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Abstract. We consider the application of the Ensem-
ble Kalman Filter (EnKF) to a coupled ocean ecosystem
model (HYCOM-NORWECOM). Such models, especially
the ecosystem models, are characterized by strongly non-
linear interactions active in ocean blooms and present im-
portant difficulties for the use of data assimilation methods
based on linear statistical analysis. Besides the non-linearity
of the model, one is confronted with the model constraints,
the analysis state having to be consistent with the model,
especially with respect to the constraints that some of the
variables have to be positive. Furthermore the non-Gaussian
distributions of the biogeochemical variables break an im-
portant assumption of the linear analysis, leading to a loss
of optimality of the filter. We present an extension of the
EnKF dealing with these difficulties by introducing a non-
linear change of variables (anamorphosis function) in order
to execute the analysis step in a Gaussian space, namely a
space where the distributions of the transformed variables
are Gaussian. We present also the initial results of the ap-
plication of this non-Gaussian extension of the EnKF to
the assimilation of simulated chlorophyll surface concentra-
tion data in a North Atlantic configuration of the HYCOM-
NORWECOM coupled model.

1 Introduction

The context of this work lies in the study and the forecast of
the dynamics of the ocean and the evolution of its biology.
Important economical stakes involve a better optimization of
the management of the natural environment, especially by
fisheries. So analysis and short term forecasts of the primary
production will be more and more useful to environmental

Correspondence to:E. Simon
(ehouarn.simon@nersc.no)

agencies for monitoring algal blooms and possible movement
of the fish populations (Johannessen et al., 2007; Allen et
al., 2008). For the particular case of Norway, an important
issue is the possible movement of fish populations following
the sea-ice retreat from the Norwegian Arctic to the Russian
Arctic. Such perspectives have led to the developments of
numerical ecosystem models during the last decades, as well
as their coupling with existing physical ocean models. These
couplings are made either on- or off-line, to include vertical
1-D as well as 3-D physical models and express the trade-off
between our need in terms of modelling and forecast and the
available computing resources.

Nevertheless these models present numerous uncertainties
linked to the complexity of the processes that they try to rep-
resent and the parameterizations that they introduce. Nu-
merical ocean models are still imperfect and present many
errors due to some theoretical approximations, the numeri-
cal schemes as well as the resolution that are used. Even
though many improvements have been made in the modelling
of ocean ecosystems, the models are still too simple in com-
parison to the complexity of the ocean biology. Finally, the
multi-scale interactions between the physics and the biology
of the oceans are still poorly understood, leading to errors
and uncertainties in the coupling of both numerical models.
Numerical ocean ecosystem models alone are not sufficient
for understanding and forecasting the real ocean.

Another source of information lies in the observations of
the ocean biology. The use of satellites allowed the commu-
nity to obtain important informations on the surface biology.
The observed surface ocean color provides informations on
the distribution of the surface chlorophyll for a large area of
the oceans, and thus the distribution of the phytoplankton.
Satellite observations are also dependent on the atmospheric
conditions (for example clouds), leading to loss of data of the
ocean surface. Finally, the observations can present impor-
tant errors, especially for satellite data near the coast. Errors
on surface chlorophyll provided from SeaWiFS chlorophyll
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data are on average of the order of 30% of the value (Gregg
and Casey, 2004), with important variations depending on
the area. In the same way, in situ measurements lead to a
better understanding of the vertical components of the bi-
ological systems in the interior of the ocean. Nevertheless
these data have heterogeneous spatial and temporal distribu-
tions. The in situ data networks are still quite poor, mainly
localized near the coast, and finally are not able to provide
information covering the 3-D global ocean.

The interest for data assimilation methods focus on their
ability to combine in an optimal way (in a sense to define) the
heterogeneous and potentially erroneous information provid-
ing by the models and the observations. These methods can
be classified in two categories: (1) the probabilistic approach
based on the theory of the statistical estimation – the Kalman
filter (Kalman, 1960) and its extensions – and (2) the vari-
ational approach based on the theory of the optimal control
(Sasaki, 1955; Lions, 1968; Le Dimet and Talagrand, 1986;
Courtier et al., 1994). These methods can be applied to im-
portant classes of problems: the optimization of parameters
of the model conditionally to the observations, the sensitivity
analysis of the model (to parameters, observations, etc.) and
the state estimation. Both are equivalent for linear systems.
Data assimilation methods have been successfully applied
in the fields of meteorology and physical oceanography and
some of them are now used for operational forecast. Nev-
ertheless their application in ecosystem forecasting is quite
recent: they have started to be applied to ecosystem models
mainly during this last decade. Furthermore, the use of bio-
logical observations could be relevant to improve the forecast
of the physical model, leading to a real interest for coupled
ocean-biogeochemical models.

Data assimilation methods based on the Kalman filter have
been successfully applied in numerous cases. In 1-D verti-
cal ocean ecosystem models, real biological in situ data have
been assimilated with an Ensemble Kalman Filter (EnKF)
(Evensen, 1994, 2003, 2006). Allen et al. (2003) noted that
an high frequency assimilation of chlorophyll data (one anal-
ysis every two days) was leading to an improvement of the
chlorophyll hindcast of the ecosystem model. This study
showed that the EnKF could be a suitable method for opera-
tional data assimilation systems. Assimilation of chlorophyll
and nutrients data with an EnKF in an upwelling influenced
estuary (Torres et al., 2006) led to a large improvement of the
ecosystem solution (in comparison of the simulation without
assimilation). Nevertheless improvements were required, no-
tably on the physical dynamics, in order to achieve a good
representation of the ecosystem dynamics.

In 3-D ocean ecosystem models, twin experiments of as-
similation of simulated satellite surface chlorophyll data with
a SEEK filter (Pham et al., 1998) in a North Atlantic con-
figuration have been done byCarmillet et al.(2001). They
demonstrated the ability of a multivariate reduced order se-
quential updating scheme to correct all the components of
an ecosystem model observing a single surface variable only.

Furthermore they pointed out the benefits to update the er-
ror covariance of the analysis according to the Kalman filter
equations rather than using a fixed base of the error subspace.
Twin experiments of assimilation of simulated in situ nutri-
ents data with a SEIK filter (Pham, 2001) in the Cretan Sea
led to similar conclusions (Triantafyllou et al., 2003). Fi-
nally, experiments ofCarmillet et al.(2001) suggested that
only variables in the upper part of the mixed-layer be cor-
rected and allow for the propagation of the correction by the
model to deepest part of the ocean, rather than using the
analysis scheme in all the water column, assuming that the
reduced-order initial error covariance matrix may damage the
covariances on the vertical direction.

Finally for realistic experiments in 3-D ocean ecosystem
models,Natvik and Evensen(2003a,b) successfully assimi-
lated SeaWiFS data (surface ocean color) with an EnKF over
a short period (2 months) in a North Atlantic configuration:
updated states were consistent with data in the surface and,
as expected, the analysis steps were reducing the variance
fields for different ecosystem components (in the surface and
sub-surface). However, long term trends of the ensemble
statistics were not investigated, as well as the improvement
of the analyzed estimates (non-observed variables).Nerger
and Gregg(2007) noted a significant improvement of the sur-
face chlorophyll estimate when assimilating daily SeaWiFS
data with a univariate static SEIK filter in a global ocean
configuration. Only the surface chlorophyll concentration
was directly modified by the assimilation. Furthermore the
assimilation used a logarithm transformation of the chloro-
phyll, according to the assumption of log-normal distribu-
tion of the chlorophyll and errors in chlorophyll (Campbell,
1995). Similarly,Gregg(2008) demonstrated the capabilities
of a monovariate assimilation of SeaWiFS data with a sim-
ple method (Conditional Relaxation Scheme Method) over
long periods. For a more important overview of works deal-
ing with the problem of data assimilation in ocean ecosystem
model, we refer toGregg et al.(2009).

The focus of this present paper is the application of the
EnKF for state estimation in coupled ocean ecosystem mod-
els. Considering that the EnKF performs multivariate analy-
sis and allows an evolution of the covariance errors according
to the nonlinear dynamics of the system, it appears to be one
of the most advanced data assimilation method able to deal
with the assimilation of surface satellite data in ecosystem
models. Nevertheless application of data assimilation meth-
ods based on linear statistical analysis to such models in an
efficient way is a theoretically and practically challenging is-
sue.

On the one hand, the strongly nonlinear behavior of
ecosystem models (especially during the period of the spring
bloom) raises the question of which stochastic model to be
used (Bertino et al., 2003). Nonlinear methods like particle
filters seem attractive for such models as they appear to be
a variance minimizing schemes for any probability density
function.Losa et al.(2004) applied successfully a Sequential

Ocean Sci., 5, 495–510, 2009 www.ocean-sci.net/5/495/2009/



E. Simon and L. Bertino: Gaussian anamorphosis in a 3-D ecosystem model 497

Importance Particle filter (seeDoucet et al., 2001) for a com-
bined parameters-state estimation in a 1-D ecosystem model.
Nevertheless for realistic configurations, the size of the en-
semble required for an efficient application of such a filter
is too important to be considered. On the other hand one is
also confronted with the model constraints: the analysis state
has to be consistent with the model, especially under the con-
straints of positiveness of some variables. Most variables of
ecosystem models are concentrations of a given tracer, and so
cannot be negative. Nevertheless this problem is also known
for the assimilation in physical ocean models. One thinks
for example to the correction of layer thickness while as-
similating data in hybrid coordinates model (HYCOM). Sev-
eral solutions have been suggested to deal with such prob-
lems. The one ofThacker(2007) introduces inequality con-
straints via Lagrange multipliers, leading to a 2-passes 3D-
Var. Such approach can also be applied to a Kalman filter.
Into the framework of stochastic methods,Lauvernet et al.
(2009) developed a truncated Gaussian filter with inequality
constraints. But positiveness is only one example of non-
Gaussianity among many others. We focus here on a more
general approach to non-Gaussianity.

Finally the non-Gaussian distributions of most biogeo-
chemical variables break an important assumption of the lin-
ear analysis, leading to a loss of optimality of the EnKF (and
other filters). The optimality of the linear statistical analysis
is proved under some assumptions, notably an assumption of
Gaussianity made on the distribution of the variables (of the
model and the observations) and the errors.

In the context of Kalman filtering, a way to deal with
these last two difficulties is the introduction of anamorphosis
functions in the filter, as suggested byBertino et al.(2003).
They presented an EnKF in which they introduce non-linear
changes of variables (anamorphosis function) in order to re-
alize the analysis step in a Gaussian space. Numerical ex-
periments with a 1-D ocean ecosystem model led to promis-
ing results. The present paper comes within the continuity
of these works and deals with the application of this exten-
sion of the EnKF in a more realistic 3-D ocean ecosystem
models. Even if our experimental framework appears to be
close to the works ofNatvik and Evensen(2003a), impor-
tant differences remain: in this present study, we realized a
twin experiment to investigate the influence of the assimila-
tion methodology over longer term trends (one year) both on
observed and non-observed variables of the model.

The outline of the paper is as follows. We present the
EnKF with Gaussian anamorphosis and a way to build a
monovariate anamorphosis function in Sect. 2. We describe
our experimental framework in Sect. 3. Results of the meth-
ods are discussed in Sect. 4, and we present our conclusions
in Sect. 5.

2 The Ensemble Kalman filter with Gaussian
anamorphosis

We describe in this section the algorithm of the EnKF with
Gaussian anamorphosis suggested byBertino et al.(2003).
The principle is simple and consists of introducing non-linear
changes of variables in order to realize the analysis step in a
“Gaussian” space, while the forecast step is realized in the
physical space.

The main benefit of such algorithm is to alleviate in one
pass two important limitations of the application of linear
statistical analysis scheme in ecosystem models (described
in introduction). The assumption of a Gaussian distribution
of the variables appears now to be relevant for the trans-
formed variables during the analysis step. Furthermore there
is no “physical” constraint (constraint of positiveness, etc.)
on the transformed variables during the analysis, removing
post-processing steps that are compulsory when the analysis
state vector is not consistent with the physical model.

2.1 Algorithm

The algorithm is based on the skeleton of the EnKF and di-
vides into two steps:

Forecast: the forecast step is a propagation step in the
EnKF that uses a Monte-Carlo sampling to approximate the
forecast density byN realizations:

∀i= 1 :N, xf,in = fn−1(x
a,i
n−1,ε

m,i
n ) (1)

with xn the state vector at timetn, fn−1 the nonlinear model
andεmn the model error.

Analysis: the analysis step conditions each forecast mem-
ber to the new observationyn by a linear update. The
anamorphosis functions are introduced in this step.

For each variable of the model, at timetn, we apply a func-
tionψn which is a nonlinear bijective function from the phys-
ical space to a Gaussian space. We treat each variable sep-
arately. In order to simplify the notations, we assume that
we have one variable in our model (so one functionψn). It
reads:

∀i= 1 :N, x̃f,in =ψn(x
f,i
n ) (2)

In practice, it means that we apply the changes of variable
for each variable in every point of the discretized domain.

In the same way, we introduce an anamorphosis function
χn for the observationsyn at timetn:

ỹn=χn(yn). (3)

Given the observation operatorH links the physical variables
and the observations. We define the observation operatorH̃n

linking the transformed variables and observations by the for-
mula

H̃n=χn ◦H ◦ψ−1
n (4)
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where◦ defines the function composition. By assuming that
H̃n is linear (this assumption is discussed in the remarks that
follow), the linear analysis equation in the Gaussian space
reads formally as the classical linear analysis equation:

∀i= 1 :N, x̃a,in = x̃f,in + K̃n(ỹn− H̃nx̃
f,i
n +εo,in ) (5)

with K̃n the classical Kalman gain matrix in the Gaussian
space andεo,in the observation errors in the Gaussian space
which follow a normal law (εo,in ∼N (0,6̃o)). The trans-
formed Kalman gain matrix̃Kn is built on the forecast er-
ror covariance matrix̃Cfn approximated by the covariance of
(x̃f,in )i=1:N .

The pull-back to the physical space is realized by using the
inverse of the anamorphosis function:

∀i= 1 :N, xa,in =ψ−1
n (x̃a,in ) (6)

The analyzed meanxan and the covariance matrixCan are
approximated by the ensemble average and covariance of
(xa,in )i=1:N .

Remarks

1. The construction of relevant anamorphosis functionsχn
andψn is not straightforward. Analytic functions as log
or Cox-Box can be used for variables which initially
have a “good” distribution, but are not guaranteed to im-
prove the distribution in general. A more general way
to build relevant anamorphosis function can be obtained
from the empirical marginal distribution. More details
about their constructions are given later.

2. The use of nonlinear functions may introduce non lin-
earities on the transformed observation operatorH̃. In
some practical cases, a “good” choice ofHn and χn
leads to a linear operator. In the case when observed
variables are part of the state vector,H̃ is obviously lin-
ear. It can not be guaranteed for general cases. For
a nonlinearH̃, we suggest to use the EnKF analy-
sis scheme for nonlinear measurements suggested by
Evensen(2003, 2006).

3. This algorithm based on the use of monovariate anamor-
phosis functions does not handle multivariate non-
Gaussianity of the state vector. Even if each trans-
formed variables follows a Gaussian distribution, their
bivariate (and more generally their multivariate) distri-
butions will not be necessarily bi-Gaussian (resp. multi-
Gaussian). In practice this property is really difficult to
check due to the large size of the vectors. We assume
that the improvements of the monovariate distributions
will improve the multivariate distribution. More sophis-
ticated transformations should be investigated in the fu-
ture (seeScḧolzel and Friedrichs, 2008).

2.2 Construction of a monovariate anamorphosis
function

The performances of the extended EnKF described above are
strongly dependent on the choice of the anamorphosis func-
tions ψn andχn. Several strategies can be applied to the
construction of functions that improve the Gaussianity of the
distribution of the variables. A first idea is to use “classical”
analytic function as the logarithmic function or the Cox-box
functions.

Rather than using analytic functions that require prior
knowledge of the distribution of variables, we construct
the anamorphosis functions directly from a sample of vari-
ables.The idea is to build the anamorphosis functions from
the empirical marginal distributions of the variables. For that
we assume that the variables at different locations and on
a limited time period are identically distributed condition-
ally to the past observations and the physics. The algorithm
of the construction of a monovariate anamorphosis function
(one function per variable) divides into three parts:

1. Construction of the experimental anamorphosis
function based on the empirical marginal distribu-
tion. Such functions and the way to build these are well
known in the geostatistical community. A brief descrip-
tion of the algorithm is given in AppendixA. More de-
tails can be found inChilès and Delfiner(1999). The
computational costs of this step are negligible in com-
parison with the costs of forecast steps in the EnKF.

2. Interpolation of the experimental anamorphosis
function. Classical polynomial interpolations can be
used. Nevertheless, high order polynomial interpola-
tions generate oscillations (close to the extrema of the
empirical anamorphosis) that need a particular treat-
ment when defining the tails of the monotonic function.
We choose linear interpolation instead.

3. Definition of the tails of the function. It is an impor-
tant step due to the fact that one defines the bounds of
the physical variables. The definition of the physical
bounds is the way to introduce the physical constraints
of the model (for example a minimum value equal to
zero will correspond to a constraint of positiveness). For
the bounds of the Gaussian space, one has to take unre-
alistic high values of the analysis into account which
causes the tails to extend towards infinity.

These three steps of the construction of the anamorphosis
function for the chlorophyll-a variable are summarized in
Fig. 1.

Remarks

1. The anamorphosis function of a Gaussian variable is lin-
ear.
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1- Empirical anamorphosis
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2- Interpolation
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3- Definition of the tails
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Fig. 1. Surface chlorophyll-a observations: the steps of the construction of a monovariate anamorphosis function

Fig. 2. Arctic and North Atlantic configuration: surface
chlorophyll-a concentration (mg/m3) on October 22th 1997.

The ecosystem model is the NORWegian ECO-
logical Model system, NORWECOM, ( Skogen and
Søiland (1998), Aksnes et al. (1995) ). This model
includes two classes of phytoplanktons (diatoms and
flagellates), several classes of nutrients, and includes
oxygen, detritus, inorganic suspended particulate mat-
ter (ISPM) and yellow substances classes. Neverthe-
less in our experiments ISPM and yellow substances
were not activated. The ecosystem state vector is made
up of 7 variables.

This configuration is illustrated in figure 2 by a snap-
shot of surface chlorophyll-a on October 22th 1997.

3.2 Data assimilation experiments

We focus on data assimilation in the ecosystem
model. The multivariate assimilation of both physi-

cal and biological states is a challenging work and re-
mains an open issue. The state vector corresponds to
the ecosystem state vector only, namely seven 3D vari-
ables. Due to the lack of feedback in the coupling from
the ecosystem model to the physical one, the assimila-
tion does not correct the ocean physical state.

Our aim is to compare the performances of the ex-
tended EnKF with Gaussian anamorphosis to those of
a ”classical” EnKF. In that way twin experiments have
been realized: the true state and the observations are
issued from a simulation of the coupled model. The
benefits of such a framework is the knowledge of all
the components of the solution which leads us to check
the impact of the assimilation, in space as well as in
time, over all the variables of the model.

Two assimilation systems have been implemented in
the same configuration described bellow. The first one
called ECO corresponds to the direct application of the
EnKF. A post-processing step is added to remove neg-
ative values as well as too important values: negative
values are increased to zero while unlikely high values
are replaced by an arbitrary upper bound (this value
corresponds to the biological maximum bound intro-
duced in the construction of the anamorphosis func-
tions, cf table 1). The second one called ANA corre-
sponds to the application of the EnKF with Gaussian
anamorphosis. No post-processing step is included, as
the method does not require any.

The temporal linking of the experiments is as fol-
lows. Started from an already spun-up simulation at
the date of July 10th 1997, the true state is generated
by running the model without perturbation, while the
ensemble is generated by running the same model with
perturbations (more details about the generation of the
ensemble come below). This simulation is issued from
the work of Hansen and Samuelsen (2009) and corre-
sponds to the results of a spin-up started in 1958. At
this date the spring bloom is at a late stage and the con-
centration of phytoplankton starts to decrease. Then
data assimilation is included as from September 24th

Fig. 1. Surface chlorophyll-a observations: the steps of the construction of a monovariate anamorphosis function.

2. The anamorphosis functions as constructed here are de-
signed for continuous distribution functions and may
not improve “pathological” distributions such as Dirac
or bimodal.

3. Without Monte-Carlo sampling the introduction of non-
linear functions in order to realize the linear analysis
estimation in another space can lead to an assimilation
bias as follows.

E[ψ−1
n (x̃an)] 6=ψ−1

n (E[x̃an]) (7)

The bias only has an explicit expression in a few par-
ticular cases, like the exponential. One general way to
avoid the bias is to randomly sample the forecast distri-
bution. In the EnKF, this sampling is realized by using
an ensemble during the forecast step. Nevertheless for
the other methods such as the Ensemble Optimal Inter-
polation (EnOI) or the Extended Kalman Filter (EKF),
samplings are compulsory.

4. We assume that the variables at different locations in
space are identically distributed. In practice, this as-
sumption can not be checked for localized events, lead-
ing to a loss of relevance of anamorphosis functions.
The spatial refinements of these functions is still an
open issue and has to be investigated.

3 Description of the experimental framework

3.1 The coupled ocean ecosystem model

The experiments were performed in a North Atlantic and
Arctic configuration of the HYCOM-NORWECOM coupled
model. We describe briefly this configuration, which corre-
sponds to the coarse resolution one inHansen and Samuelsen
(2009).

The domain of the model covers the North Atlantic and
the Arctic oceans from 30◦ S. The grid was created using

the conformal mapping algorithm outlined inBentsen et al.
(1999).

The physical model used is the HYbrid Coordinate Ocean
Model, HYCOM, (Bleck, 2002). The vertical coordinates
are isopycnal in the open, stratified ocean, and change to z-
level coordinates in the mixed layer and/or unstratified seas.
The model uses 23 layers with a minimum thickness of 3 m
at the top layer. The model presents 216× 144 horizontal
grid points which corresponds to a horizontal resolution of
50 km. This is sufficient to broadly resolve the large-scale
circulation.

The evolution of the ice cover in the North part of the do-
main (mainly in the Arctic Ocean) is taken into account by an
on-line coupling between the physical ocean model and an
ice module including a thermodynamic model (Drange and
Simonsen, 1996) and a dynamic model (using the elastic-
viscous-plastic rheology ofHunke and Dukowicz, 1999).
Finally the ERA40 synoptic fields and climatological river
runoff (excluding nutrients) are used to force the model.

The ecosystem model is the NORWegian ECOlogical
Model system, NORWECOM, (Skogen and Søiland, 1998;
Aksnes et al., 1995). This model includes two classes
of phytoplanktons (diatoms and flagellates), several classes
of nutrients, and includes oxygen, detritus, inorganic sus-
pended particulate matter (ISPM) and yellow substances
classes. Nevertheless in our experiments ISPM and yellow
substances were not activated. The ecosystem state vector is
made up of 7 variables.

This configuration is illustrated in Fig.2 by a snapshot of
surface chlorophyll-a on 22 October 1997.

3.2 Data assimilation experiments

We focus on data assimilation in the ecosystem model. The
multivariate assimilation of both physical and biological
states is a challenging work and remains an open issue. The
state vector corresponds to the ecosystem state vector only,
namely seven 3-D variables. Due to the lack of feedback in
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3- Definition of the tails
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Fig. 1. Surface chlorophyll-a observations: the steps of the construction of a monovariate anamorphosis function

Fig. 2. Arctic and North Atlantic configuration: surface
chlorophyll-a concentration (mg/m3) on October 22th 1997.

The ecosystem model is the NORWegian ECO-
logical Model system, NORWECOM, ( Skogen and
Søiland (1998), Aksnes et al. (1995) ). This model
includes two classes of phytoplanktons (diatoms and
flagellates), several classes of nutrients, and includes
oxygen, detritus, inorganic suspended particulate mat-
ter (ISPM) and yellow substances classes. Neverthe-
less in our experiments ISPM and yellow substances
were not activated. The ecosystem state vector is made
up of 7 variables.

This configuration is illustrated in figure 2 by a snap-
shot of surface chlorophyll-a on October 22th 1997.

3.2 Data assimilation experiments

We focus on data assimilation in the ecosystem
model. The multivariate assimilation of both physi-

cal and biological states is a challenging work and re-
mains an open issue. The state vector corresponds to
the ecosystem state vector only, namely seven 3D vari-
ables. Due to the lack of feedback in the coupling from
the ecosystem model to the physical one, the assimila-
tion does not correct the ocean physical state.

Our aim is to compare the performances of the ex-
tended EnKF with Gaussian anamorphosis to those of
a ”classical” EnKF. In that way twin experiments have
been realized: the true state and the observations are
issued from a simulation of the coupled model. The
benefits of such a framework is the knowledge of all
the components of the solution which leads us to check
the impact of the assimilation, in space as well as in
time, over all the variables of the model.

Two assimilation systems have been implemented in
the same configuration described bellow. The first one
called ECO corresponds to the direct application of the
EnKF. A post-processing step is added to remove neg-
ative values as well as too important values: negative
values are increased to zero while unlikely high values
are replaced by an arbitrary upper bound (this value
corresponds to the biological maximum bound intro-
duced in the construction of the anamorphosis func-
tions, cf table 1). The second one called ANA corre-
sponds to the application of the EnKF with Gaussian
anamorphosis. No post-processing step is included, as
the method does not require any.

The temporal linking of the experiments is as fol-
lows. Started from an already spun-up simulation at
the date of July 10th 1997, the true state is generated
by running the model without perturbation, while the
ensemble is generated by running the same model with
perturbations (more details about the generation of the
ensemble come below). This simulation is issued from
the work of Hansen and Samuelsen (2009) and corre-
sponds to the results of a spin-up started in 1958. At
this date the spring bloom is at a late stage and the con-
centration of phytoplankton starts to decrease. Then
data assimilation is included as from September 24th

Fig. 2. Arctic and North Atlantic configuration: surface
chlorophyll-a concentration (mg/m3) on 22 October 1997.

the coupling from the ecosystem model to the physical one,
the assimilation does not correct the ocean physical state.

Our aim is to compare the performances of the extended
EnKF with Gaussian anamorphosis to those of a “classical”
EnKF. In that way twin experiments have been realized: the
true state and the observations are issued from a simulation
of the coupled model. The benefits of such a framework is
the knowledge of all the components of the solution which
leads us to check the impact of the assimilation, in space as
well as in time, over all the variables of the model.

Two assimilation systems have been implemented in the
same configuration described bellow. The first one called
ECO corresponds to the direct application of the EnKF. A
post-processing step is added to remove negative values as
well as too important values: negative values are increased to
zero while unlikely high values are replaced by an arbitrary
upper bound (this value corresponds to the biological max-
imum bound introduced in the construction of the anamor-
phosis functions, cf. Table1). The second one called ANA
corresponds to the application of the EnKF with Gaussian
anamorphosis. No post-processing step is included, as the
method does not require any.

The temporal linking of the experiments is as follows.
Started from an already spun-up simulation at the date of 10
July 1997, the true state is generated by running the model
without perturbation, while the ensemble is generated by run-
ning the same model with perturbations (more details about
the generation of the ensemble come below). This simulation
is issued from the work ofHansen and Samuelsen(2009) and
corresponds to the results of a spin-up started in 1958. At this
date the spring bloom is at a late stage and the concentration
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Fig. 3. Surface chlorophyll observations: network of avail-
able observations on December 31st 1997

1997. At this date the spring bloom is over and the
global concentration of phytoplankton is low and de-
creases. Assimilation cycles are then performed over
one year with a frequency of one analysis step per
week.

The synthetic observations are the surface
chlorophyll-a obtained by a spatial sampling of
the noised true state (equation (8)) of every third grid
index. Furthermore the observations under ice or too
close to coasts (the depth of the water column must be
greater than 300m) are not assimilated in order to take
into account several constraints of the assimilation of
realistic satellite data. Finally the observations present
in the southern boundary area (last 15 grid points in
the y-direction) are not assimilated either, nor are the
observations present in the Arctic ocean (first 50 grid
points in the y-direction). It leads to a time evolutive
network of observations illustrated in figure 3 on
December 31st 1997.

The observations are defined as follows

yn = Hnxtn × e(Zn−σ2/2) (8)

with Zn ∼ N (0, σ = 0.3). It means that we con-
struct the observations by adding to the true surface
chlorophyll-a, which is assumed to have a lognormal
distribution, an observation error with a spatial average
around 30%, which corresponds to the ”usual” error of
real satellite data. However, the observation error may
locally reach high values (around 75%) as noted for the

case of real data. σ
2

2 is a bias reduction term (observa-
tion error).

The strategy for estimating the observation error εo

in the EnKF changes with the assimilating systems. In
the ECO system, the observation error at each observa-
tion point p is assumed to have a Gaussian distribution
with a mean of zero and a standard deviation of 30%
of the value of the observation: εo(p) ∼ N (0, σ =
0.3 × yn(p)). It prevents from negative perturbed ob-
servations (yn+ε0n) that are normally truncated to zero,
leading to less frequent unrealistic negative values in
the analysis ensemble. Even if it may artificially in-
crease the uncertainties of the observations with high
value, this approach leads to a significant improvement
of the performances of the EnKF comparing to a obser-
vation error built on an average value of the observa-
tions (not shown). In the ANA system, the observation
error in the transformed space has a Gaussian distribu-
tion with a mean of zero and a standard deviation of
0.3: εo ∼ N (0, σ = 0.3). The anamorphosis func-
tions being designed to generate transformed variables
with a Normal distribution, the observation error in the
transformed space is supposed to be around 30% of the
transformed observation.

At an observation point, H relates linearly the
chlorophyll-a concentration CHLA to the model di-
atoms and flagellates concentrations (DIA and FLA)
by the equation (9).

CHLA =
DIA + FLA

11.
(9)

The initial ensemble as from September 24th 1997 is
the same for both systems (ECO and ANA). It is made
up of 100 members obtained by running the model
from July 10th 1997 with perturbations of the atmo-
spheric fields in the physical model only (as done in
Natvik and Evensen (2003a)). The perturbations in-
duced in the physics then cascade in the ecosystem
component of the coupled model. As the state vec-
tor is made of the biological component only, the as-
similation cannot correct the errors induced by the
perturbations in the physical component of the cou-
pled model. Nevertheless the context of twin experi-
ments in a coarse resolution model leads to a low bias
in the physical component, the main structure being
similar in the ensemble and in the reference simula-
tion. It allows for us to focus only on the improve-
ment of the ecosystem component of the coupled sys-
tem. For the future realistic framework, a first step
will consist to correct the errors in the physical com-
ponent by assimilating physical data, as already done
in the TOPAZ operational forecast and monitoring sys-
tem (Bertino and Lisæter , 2008), and then the assimi-
lation of chlorophyll-a satellite data will be done in the

Fig. 3. Surface chlorophyll observations: network of available ob-
servations on 31 December 1997.

of phytoplankton starts to decrease. Then data assimilation is
included as from 24 September 1997. At this date the spring
bloom is over and the global concentration of phytoplankton
is low and decreases. Assimilation cycles are then performed
over one year with a frequency of one analysis step per week.

The synthetic observations are the surface chlorophyll-a

obtained by a spatial sampling of the noised true state (Eq.8)
of every third grid index. Furthermore the observations un-
der ice or too close to coasts (the depth of the water column
must be greater than 300 m) are not assimilated in order to
take into account several constraints of the assimilation of
realistic satellite data. Finally the observations present in the
southern boundary area (last 15 grid points in the y-direction)
are not assimilated either, nor are the observations present in
the Arctic ocean (first 50 grid points in the y-direction). It
leads to a time evolutive network of observations illustrated
in Fig. 3 on 31 December 1997.

The observations are defined as follows

yn= Hnxtn×e(Zn−σ
2/2) (8)

with Zn ∼N (0,σ = 0.3). It means that we construct the ob-
servations by adding to the true surface chlorophyll-a, which
is assumed to have a lognormal distribution, an observation
error with a spatial average around 30%, which corresponds
to the ”usual” error of real satellite data. However, the ob-
servation error may locally reach high values (around 75%)

as noted for the case of real data.σ2

2 is a bias reduction term
(observation error).
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Table 1. Anamorphosis functions: maximal biological bounds.

Variables NIT PHO SIL DET SIS FLA DIA CHLA

mg m−3 1000 210 4000 100 200 150 150 30

The strategy for estimating the observation errorεo in the
EnKF changes with the assimilating systems. In the ECO
system, the observation error at each observation pointp

is assumed to have a Gaussian distribution with a mean of
zero and a standard deviation of 30% of the value of the ob-
servation:εo(p)∼N (0,σ = 0.3×yn(p)). It prevents from
negative perturbed observations (yn+ ε0

n) that are normally
truncated to zero, leading to less frequent unrealistic neg-
ative values in the analysis ensemble. Even if it may artifi-
cially increase the uncertainties of the observations with high
value, this approach leads to a significant improvement of the
performances of the EnKF comparing to a observation error
built on an average value of the observations (not shown).
In the ANA system, the observation error in the transformed
space has a Gaussian distribution with a mean of zero and a
standard deviation of 0.3: εo ∼N (0,σ = 0.3). The anamor-
phosis functions being designed to generate transformed
variables with a normal distribution, the observation error in
the transformed space is supposed to be around 30% of the
transformed observation.

At an observation point,H relates linearly the chlorophyll-
a concentration CHLA to the model diatoms and flagellates
concentrations (DIA and FLA) by Eq. (9).

CHLA =
DIA +FLA

11.
(9)

The initial ensemble as from 24 September 1997 is the same
for both systems (ECO and ANA). It is made up of 100 mem-
bers obtained by running the model from 10 July 1997 with
perturbations of the atmospheric fields in the physical model
only (as done inNatvik and Evensen, 2003a). The perturba-
tions induced in the physics then cascade in the ecosystem
component of the coupled model. As the state vector is made
of the biological component only, the assimilation cannot
correct the errors induced by the perturbations in the phys-
ical component of the coupled model. Nevertheless the con-
text of twin experiments in a coarse resolution model leads
to a low bias in the physical component, the main structure
being similar in the ensemble and in the reference simula-
tion. It allows for us to focus only on the improvement of
the ecosystem component of the coupled system. For the
future realistic framework, a first step will consist to correct
the errors in the physical component by assimilating physical
data, as already done in the TOPAZ operational forecast and
monitoring system (Bertino and Lisæter, 2008), and then the
assimilation of chlorophyll-a satellite data will be done in the
ecosystem component of the coupled model. Direct pertur-
bations of the ecosystem component can also be added. This

strategy may appear simplistic, nevertheless the multivariate
biophysical assimilation is still an open issue.

The random perturbations are generated by a spectral
method (Evensen, 2003) in which the residual error is sim-
ulated using a spatial decorrelation radius of 250 km. The
decorrelation time-scale is of five days. The standard devia-
tions of the fields perturbed are: 0.03 N m−2 for the eastward
and northward drag coefficient,

√
2.5 m s−1 for the wind

speed,
√

0.005W m−2 for the radiative fluxes and 3◦ Celsius
for the air temperature. These values correspond to the ones
use in the TOPAZ operational forecast and monitoring sys-
tem.

Finally both systems use localization as suggested by
Evensen(2003). The radius is constant and equal to 500 km
(10 cell-grids in the two horizontal directions) therefore at
each point we assimilate between 2 and 10 observations de-
pending on the area. The aim of this work being the com-
parison of the intrinsic behavior of the two assimilation sys-
tems, we have not introduced advanced operational processes
as the decrease of the radius close to the coast for exam-
ple, in order to have a better understanding of the benefits
of anamorphosis functions.

3.3 Construction of the monovariate anamorphosis
functions

We assume that each variable and the chlorophyll-a at dif-
ferent locations in space are identically distributed in a time
period of three months centered on the datum of the analy-
sis step. In that way we obtain time evolving anamorphosis
functions. The choice of three months is motivated by the
time scale of bloom phenomena which is about 4 months.
Such a moving window allows for a representation of the
differences of distribution at the beginning and the end of the
bloom in the construction of the anamorphosis functions.

The experimental anamorphosis functions are computed
from weekly output from a four year integration of the
model. The anamorphosis function is piecewise linear, using
linear interpolation of the experimental anamorphosis func-
tion. The middle of steps are used to interpolate the empirical
anamorphosis functions, with the exception of the last right
step for which the maximal value of the data set is used. The
tails of the anamorphosis are defined as follows:

– Biological bounds: the minimum values are equal to
zero (constraint of positiveness) and the maximum val-
ues are unlikely high values summarized in Table1.
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– Gaussian bounds: the minimum values are equal to−9
(value with a probability around 1× 10−19). We do
not define maximum values, the right tails extending to-
wards infinity.

Remark

In case of model bias (which would occur with assimila-
tion of real data), the model-based anamorphosis func-
tions may be impaired by the bias, especially when us-
ing a short moving window. For example, the main
bloom could be modeled too early or too late by a cou-
ple of weeks, which would make high concentrations of
plankton too likely or too unlikely at different stages of
the bloom. Thus the moving time window should be
shorter than the bloom, but not too short by comparison
to usual ecosystem model delays. We consider three
months as a reasonable compromise.

The interpolated anamorphosis functions (step 2) of
chlorophyll-a, diatoms and flagellates (phytoplankton) and
silicate (nutrient) are shown in Fig.4 during three periods of
the year: in winter (31 December 1997) when the primary
production is low, during the spring bloom (14 May 1998)
and in fall (3 September 1998) when the concentration of
phytoplankton decreases slowly.

We note that the shape of the anamorphosis functions of
the chlorophyll-a and the two phytoplanktons are quite simi-
lar (see in Fig.4). The anamorphosis presents a curvature in
the interval[−1,1] of the Gaussian space, affecting around
65% of the values (the transformed variables have a normal
distributionN (0,1)). Had the distribution been a truncated-
Gaussian, the anamorphosis would have been a straight line,
intersecting the abscissa. Furthermore the impact of the sea-
son appears mainly on the localization around zero of the
strong non-linearity of the functions, and on the maximum
value present in the biological data set. Finally the anamor-
phosis functions of the silicate variable present many nonlin-
earities all along the shape of the functions, and particularly
near the high values of the biological data set. It is also the
case for the other nutrient variables (not shown).

The results of the application of anamorphosis functions
on the distribution of the diatoms and the silicates are shown
in Fig. 5 during the same three periods of the year previously
shown. In this present study, we focus on diatoms which are
linked to the chlorophyll-a (observation) by a linear relation
and on the silicates which limit the rate of the production of
diatoms but not the production of flagellates.

First we note that the time evolving anamorphosis func-
tions provide more Gaussian distributed variables as ex-
pected. This is globally true for the other variables of the
ecosystem model (not shown). Nevertheless the histogram
of the transformed diatoms during the spring bloom allows
for the appearance of the superimposition of two Gaussian
functions. It can be explained by the bloom in the eastern

part of the North Atlantic (mainly off Spain) in the ensemble
which is earlier than the blooms present in the data set used
for building the anamorphosis functions. So it means that
we reach the problem of the bias of anamorphosis functions
based on moving windows. A way to deal with this problem
would be to include more extreme events in the data set used
for the construction of the anamorphosis functions.

4 Data assimilation results

4.1 Observation error

At first we are interested in the evolution with time of the spa-
tial averages of the true observation error and its estimate by
the filter in both systems (Fig.6). For the case of the EnKF
with Gaussian anamorphosis (ANA configuration), the spa-
tial average is computed in the transformed space, while this
value is computed in the physical space for the true observa-
tion error and the plain EnKF (ECO configuration).

First we note that the curve of the spatial average of the
true observation error presents large deviations around the
specified value (30%). We note also the presence of more
important errors in the observation at the beginning of the
spring bloom in March–April. These variations of the ob-
servation error introduce difficulties for its estimation by the
filter. The specification of relevant estimate of the observa-
tion error is an important problem reached when dealing with
real observations.

For the case of the ECO configuration, the evolution of
the spatial average of the observation error estimate is al-
most constant around 30%, according to the observation er-
ror variance specified in the filter. This value corresponds to
the average value of the true observation error. However, the
presence of variations in the true observation error leads to
a succession of under- and overestimate of the observation
error in the analysis steps.

Finally we note a continuous overestimation of the ob-
servation error in the ANA configuration, exception to few
analysis steps during the spring bloom. This is explained
by the chlorophyll-a anamorphosis function not being ex-
actly an exponential function. It leads to persistent weaker
corrections in the Gaussian space than the ones that could
have been obtained with a more relevant estimate and weaker
than in the ECO configuration. Furthermore, we note sig-
nificant variations with time around 35% of the observation
error estimate, which seem to follow the low frequency oscil-
lations of the true observation error. We have no explanation
for these similar trends and this result may not be observed
in future experiments. However, transformed observations
with a normal distribution would have led to an almost con-
stant estimate of the observation error around 30% in average
(rather 35% in the present experiments). It means that the
chlorophyll-a anamorphosis function cannot produce trans-
formed variable with a normal distribution as expected. This
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Fig. 4. Interpolated anamorphosis functions. Left: December 31st 1997; center: May 14th 1998; right: September 3rd 1998.
The right tails are not plotted (same slope that the last segment).

during the period of the spring bloom (April-August).
We note also that the standard deviation is higher than
the RMS error for both systems, expressing an over-
estimation of the error by the filters.

Furthermore we observe three phases in the evolu-
tion of the curves. The first one corresponds to the end
of the bloom and the winter (October 1997 - March
1998). During that phase, the RMS error is low and
the assimilation of observations does not significantly

Fig. 4. Interpolated anamorphosis functions. Left: 31 December 1997; center: 14 May 1998; right: 3 September 1998. The right tails are
not plotted (same slope that the last segment).
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Fig. 5. Distributions of 3D biological and transformed variables. Left: December 31st 1997; center: May 14th 1998; right:
September 3rd 1998.

improve the solution, indeed may damage it when the
observation error locally reaches high values. The sec-
ond phase corresponds to the spring bloom. The RMS
error and the standard deviation increase from March

to June. During that period, the analysis steps are ef-
ficient and lead to a significant decrease of the RMS
error and standard deviations of the solutions. Fur-
thermore, we note that the RMS error in the ANA ex-

Fig. 5. Distributions of 3-D biological and transformed variables. Left: 31 December 1997; center: 14 May 1998; right: 3 September 1998.
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Fig. 6. Observation error: one year evolution of the spatial
averages of the true observation error and the estimated ob-
servation errors by the filters (%).
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Fig. 7. Surface chlorophyll-a: one year evolution of the RMS
error and the standard deviations (mg/m3).

periment is slightly lower than in the ECO configura-
tion. In the second part of the bloom (June-August),
the RMS error and STD start to decrease. The analy-
sis steps are less efficient and may damage the solution
in the ANA configuration, leading to a slightly lower
RMS error in the ECO experiment. This is explained
by the presence of observations out of the range of the
model data set used to build the anamorphosis func-
tions. It may lead to unlikely high values for the trans-
formed observation if the right tail of the anamorpho-

sis function is not defined carefully, leading to locally
biased analysis. The addition of more extreme events
and observations in the anamorphosis function data set
can efficiently remedy for this model bias. Finally the
third phase corresponds to the end of the bloom. The
RMS error and the standard deviation decrease slowly
to reach their initial values. Furthermore the lack of
observations in shallow waters leads to some difficul-
ties in correcting the solution in several areas (cf §4.5).

Finally the truncation due to the post-processing
step in the ECO experiment affects a very few number
of state variables (not shown) thanks to the local spec-
ification of the observation error as a percentage of the
value of the observation: by reducing the frequency
of appearance of negative perturbed observations dur-
ing the cold period comparing to an observation error
defined uniformly from an average error value, it pre-
vents the appearance of negative values in the analysis
ensemble.

4.3 Local evolution of the ensemble

We are interested in the evolution with time of the
mean and standard deviations of the ensembles and
observations as well as the true state at different grid
points localized in the vicinity of the Gulf Stream (fig-
ure 9). Our aim is to study the local effects of the linear
analysis on the observed variable for both systems in
order to highlight assimilation biases that could have
been hidden in the previous diagnostic due to the spa-
tial averaging. This area is characterized by strong
dynamics in both components of the coupled model
(strong spring bloom in area of the Gulf Stream). The
investigated points P1 and P2 are localized by red
crosses on figure 8. Since we are interested in the be-
havior of the analysis, the several diagnostics are com-
puted in the Gaussian space for the ANA configuration.

First, we note that both assimilating systems are ef-
ficient: the mean of the ensemble is very close to the
true state despite the presence of observations with sig-
nificant errors. Nevertheless, some assimilation biases
appear. For the case of the ANA configuration, we note
an increase of the standard deviation of the ensemble
at the beginning of January in both locations. At this
time, few outliers with very low values appear in the
forecast ensemble (not shown). These values being
unlikely when considering the data set used to build
the anamorphosis function, this results in the presence
of few outliers with high negative values in the trans-
formed forecast ensemble, hence an artificial increase
of the transformed forecast error estimate in the fil-
ter. This leads to few corrections towards erroneous
transformed observations. Spatial refinements of the
anamorphosis function have to be investigated to re-

Fig. 6. Observation error: one year evolution of the spatial averages
of the true observation error and the estimated observation errors by
the filters (%).

should improve when including observations in the data set
used to build the anamorphosis functions.

4.2 Overall error evolution

We are interested in the evolution in time of the true Root
Mean Square error (RMS) and the ensemble standard devia-
tions (STD) of the solution of the two systems. The expres-
sion at timetn of these two quantities is as follows:

RMS(tn)=
√

1
#�

∑
k∈�(x

t (tn,k)− x̄(tn,k))2

STD(tn)=
√

1
N−1

1
#�

∑
k∈�

∑N
m=1(x

m(tn,k)− x̄(tn,k))2
(10)

with � the domain of computation, #� the number of grid
points of the domain used for the computation of the RMS
and STD,N the number of members,xt the true state, and̄x
the mean of the ensemble.

Figure7 represents the evolution of the RMS error and the
standard deviations over one year for the surface chlorophyll-
a (what we observe). In that case� is the top layer of the
model. We note that both systems present the same evolu-
tion of RMS error and standard deviations, even if slight dif-
ferences are observed during the period of the spring bloom
(April–August). We note also that the standard deviation is
higher than the RMS error for both systems, expressing an
over-estimation of the error by the filters.

Furthermore we observe three phases in the evolution of
the curves. The first one corresponds to the end of the bloom
and the winter (October 1997–March 1998). During that
phase, the RMS error is low and the assimilation of obser-
vations does not significantly improve the solution, indeed
may damage it when the observation error locally reaches
high values. The second phase corresponds to the spring
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Fig. 6. Observation error: one year evolution of the spatial
averages of the true observation error and the estimated ob-
servation errors by the filters (%).
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Fig. 7. Surface chlorophyll-a: one year evolution of the RMS
error and the standard deviations (mg/m3).

periment is slightly lower than in the ECO configura-
tion. In the second part of the bloom (June-August),
the RMS error and STD start to decrease. The analy-
sis steps are less efficient and may damage the solution
in the ANA configuration, leading to a slightly lower
RMS error in the ECO experiment. This is explained
by the presence of observations out of the range of the
model data set used to build the anamorphosis func-
tions. It may lead to unlikely high values for the trans-
formed observation if the right tail of the anamorpho-

sis function is not defined carefully, leading to locally
biased analysis. The addition of more extreme events
and observations in the anamorphosis function data set
can efficiently remedy for this model bias. Finally the
third phase corresponds to the end of the bloom. The
RMS error and the standard deviation decrease slowly
to reach their initial values. Furthermore the lack of
observations in shallow waters leads to some difficul-
ties in correcting the solution in several areas (cf §4.5).

Finally the truncation due to the post-processing
step in the ECO experiment affects a very few number
of state variables (not shown) thanks to the local spec-
ification of the observation error as a percentage of the
value of the observation: by reducing the frequency
of appearance of negative perturbed observations dur-
ing the cold period comparing to an observation error
defined uniformly from an average error value, it pre-
vents the appearance of negative values in the analysis
ensemble.

4.3 Local evolution of the ensemble

We are interested in the evolution with time of the
mean and standard deviations of the ensembles and
observations as well as the true state at different grid
points localized in the vicinity of the Gulf Stream (fig-
ure 9). Our aim is to study the local effects of the linear
analysis on the observed variable for both systems in
order to highlight assimilation biases that could have
been hidden in the previous diagnostic due to the spa-
tial averaging. This area is characterized by strong
dynamics in both components of the coupled model
(strong spring bloom in area of the Gulf Stream). The
investigated points P1 and P2 are localized by red
crosses on figure 8. Since we are interested in the be-
havior of the analysis, the several diagnostics are com-
puted in the Gaussian space for the ANA configuration.

First, we note that both assimilating systems are ef-
ficient: the mean of the ensemble is very close to the
true state despite the presence of observations with sig-
nificant errors. Nevertheless, some assimilation biases
appear. For the case of the ANA configuration, we note
an increase of the standard deviation of the ensemble
at the beginning of January in both locations. At this
time, few outliers with very low values appear in the
forecast ensemble (not shown). These values being
unlikely when considering the data set used to build
the anamorphosis function, this results in the presence
of few outliers with high negative values in the trans-
formed forecast ensemble, hence an artificial increase
of the transformed forecast error estimate in the fil-
ter. This leads to few corrections towards erroneous
transformed observations. Spatial refinements of the
anamorphosis function have to be investigated to re-

Fig. 7. Surface chlorophyll-a: one year evolution of the RMS error
and the standard deviations (mg/m3).

bloom. The RMS error and the standard deviation increase
from March to June. During that period, the analysis steps
are efficient and lead to a significant decrease of the RMS er-
ror and standard deviations of the solutions. Furthermore, we
note that the RMS error in the ANA experiment is slightly
lower than in the ECO configuration. In the second part
of the bloom (June–August), the RMS error and STD start
to decrease. The analysis steps are less efficient and may
damage the solution in the ANA configuration, leading to a
slightly lower RMS error in the ECO experiment. This is ex-
plained by the presence of observations out of the range of
the model data set used to build the anamorphosis functions.
It may lead to unlikely high values for the transformed obser-
vation if the right tail of the anamorphosis function is not de-
fined carefully, leading to locally biased analysis. The addi-
tion of more extreme events and observations in the anamor-
phosis function data set can efficiently remedy for this model
bias. Finally the third phase corresponds to the end of the
bloom. The RMS error and the standard deviation decrease
slowly to reach their initial values. Furthermore the lack of
observations in shallow waters leads to some difficulties in
correcting the solution in several areas (cf. Sect.4.5).

Finally the truncation due to the post-processing step in the
ECO experiment affects a very few number of state variables
(not shown) thanks to the local specification of the observa-
tion error as a percentage of the value of the observation: by
reducing the frequency of appearance of negative perturbed
observations during the cold period comparing to an obser-
vation error defined uniformly from an average error value,
it prevents the appearance of negative values in the analysis
ensemble.
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Fig. 8. Chlorophyll-a concentration (mg/m3): the top layer
on April 23rd 1998. The points P1, P2 and P3 are localized
by a red cross.

duce the transfer of local bias from the model to the
anamorphosis function and to improve the local dis-
tribution of the transformed variables. In the case of
the ECO configuration, the observation error defined
by a percentage of the value of the observation leads
to a decrease (resp. an increase) of the confidence in
observations with high values (resp. low values). It
can be useful when the observation error increases the
value of the observation comparing to the true state, as
noted at the point P2 in July 2008 (figure 9). On the
other hand, it can induce an underestimation of the er-
ror for observations lower than the true state or with
low values, leading to too strong corrections towards
erroneous observations as noted at the point P1 in May
2008 (figure 9).

4.4 Errors in the sub-surface

In order to explore the multivariate aspect of the data
assimilation, we focus on the evolution of the RMS er-
ror and the standard deviation, computed on only one
grid point (58.8◦S, 38.7◦E) in the area of the Gulf
Stream, for the diatoms and the silicate. This point,
called P3 and localized by a red cross on figure 8, is in
the 8th layer (waters between 30 m and 38 m) of the
model, the deepest one locally before vanishing of the
diatoms. As the concentrations of diatoms at this point
can change quickly with time, it is a good indicator of
the front of structures.

Once again we do not note significant differences

between the two systems (not shown). The RMS error
and the standard deviations remain low: the RMS error
reaches a maximum of 4mg.m3 for the diatoms and 20
mg.m3 for the silicate. Furthermore, both assimilating
systems overestimate the error.

4.5 Regional distribution of the errors

We examine the spatial localization of the error on
the surface chlorophyll-a before, during and after the
main bloom. Figures 10, 11 and 12 represent the maps
of the surface chlorophyll-a component of x̄a − xt

on December 31st 1997, May 14th 1998 and Septem-
ber 3rd 1998. As stated previously, the observations
present in the southern boundary area are not assimi-
lated, due to this, important errors remain in this part
of the domain. The maps of RMS error focus only on
the regions of interest (North Atlantic and Arctic re-
gions).

On December 31st, we note that the error is mainly
localized in the south of the domain where the con-
centration of chlorophyll-a is highest. Slight differ-
ences appear in the distribution of the errors. For the
ANA configuration, the mean of the analyzed ensem-
ble tends to be higher than the true state while the error
is better balanced in the ECO configuration. The ob-
servation error being overestimated in the ANA con-
figuration, it leads to weaker corrections by the filter in
area of high chlorophyll-a production.

On May 14th, during the spring bloom, we note an
increase of the error comparing to winter. The mean
solution of the ensemble is slightly better in the ANA
configuration. Nevertheless, the overestimation of the
observation error in the transformed space does not
allow the EnKF to efficiently reduce the error issued
from a too strong spring bloom in the forecast ensem-
ble. In the ECO configuration, the bloom is too weak
in the domain from the North American coast to Eu-
ropa. This negative error is an inherited consequence
of the underestimation of the observation error at the
beginning of the spring bloom (April-May) that gen-
erates important local analysis step in direction of er-
roneous low observation. Furthermore, the lack of ob-
servations on the European North West Shelf leads to
important persistent errors in the North Sea (between
UK and Norway) for both configurations. This bias is a
nonlinear response to the perturbations of atmospheric
forcings (likely more resuspension in average for ex-
ample).

After the spring bloom, on September 3rd, we ob-
serve errors in a chlorophyll-a structure localized south
of Greenland for both configurations. However, the so-
lutions present significant differences in this area: the
concentration of chlorophyll-a is underestimated in the

Fig. 8. chlorophyll-a concentration (mg/m3): the top layer on 23
April 1998. The pointsP1, P2 andP3 are localized by a red cross.

4.3 Local evolution of the ensemble

We are interested in the evolution with time of the mean
and standard deviations of the ensembles and observations
as well as the true state at different grid points localized in
the vicinity of the Gulf Stream (Fig.9). Our aim is to study
the local effects of the linear analysis on the observed vari-
able for both systems in order to highlight assimilation biases
that could have been hidden in the previous diagnostic due to
the spatial averaging. This area is characterized by strong
dynamics in both components of the coupled model (strong
spring bloom in area of the Gulf Stream). The investigated
pointsP1 andP2 are localized by red crosses on Fig.8. Since
we are interested in the behavior of the analysis, the several
diagnostics are computed in the Gaussian space for the ANA
configuration.

First, we note that both assimilating systems are efficient:
the mean of the ensemble is very close to the true state de-
spite the presence of observations with significant errors.
Nevertheless, some assimilation biases appear. For the case
of the ANA configuration, we note an increase of the stan-
dard deviation of the ensemble at the beginning of January in
both locations. At this time, few outliers with very low values
appear in the forecast ensemble (not shown). These values
being unlikely when considering the data set used to build
the anamorphosis function, this results in the presence of few
outliers with high negative values in the transformed fore-
cast ensemble, hence an artificial increase of the transformed
forecast error estimate in the filter. This leads to few correc-
tions towards erroneous transformed observations. Spatial
refinements of the anamorphosis function have to be inves-

tigated to reduce the transfer of local bias from the model
to the anamorphosis function and to improve the local distri-
bution of the transformed variables. In the case of the ECO
configuration, the observation error defined by a percentage
of the value of the observation leads to a decrease (resp. an
increase) of the confidence in observations with high values
(resp. low values). It can be useful when the observation er-
ror increases the value of the observation comparing to the
true state, as noted at the pointP2 in July 2008 (Fig.9). On
the other hand, it can induce an underestimation of the error
for observations lower than the true state or with low values,
leading to too strong corrections towards erroneous observa-
tions as noted at the pointP1 in May 2008 (Fig.9).

4.4 Errors in the sub-surface

In order to explore the multivariate aspect of the data as-
similation, we focus on the evolution of the RMS error and
the standard deviation, computed on only one grid point
(58.8◦ S, 38.7◦ E) in the area of the Gulf Stream, for the di-
atoms and the silicate. This point, calledP3 and localized
by a red cross on Fig.8, is in the 8th layer (waters between
30 m and 38 m) of the model, the deepest one locally before
vanishing of the diatoms. As the concentrations of diatoms at
this point can change quickly with time, it is a good indicator
of the front of structures.

Once again we do not note significant differences between
the two systems (not shown). The RMS error and the stan-
dard deviations remain low: the RMS error reaches a max-
imum of 4 mg m3 for the diatoms and 20 mg m3 for the sil-
icate. Furthermore, both assimilating systems overestimate
the error.

4.5 Regional distribution of the errors

We examine the spatial localization of the error on the sur-
face chlorophyll-a before, during and after the main bloom.
Figures10, 11 and 12 represent the maps of the surface
chlorophyll-a component of̄xa −xt on 31 December 1997,
14 May 1998 and 3 September 1998. As stated previously,
the observations present in the southern boundary area are
not assimilated, due to this, important errors remain in this
part of the domain. The maps of RMS error focus only on
the regions of interest (North Atlantic and Arctic regions).

On 31 December, we note that the error is mainly local-
ized in the south of the domain where the concentration of
chlorophyll-a is highest. Slight differences appear in the dis-
tribution of the errors. For the ANA configuration, the mean
of the analyzed ensemble tends to be higher than the true
state while the error is better balanced in the ECO configura-
tion. The observation error being overestimated in the ANA
configuration, it leads to weaker corrections by the filter in
area of high chlorophyll-a production.

On 14 May, during the spring bloom, we note an increase
of the error comparing to winter. The mean solution of the

Ocean Sci., 5, 495–510, 2009 www.ocean-sci.net/5/495/2009/



E. Simon and L. Bertino: Gaussian anamorphosis in a 3-D ecosystem model 50714 E. Simon and L. Bertino: Gaussian anamorphosis in a 3D ecosystem model

Point P1: ANA Point P1: ECO

01−Oct−1997 01−Jan−1998 01−Apr−1998 01−Jul−1998 01−Oct−1998
−1.5

−1

−0.5

0

0.5

1

1.5

2

M
ea

n 
an

d 
st

an
da

rd
 d

ev
ia

tio
ns

 (G
au

ss
ia

n 
sp

ac
e)

ANA − CHLA

 

 
Mean Observation
STD Observation
Mean Model
STD Model
True state

01−Oct−1997 01−Jan−1998 01−Apr−1998 01−Jul−1998 01−Oct−1998
0

0.5

1

1.5

2

2.5

3

3.5

4

M
ea

n 
an

d 
st

an
da

rd
 d

ev
ia

tio
ns

 (m
g/

m
3 )

ECO − CHLA

 

 
Mean Observation
STD Observation
Mean Model
STD Model
True state

Point P2: ANA Point P2: ECO

01−Oct−1997 01−Jan−1998 01−Apr−1998 01−Jul−1998 01−Oct−1998
−2

−1

0

1

2

3

4

5

M
ea

n 
an

d 
st

an
da

rd
 d

ev
ia

tio
ns

 (G
au

ss
ia

n 
sp

ac
e)

ANA − CHLA

 

 
Mean Observation
STD Observation
Mean Model
STD Model
True state

01−Oct−1997 01−Jan−1998 01−Apr−1998 01−Jul−1998 01−Oct−1998
0

2

4

6

8

10

12

M
ea

n 
an

d 
st

an
da

rd
 d

ev
ia

tio
ns

 (m
g/

m
3 )

ECO − CHLA

 

 
Mean Observation
STD Observation
Mean Model
STD Model
True state

Fig. 9. Surface chlorophyll-a: one year evolution of the mean and the standard deviations of the ensembles, the observation and
the true state at the points P1 and P2. The variables are represented in the Gaussian space for the ANA configuration.

ECO configuration while this one is overestimated in
the ANA configuration. These are apparently inherited
from the previous biases observed during the spring
bloom. We note also significant errors in the North Sea
and the Barents Sea where no observations are present.

5 Conclusions

A twin experiment has been conducted with a realis-
tic coupled physical-ecosystem model of the North At-
lantic and Arctic Oceans, assimilating simulated sur-

face chlorophyll-a with an EnKF, with and without
Gaussian anamorphosis.

The study reveals that applying the plain EnKF with
a simple post-processing of negative values or the
EnKF with Gaussian anamorphosis leads to similar re-
sults. Both systems present low RMS errors as well
as an overestimation of the error from the ensemble
statistics. However, when considering that the observa-
tion error was clearly overestimated in the EnKF with
Gaussian anamorphosis (between 5 and 10 percentage
points), the anamorphosis seems to have an advantage

Fig. 9. Surface chlorophyll-a: one year evolution of the mean and the standard deviations of the ensembles, the observation and the true state
at the pointsP1 andP2. The variables are represented in the Gaussian space for the ANA configuration.

ensemble is slightly better in the ANA configuration. Nev-
ertheless, the overestimation of the observation error in the
transformed space does not allow the EnKF to efficiently re-
duce the error issued from a too strong spring bloom in the
forecast ensemble. In the ECO configuration, the bloom is
too weak in the domain from the North American coast to
Europa. This negative error is an inherited consequence of
the underestimation of the observation error at the beginning
of the spring bloom (April–May) that generates important
local analysis step in direction of erroneous low observation.
Furthermore, the lack of observations on the European North
West Shelf leads to important persistent errors in the North
Sea (between UK and Norway) for both configurations. This
bias is a nonlinear response to the perturbations of atmo-

spheric forcings (likely more resuspension in average for ex-
ample).

After the spring bloom, on 3 September, we observe er-
rors in a chlorophyll-a structure localized south of Green-
land for both configurations. However, the solutions present
significant differences in this area: the concentration of
chlorophyll-a is underestimated in the ECO configuration
while this one is overestimated in the ANA configuration.
These are apparently inherited from the previous biases ob-
served during the spring bloom. We note also significant er-
rors in the North Sea and the Barents Sea where no observa-
tions are present.
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ANA: x̄a − xt True state xt ECO: x̄a − xt

Fig. 10. x̄a − xt: surface chlorophyll-a component (mg/m3) on December 31st 1997. Errors in the equatorial Atlantic Ocean
are not plotted.

ANA: x̄a − xt True state xt ECO: x̄a − xt

Fig. 11. x̄a−xt: surface chlorophyll-a component (mg/m3) on May 14th 1998. Errors in the equatorial Atlantic Ocean are not
plotted.

in efficiency. The advantage should become clearer
when using more accurate observations, would they
become available in the future.

The introduction of Gaussian anamorphosis in the
EnKF does not present any drawbacks. Furthermore,
its computational overload is almost null comparing to
the cost of the Forecast step of the EnKF that requires
to run a large number of simulations. It is an easy and
elegant solution to perform Kalman filter estimation in
an extended framework of variables with non-Gaussian
distributions. We thus encourage users of data assim-
ilation to consider the pdfs of the state variables and
observations before setting up the data assimilation ex-
periment.

The Gaussian anamorphosis is by no means reserved
to the EnKF but is naturally applied there because of
the Monte-Carlo formalism. It could be applied in a
non-Monte-Carlo method provided that a random sam-

pling is performed before the analysis step.
The assimilation of real satellite data with the EnKF

with Gaussian anamorphosis has now to be investi-
gated. It raises the challenging problem of model bias,
well known in the data assimilation community, and
particularly crucial for the use of anamorphosis func-
tions built on the empirical marginal distributions of
model variables. Furthermore two limits of the algo-
rithm have been reached during these experiments: the
first one concerns the assumption of an identical spa-
tial distribution of the variables in the construction of
the anamorphosis functions and the second one con-
cerns the monovariate aspect of the algorithm. Works
on the refinements in space of the anamorphosis func-
tions or on multivariate transformations would allow a
practical improvement of the algorithm. The statistical
classification tools appear to be an interesting approach
for the local refinement in space of the anamorphosis

Fig. 10. x̄a−xt : surface chlorophyll-a component (mg/m3) on 31 December 1997. Errors in the equatorial Atlantic Ocean are not plotted.
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Fig. 10. x̄a − xt: surface chlorophyll-a component (mg/m3) on December 31st 1997. Errors in the equatorial Atlantic Ocean
are not plotted.
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Fig. 11. x̄a−xt: surface chlorophyll-a component (mg/m3) on May 14th 1998. Errors in the equatorial Atlantic Ocean are not
plotted.

in efficiency. The advantage should become clearer
when using more accurate observations, would they
become available in the future.

The introduction of Gaussian anamorphosis in the
EnKF does not present any drawbacks. Furthermore,
its computational overload is almost null comparing to
the cost of the Forecast step of the EnKF that requires
to run a large number of simulations. It is an easy and
elegant solution to perform Kalman filter estimation in
an extended framework of variables with non-Gaussian
distributions. We thus encourage users of data assim-
ilation to consider the pdfs of the state variables and
observations before setting up the data assimilation ex-
periment.

The Gaussian anamorphosis is by no means reserved
to the EnKF but is naturally applied there because of
the Monte-Carlo formalism. It could be applied in a
non-Monte-Carlo method provided that a random sam-

pling is performed before the analysis step.
The assimilation of real satellite data with the EnKF

with Gaussian anamorphosis has now to be investi-
gated. It raises the challenging problem of model bias,
well known in the data assimilation community, and
particularly crucial for the use of anamorphosis func-
tions built on the empirical marginal distributions of
model variables. Furthermore two limits of the algo-
rithm have been reached during these experiments: the
first one concerns the assumption of an identical spa-
tial distribution of the variables in the construction of
the anamorphosis functions and the second one con-
cerns the monovariate aspect of the algorithm. Works
on the refinements in space of the anamorphosis func-
tions or on multivariate transformations would allow a
practical improvement of the algorithm. The statistical
classification tools appear to be an interesting approach
for the local refinement in space of the anamorphosis

Fig. 11. x̄a−xt : surface chlorophyll-a component (mg/m3) on 14 May 1998. Errors in the equatorial Atlantic Ocean are not plotted.

5 Conclusions

A twin experiment has been conducted with a realistic cou-
pled physical-ecosystem model of the North Atlantic and
Arctic Oceans, assimilating simulated surface chlorophyll-a

with an EnKF, with and without Gaussian anamorphosis.
The study reveals that applying the plain EnKF with a

simple post-processing of negative values or the EnKF with
Gaussian anamorphosis leads to similar results. Both sys-
tems present low RMS errors as well as an overestimation of
the error from the ensemble statistics. However, when con-
sidering that the observation error was clearly overestimated
in the EnKF with Gaussian anamorphosis (between 5 and 10
percentage points), the anamorphosis seems to have an ad-
vantage in efficiency. The advantage should become clearer
when using more accurate observations, would they become
available in the future.

The introduction of Gaussian anamorphosis in the EnKF
does not present any drawbacks. Furthermore, its computa-
tional overload is almost null comparing to the cost of the
Forecast step of the EnKF that requires to run a large number

of simulations. It is an easy and elegant solution to perform
Kalman filter estimation in an extended framework of vari-
ables with non-Gaussian distributions. We thus encourage
users of data assimilation to consider the pdfs of the state
variables and observations before setting up the data assimi-
lation experiment.

The Gaussian anamorphosis is by no means reserved to
the EnKF but is naturally applied there because of Monte-
Carlo formalism. It could be applied in a non-Monte-Carlo
method provided that a random sampling is performed before
the analysis step.

The assimilation of real satellite data with the EnKF with
Gaussian anamorphosis has now to be investigated. It raises
the challenging problem of model bias, well known in the
data assimilation community, and particularly crucial for
the use of anamorphosis functions built on the empirical
marginal distributions of model variables. Furthermore two
limits of the algorithm have been reached during these ex-
periments: the first one concerns the assumption on an iden-
tical spatial distribution of the variables in the construction of
the anamorphosis functions and the second one concerns the
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ANA: x̄a − xt True state xt ECO: x̄a − xt

Fig. 12. x̄a − xt: surface chlorophyll-a component (mg/m3) on September 3rd 1998. Errors in the equatorial Atlantic Ocean
are not plotted.

functions.
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Appendix A Construction of the empirical
anamorphosis function based on the empirical
marginal distribution.

Given Z(x) the spatially distributed variable of in-
terest. We assume that we do not know the marginal
distribution of Z(x), but we have access to an approx-
imation via a sample (zi)i=1:N of this variable. The
aim is to build a step function ψ such that

Z(x) = ψ(Y(x)) (A1)

with Y(x) following a predefined marginal distri-
bution. Here Y(x) is assumed to have a Normal dis-
tribution N (0, 1). The practical implementation of the
anamorphosis follows:

1- Sort the data (zi)i=1,N by ascending values.

z1 < z2 < ... < zN−1 < zN (A2)

2- Compute a sample (yi)i=1:N of the Gaussian vari-
able Y(x).

∀i = 1 : N, yi = G−1(
i

N
) (A3)

with G the cumulative distribution function of
Y(x):

G(t) = P (Y(x) < t)
=

∫ t
−∞ f(y)dy

=
∫ t
−∞

1√
2π
e
−y2

2 dy

(A4)

3- Define the empirical anamorphosis ψ .

ψ(y) =
N∑
i=1

zi1[yi−1,yi[(y) (A5)

The empirical anamorphosis function ψ being non-
bijective, one has to interpolate it. This is the aim of
the last two steps of the algorithm (the interpolation of
the empirical anamorphosis function and the definition
of the tails).
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monovariate aspect of the algorithm. Works on the refine-
ments in space of the anamorphosis functions or on multi-
variate transformations would allow a practical improvement
of the algorithm. The statistical classification tools appear to
be an interesting approach for the local refinement in space
of the anamorphosis functions.

Appendix A

Construction of the empirical anamorphosis
function based on the empirical marginal distribution

GivenZ(x) the spatially distributed variable of interest. We
assume that we do not know the marginal distribution of
Z(x), but we have access to an approximation via a sample
(zi)i=1:N of this variable. The aim is to build a step function
ψ such that

Z(x)=ψ(Y(x)) (A1)

with Y(x) following a predefined marginal distribution. Here
Y(x) is assumed to have a normal distributionN (0,1). The
practical implementation of the anamorphosis follows:

– Sort the data(zi)i=1,N by ascending values.

z1<z2< ...< zN−1<zN (A2)

– Compute a sample(yi)i=1:N of the Gaussian variable
Y(x).

∀i= 1 :N, yi =G
−1(

i

N
) (A3)

with G the cumulative distribution function ofY(x):

G(t) =P(Y(x)< t)
=

∫ t
−∞

f (y)dy

=
∫ t
−∞

1
√

2π
e

−y2

2 dy

(A4)

– Define the empirical anamorphosisψ .

ψ(y)=

N∑
i=1

zi1[yi−1,yi [(y) (A5)

The empirical anamorphosis functionψ being non-bijective,
one has to interpolate it. This is the aim of the last two steps
of the algorithm (the interpolation of the empirical anamor-
phosis function and the definition of the tails).
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