accuracy from the IAPWS-95 Helmholtz function for differ-
unreliable. This turns out not to be a major issue for de-ent independent variables. Here we make use of the Gibbs func-
termination of the seawater Gibbs function since we requiretions “g(p, T)” available in region 1 (liquid/fluid) and in region 2

only relatively small excursions into the metastable regions(vapour/fluid) as shown in Fig. Al. In region 3, separate equations

to deal with the effects of shifted phase transition boundariegor the specific volume are available for various subregions which

in the presence of sea salt. are not used here. Region 4 is the saturation curve. Graphics repro-
Panels a and b of Fig. Al indicate the initializations used induced from IAPWS (2007), with permission of IAPWS.

the library for our iterative solutions for the liquid and vapour

phases, respectively. Figure A2 provides additional infor- ) i ) ] )

mation regarding the industrial formulation IF-97 (IAPWS, N regions 1 and 2 (Fig. A2) as defined therein which pro-

2007; Wagner and Kretzschmar, 2008) referred to in Fig. A1.Vvide excellent starting values for the liquid and the vapour
Starting in either fluid state at a point near CP locategState. These Gibbs functions can also be used for the fluid,

along the saturation line joining TP and CP, we may circum-egion 1 below 623.15K and 100 MPa, and region 2 between
scribe the critical point along a closd— P path. Along 273.15K and 1073.15 K, and below 16.529 MPa. In the sub-

any such curve, the properties change only gradually: nothlimati_on region and in the_supercritiga_l region,_the ide_:al-gas
ing like a transition point between liquid and vapour is en- 4€Nsity,=P/(RwT), provides a sufficient starting estimate
countered. Since, for numerical purposes, we distinguish beP?€!oW 273'153K and above 650K, and a constant value of
tween the Gibbs functions of liquid, Eq. (A1), and vapour, #=1000kgnT* can be used below 650K, Fig. Al. These
Eq. (A2), we need to specify such a transition point for tech-latter choices are sufﬁuen; tg ensure numerical convergence
nical rather than for physical reasons. Here we define thdUt do not necessarily optimize the speed of the code. Addi-
Gibbs functions Egs. (A1) and (A2) to be different at sub- tional cqn_S|dera_t|ons apply to the immediate neighbourhood
critical conditions ' <7c and P < Pc) and to be identical at of the cnncal_pqlnt as d|s_cussed be_low. Npte that aI_I of these
supercritical conditionsT(>Tc or P> Pc). The critical tem- rule_s are built into the library routines discussed in Part 2
perature of water i9c=647.096 K and the critical density (Wright et al., 2010a) so that the user can make use of the
is pc=322 kg n3 (IAPWS, 2009a); the critical pressure fol- routlnes'wnhout dealing with (or even being fully aware of)
lows from Eq. (4.1) to bePc=22.064 MPa. In order to cover (he details. o _
metastable states of liquid water as required in the regions of 1he critical region is defined here as tiie- P rectangle
vapour-pressure lowering or freezing-point lowering caused®23-15-650 K and 16.529-35MPa, Fig. A1. The coefficients
by the presence of dissolved sea salt, the Gibbs function foPf @n auxiliary cubic polynomial equation of state
liquid water is also available faF and P in regions extend- ; ;
ing somewhat beyond the saturation curve and beyond thd’C _ 1= Zaii <£ — 1) (ﬁ - 1) (A4)
melting curve. P TIc pC

According to our numerical definition of liquid, vapour
and fluid states, the initial values required for the iteration ofhave been determined by regression to IAPWS-95 data
Eqg. (A3) can be chosen identically for the fluid density in the points in the stable liquid, vapour and fluid region with an
supercritical region>T¢c or P> Pc), as shown in Fig. A1, r.m.s. deviation of 1% or less for each phase; the resulting
but must be different for liquid and vapour in the subcritical coefficients are given in Table A1l. The cubic polynomial
quarter ' <Tc and P<Pc). In the subcritical region, sepa- used for Eq. (A4) permits analytical inversion to determine
rate Gibbs functions are available from the industrial formu- p (T, p) for both the liquid and the vapour branches. The
lation IF-97 (IAPWS, 2007; Wagner and Kretzschmar, 2008) critical point of Eqg. (A4) was chosen to be identical with the

cIi—'ig. A2. Thermodynamic relations available from the Industrial

i,j
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Table Al. Coefficients of the auxiliary critical equation of state,
40 Eq. (Ad).

Critical Region: Auxiliary Cubic Equation of State

i aij i J ajj
< 0 3 -0.602044738250314 2 0 118.661872386874
E 1 0 —7.60041479494879 2 1 186.040087842884
E 1 1 —17.463827264079 2 2 25.5059905941023
1 2 0.69701967809328 2 3 14.4873846518829
1 3 30.8633119943879

Pressure

thus prevent convergent iteration. In this highly specialized
| | | | | | | | | 0 case, applications may need better starting values than those
100 150 200 250 300 350 400 450 500 550 600 from the cubic polynomial, e.g. find exact densities at the gas
Density p/(kgm ?) and liquid spinodal points from the conditi@f P /9p);=0
and use one of them to confipgT', P) for a bisection itera-
Fig. A3. Selected isotherms of the auxiliary cubic equation tjion method such as the secant or Brent algorithms. Details
of state, Eq. (A4), in the critical region 62343 <650K,  of the universal critical properties are available from Stan-

16.529%< P <35 MPa. Shown in bold is the saturation-pressure curve|ey (1971), Anisimov (1991), Kurzeja et al. (1999), Skripov
of IAPWS-95, separating the single-phase region above from theand Faizullin (2006), or Ivanov (2008).

two-phase region below. The critical point is Bt=647.096 K,

pc=322kg m*3, Pc=22.064 MPa. Given a line of constant sub- o
critical pressureP and an isotherrT, their intersection points with A2 Seawater temperature from salinity, entropy and

positive slopes provide either the density estimatest¢T, P) of pressure (Sect. 4.3)

vapour (on the left branch) or fg¥ (7, P) of the liquid (on the

right), separated from each other by the unstable region of negativdo compute the specific enthalpy potential and its partial

slopes. derivatives from the Gibbs functiogSWV(Sa, T, P) of sea-
water, the value of" appearing in the expression for the en-
thalpy, Eq. (4.5), must be obtained from knowledge of the

IAPWS-95 critical point (Fig. A3) through the specifications entropy,n, along with the salinity and pressure values. The

of Tc, Pc, andpc. required temperature is obtained by numerically solving the

The initial densities for the iteration, Eq. (A3), in the EQq. (4.6)to givel' =T (Sa.n, P).

critical region are computed from the intersection points To solve Eqg. (4.6) we first Iineariz;g:—gﬁwwith respect

of the horizontal isobars with the isotherms as shown into small changes of temperature to obtain the equation

Fig. A3. In the subcritical rangel <T¢c and P < Pc, there

exist three solutions, the vapour density to the left of the — ¢g2WAT =5 4 g3V, (A5)

isotherm maximum, the liquid density to the right of the min-

imum, and an extraneous unstable solution in between thhich can be used to iteratively update the valug af given

extrema. The curve (not shown) connecting the minima andalues ofSa, 7, P. Since the heat capacity of water is rather

the maxima of adjacent isotherms, which passes smoothlgonstant under different oceanic conditions and Eq. (A5) has

through the critical point, is the spinodal of the auxiliary an unambiguous solution in the region of oceanographic in-

equation. Beneath the spinodal, the compressibility is negterest, the simple linear estimate

ative, (dp/d P)7 <0, thermodynamic stability is violated and

no stable single—phase states can exist. By means of this Stg _ 97315 K n 7 _ (A6)

bility gap, the spinodal separates low-density vapour from 4000 J kgt K—2

high-density liquid on the particular isotherm. At the criti-

cal point, maximum, minimum and inflection point coincide, provides a sufficiently accurate initial temperature to ensure

and at supercritical temperatures only one fluid solution ex-convergent iteration of Eq. (A5).

ists for any given pressure. Below the critical temperature, a

single solution from the liquid branch is computed fos Pc A3 Saturated water vapour conditions (Sect. 5.1)

which is considered a supercritical fluid state according to

our numerical definition of the liquid and vapour functions To numerically determine the conditions corresponding to

(Egs. Al and A2). Very close to the critical point, initial the saturation point (frequently referred to as the boiling

densities computed from the auxiliary cubic equation of statepoint or dewpoint) of pure water, we first linearize the three

may falsely be located inside the spinodal of IAPWS-95 andEgs. (5.2)—(5.4) with respect to small changes of the four

623.15K |
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unknownsT', P, pV andpW, which gives: available from the cubic correlation polynomial
1 1 3 W 3i
=)ot + (o - o )ar B T s (P
( T —Jr ) A T 1~ g e 1 (A12)

w % 1 1 =
=M=+ w-v)P i 3
P P with an rms error of 1 K. The constants aig=322 kg nT =,
Tc=647.096 Ka1=—7.340 173 295 988 58E-02,
a»=5.705 164877 110 65E-03,

AP
W W W W W) AW
P AT T <2fp +o pp) Ap (A8)  43=—4.313138469 559 49E-04.
P For T <50K, an initial estimate of vapour density’ on
= pr;/V Y the saturation curve is available from the correlation polyno-
p mial
Vv AP V. VeV ALV p" > i i
VAT + 5 - <2fp +p pp) Ap (A9) In V)~ Yoa(z- (A13)
i=1
A P ' .
=P oV’ with an rms error of 0.01 in I{p" /p\/). The constants

Wy , W _ arep’=4.8545757247785910 kg m~3,
For brevity, /" (7. p") is abbreviated here by, and sim- ;,=_19.223508 686 606 3,=—6.157 701933 029 55,
ilarly for £V as well as their partial derivatives. To obtain az=—4.965736 126 494.
Eq. (A7), Eq. (5.2) was first expanded and then simplified For 550 K<T <T¢, an estimate of the vapour densjtyf

by using Egs. (A8) and (A9). When the equilibrium pointis on the saturation curve is available from the cubic correlation
reached, Eq. (A7) takes the form of the Clausius-Clapeyroryolynomial

equation as its right-hand side vanishes.
4

To solve the system (Eqgs. A7-A9) far, P, pV andpW, T 3 oV
a fourth equation must be added which specifies an addition7_ ~ 1~ Z“i (E - 1) (A14)
ally imposed condition, usually one &f7=0 (for specified i=1
temperature) on P=0 (for specified pressure). with an rms error of 0.4 K. The constants are

Auxiliary empirical equations are used to determine initial 4,=—0.237 216 002 18 09%,=0.186 593 118 426 901,
estimates fof’, P, p¥ andp"V. a3=—0.258 472 040 504 799.

For T <640K, an initial estimate of the boiling tempera-
ture or the vapour pressure on the saturation curve is estiAd  Melting and freezing conditions for pure water

mated from the Clausius-Clapeyron-type correlation polyno- (Sect. 5.2)
mial
) To iteratively determine freezing and melting conditions for
P Tz T; pure water, we first linearize the two Egs. (5.6), (5.7) with
In P “a (7 B l) + a2<_ N 1) (A10) respect to small changes of the three unkno@nsP and
pVto obtain:

with an rms error in InP/P;) equal to 0.01. The constants

are P=611.654 771007 894 P%=273.16 K, W_ I\ AT <i_ m)AP: n_ew_ P e

a1=—19.873 100 570 911 6ip=—3.089 754 373529 98. (fT gT) tlowsr g /"= Tw  (ALD)
For T <350K, an estimate of the liquid densipy¥ on the

saturation curve is available from the correlation polynomial AP
— oW ANAT + W (2f,§’V + pr),’pV) AW (AL6)

W 5 i wew_ P
p—W—lmzai@—l) wiy =P oW
Pt i=1 t

The functionfF (T, pV) is abbreviated here bg*V, and sim-

with an rms error of 0.002 kg i?. The constants ilarly for its partial derivatives. To iteratively solve the sys-
arepV=999.792 520 031 621 kgH, tem (Egs. 5.9, 5.10) fof’, P and p" using Egs. (A15),
a1=1.80066818428501E02, ap=—0.648 994409 718973, (A16), a third equation must be added which specifies an ad-
a3=1.565947 649083 474=—3.18 116 999 660 964, ditionally imposed condition, usuallx7 =0 (if the temper-
a5=2.985909 770932 95. ature is specified) an P=0 (if the pressure is specified).

Over the higher temperature range 300 K<7c, an es- Auxiliary empirical equations are used to determine initial

timate of the liquid densityp"W on the saturation curve is estimates fofl’, P andp".
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An estimate of the freezing temperatdren K as a func-
tion of the absolute pressurein Pa is obtained from a cor-
relation fit between 252 and 273 K:

T P P 2
it 1) e -1)
with an rms error equal to 1.4E-5 #T; . The constants
are P;=611.654 771007 894 P&=273.16 K,
a1=—1.673297591 763 51E-07,
a»=—2.022629 299996 58E-13.

An estimate of the density"V in kgm3 of the freezing

liquid as a function of absolute temperatufein K is ob-
tained from a correlation fit between 252 and 273 K:

w 2 3
r Vs R R
——1=a| =—1)4a2| =— 4az| =—1 Al8
ot 1<Tt 2\ 1 \ 1 (A18)
with rms error equal to 1.2 E—4 'le/ptV". The

constants arg,'=999.792 520031 621 kg™,

a1=—1.785829 814921 13,,=—12.232508 430673 4,
a3z=—52.823693 643 352 9.

(A17)

A5 Equilibrium conditions for ice and water vapour —
sublimation (Sect. 5.3)

To determine conditions for sublimation, we first linearize
the two Egs. (5.9, 5.10) with respect to small changes of the_ Wf AT + ﬂ _

three unknowngd’, P andp" to obtain:

1 P
(s -et)ar+(oy-eb)aP=e"-sV-  (a19
— P 1Y AT + = = (28 + 0¥ 1) A (A20)
P
V Vv
=0 fy =~
PV

The functionf (T, pV) is abbreviated here bg¥, and simi-

larly for its partial derivatives. To iteratively solve the system

(Egs. 5.9, 5.10) fof, P andp" using Egs. (A19), (A20), a

third equation must be added which specifies an additionprovides a very good estimate of the dengity=1/vW

ally imposed condition, usually 7=0 (if the temperature is
specified) orA P=0 (if the pressure is specified).

Aucxiliary empirical equations are used to determine initial y\W —

estimates fofl’, P andp" .
The sublimation temperaturg in K as a function of the

absolute pressur® in Pa is estimated using the Clausius-
Clapeyron equation (for details see Feistel and Wagner,

2007):
1 1 Rw, P
S Wn (A21)
T T Ah P

The constants ar&=611.654 771007 894 P&;=273.16 K,
the sublimation heat\h=2 834 359.445 43354 J kg

Ocean Sci., 6, 63377, 2010
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and the specific gas constant of water,
Rw=461.51805J kg K 1.

The densityp" in kg m~2 of the condensing vapour is es-
timated as a function of absolute temperatiirgn K from
the Clausius-Clapeyron, Eq. (A21), in combination with the
ideal-gas equation:

v Py Ah (1 1
oV~ expl— (= - =)},
RwT Rw \ Tt T

The constants are the same as for Eq. (A21).

(A22)

A6 Equilibrium conditions for ice in seawater
(Sect. 5.4)

To determine the conditions under which ice exists in equi-
librium with seawater, we first linearize the two Egs. (5.12),
(5.13) with respect to small changes of the four unknowns
Sa, T, P andpW to obtain:

SagSsASa — (1 + 8 — SagSy — &) AT (A23)
1
- <p_W + gIS’ - SAg?P - g'}t‘)AP
P

=" + w T g% — Sngs — g™

(21 + o)™ (A24)
P
W W
=P T oW

To iteratively solve the system (Egs. 5.12, 5.13) $ar, 7',
P and p using Egs. (A23), (A24), two further equations
must be added which specify an additionally imposed pair
of conditions, commonly taken to lleT=0 andA S =0 (if
the temperature and the salinity are specifiedA&=0 and
A Sa=0 (if the pressure and the salinity are specified).
Auxiliary empirical equations are used to determine initial
estimates fasa, 7, P andpW
In the oceanographic range, the pure-water part Eq. (A25)
of the International Equation of State of Seawater EOS-80

asa
function of temperature and pressure (Millard, 1987):
1 1
W~ (A25)
p Z }","L'i
i=0
1_ T

4 ' 3 ] 2 .

Ykitt+ Y aitt +72) bt
i=0 i=0 i=0

The reduced variables are=(Tgg—27315K)/(1 K) and
n=(P—101325 Pg/ (10° Pa), and the coefficients are given
in Table A2.
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Table A2. Coefficients of Eq. (A25)

i i ki a; b;
0.999842594E+3 0.1965221E+5 0.3239908E+1 0.850935E-4
0.6793952E-1 0.1484206E+3 0.143713E-20.612293E-5
—0.909529E-2 —-0.2327105E+1 0.116092E-3 0.52787E-7

0.1001685E-3 0.1360477E-1—-0.577905E-6
—0.1120083E-5 —0.5155288E-4
0.6536332E-8

as~rwNEFO

Equation (A18) provides an estimate of the dengity
in kgm=2 of freezing pure water as a function of absolute
temperaturel’ in K from a correlation fit between 252 and _ pwfw . i
273K. rpWe
Equation (A26) provides an estimate of the brine salinity 1o |terat|vely solve the system (Egs. 5.27, 5.28, 5.29) for
Sa in kgkg~! of sea ice at given absolute temperatiirén Sa, T, P, p¥ andp" using Egs. (A29)-(A31), two further
K and absolute pressui in Pa from the empirical laws of  equations must be added which specify an additionally im-
Clausius-Clapeyron and Raoult: posed pair of conditions, commonty7’=0 and A Sa=0 (if
T —Ti— x(P— P) the temperature and the salinity are specifiedA\&=0 and
Sa ~ T : (A26)  ASA=O0 (if the pressure and the salinity are specified).
) o Auxiliary empirical equations are used to determine initial
The IAPWS-95 triple point isP=611.654 771007894 Pa, gstimates fosa, T, P, oV andpW
1;=273.16K, the Raoult coefficient i&=-0.217 (Feis-  The function (Eq. A32) is the inverse of Eq. (A10) and
tel et al., 2008) and the QIausms-CIapeyron coefficient iSggtimates the boiling temperatufein K of the seawater-
x==TA3x10°K Pafl (Feistel and Wagner, 2006). When 556 equilibrium at given brine salinitys in kg kg~ and
solved for the freezing temperatu®(Sa, P), EQ. (A26)  apsolute pressurg in Pa from the Clausius-Clapeyron and
gives Raoult laws forT <640 K:

Tt +x(P—P) 2

_ A27 T; 1 P

1—aSa ( ) —t—lz_ﬂ—k\/(ﬂ) +—1In [—(1—aSA)] (A32)
2a; az | P

and when solved for the melting pressutéSa, T), it gives . .
with an rms error equal to 0.01 in IR(P;). The constants

are P=611.654771007 894 Pa,1;=273.16 K, «a=—0.57,
a1=—19.873100570911 Gp=—3.089 754 373 529 98.
The empirical formulaP~PWP80(Sp, T4g) of Weiss and
Price (1980)
WP80
To determined conditions under which water vapour will In m
be in equilibrium with seawater, we first linearize the three
Egs. (5.27)—(5.29) Wlth respect to small changes of the five — 4.8489 In
unknownsSa, 7, P, p¥ andp" to obtain: 00 K

AP
— oW N AT + W (2f,)"’ + pr/\)’X> AW (A31)

T ~

1
P~ P+ = (T — Tt — aT Sp). (A28)
X
A7 Conditions for seawater in equilibrium with water
vapour (Sect. 5.5)

100 K

= 24.4543— 67. 4509— (A33)

— 0.0005445p

for the vapour pressure of seawater with Practical Salinity

SAgSSASA — (fT — fT —i—gT — SAgST)AT (A29) 0<Sp<40 and IPTS-48 temperature 273Hy3<313K is
1 1 very accurate (Feistel, 2008). For the estimates required here,
— <_W -5+ g1§ — SAg?P) AP the raw conversiofyg~T and SpA1000S, is sufficiently
p P precise.
WV 4S50S P + P Formula (Eq. A34), obtained from Eq. (A33) and Raoult’s
' S pv T pW law, computes a brine salinity estimasg in kgkg* for
seawater-vapour equilibrium at given absolute temperature
_ pr}’pAT + =5 - <2f;/ n pvflx)) ApY (A30) T in K and absolute pressuiin Pa:
1 PWP80 0, T
_pva_i g~ (PO ) (A34)
oV o P
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The Raoult constant s=—0.57 (Feistel et al., 2008). Egs. (5.44)-(5.47) with respect to small changes in the in-
The density of ideal-gas vapour as a function of temper-dependent variable$a, 7', P, oV andp" to obtain:
ature and pressure is estimated from the ideal-gas equation,
SaeSsAsa — (A = £ + 88 — Sag§r) AT (A39)
P 1 1
% S s
~ . A35 N +¢&pr—S AP
P RwT ( ) <,0W oV 8p AgSP)
o . W_ Vs s P P
The specific gas constant of water is =fT —f +g—Sn8s— vt —w
Rw=461.51805 J kgt K—1. prp
A8 Conditions for seawater in equilibrium with liquid v ih 1 h
water (Sect. 5.6) (fr - 8T>AT + v gp |AP (A40)
P
To determine equilibrium conditions for two samples of wa- = g'h - fV -
ter and seawater that are separated by a semi-permeable P
membrane and have different pressure¥,and PS, respec-
tively, we first linearize the three Egs. (5.41)-(5.43) withre- _ v v y o AP (5v v v, v A4l
spect to small changes of the six unknowsas 7', PS, PV, PrIT, AT+ oV ( fo e fpf’) P (A41)
pS andp" to obtain: V.V
= P) — p_V
SAgSsASA + (f}” —fR—gr+ SAgET)AT (A36)
1 APW AP
- (F +g5 - sAg?p)APS o ~ VAT + g = (280 ) A0 (Ae2)
pS pW ww P
— _ W S, ., S_ s, =pV N - —
To obtain the Egs. (A39) and (A40), we first expanded
APW Egs. (5.44) and (5.45) and then simplified them by using

— oW AT + oW T (Zf/\,N + PWf,Y/\)/) Ap" (A37)  Egs. (A41) and (A42). To compute the triple point, an ar-
bitrary independent fifth condition is required. If e.g. the

= prlY" — P_Vv\\// salinity is given, this additional equation isSA=0; if the
o pressure or the temperature is known, one us@&s=0 or
AT=0, respectively. With this condition specified, the four
s .S pS s s .S s re_lations (Egs. A39-A42) can_be usgd to itera_tively deter-
— P I, AT + —5 — (zfp +p fpp> Ap (A38)  mine the other four seawater triple-point properties.
pS p Suitable initial values can be obtained from approxi-
- psf;, - —. mate equations which link salinity, freezing temperature and
o vapour pressure, roughly estimated from Fig. 7, as,

Here, pS is the deSn_sity of pure water under the p_resslaﬁ_a P~ P — Sp x 3000 Pa (A43)
of seawater, ang'™ is the related Helmholtz function of lig-
uid water. To iteratively solve the system (Egs. 5.41-5.43)
for Sa, T, PS, PV, pS and pW using Egs. (A36)—(A38),
three further equations must be added which specify addiT ~ 7; — S5 x 60 K. (A44)
tional conditions such a&T=0, A P"Y=0 andA Sp=0 cor-
responding to the temperature, the pressure of the pure-watdthe starting value for the vapour density is taken from the
sample and the salinity of the seawater being specified. ideal-gas lawpV~P/(RwT), and the liquid-water density is
Trivial estimates such a&S=P"W or Spx=0 suffice as initial initialized with its pure-water triple-point valugV=p".

values to start the iteration of Egs. (5.41-5.43).

A10 Equilibrium conditions for liquid water and water
A9 Equilibrium conditions for seawater, ice and water vapour in air (Sect. 5.8)

vapour (Sect. 5.7)

To determine conditions for equilibrium between water
To determine conditions under which seawater, ice and wavapour in air and pure liquid water, we express the chemical
ter vapour exist in equilibrium, we first linearize the four potentials in Eq. (5.48) by means of Egs. (5.49) and (5.51),
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and expand the resulting three Egs. (5.48), (5.50) and (5.52) The equilibrium is computed this way by the library

with respect to small changes of the five variables:

— ASSAA+ (A - AR - V) AT (A45)
1 1 AV AV P
+ <W - —w>AP+ (fp —Afay =
P P (pAV)
P
APV — <f/§/v_ 4 2>pr
(0%)
1 1
:P(—W - W) + W= NV arly
oW p
AV oAV AV oAV AP
P
+ (Zf/fv + pAVf[ﬁ)V)ApAV: AT pAVf/;AV
AP
AT =+ (20 + 2 ) anY (A47)
P wew
= — pW W,
P p

For brevity, fF(T,p) is abbreviated here by as

well as its partial derivatives. For the numerical solution,

callset lig _air _eq_at _a_t or by the function
lig _air _condensationpressure Si.

Case 2: Equilibrium at given air fraction, A, and
pressure, P

At given A and P, humid air can approximately be con-
sidered as an ideal mixture of air and vapour. The partial
pressurePVa=x/V P of vapour is computed from the total
pressureP and the mole fraction(” (A), Eq. (2.11). Inturn,
the boiling temperatur@=7"°!( pvaP) of water is computed
from Eq. (5.1). WithA, T and P available, the required den-
sity estimate of liquid watep*W=1/g% (T, P), and of humid
air, oV =1/g%V (A, T, P), are easily calculated from the re-
lated Gibbs functions, Eqgs. (4.2) and (4.37). Usihg=0
and A P=0, the linear system (Egs. A45-A47) can now be
solved iteratively forT', oW andp?V .

In particular, this solution provides the dewpoint temper-
atureT (A, P) of humid air as a function of the air fraction
and the pressure.

This approach is used to compute the equilibrium with the
library callset _lig _air _eq_at _a_p orusing the function
lig _air _dewpoint _si .

two additional conditions are required, such as specifyingCase 3: Equilibrium at given temperature, T, and

the temperature and pressure, so tha=0 and A P=0.

pressure, P

Appropriate starting values of the remaining unknowns must

be specified for their iterative determination. Four important

special cases are considered in the following.

Case 1: Equilibrium at given air fraction, A, and
temperature, T

At given T and P, humid air can approximately be con-
sidered as an ideal mixture of air and vapour. The partial
pressurePV@ of vapour is computed from the vapour pres-
sure of liquid water at givef from solving Eq. (5.1). The
vapour density follows from Eq. (4.3) a8 =1/g} (T, P3P
and the air density from”=1/g%’ (1, T, P— P"3). Now the
air fraction is available fromA=p"/ (0" +p"). With A, T

~Atgiven A andT, humid air can approximately be con- anqp available, the required density estimate of liquid water,
sidered as an ideal mixture of air and vapour. The partlalpwzl/g\;)v(T P), and of humid airpszl/g/;V (A,T,P)
pressureP"@P of vapour is computed from the vapour pres- 4re easily calculated from the related Gibbs functions,
sure of liquid water at giverT’ by solving Eg. (5.1). The Egs. (4.2) and (4.37). UsingT=0 andAP=0, the linear

: v
vapour density follows from Eq. (4.3) as'=1/gp (T, PY*P). system (Eqgs. A45—-A47) can now be solved iteratively4or
For the dry-air density we have®=pYxA/(1—A). The w A

; - e andp
partla! press‘;re of dry air is co_mputed_ from Eq. §S5-11) In particular, this solution provides the specific humidity
as P¥'=(p”)" fV (1,T,p"). This provides an estimate

_ g=1 — A(T, P) of saturated humid air as a function of the
for the total pressurepP=pPVaP+pa'  With A, T and

. : _ . b temperature and the pressure.
P available, the required density estimate of liquid water, The equilibrium is computed using this approach with the
pW=1/gW (T, P), and of humid airo”™ =1/g%" (A, T, P),

. ' . library callset _lig _air _eq_at _t _p or using the function
are easily calculated from the Gibbs functions, Egs. (4.2)jiq _air _massfraction _air _si .

and (4.37). UsingAA=0 and AT=0, the linear system
(Egs. A45-A47) can now be solved iteratively #r oV and
AV

P

Case 4: Equilibrium at given air fraction, A, and

’ . . . . entropy,
In particular, this solution provides the press#teA, T) Py 1

of saturated humid air as a function of the air fraction and the

temperature. At given A and n, we use the approximate Clausius-

Clapeyron equation to relate the partial vapour pressure at
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the dewpoint,PVaP, to the temperaturd;: this state may be computed fromy T and P of a subsat-
pvap I T urated humid-air parcel having the same entropy and air
In ~ <1 _ _t>_ (A4g)  fraction as the final saturated one by calling the functions
P RwTi T lig _air _icl _si orlig _air _ict _si to determine its

. . , isentropic condensation level or temperature.
The vapour pressure is approximately equal to the partia

H i ipvap_,.AV
pressure of vapour in humid ai?**=x;* P, computed a1 Equilibrium conditions for ice and water vapour in

from the total pressuré® and the mole fraction" (A), air (Sect. 5.9)
Eqg. (2.11). As an analytical estimate to be used below, we
modify Eq. (A48) by means of the relation k=1—1/x: To determine conditions for which water vapour in air will
P I T be in equilibrium with ice, we first expand the two Eqg. (5.70)
In — ~ In — —Inx{Y (A49) (with Eg. 5.71) used to eliminate the Gibbs potential) and
P Rwli T Eq. (5.72) with respect to small changes of the four indepen-
Assuming constant heat capacities, the ideal-gas entrop§ent variables:
n(A,T, P) of humid air is determined relative to the triple A AL A AFAY I AT A53
point (7, P;) of water, faahA+ (fT far gT) (AS3)
1 P
T P lh AV AV Y
=m+A(chIn = —Raln = A50 +<W—8P>AP+(p —Afap— 2)AP
n=n+ (Cp 7~ Ra Pt) (A50) 0 ? ()
T P Ih AV P AV
1—A)|chIn = —Rwin—). =g"—fN - —+A4
+ ( ) (CP Tt W Pt) 8 f pAV fA
We insertP from Eg. (A56) into Eqg. (A57) and get the isen- AP
i i i . A A A LAY
tropic condensation temperature estinmBteZicT(A, n): P Ay AA + o™ fEY AT — Py (A54)

n—nt(A)—[ARa+(1—A) Rw] In x{V (A)
A(h—Rk) + a-m(h-%)
Here, at the given air fractionA, the triple-point For the numerical solution, two additional conditions must
entropy nt(A)=n(A,Tt,Pt)=—g?V (A, Ty, Py) is computed be specified. For example, if we specify temperature and

from Eq. (S12.2), the mole fractior@V (A) from Eq. (2.11). pressure themT:_O an_dAP:O. S_,tart_ing values are the_n
The constants take the rounded numerical triple-point value§eqUIred for the _|terat|ve determination of the_remammg
T,=273.16 K, P=611.654771 Pa,c§:1003.69J kgl K-1, unknqwns. Four important such cases are considered in the
cV=1884.352 kg K1, Ra=RIMa, Rw = RIMy, and  ONOWINg.

L=2500915Jkg! is the evaporation enthalpy. The molar
mass of air isMa=0.02896546 kgmol!, that of water is
Mw=0.018015268 kg molt, and R=8.314472J molt K1

is the molar gas constant. At given A andT, humid air can approximately be consid-

With ‘L.‘ and an estimated avallable_, We can NOW pro-  oreq a5 an ideal mixture of air and vapour. The partial pres-
ceed as in case 1 to compute the remaining starting values fq

) ) : ) dure pvap of vapour is computed from the sublimation pres-
the iterative solution of the linear system (Eqgs. A45—-A47) of sure of ice at giver” by solving Eq. (5.8). The vapour den-

three equations for the four unknowfis P, p"W andp?V us- - v v va

. ) sity follows from Eq. (4.3) apV=1/g% (T, P¥®). The dry-

ing Af_xzo. A fourt.h equatlon must be gdded to the SyStem’airydensity is thenqes(timgatez ad /:gZVxA/(l—A). Th}:a

adjusting the humid-air entropy to the given valye, partial pressure of dry air is computed from Eq. (S5.11) as
i 2 . . ;

— AL — AT - fTA,\)/ L. (A52)  Pa=(p")" 2V (1,T,p"). Using this approach, we obtain

_ o o o an estimate for the total pressure=P"3P+P3". With A, T

This equation is valid for humid air at the dewpoint, i.e. wet and P available, the required density estimate of humid air,

air with a vanishing liquid fraction. If the sample contains p™N=1/¢" (A, T, P), is easily calculated from the related

a finite amount of liquid water, its entropy must additionally Gibbs function, Eq. (4.37). Using A=0 andA7=0, the lin-

Tict (A, m~T; exp

P
(A51) + (2 ffv o™ f;},v) APV = pW V.Y f;)AV.

Case 1: Equilibrium at given air fraction, A, and
temperature, T

be considered in Eq. (A52). ear system (Egs. A53, A54) can now be solved iteratively for
In particular, the solution of case 4 provides the isentropic p and p” .

CondenlsationlleveP(A,n) of lifted humid air as a function In particu|ar’ this solution provides the pressmeq’T)

of the air fraction and the entropy. of saturated humid air as a function of the air fraction and the

The equilibrium is computed using this approach with the temperature.
library callset _lig _air _eq.at _a_eta . Alternatively,
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R. Feistel et al.: Oceanographic application and numerical implementation of TEOS-10: Part 1

The equilibrium is computed using this approach with the
library callset _ice _air _eq_at _a_t or using the function
ice _air _condensation _pressure Si .

Case 2: Equilibrium at given air fraction, A, and
pressure, P

At given A and P, humid air can approximately be con-

669

The vapour pressure is approximately equal to the partial
pressure of vapour in humid ai?V3=x{V P, computed
from the total pressure® and the mole fraction:¥ (A),

Eqg. (2.11). As an analytical estimate to be used below, we
modify Eq. (A55) by means of the relation kx1—1/x:

T
In — —Inx{V.
T;

~

In — ~
P RwTi

(A56)

sidered as an ideal mixture of air and vapour. The partialAssuming constant heat capacities, the ideal-gas entropy

pressureP"apszV P of vapour is computed from the total
pressureP and the mole fraction (4), Eqg. (2.11). Inturn,
the sublimation temperatufle=7'SUbl( pvaP) of water is com-
puted from Eq. (5.8). Witl, T and P available, the required
density estimate of humid aip/V =1/g%’ (A, T, P), is eas-
ily calculated from the related Gibbs function, Eq. (4.37).
Using AA=0 andA P=0, the linear system (Egs. A53, A54)
can now be solved iteratively fa andp”V .

In particular, this solution provides the frost point temper-
atureT (A, P) of humid air as a function of the air fraction
and the pressure.

The equilibrium is computed using this approach with the
library callset _ice _air _eq_at _a_p or using the function
ice _air _frostpoint Si .

Case 3: Equilibrium at given temperature, T, and
pressure, P

At given T and P, humid air can approximately be con-

sidered as an ideal mixture of air and vapour. The partial

pressurePVa@P of vapour is computed from the sublimation
pressure of ice at givefi by solving Eq. (5.8). The vapour
density follows from Eq. (4.3) as¥=1/g} (T, P'®) and the
air density fromp”A=1/g4" (1, T, P—P'®). The air frac-
tion is then available fromd=p"/(p"+pV). With A, T
and P available, the required density estimate of humid air,
o™N=1/g%" (A, T, P), is easily calculated from the related
Gibbs function, Eqg. (4.37). Using7=0 andA P=0, the lin-

ear system (Eqgs. A53, A54) can now be solved iteratively for

A andp?V.

In particular, this solution provides the specific humid-
ity g=1—A(T, P) of saturated humid air below the freezing
point as a function of the temperature and the pressure.

The equilibrium is computed using this approach with the
library callset _ice _air _eq_at _t _p or using the function
ice _air _massfraction _air si.

Case 4: Equilibrium at given air fraction, A, and
entropy,

At given A and n, we use the approximate Clausius-

Clapeyron equation to relate the partial vapour pressure
the frost point,PVa, to the temperaturd,:

(-7)

Www.ocean-sci.net/6/633/2010/

pvap
Py

L
RwT;

T;

T

~

In

(A55)

al

(A57)

n(A, T, P) of humid air is, relative to the triple pointly|
P) of water,
=n+A AnL _gam?t
n=mnm P T A P
T P

1—A)(cYIn=—Rwin=).
o )(CP T Pt>
We insertP from Eg. (A56) into Eq. (A57) and get the isen-
tropic condensation temperature estimateTicT(A,n):
(A58)

Tict (A, n) ~ T; exp
n—nt(A) — [ARA + (1 — A)Rw] In x{¥ (4)

A RaL \% L
Al - 28)+a-a(f- %)
Here, at the given air fractionA, the triple-point

entropy nt(A)=n(A, T, P)=—g7" (A, T, Py) is computed
from Eq. (S12.2), the mole fractiorf¥ (A) from Eq. (2.11),

the constants take the rounded numerical triple-point values
T;=273.16 K, P=611.654771Pa,c»=1003.69 Jkgl K1,
}=1884.352Jkg*K~1, Ra=R/Ma, Rw = R/Mw, and
L=2834359Jkg! is the sublimation enthalpy. The molar
mass of air isMa=0.02896546 kgmol', that of water is
Mw=0.018015268 kg mott, and R=8.314472JImolt K1

is the molar gas constant.

With A and an estimated available, we can now proceed
as in case 1 to compute the remaining starting values for the
iterative solution of the linear system (Eqgs. A53, A54) of two
equations for the three unknowfis P andp”Y usingA A=0.

A third equation must be added to the system, adjusting the
humid-air entropy to the given value;

— Y AA = AT — AN =0+ Y. (AB9)

This equation is valid for humid air at the frost point, i.e. ice
air with a vanishing ice fraction. If the sample contains a
finite amount of ice, its entropy must additionally be consid-
ered in Eq. (A59).

In particular, the solution of case 4 provides the isentropic
ice condensation leve? (A, n) of lifted humid air as a func-
tion of the air fraction and the entropy.

The equilibrium is computed using this approach with
the library call set _ice _air _eq.at .a_eta. Alterna-
ttively, this state is computed from, T and P of a sub-
saturated humid-air parcel having the same entropy and
air fraction as the final saturated one by calling the func-
tions ice _air _icl _si or ice _air _ict _si to deter-
mine the isentropic condensation level or temperature.
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Al12 Equilibrium conditions for liquid water, ice and The total pressure is estimated from the mole fraction
water vapour in air (Sect. 5.10) x{V (A), Eq. (2.11), asP=P;/x4’ (A). With A, T and P
available, the required density estimates for liquid water,
To determine equilibrium conditions for liquid water, ice pW=1/g‘I£V(T,P), and for humid airpAV=1/g/l§V (A,T,P),
and water vapour in air, we first expand the resulting fourare easily calculated from the related Gibbs functions,
Egs. (5.83; two equations), (Eqgs. 5.85 and 587) with respeckqs. (4.2) and (4.37).

to small changes of the five independent variables: The equilibrium of wet ice air is computed using this ap-

roach with the library caltet _lig _ice _air _eq._at _a.
—Arfaa+ (Y - A - g)ar (Ae0) P g | |
11 n o P N Case 2: Equilibrium at given pressure,P
AN W AP+ fo" —Afap A2 Ap
(p ) The temperature of wet ice air is only slightly different

W P W 1 1 from the triple-point temperaturd; = 7;=273.16 K, which

=\~ w2 | 2P = (p_W_pW> is used as an initial estimate. The partial pressure of vapour
(p ) is close to the triple-point pressur®=611.654771 Pa. From

+fW—fAV+Af£‘V the related mole fraction estimate;=P;/ P, the mass frac-
tion A is computed, Eq. (2.9). With, T and P available, the
required density estimate for liquid wate?’,":l/g‘,’}’(T, pP),
and for humid air,0™=1/g%" (A, T, P), are easily calcu-
P ) lated from the related Gibbs functions, Egs. (4.2) and (4.37).

— A AA+ (FY - ARy - o) AT (A61)

1 Ih AV AV
+ (pw —gp)AP+ (fp —Afap —

A2 The equilibrium of wet ice air is computed using this ap-

» (p ) proach with the library cakbet _liq _ice _air _eq_at p.

AN = N AV L A
o 4 Case 3: Equilibrium at given temperature, T

AV AV AV oAV AP At the temperaturd’, the pressure of wet ice air equals
P Sap AA+ P 1 AT = A (A62) e melting pfessure of icé’,iPme't(T), as the solutiog of

A VY A P VY Eqg. (5.5). The partial pressure of vapour is close to the triple-
+ (pr T fop )Ap AN TP fo point pressureP=611.654771Pa. From the related mole
fraction estimatexy=~P;/P, the mass fractiom is com-
puted, Eq. (2.9). WitM, T and P available, the required

PV FAT — A_v}v) + <2f;\7N + prXZ) AW (A63)  density estimate for liquid watepV=1/g%¥ (T, P), and for

» P humid air, o™ =1/g%" (A, T, P), are easily calculated from
=5 - pr/\)N_ the related Gibbs functions, Egs. (4.2) and (4.37).

p The equilibrium of wet ice air is computed using this ap-

For brevity, fF(T’ pW) is abbreviated here by" and proach with the library cakbet _liq ,ige _air _eqg.at _t.
similarly for its partial derivatives. For the numerical  In the cases 1-3 above, the solution of Egs. (A60)—(A63)
solution, one additional condition is needed, such asdefines the intensive properties, 7, P of the equilib-
specification of temperature or pressute]=0 or A P=0. rium but does not provide the relative mass fractions of
Then appropriate starting values are required to initializethe three phases present. The nonnegative fractions of dry
the iterative determination of the remaining unknowns. air, w*, vapour,w", liquid water, ", and icehw'h, are
Three important cases are considered in the following. TheSubject to only two equat|on94;A-|TwV+wW+y;-' =1, and
solution of Egs. (A60)—(A63) does not provide the relative w*/(w”+w")=A. Thus, two additional conditions beyond
mass fractions of the three phases. Two more conditions art0se used in cases 1-3 are required to specify the state of
required to fix the latter quantities. Cases 4 and 5 addreste parcel completely.

this issue. Alternatively, three conditions independent of the cases 1—
3 may be given. Two important cases, 4 and 5, are considered
Case 1: Equilibrium at given dry-air fraction of the in the following.

humid-air part, A
Case 4: Equilibrium at given dry-air fraction, w”, liquid
The temperature of wet ice air is only slightly different fraction, w" and ice fraction, w'"
from the triple-point temperatur&,=7;=273.16 K, which is
used as an initial estimate. The partial pressure of vapour In this case, the fractions of the sample’s phases are given
is close to the triple-point pressure?=611.654771Pa. and the necessafy— P conditions are calculated.
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The air fractionA=w?/(w?+w")=w"/(1-wW—-w'n)
is immediately and exactly computed from the input values. A\ W A\ Ih A AV
Case 3 above provides the algorithm to deffvand P from [w (A—w )fTT+(1—w) (A—w )grr+w fTT] (AB5)
A.
The equilibrium of wet ice air is computed using this AT + (1 -w) (A w )gTPAPer(A w )

approach with the library call
PP 4 Franp vt £ AP+ wif+A—w)gf+ut £1Y | A4

set _lig _ice _air _eq_at wawl _wi.
w AV
=— 1- A— —A
Case 5: Equilibrium at given dry-air fraction, w”, ( >fT = w)( v ) —whff -

entropy, », and the liquid fraction of the

condensed partw=w"/(w" +w'") The resulting system of five Egs. (A60)—(A63), Eq. (A65)
can be solved iteratively for the five unknowasT', P, pV,
o™V, from which in turn all other properties can be evaluated.
The equilibrium of wet ice air is computed using this
approach with the library call
set _lig _ice _air _eq_at waeta _wt or using the func-
tionsliq _ice _air _ifl _si orlig _ice _air _iml _si .

This case is relevant to adiabatically lifted air parcels with
conservative values of the first two parameters, the dry
air fraction, w”, and the entropyy. The third parame-
ter, w=w"W/(wW+uw'"), varies betweemw=0, i.e., the melt-
ing level (completely frozen condensate), andl, i.e., the
freezing level (completely molten condensate). Only points
(w?, n) selected from the regions shown in Fig. 12 permit
valid solutions in this case. A13 Equilibrium conditions for seawater and water

The temperature of wet ice air is only slightly dif- vapour in air (Sect. 5.11)
ferent from the triple-point temperaturd,~7;=273.16 K,
which is used here as an initial estimate for the itera-To determine conditions under which water vapour in air ex-
tive solution. Lacking a better simple estimate, we setists in equilibrium with seawater, we first linearize the three
the initial vapour fraction,wV, to 50% (or another frac- Egs. (5.88), (5.90) and (5.92) with respect to small changes

tion) of the total water fractionw’+wW4+w'"=1-w”,  of the six variables:
i.e., wa(1-w?)/2. The related air fraction of the gas s
phase is them=w”/ (wA+w")~2w"/(1+w"). The par- SAgSsASA — Affs AA + (AG6)

tial pressure of vapour is close to the triplle—poi_nt pressure,(fﬁV_AfﬁT_fT —8T+SA8§T)AT
Pi=611.654771Pa. The total pressure is estlmated from

the mole fractlonx (A), Eg. (2.11), asP= Pt/x (A). o <%_iw—g§+SAg§P>AP

With A, T and P available, the required density esti- o 1Y

mates of liquid waterpWV= 1/g (T, P), and of humid air, A g P P A/ w P w
o™V =1/g% (A, T, P), are calculated from the related Gibbs +| /, ap T | AP e m T | AP
functions, Egs. (4.2) and (4.37). Finally, the given en- (o") (o%)
tropy, 1, and the liquid fraction of the condensed part, _ , 1 1 A g _Sa
w=wW/(wW+w'M), are used to adjust the phase fractions~ =~ \ pW SN ALY 15 Sngs
to the entropy balancg=w"VnW+w'Mp'M+@ A +wV)n?V,

which can be written in the form AP

( WA PN fay AA + p™ RV AT — Py (AB7)
n=-—w 1——>fT—(1—w) (ABG4) P
A (2 fAV + fAV> AtV - — - oA f?v
wh wh 0
1- Y )gh Y v
4 ' AT AP
W W W W W W

Expanded with respect to small changes of the independer® /TpAT — oW + (pr +p fpp) Ap (A68)
variables, this equation is added to the system (Eqgs. A60— p
AB3) in the form =——o"f

oW
For brevity, f7(7,p") is abbreviated here by and
similarly for its partial derivatives. For the numerical
solution, three additional conditions must be specified. For
example, salinity, temperature and pressure may be specified

S0 ASa=0, AT=0 andA P=0. Appropriate starting values
for the iterative determination of the remaining unknowns
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Table A12. Alphabetic index of single-phase properties

R. Feistel et al.: Oceanographic application and numerical implementation of TEOS-10: Part 1

Quantity Symbol Unit Eg. Comment

Absolute pressure P Pa (S2.11) of fluid water
(S5.11) of humid air

Absolute temperature T K (S9.2) of seawater
(S14.2) of humid air

Activity coefficient Iny 1 (S4.1) of seawater

Activity of water in seawater ayy 1 (S4.3)

Activity potential 1 (S4.2) of seawater

Adiabatic lapse rate r Pﬁa (S2.10) of fluid water
(S3.11) of ice
(S5.10) of humid air
(S12.14)  of humid air
(S14.10) of humid air
(S7.11)  of seawater
(S9.10) of seawater

Air contraction coefficient B 1 (S12.17)  of humid air

Barodiffusion ratio kp 1 (S7.14) of seawater

Chemical coefficient Dp k—Jg (S12.16)

of air in humid air

Chemical coefficient Dsg %g (S4.6)

of sea salt

Chemical potential \Y %g (S7.12)  of seawater

of water in seawater

Chemical potential fi k—Jg (S7.13) of seawater

of sea salt in seawater

Chemical potential \Y k% (S12.15)

of vapour in humid air

Chemical potential m %g (S3.1) of ice

Compressibility factor Zpy 1 (S12.12) of humid air

Density 0 % (S3.3) of ice
(§7.1) of seawater
(S9.1) of seawater
(S12.1) of humid air
(S14.1) of humid air

Dilution coefficient D k—Jg (S4.7) of seawater

Haline contraction coefficient B 1 (S7.18) of seawater

Haline contraction coefficient g© 1 (S7.20) of seawater

w.r.t. potential enthalpy (S10.9) of seawater
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Table A12.Continued.

Quantity Symbol Unit  Eg. Comment
Haline contraction coefficient g? 1 (§7.19) of seawater
w.r.t. potential temperature (S10.8) of seawater
Isentropic compressibility Ks %,31 (S2.8) of fluid water
(S3.9) of ice
(S5.8) of humid air
(S12.11) of humid air
(S14.8) of humid air
(§7.9) of seawater
(S9.8) of seawater
Isochoric pressure coefficient 8 %" (S3.12) of ice
Isothermal compressibility — «7 Pia (S2.9) of fluid water
(S3.10) of ice
(S5.9) of humid air
(S12.10) of humid air
(S7.8) of seawater
Mass fraction of dry air A % (S1.2) mass of dry air per
in humid air mass of humid air
Mixing enthalpy Ah %g (S4.8) of seawater
Mixing entropy An lﬁ (S4.9) of seawater
Mixing volume Av %3 (S4.10) of seawater
Molar mass of humid air Mpy % (S1.1)
Osmotic coefficient 1) 1 (S4.11) of seawater
Partial enthalpy of vapour W k%; (S12.4)
in humid air
Potential density o % (510.3)  of seawater
Potential enthalpy n k*‘]g (S10.1) of seawater
Potential temperature 0 K (S10.2) of seawater
Relative chemical potential 1 k‘]—g (S9.3) of seawater
(S14.3) of humid air
Saline excess WS %g (S4.4)
chemical potential
Sound speed c % (S2.12) of fluid water
(S5.12) of humid air
(S12.13) of humid air
(S14.9) of humid air
(S7.10) of seawater
(S9.9) of seawater
Specific enthalpy h %g (S2.3) of fluid water
(S3.4) of ice
(S5.3) of humid air
(S12.3) of humid air
(87.3) of seawater
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Table A12.Continued.

Specific enthalpy of sea salt kg k—Jg (S4.12)

Specific entropy n kgiK (S2.4)  of fluid water
(S3.5) of ice
(§7.2) of seawater
(S12.2) of humid air

Specific entropy of sea salt ns kgiK (S4.13)

Specific Gibbs energy g k—Jg (S2.6) of fluid water
(S5.6) of humid air
(S14.4)  of humid air
(S9.4)  of seawater

Specific Helmholtz energy f %g (S3.7) of ice
(S7.5) of seawater
(S9.6) of seawater
(S12.6) of humid air
(S14.6) of humid air

Specific internal energy u k—Jg (S2.7) of fluid water
(S3.8) of ice
(S5.7) of humid air
(S12.5) of humid air
(S14.5) of humid air
(S7.4) of seawater
(S9.5) of seawater

Specific isobaric heat capacity cp kgiK (S2.1) of fluid water
(S3.2) of ice
(S5.1) of humid air
(S12.7)  of humid air
(S14.7)  of humid air
(S7.6) of seawater
(S9.7) of seawater

Specific isochoric heat capacity cy kgiK (S2.2) of fluid water
(S5.2) of humid air
(S12.8) of humid air
(S7.7) of seawater

Specific volume v %3 (S3.13) ofice

e 3

Specific volume of sea salt vg % (S4.14)

Thermal expansion coefficient o, a” % (S2.5) of fluid water
(S3.6) of ice
(S5.5) of humid air
(S12.9) of humid air
(S7.15) of seawater
(S10.4) of seawater

Thermal expansion coefficient «” %g (S7.17) of seawater

w.r.t. potential enthalpy (S10.6) of seawater

Thermal expansion coefficient «? Pia (S7.16) of seawater

w.r.t. potential temperature (S10.5) of seawater
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must then be specified. Two important cases are consideregmperaturd >7°"dcauses water to evaporate from the sea

in the following. surface. Humid air with a temperatufe<7°" results in
condensation of water at the sea surface (for details, see Feis-
Case 1: Equilibrium at given salinity, Sa, temperature, tel et al., 2010a).
T, and pressure,P This equilibrium is computed by the library

call set _sea _air _eq_at _s_a_p or by the function
At given T and P, humid air can approximately be con- sea _air _condense _temp si .
sidered as an ideal mixture of air and vapour. The partial
pressureP V8 of vapour is computed from the vapour pres- Supplementary material related to this
sure of liquid water at giveff’ by solving Eq. (5.1), neglegt-  article is available online at:
ing the effect of salt in the water. The vapour density fol- http://www.ocean-sci.net/6/633/2010/
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