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Abstract. Nowadays, several operational ocean wave fore-forcings and to the implemented physics, each wave fore-
casts are available for a same region. These predictions magasting system has its own strength and weakness. In this
considerably differ, and to choose the best one is genereontext, a combination of several models outputs may be ex-
ally a difficult task. The super-ensemble approach, whichpected to yield better results. This is the underlying idea of
consists in merging different forecasts and past observationthe super-ensemble (SE) techniques, which aim at improving
into a single multi-model prediction system, is evaluated inforecasts by optimally combining different models, making
this study. During the DART06 campaigns organized by theuse of past data.

NATO Undersea Research Centre, four wave forecasting sys- SE techniques were first applied in meteorology to im-
tems were simultaneously run in the Adriatic Sea, and sig-prove weather and seasonal climate forecdstisinamurti
nificant wave height was measured at six stations as welkt al, 20008). Tropical precipitation forecast&tishnamurti

as along the tracks of two remote sensors. This effort proet al, 20009 and tracking of tropical cyclones in the Pa-
vided the necessary data set to compare the skills of varicific (Kumar et al, 2003 also benefited from the applica-
ous multi-model combination techniques. Our results indi-tion of SE techniques. During the last few years, the method
cate that a super-ensemble based on the Kalman Filter imhas been further investigated with dynamical linear models,
proves the forecast skills: The bias during both the hindcastrom the Kalman Filter $hin and Krishnamurti20033 to

and forecast periods is reduced, and the correlation coeffiprobabilistic approacheshin and Krishnamurt20031) for
cient is similar to that of the best individual model. The spa- short- to medium-range precipitation forecasts using satellite
tial extrapolation of local results is not straightforward and products. In oceanography, the use of multi-model statis-
requires further investigation to be properly implemented. tics has been shown to improve the prediction of temperature
(Logutov and Robinsqr2005 Rixen et al, 2009 and acous-

tic properties Rixen and Ferreira-Coelh@006 in the water
column. More recentlyRixen and Ferreira-Coelh(2007)
introduced the concept of hyper-ensemble, combining mod-

Wave models have come to a mature stage in the last decade®!S Of different nature, to improve surface drift prediction; a
Although there are still debated issues — e.g. wave generdn€thod also evaluated Wandenbulcke et a[2009.

tion by wind, hypothesis of linearity, numerical implemen- ~ Operational wave forecasting systems are now spreading
tation of non-linear wave-wave interactions, dissipation byworldwide. In general, wave forecasts are required for the
whitecapping, etc., se€he WISE Group(2007) for a re- ~ monitoring and the prevention of storm surges and coastal
view — the performance of such models has greatly improvedhazards, for offshore industry purposes, for the optimization
While part of this improvement is directly associated to the Of shipping routes, for tourism, surfers, etc. Wave modeling
better representation of forcing wind fields, the inclusion of is crucial for the description of near-shore dynamics, and itis
new physical features and the refinement of others have als@lso increasingly advised for a coherent description of the up-

played an important role. Thus, according to its atmospherid€r ocean hydrodynamicAidhuin et al, 2003. This prolif-
eration of forecasting systems gives the opportunity to have

several of them running over the same region with prompt
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The Adriatic Sea is a semi-enclosed basin surrounded by -~ Satelites tracks and buoys
a complex topography, which plays a major role when inter-
acting with the atmospheric boundary layer. It results, forin- .l
stance, in wind deflection due to mountain blockage or gener- '
ation of downslope winds (i.e. the northeasterly Bora wind).  aen
For this reason, accurate representation of the orography is
required. Indeed, the performance of the models mostly re- <N
lies on the correctness of the wind forcingignell et al.

(2005 have shown that the use of regional atmospheric mod- “*"
els with a very high horizontal resolution (less than 10 km)
can improve the performance of the induced wave field, re-
ducing the amplitude response error by a factor of two or
more, compared to the case of wind provided by coarse res-
olution models.Dykes et al(2009 have shown that the use ooy~ - - l

of higher-resolution orography allows to decrease the under- e e oE e e

estimation bias of the 10-m wind field, but not to decrease_. . . . .
correspondingly the underestimation bias of the significant::h'g';Aé‘gggtgnmcga;gisbuoys and satellite tracks available during
wave height (SWH). While this is mostly true for the north- '
ern part of the se®asait et al.(2007, 2009 have observed
that the horizontal resolution of the atmospheric model also
affects the resulting modeled wind field in the southern Adri- 2.1 Data

atic Sea, and thus possibly the wave field. o o ) )

The purpose of the present study is to examine the SE fore¥vave characteristics can be measured in situ or via satellite-
casting skills of the SWH at six different locations in the POrne remote-sensorStewart 1984 Hwang et al. 1998.
Adriatic Sea during two sea trials. Though posterior to the The instruments used in the first approach include pres-
cruises, this work has been realized with the operational conSUré gauges, accelerometers and bottom mounted acous-
text kept in mind, i.e. working only with models available fi¢ Doppler current profilers (ADCP). The second approach
in real time and reducing to the minimum the computationalincludes high-frequency radar altimetry, synthetic aperture
cost. radar, scatterometry and photography.

The paper is organized as follows: in Sect. 2 we presentthe During and in between both DART06 campaigns, ADCP,
data and the four forecasting systems SWAN ARPA, SWANWhich were installed by the Naval Research Laboratory
NRL, WAM ATHENS and WAM ISMAR. The SE theoreti- (NRL), combined measurements of orbital velocities of
cal background is introduced in Sect. 3 with an overview of waves, acoustic tracking of the sea surface, and pressure
each scheme used in this paper: the Ensemble Mean, the Lifluctuations in order to produce estimates of the surface
ear Combination and the Kalman Filter, as well as their re-gravity wave parameters and spect&ir¢ng et al. 2000.
spective unbiased versions. The application to wave forecasbince pressure measurement quality becomes questionable
is described in Sect. 4, and conclusions are drawn in Sect. s depth increases (D. W. Wang, personal communication,

2007), only shallow waters measurements from three sta-
tions were used for this work. Moorings located at GS1
2 Data and forecasting systems (41°58.21N, 15°54.54E), GS2 (420.95 N; 15°55.18 E)
) o ) and A20 (4246.20N; 16°16.80 E) provided SWH time se-
The Dynamics of the Adriatic in Real-Time 200BARTO6)  (jo5 (A7 =6 h or 8 h). In addition, high temporal resolution
campaigns, which took place during Spring and Summeryj,i w7 — 30 min) from three stations of the Rete Onda-
were coordinated by the I\!ATO Unders_ea Rgsearch Centreotrica Nazionale (RON), located at Ancona {48.78 N,
(NURC) and generally dedicated to rapid environmental as-; 345 gg E), Monopoli (4058.50 N, 17°22.60 E) and Or-

sessment capability. A considerable amount of resources angl (4224.90N, 14°30.33 E), were also available. These

people were involved in the deployment of numerous instru-yata are courtesy of the Instituto Superiore per la Protezione
ments, in the real-time forecast of meteorological, hydrody-, |5 Ricerca Ambientale (ISPRA).

namical and wave models, in the coordination of communi-
cations, in the treatment of satellite imagery, etc. However,
we confine ourselves to the presentation of relevant data an
modeling systems for the wave forecast SE application.
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In order to test the spatial extension of our methods over
the whole Adriatic basin, we also consider satellite-borne al-
imetry data from ENVISAT of the European Space Agency,
and JASON-1 of the National Aeronautics and Space Ad-
ministration (NASA) and the Centre Nationalétiides Spa-
tiales (CNES). The location of the six stations and both satel-
lites tracks over the region are shown in Fig.
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2.2 Wave forecasting systems calculate the advection terms, a first-order upwind scheme or
a second-order leapfrog scheme.

Early wave models, based on the action balance equation,

suffered from a poor representation of physical processesWAM ATHENS (WA)

First generation wave models assumed that wave components

suddenly stopped growing as soon as they reached an adhis Adriatic Sea wave forecast systémses a modified ver-

sumed universal upper limit of the spectral density. Thesesion of WAM (cycle 4) to get a more reliable wave forecast in

models did not include a non-linear transfer term. Secondcoastal areas by taking into account, among other processes,

generation wave models tried to remedy this situation by padepth induced wave breaking. The model is forced by the

rameterizing the non-linear transfer of wave energy throughSKIRON weather forecast systefnwhich runs twice a day

the redistribution of energy over frequencies, according to aand provides a 72-h forecast with hourly output over a com-

reference spectrum. Yet, these models were still unable t@utational grid of 1/10. The Adriatic Sea wave model is

properly simulate waves generated by rapidly changing windnested into a Mediterranean and Black Sea model, providing

fields, such as hurricanes or intense cyclones. Present wayave spectra open boundary conditions. It covers the geo-

models belong to the third generation: they calculate the evodraphical area between 12-H and 39-486N with a spa-

lution of the wave field on a purely physical basis, without tial resolution of 1/20. The wave forecast system issues a

any parameterization or a priori assumption on the shape o.5-day forecast of significant wave height and mean wave

the wave spectrum. Two well known examples of third gen-direction at a time interval of 3 h.

eration wave models are employed by the forecasting sys-

tems used in this work: WAM (WAve Model bwAMDI ~ WAM ISMAR (W)

Group 1988 and SWAN (Simulating WAves Nearshore by , . 3 .
Booij et al, 1999. This Adriatic Sea wave forecast systémses as forcings the

In the particular case of the DARTO6 campaigns, two im- wind analysis and forecast fields from the European Centre

plementations of WAM were run, one at the University of Iﬁr Med||urt1_1-ran]9teh_Welat£1elr Fo(;e(lzgst (IESM?M': Becausg ¢
Athens (Greece) and the other at the Intitute of Marine Sci- e resolution of this global model is relatively coarse (abou

ences of the Italian National Research Council (Italy), as Wellg9 krcr;)]: the lvvmdtspeeds are gnhagcils by coe;flcllentts dte—
as two implementations of SWAN, one at the Servizio Idro- uced from fong-term comparison between model outputs

Meteo-Clima ARPA-SIMC of the Emilia Romagna region and scatterometer wind speeds, and comparison with altime-

(Italy), and the other at the NRL in Stennis Space Centerter and buoy datefavaleri and Bertoifil 997 Cavaler! and
(USA). The details regarding the implementation of thesesSClaV0 2008. The wave model COVETS the_geograph_lcal area
specific systems are presented hereafter. between 12—-20E and 40—46N_ W|th a spatlgl resolution of
1/12. The standard output time interval is 3 h. A 1-day
analysis and a 3-day forecast of the wave field are released

221 WAM .
daily.

The WAve Model was originally designed for modeling
waves in the deep ocean or in intermediate depth water. Howg'z'2 SWAN
ever, in the course of time it has been adapted for S|mula-.|_he Simulating WAves Nearshore model was developed to

tions In shallow water_ by the use (.)f a shallow-water IOhasecompute short crested waves in coastal regions with shal-
speed in the expressions of wind input, a depth depende

i f th druplet int ¥ f %W water and ambient currents. Two important coastal
scaling of Ine quadrupiet wave-wave interactions, a re or'proces:ses were added with respect to WAM: depth induced

tmhu:?;lron Oanh'ti%atﬁ)]pm%(;rili tirrr}sbogt Wrﬁ\é? niu mt? e; r\?\},ztli/: wave breaking and triad wave-wave interactions. Similarly
W:S thzq;ijrest(\:/?//aa\l/e moedzl to Sseoth(g d(i)scretsesigfler?ic.tion a to WAM, SWAN incorporates the effects of shoaling, refrac-
Plion, blocking and reflection due to currents and variations

proximation to calculate non-linear transfers of energy byin bathymetry. Concerning its numerical implementation

quadruplet wave-wave interactior)s. Besides, it .accou_nt_s fc’%WAN uses an implicit propagation scheme based on finite
Fhe effects of shoaling and refraction dqe o spatial Va}”at'onsdifferences which is unconditionally stable and more suited
in bottom and current and can also simulate blocking andfor small-scale, shallow-water and high-resolution computa-

reflection when waves propagatg against the C“rfe”t- S.t'”tions. This scheme allows for relatively large time steps be-
WAM cannot be realistically applied to coastal regions with

water depths less than 20-30m. Regarding the numerics, 1ntp://forecast.uoa.gr/waminfo.php

WAM uses a different discretization scheme for the integra-  2np://forecast.uoa.gr/forecastnewinfo.php

tion of the source functions and the calculation of the advec-  3pip:/rricerca.ismar.cnr.ityMODELLI/ONDEMED_ITALIA/
tive terms of the action balance equation: the source funcpage-html/nettuno/NETTUNO2.html

tions are computed with a fully implicit scheme, while two  4http:/iwww.ecmwi.int/research/ifsdocs/CY31r1/WAVES/
alternative explicit propagation schemes are implemented toFSPart7.pdf
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Fig. 2. Wave forecasts for 23 March 2006 at 00:00 UTC in the Adriatic Sea.

Table 1. Main specificities of the forecasting systems. SWAN NRL (SN)

This operational version of SWAN in the Adriatic Sea was

Wave forecasting systems . . .
95y temporarily run in order to support the DART campaigns.

Name Abbreviation Ax = Ay ';ors‘;:e”rg otti’rtrf’é” It is forced by wind fields from the Aire Liméte Adapta-

Y interval tion Dynamique INitialisation (ALADIN) modef, a limited
SWAN ARPA SA 172 cosMol _ ah area, n_on-hy_drostatlc, numerical weather prediction model
SWAN NRL SN 120 ALADIN 1h nested in Action de Recherche Petiiehelle GrandEcheIIe
WAM ATHENS WA 1/20° SKIRON 3h (ARPEGE) from Metto France. The atmospheric model was
WAM ISMAR wi mnze ECMWF 3h run by the Croatian Meteorological and Hydrological Ser-

vice and provided a 48-hour forecast of the wind field. The

wave forecast system covers the geographical area between

11-20 E and 40—-47N with a spatial resolution of 1/20 It
cause it is only limited by accuracy. The drawback of this is run twice a day with a 48-h forecast range and an output
implicit scheme is that it is fairly diffusive for long propaga- time interval of 1 h.

tion distances (oceanic scales). The forecast system configurations are summarized in Ta-
ble 1. Figures2 and3 present snapshots of the wave fields
SWAN ARPA (SA) produced by the four forecasting systems for 23 March 2006

at 00:00UTC and 2 August 2006 at 18:00UTC, in respec-
This operational implementation of SWANin the Adriatic tively strong- and weak-wind situations. Observed discrep-
Sea is driven by wind fields provided by COSMO87a 7-  ancies in SWH patterns and amplitudes for both situations
km resolution non-hydrostatic numerical weather predictionjustify the application of multi-model methods for wave fore-
model based on Lokal ModelBteppeler et al2003. The  casting.
wave forecast system covers the area between PZ=20d
40-46 N, with a spatial resolution of 1/22 The output time
interval is 3 h. Each simulation starts withhatstart field 3 Methods
i.e. an initial wave field derived from a previous run, and is
run twice a day, respectively at 00:00 and at 12:00 UTC, withThe general procedure of the SE techniques consists of two
a forecast range of 48 Wélentini et al, 2007). steps: the learning and the testing periods. The first one aims
to determine the weighting of the models by using past in-

Shttp:/Awww.arpa.emr.it/sim/?may&idlivello=72
6http://www.cosmo-model.org 7http://www.meteo.hr
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Fig. 3. Wave forecasts for 2 August 2006 at 18:00 UTC in the Adriatic Sea.

formation. At its end, the evaluated weights are frozen andUnbiased ensemble mean (UEM)

the second one starts. From this moment on, no additional

observation is considered and the forecasting phase simplyhis slightly more elaborated method has the advantage of

consists in linearly combining the models outputs. removing the hindcast bias and, as a consequence, poten-
We present the SE techniques used in this work by increastja”y reducing the forecast bias. The unbiased hindcast is

ing complexity order. Notation conventions are the follow- obtained by adding the models anomaligs, with respect

ing: subscript denotes the model index anthe time index, 10 the time-averaged models outputs during the learning pe-

M the number of modelsy; the number of time steps during riod X;, to the time-averaged observations during the same

the learning period and/; the number of time steps during Periody (Eq.3). The forecast is computed in the same way

the testing period. The data are represented land the  (Ed.4).

model values at the same location byThe prediction pro- LM
duced by the method during the learning period. is the hind—h;JEM = 7+_2x}’i . j=1,....N ©)
cast, denoted by, whereas the one produced during the test- M =
ing period is the forecast, denoted iy Acronyms relative to 1M
f[he combinatior_l techniques are Writ_ten as superscript_s. F_oijE’VI =y+ sz}’i , j=N+1...,N+N, (4)
instance, the hindcast produced using the Kalman Filter is i=1

denoted by:XF. hore 5 — 1
where 3 = &+

1
Ensemble mean (EM) NLZ{W X
1 ]: ]

Z;V]:1yj and x}i =Xji — X with x; =

This very simple method consists in taking, at each time stepy jnear combination (LC)
the average value of the models for both the hindcast{Eq.

and the forecast (E®). This method illustrates particularly well the SE concept and
1M can be seen as an improved version of the EM, with weights
hj'T:'V' = MZX/J . J=L...N (1)  w; depending on the performance of the models over the
i=1 learning period. These are determined by minimizing Bj. (
1M in the least-square sense and then used to compute both the
fj!EM _ szj’i , j=N+1,...,N+N, (2 hindcast (Eg6) and the forecast (EQ).
i=1
In opposition to the EM, which is not strictly speaking a SE | *+1 = LM || W1 1
technique, the four following techniques all use the data dur-|  :  x;; = (5)
ing the learning period to combine the model outputs. XN XNm | | wu YN,

Www.ocean-sci.net/6/595/2010/ Ocean Sci., 6, 588-2010
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M
. Egs. (11) and (2).
thZZXj’iwi, j=1,....N; (6) gs- 1) a2)
’;1 W‘}:Wf—i—Kj(yj—xjwf), j=1...,N, (11)
f]!‘C=ZXj,iwi, J=Ni+1,.. N +N; (7) P?:P';_Kjxjpjf" Jj=1....N. (12)

i=1 . : .
l Superscript? denotes the analysis, or correction, of the

There is no restrictive hypotheSiS about WEightS, i.e. they\Ne|ghts once new data are assim”atag’is the equiva-

can be negative (a situation that generally occurs when COrent of the observation operator (d_M) of the KF classi-
linearities exist model forecasts), and their sum does not havgg| theory and can be interpreted as the operator that maps
to be equal to one. Itis also worth mentioning that a too shorthe weight space to the observation spae, is the ob-
training period, i.e. if there are less measurements than thgervation covariance matrix at time a scalar, anK ; =
number of models, leads to an under-determined system q{,ijf x; P/ yT +R/~)—1 is the Kalman gain matrix at time

equations to be solved. j (M x 1). Finally, hindcast and forecast are computed as

Unbiased linear combination (ULC) usual
M
This method differs from LC in that it uses an additional 25" = xjiwi. j=1...N. (13)
pseudo-model, which gives a constant output. This inde- i=1
pendent term allows the hindcast to be unbiased in the least- KE M .
square sense. The equation to minimize is then i = ij,,-w,-, J=Ni+1.. . N+N;. (14)
i=1
x11 0 xim 1 w1 1 _ .
' M g Unbiased Kalman Filter (UKF)
. Xj,i = : (8)
N o xngm 1) | wma N, Similarly to the ULC, we can add a pseudo-model predicting

Hind qf . imil he LC a constant value in order to reduce a possible bias. Equations
indcast and forecast equations are similar to the LC equay ¢ similar to the KE equations.

tions, except that the linear combination includes an addi-
tional term. This techniqgue may also be used with only one
model, and in this case it corresponds to a simple, but usually Results

very beneficial, bias correction.
The model combination techniques have been applied to the

Kalman Filter (KF) data set and model outputs collected during both DART06
campaigns, i.e. from 15 to 31 March 2006 and from 1 Au-
The KF uses the same approach as the LC but propagates djust to 15 September 2006. Though this work was carried
namically the weights and their covariance matrix during thegyt afterwards, we decided to place ourselvesgarational
|eaming periOd, which allows a better consideration of theconditions and thus only considered model outputs avail-
most recent observations. As the way weights should evolveyple during the cruises. In particular the absence of a model
in time is not known a priori, and as the persistence of thequring either a part or the entire learning period, or during
best fit seems to be the best possible guess, the identity Mahe testing period, excludes it from the multi-model forecast
trix is chosen as model operator. During the learning periodiechniques. In order to compare model outputs with observa-
forecast is performed as follows: tions, we performed spatial (inverse distance) and temporal
W — 1w 1 N ) (quear) interpolations. The time series of the concatenatgd
J v S =5 daily first 24-h of forecast of each model are presented in
Pl =1P4 1T +Q;_1. j=1...N. (10)  Figs.4and5. _ _ _
The following procedure is applied to test and validate the
Superscript/ denotes the forecast, or propagation, of the methods: at each station and for each campaign, we consider
weights during the learning periodl,is the identity matrix  the time series for which the four forecasting systems out-
(M x M), w; the vector of the weights at timg(M x 1), P; puts are available. Then, we split them into overlapping bins
the weight error covariance matrix at time(M x M), and  of 2-day every 6 h, in order to virtually increase our dataset.
Q; the model error covariance matri¢(x M). P andQ The first half of each bin constitutes the learning period, the
are both initially diagonal. Some out-diagonal elements cansecond half constitutes the testing period. Since three of the
develop inP as the filter assimilates observations, Qute- models provide a forecast starting at midnight of each day,
mains diagonal all along the process. At the analysis stepwhile the last one provides a forecast starting at noon of each
the state vector and the state covariance matrix are updateghy, a 12-h time-shift exists in their forecast range. Hence, in
by adding to their prediction a component that takes into ac-our experiments, at midnight of a hypothetical day 4, the 24-
count the model and observation uncertainties, as shown i learning period consists of the 0—24 h forecast of day 3 for

Ocean Sci., 6, 59%04, 2010 www.ocean-sci.net/6/595/2010/
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SA, SN and WA, while for WI it consists of the second 12-h

range of forecast of day 2 followed by the first 12 h of fore-
cast of day 3. The corresponding 24-h testing period consists
of the 0—-24 h forecast of day 4 for SA, SN and WA, while for

WI it consists of the second 12-h range of forecast of day 3, EM Ensemble Mean

followed by the first 12 h of forecast of day 4. The bias, the UEM  Unbiased Ensemble Mean

linear correlation coefficient and the root-mean-square differ- ELC  Ensemble Linear Combination
ence (RMSD) of the forecasting systems and SE techniques, EELC }L(J;l?:%?]egilltz;rsemble Linear Combination
are computed for both the learning and testing periods. The UKE  Unbiased Kalman Filter

acronyms used for the tested schemes are recalled in Zable
Fig. 6 presents the average of the statistics over all stations

and both campaigns.

Table 2. Acronyms of the used SE techniques.

Tested SE schemes

601

Let us first take a look at the bias. The four forecastingdue to the fact that the initial vector of weights in the KF and

systems (the first four blue bars) have a similar bias at hindUKF approaches is set to M/ (respectively 1/#/ + 1)) and

cast and forecast, which indicates that if we are able to gethat a 24-h learning period is not necessarily long enough for
rid of the bias during the hindcast, we should reduce it dur-the adjustment of the filter, especially at the GS1 and GS2
ing the forecast too. We also note that the UEM and the ULCstations where we only have 3 or 4 measurements per day.
present no bias at hindcast, whereas the UKF does. This iat forecast, the KF presents the lowest bias. Regarding the
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Fig. 6. Hindcast and forecast statistics of the different forecast sys- S e
tems and the tested SE techniques, averaged over the two campaigns 9. T o818
and all stations, using a 1-day learning period and a 1-day testing

period.

Fig. 7. Weights value computed at Monopoli and Ortona at the end
of a 2-day hindcast (top panel) — Forecast of the individual models

. Lo and the SE at Ortona with weights computed locally or remotely,
correlation, the similarity between the KF and the observa—i_e_ at Monopoli (bottom panel).

tions is not worse than the one between the forecasting sys-

tems and the data. Moreover, though the LC and the ULC

show a reduced RMSD at hindcast, the dynamical methods  ggyits of the model combinations:

perform better at forecast. This is due to the higher impor-

tance of the most recent observations. — negative values of SWH could be predicted without any
The previous results might be biased due to the smallnum-  constraint on the weights. A long enough training pe-

ber of measurements during a 1-day learning period, at least  riod and a short enough testing period might be a con-

at the GS1, GS2 and A20 stations. In order to improve the dition to avoid these unfortunate forecasts;

robustness of our results, we also present statistics relative

to a 2-day learning period and a 2-day testing period at Or- — as the performance of models can vary in space, their

tona. For this experiment, the training phase consists of ~ Optimal combination may change as well. The spatial

two successive one day learning periods, as presented pre- €xtrapolation of the weighting is thus conceivable but

viously, whereas the testing phase consists of the 48-h fore- ~ certainly has to be further investigated.

cast for SA, SN and WA, and a combination of the previous

(12 h) and present (36 h) day forecasts for WI. As for the

bias, Fig. 7 clearly shows the benefit of all multi-model tech-

nigues except EM. They reduce or remove the bias at hind

cast, and also improve the performance at forecast, especial

hen d ical method d. Simil lusi
when dynamical methods are used. Similar conclusions ca \THENS and positive but lower ones to SWAN NRL and

be drawn for the correlation at hindcast. However, at fore- . L
cast the SE techniques do not provide significant improve—SWAN ARPA. Even If both forecasts present a similar pat-

ment. The RMSD is reduced at hindcast (the more advancelf™ the one from the locally trained filter is closer to the
the method, the more significant the reduction), but is Onlyobservatlons, especially during the first 24 h.

slightly reduced at forecast compared to the best individual Figure 8 shows thg results obtained \.Nith weights com-
forecasting system when the KF is used to combine the modputed at the Monopoli, A20 and GS1 stations, along the most
els southern JASON-1 track shown in Fify. For this test case

Without surprise, results differ from one station to anothera,nd fpr clarity's sake, we only use tyvo mpdels fpr the com-
and also depend on the duration of the learning and testin%';at'pn' The forecast computed with a filter trained at Mo-
periods. Nevertheless, these experiments all show thatthe S poli, which is the closes.t station to the western part of the
based on the KF outperforms, or at least equally performs aS?ASON'l track, almost sticks to the forecast pf one of the
any of the individual forecasting systems at forecast, makinqn_()deIS and only slightly reduces the RMSD with r_esp_ect to
it a promising technique to combine different wave forecasts. h|s-model. Thg forecast computed from A20, which is the

The technique obviously still needs to be further investi- stat|oq located just north Of, the track, re‘?“?es the RMSD,
gated, since a humber of potential limitations can already beespemally on the _wgstern side of the. Adriatic Sga. On the
highlighted: eastern part, predictions and observations are antl—correla}ted.

The forecast computed from GS1 totally fails at representing
— an abrupt change in the time series of the models outthe SWH values. Similar results were obtained when consid-
puts, e.g. due to a model re-initialization, can yield poor ering different altimeter tracks in the area.

In order to illustrate this last point, the results obtained at
the Ortona buoy using the weights computed at the Monop-
oli buoy, are illustrated in Fig7. The relative importance

each model at both stations is rather similar: the largest
%eight is given to WAM ISMAR, a negative one to WAM
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