

The density of seawater as a function of salinity (5 to 70 g kg^{-1}) and temperature (273.15 to 363.15 K)

F. J. Millero and F. Huang

Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149, USA

Received: 24 October 2008 – Published in Ocean Sci. Discuss.: 23 January 2009 Revised: 24 April 2009 – Accepted: 24 April 2009 – Published: 5 May 2009

Abstract. New seawater density measurements were made as a function of temperature T=(273.15 to 363.15) K and salinity (5 to 70 g kg⁻¹). The measurements (N=230) from T=273.15 to 313.15 K and Practical Salinity (S) from 0 to 40 were found to be in good agreement ($\sigma=0.0036$ kg m⁻³) with the equation of state of seawater (Millero and Poisson, 1981) made on samples with a known chlorinity (Cl). These results indicate that the Practical Salinities (S) are in agreement to within ± 0.003 kg m⁻³ with the values calculated from the Chlorinity, $S_{Cl}=1.80655$ Cl. The measurements from 298.15 to 363.15 were used to extend the equation of state to high temperatures and salinities. All the densities were made relative to pure water ($\rho-\rho^0$ where ρ^0 is the density for pure water) were fitted to equations of the form

$$(\rho - \rho^0) / (\text{kg m}^{-3}) = AS_A + BS_A^{1.5} + CS_A^2$$

where *A*, *B*, and *C* are functions of temperature and S_A (g kg⁻¹) is the absolute salinity, S_A =(35.16504/35) *S* g kg⁻¹. The fitted results from S_A =0 to 50 g kg⁻¹ and *T*=273.15 to 313.15 K (*N*=242) gave standard errors of 0.0037 kg m⁻³. The fitted results from 298.15 to 363.15 K (*N*=280) gave standard errors of 0.0063 kg m⁻³ and all the results (*N*=522) from 273.15 to 363.15 K gave standard errors of 0.0063 kg m⁻³. The earlier density measurements (Millero et al., 1976b; Poisson et al.,1980) used to determine the equation of state of seawater (Millero and Poisson, 1981) were combined to derive equations that are valid from 273.15 to 313.15 K and 273.15 to 363.15 K. The standard errors of these fits are respectively, 0.0038 kg m⁻³ (*N*=713) and 0.0063 kg m⁻³ (*N*=962). These new measurements expand

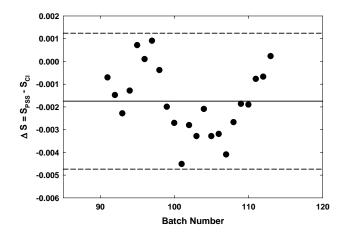
Corresponde (fmillero@rs

Correspondence to: F. J. Millero (fmillero@rsmas.miami.edu)

the equation of state of seawater to a wider range of temperature (273.15 to 363.15) K and absolute salinity (0 to 70 kg m^{-3}).

1 Introduction

The original one atmosphere density measurements used to determine the equation of state of seawater (Millero and Poisson, 1981) were made on seawater of a known Chlorinity (Cl). The salinities of these samples were determined using the relationship


$$S_{\rm Cl} = 1.80655{\rm Cl}$$
 (1)

This relationship may or may not be valid at the present time (Millero et al., 1976a). For example, the differences in the Practical Salinity (*S*) and Chlorinity salinity (*S*_{Cl}) calculated from Eq. (1) may vary by as much as 0.0055 (Fig. 1). This difference is equivalent to an error in density of ± 0.0041 kg m⁻³.

The present one atmosphere equation of state for seawater is limited to Practical Salinities from 0 to 40 and temperatures from 273.15 to 313.15 K. The equation was derived from the measurements of Millero et al. (1976b) and Poisson et al. (1980). A summary of these measurements are given in Table 1. The equation of state derived from the studies of Millero et al. (1976b) and Poisson et al. (1980) had a 1σ =0.0035 kg m⁻³ similar to the individual studies. Poisson and Gadhoumi (1993) have extended the range to higher Practical Salinities (*S*=50) from 288.15 to 303.15 K. They give equations that represent this data with standard errors close to those of the equation of state (Millero and Poisson, 1981). Measurements to a higher temperature are not available at the present time. As the physical chemical properties

Author	Number	Std Error (1σ)	Temperature	Salinity
Millero et al. (1976b)	122	$0.0035 \mathrm{kg} \mathrm{m}^{-3}$	273.15 to 313.15 K	1 to 40
Poisson et al. (1980)	344	$0.0035 \mathrm{kg} \mathrm{m}^{-3}$	273.45 to 303.15 K	5 to 41
Poisson and Gadhoumi (1993)	79	$0.0064 \mathrm{kg} \mathrm{m}^{-3}$	288.15 to 303.15 K	35 to 50
This Study	242	$0.0037 \mathrm{kg} \mathrm{m}^{-3}$	273.15 to 313.15 K	5 to 50
All Combined	713	$(0.0036 \text{kg} \text{m}^{-3})$		
This Study	280	$0.0063 \mathrm{kg} \mathrm{m}^{-3}$	273.15 to 363.15 K	4 to 70
All Combined	962	$(0.0063 \text{kg} \text{m}^{-3})$		

 Table 1. Summary of the 1 atm density measurements made on seawater.

Fig. 1. The differences between the Practical Salinity (S_{PSS}) and the value calculated from the Chlorinity (S_{CI} =1.80655 Cl) for the last series of Standard Seawater where Chlorinity was measured (P91 to P113). The dotted lines are 2σ .

of seawater are known to higher temperatures (Millero and Pierrot, 2005; Feistel, 2008), there is a need for density measurements at higher temperatures and salinities.

In this paper, measurements of the density of seawater on the Practical Salinity Scale (*S*) have been made from 273.15 to 315.15 K and are compared to those calculated from the equation of state (Millero and Poisson, 1981). New measurements of the density of seawater to 363.15 K as a function of absolute salinity, S_A from 0 to 70 g kg⁻¹ are also reported. This study is part of a work to extend the equation of state of seawater over a wider range of temperature and salinity (Feistel, 2008). The results will be useful in examining the use of ionic interaction models (Pierrot and Millero, 2000) to estimate the density over a wide range of temperature and ionic strength and in the future to examine the PVT properties of hydrothermal waters.

2 Experimental methods

The seawaters used in this study were Standard Seawater (S=35.00) and surface Gulf Stream seawater (S=36.10). Both waters have low nutrient concentrations and had densities that agreed at similar salinities to ± 0.003 kg m⁻³. Solutions at low salinities were obtained by adding ion exchange water by weight and the high salinities by slowly evaporating the samples. No visible precipitation appeared during the sample preparation. The Practical Salinities were measured with an Autosal salinometer calibrated with Standard Seawater. The precision of the Practical Salinity is 0.0005 on a given sample. The absolute salinities of the evaporated samples were back calculated from the weight of the added water needed to dilute it to a salinity range that can be measured by conductivity and density at 298.15 K. The salinities of the evaporated samples are estimated to be accurate to $\pm 0.003 \,\mathrm{g \, kg^{-1}}$.

The densities were measured on a Paar 500 vibrating tube densimeter at a fixed temperature $(\pm 0.003 \text{ K})$ determined with a Platinum thermometer in the instrument. The densimeter is calibrated with deionized water (Millipore SuperQ) and dry air. The measurements made at high temperatures were made on degassed samples heated to 363.15 K to avoid bubble formation in the instrument. The measurements were then made from 263.15 to 298.15 K. Densities made on Standard Seawater were repeatable to $1\sigma = 0.003 \text{ kg m}^{-3}$ from 273.15 to 323.15 K and agree with values calculated from the equation of state (Millero and Poisson, 1981) to $\pm 0.0035 \text{ kg m}^{-3}$ from 293.15 to 313.15 K. The measurements at temperature above 323.15 K have an estimated uncertainty of ± 0.006 kg m⁻³ based on repeat measurements of the same sample. All of the measurements were made relative to the density of water which is based on the equations of Kell (1975) adjusted to the 1990 temperature scale (Spieweck and Bettin, 1992). These are the densities that are embedded in the densimeter. The values of the relative densities $(\rho - \rho^0)$ are not affected by densities used in the calibration of the system. The measured water values from 273.15 to 363.15 K agreed to the calculated values to

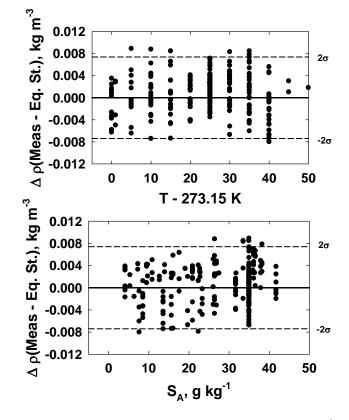
 $\pm 0.002 \text{ kg m}^{-3}$. Since the density of water (ρ^0) in the original equation of state of seawater is based on the less reliable water equations of Bigg (1967) and the values used in the instrument, all of our measurements are reported and compared to the equation of state of seawater (Millero and Poisson, 1981) in terms of the differences in the density of seawater and water ($\rho - \rho^0$) kg m⁻³.

A number of density measurements on deep waters in the Atlantic (Millero et al., 1976a; 1978), Indian (Poisson et al., 1981; Millero et al., 2008a), and Pacific oceans (Millero et al., 1978; 2009) and the Red (Poisson et al., 1981) and Baltic Seas (Millero and Kremling, 1976) are higher than the values determined from the equation of state (Millero and Poisson, 1981). This is attributed to the added salts to seawater from the dissolution of SiO₂ (*s*) and CaCO₃ (*s*) and the addition of CO₂ and nutrients from the mineralization of organic matter (Brewer and Bradshaw, 1975; Millero, 2000). Since the conductivity salinity does not respond to all the components in seawater, it is useful to examine the physical properties in terms of the absolute salinity (Millero et al., 2008b; Feistel, 2008). The absolute salinity (g kg⁻¹) is defined (Millero et al., 2008b) by

$$S_A = S_R + \Delta S \tag{2}$$

where the Reference Salinity (S_R) is related to the Practical Salinity (S) by

$$S_R = (35.16504/35) \,\mathrm{g \, kg^{-1}} \times S \tag{3}$$


and ΔS is the increase due to added salts (Brewer and Bradshaw, 1975; Millero, 2000; Millero et al., 2008b). The values of ΔS can be estimated by determining the added Si, Ca, NO₃, PO₄ and TCO₂ to seawater (Millero et al., 2008a; 2009). It can also be estimated (Millero et al., 2009) from the differences between the measured densities and the values determined from the equations of state using the approximate equation

$$\Delta S_A / (g kg^{-1}) = \Delta \rho (kg m^{-3}) / (0.752 g kg^{-1})$$
(4)

where $\Delta \rho = \rho$ (measured) – ρ (calculated from the equation of state) at 25°C. For seawater with no added salts the values of S_A are equal to the Reference Salinity S_R and can be estimated from the Practical Salinity using Eq. (3).

3 Results and discussion

The densities made in this study are given in the Appendix Tables A1 and B1. Two sets of measurements were made from 273.15 to 313.15 K and S_A =4 to 50 g kg⁻¹ and from 298.15 to 363.15 K and S_A =4 to 70 g kg⁻¹. The first series of density measurements were made on Standard Seawater (*S*=35.00, Batch 90–115) and Gulf Stream seawater evaporated and diluted from S_A =4 to 42 g kg⁻¹ and from 273.15 to 313.15 K. The measured densities (*N*=230) are compared

Fig. 2. The differences in the measured (N=230) densities ($\rho - \rho^0$, kg m⁻³) with those calculated from the equation of state (Millero and Poisson, 1981) as a function of temperature and salinity ($\sigma=0.0036$ kg m⁻³).

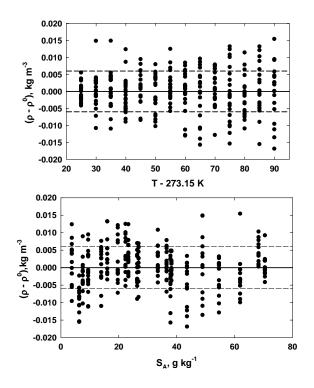
to the values calculated from the equation of state (Millero and Poisson, 1981) as a function of temperature and salinity in Fig. 2. The standard error between the measured and calculated values was 0.0036 kg m^{-3} . This is similar to the errors in the repeat density measurements ($\pm 0.003 \text{ kg m}^{-3}$) on the same sample and indicates that the salinities calculated by conductivity (*S*) and Chlorinity (*S*_{Cl}) are in agreement to $\pm 0.004 \text{ g kg}^{-1}$. It should be pointed out that our measurements made at salinities above 40 are higher by as much as 0.064 kg m^{-3} with the measurements of Poisson and Gadhoumi (1993) at 288.15, 298.15 and 303.15 K.

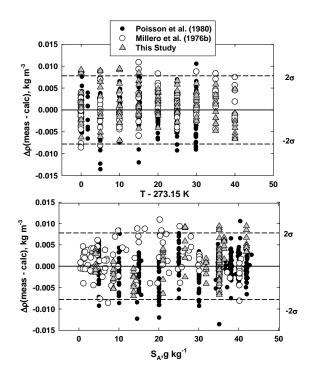
The internal consistency of the measurements was examined by fitting the relative densities to an equation of the form

$$(\rho - \rho^{0})/(\text{kg m}^{-3}) = AS_{A}/(\text{g kg}^{-1}) + B\{S_{A}/(\text{g kg}^{-1})\}^{1.5} + C\{S_{A}/(\text{g kg}^{-1})\}^{2} (5)$$

The variable A, B and C are functions of temperature (T/K)

$$A = a_0 + a_1(T/K - 273.15) + a_2(T/K - 273.15)^2 + a_3(T/K - 273.15)^3 + a_4(T/K - 273.15)^4 + a_5(T/K - 273.15)^5$$
(5a)



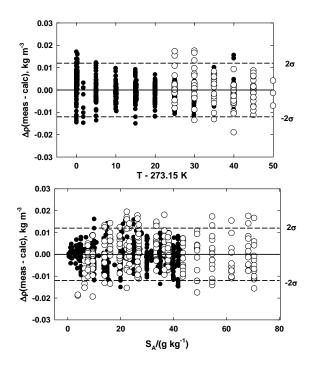

Fig. 3. The differences between the measured (N=522) and calculated densities ($\rho - \rho^0$, kg m⁻³) from 273.15 to 363.15 K and S_A from 5 to 70 g kg⁻¹ as a function of temperature and salinity (σ =0.0063 kg m⁻³).

$$B = b_0 + b_1 (T/K - 273.15) + b_2 (T/K - 273.15)^2$$
 (5b)

$$C = c_0 \tag{5c}$$

The parameters needed to fit the seawater measurements (N=242) from 273.15 to 313.15 K and S_A from 5 to $50 (g kg^{-1})$ are tabulated in Table 2 along with the standard error of the fit (σ =0.0037 kg m⁻³). This standard error of the 273.15 to 313.15 K fit is similar (Fig. 2) to the differences between our measurements and those calculated from the equation of state of seawater (Millero and Poisson, 1981). The parameters needed to fit the seawater measurements (N=280) from 298.15 to 363.15 K are also tabulated in Table 2 along with the standard error of the fit (σ =0.0063 kg m⁻³). All of the measurements from 273.15 to 363.15 K (N=522) have also been fitted to Eq. (5). The parameters for the fits are given in Table 2 along with the standard error of the fit $(\sigma = 0.0063 \text{ kg m}^{-3})$. The differences between the measured and calculated densities from these fits are shown in Fig. 3. Most of the differences are within 2σ , where σ is the standard error of the fit. The errors appear to be larger at high temperatures, apparently due to difficulties in removing air from the samples. These measurements extend the equation of state to seawater as a function the absolute salinity $S_A \,\mathrm{g}\,\mathrm{kg}^{-1}$ over a wide range of temperature and salinity.

The measurements made in this study from 273.15 to 315.15 K and 273.15 to 363.15 K have been fitted to Eq. (5)


Fig. 4. The deviations between the measured (N=713) and calculated values from 273.15 to 313.15 K and S_A from 0 to 40 g kg⁻¹ of Poisson et al. (1980). Millero et al. (1976b), and this study as a function of temperature and salinity (σ =0.0037 kg m⁻³).

with all of the measurements used to determine the International Equation of state of seawater (Millero et al., 1976b; Poisson et al., 1980). The results of these fits (*N*=713 from 273.15 to 313.15 K and *N*=962 from 273.15 to 363.15 K) are tabulated in Table 3 along with the standard errors, respectively σ =0.0036 kg m⁻³ and σ =0.0063 kg m⁻³. The differences between the measured and calculated densities from 273.15 to 313.15 K and 273.15 to 363.15 K) are shown respectively, in Figs. 4 and 5. As with our other fits, most of the differences are within 2σ .

It should be pointed out that the earlier measurements (Millero et al., 1976b; Poisson et al., 1980) made on the 1968 temperature scale were converted to the 1990 temperature scale (Preston-Thomas, 1990). Changes in the temperature scale do not significantly affect the values of $(\rho - \rho^0)$ which do not vary much with temperature. The results of this study can be used to determine the properties of seawater and most estuarine waters over a wide range of Absolute Salinity and temperature. These results will also be useful in extending the ionic interaction model for seawater (Pierrot and Millero, 2000) to 363.15 K. Future work on the density of seawater above 373.15 K at applied pressure are needed to extend the temperature range to the levels available for the thermochemical properties of seawater (Millero and Pierrot, 2005; Feistel, 2008).

	273.15 to 313.15 K	298.15 to 363.15 K	273.15 to 363.15 K
S _A	8.246111E-01	8.055888E-01	8.174451E-01
$S_A(T/K-273.15)$	-3.956103E-03	-2.588520E-03	-3.638577E-03
$S_A(T/K-273.15)^2$	7.274549E-05	2.449074E-05	6.480811E-05
$S_A(T/K-273.15)^3$	-8.239634E-07	3.908917E-08	-7.312404E-07
$S_A(T/K-273.15)^4$	5.332909E-09	-1.795219E-09	5.330431E-09
$S_A(T/K-273.15)^5$		8.617570E-12	-1.657628E-11
$S_{A}^{1.5}$	-6.006733E-03	-4.893389E-03	-5.481436E-03
$S_A^{1.5}(T/K-273.15)$	7.970908E-05	2.132621E-05	3.486075E-05
$S_A^{1.5}(T/K-273.15)^2$	-1.018797E-06	-1.907666E-07	-3.049727E-07
S_A^2	5.281399E-04	5.165275E-04	5.346196E-04
Number	242	280	522
Std.Err.Fit	$0.0037 \text{kg} \text{m}^{-3}$	$0.0063 \text{kg} \text{m}^{-3}$	$0.0063 \text{kg} \text{m}^{-3}$

Table 2. The coefficients for the densities measured in this study fitted to Eq. (2).

Fig. 5. The deviations between the measured (N=962) and calculated values from 273.15 to 363.15 K and S_A from 0 to 70 g kg⁻¹ as a function of temperature and salinity (σ =0.0062 kg m⁻³). The closed circles are from 273.15 to 313.15 K (Poisson et al., 1980; Millero et al., 1976b) and the open circles from this study are from 298.15 to 363.15 K.

Table 3. The coefficients for the densities measured in this study and literature data (Millero et al., 1976b; Poisson et al., 1980) fitted to Eq. (2).

	273.15 to 313.15 K	273.15 to 363.15 K
S_A	8.207423E-01	8.197247E-01
$S_A(T/K-273.15)$	-4.090059E-03	-3.779454E-03
$S_A(T/K-273.15)^2$	7.695554E-05	6.821795E-05
$S_A(T/K-273.15)^3$	-8.284116E-07	-8.009571E-07
$S_A(T/K-273.15)^4$	5.490137E-09	6.158885E-09
$S_A(T/K-273.15)^5$		-2.001919E-11
$S_{A}^{1.5}$	-5.738085E-03	-5.808305E-03
$S_A^{1.5}(T/K-273.15)$	1.044735E-04	5.354872E-05
$S_A^{1.5}(T/K-273.15)^2$	-1.758636E-06	-4.714602E-07
S_A^2	4.840416E-04	5.249266E-04
Number	713	962
Std.Err.Fit	$0.0036 \mathrm{kg} \mathrm{m}^{-3}$	$0.0063 \mathrm{kg} \mathrm{m}^{-3}$

Table A1. The densities $(kg m^{-3})$ of seawater measured between 0 and 40°C.

t	S_A	Meas	t	S_A	Meas	t	S_A	Meas		
°C	$g kg^{-1}$	${\rm kg}{\rm m}^{-3}$	°C	$\rm gkg^{-1}$	${\rm kg}{\rm m}^{-3}$		°C	${ m g~kg^{-1}}$	$\rm kg \ m^{-3}$	
-0.002	31.837	25.587		10.004	35.157 ^a	27.243		24.997	9.792	7.322
0.000	8.607	6.952		15.000	8.607	6.583		24.997	36.753	27.491
0.000	13.678	11.024		15.000	15.741	12.015		24.998	36.171	27.055
0.000	35.142	28.246		15.000	26.221	20.018		24.999	26.559	19.842
0.000	35.142	28.246		15.001	13.678	10.445		24.999	31.914	23.854
0.000	35.157 ^a	28.251		15.001	21.037	16.064		24.999	35.168	26.298
0.000	35.157 ^a	28.251		15.001	35.168	26.880		24.999	35.168	26.299
0.000	36.343	29.212		15.001	35.168	26.873		24.999	35.168	26.298
0.000	41.941	33.718		15.001	35.168	26.873		24.999	35.168	26.299
0.001	4.147	3.364		15.001	35.169	26.873		24.999	35.169	26.298
0.001	21.037	16.930		15.001	41.941	32.082		24.999	35.182	26.310
1.000	15.741	12.619		15.002	4.147	3.184		25.000	5.365	4.019
1.000	22.930	18.366		15.002	31.837	24.320		25.000	5.365	4.017
1.003	35.157 ^a	28.134		15.002	35.157 ^a	26.863		25.000	10.943	8.179
1.005	35.157 ^a	28.140		15.002	36.343	27.781		25.000	15.741	11.756
4.999	41.941	33.064		15.002	35.132	26.854		25.000	17.706	13.219
5.000	10.943	8.651		15.003	35.132	26.854		25.000	17.706	13.226
5.000	15.741	12.420		15.003	35.142	26.854		25.000	22.930	17.124
5.000	31.837	25.083		15.004	35.157 ^a	26.860		25.000	26.221	19.584
5.001	8.607	6.802		19.998	35.157 ^a	26.550		25.000	26.221	19.589
5.001	13.678	10.790		19.998	35.157 ^a	26.550 26.550		25.000	27.632	20.643
5.001	35.142	27.689		20.000	8.607	6.501		25.000	35.157 ^a	26.290
5.001	35.142 35.142	27.689		20.000	10.943	8.263		25.000	35.157 35.157 ^a	26.290
5.001	4.147	3.289		20.000	15.741	8.203 11.873		25.000 25.000	36.171	27.055
5.002	21.037	3.289 16.584		20.000	17.706	13.357		25.000 25.000	36.579	27.055
	35.157 ^a									
5.004		27.711		20.000	22.930	17.291		25.001	4.147	3.111
5.005	35.157 ^a	27.706		20.001	21.037	15.870		25.001	31.837	23.794
10.000	15.741	12.198		20.001	31.837	24.034		25.002	6.435	4.813
10.000	22.930	17.763		20.001	35.132	26.534		25.002	7.344	5.497
10.001	4.147	3.230		20.001	35.142	26.535		25.002	7.344	5.496
10.001	13.678	10.599		20.001	35.142	26.535		25.002	7.678	5.738
10.001	21.037	16.298		20.001	35.168	26.562		25.002	9.547	7.139
10.001	26.559	20.580		20.001	35.168	26.561		25.002	12.752	9.526
10.001	31.837	24.666		20.001	35.168	26.562		25.002	13.678	10.214
10.001	35.142	27.235		20.001	35.168	26.561		25.002	14.060	10.504
10.001	35.157 ^a	27.240		20.001	35.169	26.561		25.002	19.183	14.325
10.001	35.168	27.257		20.002	4.147	3.144		25.002	19.183	14.325
10.001	35.168	27.252		20.002	13.678	10.319		25.002	21.037	15.710
10.001	35.168	27.257		20.002	36.343	27.455		25.002	22.843	17.059
10.001	35.168	27.252		20.002	41.941	31.710		25.002	23.478	17.529
10.001	35.169	27.252		20.003	35.157 ^a	26.546		25.002	27.032	20.193
10.002	8.607	6.682		20.006	35.157 ^a	26.550		25.002	31.832	23.791
10.002	41.941	32.530		24.995	22.487	16.791		25.002	35.132	26.274
10.003	35.157 ^a	27.244		24.996	12.752	9.526		25.002	35.142	26.275
25.002	35.157 ^a	26.296		30.005	68.654	51.393		40.000	35.157 ^a	25.746
25.002	35.157 ^a	26.286		30.006	9.547	7.078		40.000	35.157 ^a	25.746
25.002	35.157 ^a	26.296		30.006	70.871	53.089		40.001	21.037	15.378
25.002	35.157 ^a	26.286		30.007	7.678	5.692		40.001	26.559	19.426
25.002	36.343	27.188		30.030	35.157 ^a	26.069		40.001	36.343	26.625
25.002	41.941	31.401		30.030	35.157 ^a	26.065		40.002	4.147	3.044

Table A1. Continued.

t	S_A	Meas	t	S_A	Meas	t	S_A	Meas		
°C	$\rm gkg^{-1}$	${\rm kg}{\rm m}^{-3}$	°C	$\rm gkg^{-1}$	$\mathrm{kg}\mathrm{m}^{-3}$		°C	g kg ⁻¹	$\rm kg \ m^{-3}$	
25.003	19.821	14.800		34.997	35.157 ^a	25.894		40.002	8.607	6.299
25.003	43.831	32.837		34.998	26.551	19.525		40.002	31.837	23.300
25.003	62.268	46.882		34.998	35.157	25.897		40.002	35.132	25.725
25.004	9.792	7.320		34.998	38.425	28.324		40.002	35.142	25.729
25.004	16.165	12.075		34.999	35.157 ^a	25.892		40.002	35.142	25.729
25.004	22.843	17.060		34.999	35.157 ^a	25.892		40.003	33.716	24.684
25.004	49.210	36.917		34.999	35.182	25.918		40.004	49.210	36.177
25.004	54.936	41.279		35.000	26.559	19.538		40.004	62.268	45.945
25.004	68.654	51.797		35.000	27.032	19.889		40.005	7.678	5.617
25.004	70.871	53.507		35.001	8.607	6.335		40.005	16.165	11.815
25.005	33.716	25.209		35.001	13.678	10.055		40.005	23.478	17.166
25.006	38.108	28.513		35.001	31.837	23.433		40.005	27.032	19.772
25.007	26.551	19.832		35.002	4.147	3.063		40.005	38.108	27.922
29.998	38.425	28.517		35.002	21.037	15.465		44.995	35.157 ^a	25.637
29.999	35.182	26.094		35.002	35.132	25.875		44.995	35.157 ^a	25.639
29.999	35.182	26.089		35.002	35.142	25.878		49.998	35.157 ^a	25.564
30.001	8.607	6.381		35.002	35.142	25.878				
30.001	13.678	10.126		35.002	36.343	26.777				
30.001	21.037	15.576		35.002	36.753	27.082				
30.001	22.487	16.653		35.002	41.941	30.927				
30.001	26.559	19.675		35.003	22.487	16.536				
30.001	27.032	20.027		35.004	7.678	5.648				
30.001	35.157 ^a	26.074		35.004	23.478	17.262				
30.001	35.157 ^a	26.074		35.004	43.831	32.354				
30.001	36.343	26.963		35.005	9.547	7.027				
30.002	14.060	10.414		35.005	16.165	11.888				
30.002	31.837	23.598		35.005	19.821	14.569				
30.002	35.132	26.056		35.005	33.716	24.833				
30.002	35.142	26.059		35.005	38.108	28.084				
30.002	35.142	26.059		35.005	54.936	40.673				
30.003	4.147	3.084		35.005	62.268	46.202				
30.003	26.551	19.663		35.005	68.654	51.054				
30.003	43.831	32.573		35.005	70.871	52.739				
30.004	16.165	11.970		39.995	35.157 ^a	25.747				
30.004	19.821	14.667		39.996	35.157 ^a	25.748				
30.004	23.478	17.384		39.996	36.753	26.929				
30.005	33.716	25.005		39.998	38.425	28.161				
30.005	36.753	27.269		39.999	43.831	32.162				

^{*a*} Measurements made on Standard Seawater (S_A =35.157 g kg⁻¹).

Table B1. The densities (kg m ⁻	$^{-3}$) of seawater measured between 25 and 90°C.
--	---

t	S_A	Meas	t	S_A	Meas	t	S_A	Meas		
°C	$\rm gkg^{-1}$	${\rm kg}{\rm m}^{-3}$	°C	$\rm gkg^{-1}$	${\rm kg}{\rm m}^{-3}$		°C	${ m g~kg^{-1}}$	${\rm kg}~{\rm m}^{-3}$	
24.995	22.487	16.791		35.003	22.487	16.536		45.005	6.435	4.680
24.996	38.425	28.753		35.004	6.435	4.731		45.005	7.678	5.592
24.997	36.753	27.491		35.004	7.678	5.648		45.005	16.165	11.765
25.002	6.435	4.813		35.004	23.478	17.262		45.005	23.478	17.084
25.002	7.678	5.738		35.004	43.831	32.354		45.005	27.032	19.683
25.002	9.547	7.139		35.005	9.547	7.027		45.005	33.716	24.578
25.002	14.060	10.504		35.005	16.165	11.888		45.005	68.654	50.547
25.002	23.478	17.529		35.005	19.821	14.569		45.005	70.871	52.218
25.002	27.032	20.193		35.005	33.716	24.833		45.006	22.487	16.358
25.003	19.821	14.800		35.005	38.108	28.084		45.006	38.108	27.796
25.003	43.831	32.837		35.005	54.936	40.673		49.995	22.487	16.302
25.003	62.268	46.882		35.005	62.268	46.202		49.995	26.551	19.246
25.004	16.165	12.075		35.005	68.654	51.054		49.997	14.060	10.187
25.004	49.210	36.917		35.005	70.871	52.739		50.001	36.753	26.710
25.004	54.936	41.279		39.992	26.551	19.413		50.001	54.936	40.106
25.004	68.654	51.797		39.996	36.753	26.929		50.001	9.547	6.931
25.004	70.871	53.507		39.997	14.060	10.268		50.002	43.831	31.902
25.004	33.716	25.209		39.998	9.547	6.977		50.002	16.165	11.712
25.005	38.108	28.513		39.998	38.425	28.161		50.003	19.821	14.361
25.000	26.551	19.832		39.999	43.831	32.162		50.004 50.004	38.425	27.933
29.998	38.425	28.517			43.831 22.487	16.437		50.004 50.004	58.425 68.654	50.367
30.001	22.487	16.653		40.000 40.002	6.435	4.702		50.004 50.005	6.435	4.664
30.001	27.032	20.027		40.003	33.716	24.684		50.005	7.678	5.564
30.002	14.060	10.414		40.004	19.821	14.481		50.005	23.478	17.024
30.003	26.551	19.663		40.004	49.210	36.177		50.005	27.032	19.611
30.003	43.831	32.573		40.004	62.268	45.945		50.006	33.716	24.486
30.004	6.435	4.763		40.005	7.678	5.617		50.006	38.108	27.690
30.004	16.165	11.970		40.005	16.165	11.815		50.006	49.210	35.877
30.004	19.821	14.667		40.005	23.478	17.166		50.006	62.268	45.575
30.004	23.478	17.384		40.005	27.032	19.772		50.006	70.871	52.027
30.004	54.936	40.949		40.005	38.108	27.922		54.996	26.551	19.206
30.004	62.268	46.511		40.005	54.936	40.440		55.001	14.060	10.163
30.005	33.716	25.005		40.005	68.654	50.774		55.001	22.487	16.268
30.005	36.753	27.269		40.005	70.871	52.451		55.001	43.831	31.818
30.005	38.108	28.280		44.994	36.753	26.805		55.003	36.753	26.639
30.005	68.654	51.393		44.998	14.060	10.224		55.004	9.547	6.903
30.006	9.547	7.078		45.001	38.425	28.034		55.004	38.425	27.857
30.006	70.871	53.089		45.002	26.551	19.324		55.004	68.654	50.229
30.007	7.678	5.692		45.002	62.268	45.741		55.005	7.678	5.559
34.998	14.060	10.326		45.003	43.831	32.021		55.005	19.821	14.325
34.998	26.551	19.525		45.004	9.547	6.958		55.005	23.478	16.972
34.998	38.425	28.324		45.004	19.821	14.416		55.005	27.032	19.559
35.000	27.032	19.889		45.004	49.210	36.009		55.005	70.871	51.889
35.002	36.753	27.082		45.004	54.936	40.253		55.006	6.435	4.653
55.006	16.165	11.681		65.005	49.210	35.654		80.001	38.425	27.764
55.006	33.716	24.416		65.005	68.654	50.067		80.001	43.831	31.703
55.006	38.108	27.618		69.999	26.551	19.142		80.002	6.435	4.640
55.006	49.210	35.778		70.000	22.487	16.210		80.002	7.678	5.540
55.006	54.936	40.006		70.000	38.425	27.753		80.002	9.547	6.885
55.006	62.268	45.450		70.001	33.716	24.326		80.002	19.821	14.294
59.998	26.551	19.172		70.001	54.936	39.852		80.002	22.487	16.202
59.999	14.060	10.152		70.002	9.547	6.878		80.002	27.032	19.482

Table B1. Continued .

t	S_A	Meas	t	S_A	Meas	t	S_A	Meas		
°C	g kg ⁻¹	${\rm kg}{\rm m}^{-3}$	°C	$\rm gkg^{-1}$	${\rm kg}{\rm m}^{-3}$		°C	${ m g~kg^{-1}}$	$\rm kg \ m^{-3}$	
60.001	7.678	5.544		70.002	23.478	16.919		80.002	33.716	24.33
60.001	33.716	24.376		70.002	27.032	19.475		80.003	54.936	39.86
60.001	68.654	50.130		70.002	36.753	26.537		80.004	23.478	16.92
60.002	9.547	6.889		70.002	38.108	27.520		80.004	38.108	27.53
60.002	36.753	26.583		70.002	43.831	31.695		80.004	49.210	35.64
60.003	19.821	14.299		70.002	49.210	35.635		80.004	70.871	51.70
60.003	22.487	16.234		70.002	62.268	45.278		80.006	62.268	45.28
60.003	38.425	27.801		70.002	70.871	51.684		80.006	68.654	50.05
60.004	49.210	35.706		70.003	6.435	4.630		85.000	22.487	16.22
60.005	23.478	16.947		70.003	19.821	14.281		85.000	36.753	26.56
60.005	43.831	31.744		70.004	7.678	5.532		85.001	19.821	14.31
60.005	62.268	45.363		70.004	16.165	11.644		85.001	26.551	19.16
60.005	70.871	51.785		70.004	68.654	50.036		85.002	23.478	16.94
60.006	6.435	4.645		74.994	14.060	10.132		85.002	33.716	24.36
60.006	16.165	11.661		75.000	22.487	16.206		85.002	38.108	27.56
60.006	27.032	19.517		75.000	36.753	26.531		85.002	38.425	27.79
60.006	38.108	27.557		75.002	9.547	6.874		85.002	43.831	31.73
60.006	54.936	39.915		75.002	26.551	19.126		85.002	68.654	50.10
64.999	9.547	6.875		75.002	68.654	50.028		85.002	70.871	51.74
64.999	14.060	10.139		75.004	19.821	14.281		85.003	7.678	5.557
64.999	26.551	19.153		75.004	38.425	27.750		85.003	9.547	6.890
65.001	36.753	26.559		75.005	16.165	11.654		85.003	16.165	11.67
65.002	22.487	16.218		75.005	49.210	35.626		85.003	27.032	19.51
65.002	19.821	14.283		75.005	54.936	39.845		85.003	49.210	35.67
65.003	38.425	27.769		75.005	62.268	45.263		85.003	62.268	45.32
65.004	6.435	4.636		75.006	6.435	4.628		85.004	14.060	10.14
65.004	16.165	11.651		75.006	7.678	5.527		85.004	54.936	39.89
65.004	27.032	19.497		75.006	23.478	16.924		89.996	9.547	6.895
65.004	33.716	24.346		75.006	27.032	19.478		89.998	14.060	10.16
65.004	43.831	31.703		75.006	33.716	24.334		89.998	62.268	45.41
65.004	54.936	39.877		75.006	38.108	27.516		89.999	7.678	5.558
65.004	62.268	45.304		75.006	43.831	31.681		89.999	16.165	11.67
65.004	70.871	51.716		75.006	70.871	51.675		89.999	33.716	24.40
65.005	7.678	5.537		79.993	14.060	10.132		89.999	38.108	27.60
65.005	23.478	16.927		79.998	26.551	19.132		89.999	49.210	35.72
65.005	38.108	27.522		80.000	36.753	26.538		89.999	54.936	39.96
89.999	70.871	51.824		00.000	50.755	20.000		07.777	511950	57.70
90.000	23.478	16.970								
90.000	26.551	19.194								
90.001	36.753	26.612								
90.002	38.425	27.838								
90.002	19.821	14.332								
90.003	22.487	14.332								
89.999	49.210	35.725								
89.999	49.210 54.936	39.964								
89.999	70.871	51.824								
90.000	23.478	16.970								
90.000	26.551	10.970								
90.001	36.753	26.612								
90.001	38.425	20.012								
90.002	38.423 19.821	14.332								
90.003	19.821 22.487	14.332 16.245								

Acknowledgements. The authors wish to acknowledge the support of the Oceanographic Section of the National Science Foundation and the National Oceanic and Atmospheric Administration. The manuscript was improved due to the helpful comments of R. Feistel, Javid Safarov and a number of anonymous reviewers.

Edited by: R. Feistel

References

- Bigg, P. H.: Density of water in SI units over the range 0–40°C, Brit. J. Appl. Phys., 18, 521–524, 1967.
- Brewer, P. G. and Bradshaw, A.: The effect of non-ideal composition of seawater on salinity and density, J. Mar. Res., 33, 157– 175, 1975.
- Feistel, R.: A Gibbs function for seawater thermodynamics from -6 to 80° C and salinity up to 120 g kg^{-1} , Deep-Sea Part I, 55(12), 1639–1671, doi:10.1016/j.dsr.2008.07.004, 2008.
- Kell, G. S.: The density, thermal expansivity and compressibility of liquid water from 0 to 150°C: correlations and tables for atmospheric pressure and saturation reviewed and expressed on the 1968 temperature scale, J. Chem. Eng. Data, 20, 97–105, 1975.
- Millero, F. J.: Effect of changes in the composition of seawater on the density-salinity relationship, Deep-Sea Res. Part I, 47, 1583– 1590, 2000.
- Millero, F. J. and Kremling, K.: The densities of Baltic Sea waters, Deep-Sea Res., 23, 1129–1138, 1976.
- Millero, F. J. and Pierrot, D.: The thermochemical properties of seawater fit to the Pitzer equations, Mar. Chem., 94, 81–99, 2005.
- Millero, F. J. and Poisson, A.: International one-atmosphere equation of state of seawater, Deep-Sea Res., 28, 625–629, 1981.
- Millero, F. J., Chetirkin, P. V., and Culkin, F.: The relative conductivity and density of standard seawaters, Deep-Sea Res., 24,

315-321, 1976a.

- Millero, F. J., Gonzalez, A., and Ward, G. K.: The density of seawater solutions at on atmosphere as a function of temperature and salinity, J. Mar. Res., 34, 61–93, 1976b.
- Millero, F. J., Forsht, D., Means, D., Giekes, J., and Kenyon, K.: The density of North Pacific Ocean waters, J. Geophys. Res., 83, 2359–2364, 1978.
- Millero, F. J., Waters, J., Woosley, R., Huang, F., and Chanson, M.: The effect of composition of the density of Indian Ocean waters, Deep-Sea Res. Part I, 55, 960–470, 2008a.
- Millero, F. J., Feistel, R., Wright, D. G., and McDougall, T. J.: The composition of Standard Seawater and the definition of the Reference-Composition Salinity Scale, Deep-Sea Res. Part I, 55, 50–72, 2008b.
- Millero, F. J., Huang, F., Williams, N., Waters, J., and Woosley, R.: The effect of composition on the density of South Pacific Ocean waters, Mar. Chem., in press, 2009.
- Pierrot, D. and Millero, F. J.: The apparent molal volume and compressibility of seawater fit to the Pitzer equations, J. Solution Chem., 29, 719–742, 2000.
- Poisson, A. and Gadhoumi, M. H.: An extension of the Practical Salinity Scale 1987 and the Equation of State 1980 to high salinities, Deep-Sea Res., 40, 1689–1698, 1993.
- Poisson, A., Brunet, C., and Brun-Cottan, J. C.: Density of standard seawater solutions at atmospheric pressure, Deep-Sea Res., 27(12A), 1013–1028, 1980.
- Poisson, A., Lebel, J., and Brunet, C.: The densities of western Indian Ocean, Red Sea and eastern Mediterranean surface waters, Deep-Sea Res., 28, 1161–1172, 1981.
- Preston-Thomas, H.: The international Temperature Scale of 1990 (ITS-90), Metrologia, 27, 3–10, 1990.
- Spieweck, F. and Bettin, H.: Review: Solid and liquid density determination. Technisches Messen, 59, 285–292, 1992.