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Abstract. We consider the application of the Ensem- agencies for monitoring algal blooms and possible movement
ble Kalman Filter (EnKF) to a coupled ocean ecosystemof the fish populationsJohannessen et aR007 Allen et
model (HYCOM-NORWECOM). Such models, especially al., 2008. For the particular case of Norway, an important
the ecosystem models, are characterized by strongly norissue is the possible movement of fish populations following
linear interactions active in ocean blooms and present imthe sea-ice retreat from the Norwegian Arctic to the Russian
portant difficulties for the use of data assimilation methodsArctic. Such perspectives have led to the developments of
based on linear statistical analysis. Besides the non-linearithumerical ecosystem models during the last decades, as well
of the model, one is confronted with the model constraints,as their coupling with existing physical ocean models. These
the analysis state having to be consistent with the modelcouplings are made either on- or off-line, to include vertical
especially with respect to the constraints that some of thel-D as well as 3-D physical models and express the trade-off
variables have to be positive. Furthermore the non-Gaussiahetween our need in terms of modelling and forecast and the
distributions of the biogeochemical variables break an im-available computing resources.
portant assumption of the linear analysis, leading to a loss Nevertheless these models present numerous uncertainties
of optimality of the filter. We present an extension of the linked to the complexity of the processes that they try to rep-
EnKF dealing with these difficulties by introducing a non- resent and the parameterizations that they introduce. Nu-
linear change of variables (anamorphosis function) in ordemmerical ocean models are still imperfect and present many
to execute the analysis step in a Gaussian space, namelyegrors due to some theoretical approximations, the numeri-
space where the distributions of the transformed variablegal schemes as well as the resolution that are used. Even
are Gaussian. We present also the initial results of the apthough many improvements have been made in the modelling
plication of this non-Gaussian extension of the EnKF to of ocean ecosystems, the models are still too simple in com-
the assimilation of simulated chlorophyll surface concentra-parison to the complexity of the ocean biology. Finally, the
tion data in a North Atlantic configuration of the HYCOM- multi-scale interactions between the physics and the biology
NORWECOM coupled model. of the oceans are still poorly understood, leading to errors
and uncertainties in the coupling of both numerical models.
Numerical ocean ecosystem models alone are not sufficient
for understanding and forecasting the real ocean.

Another source of information lies in the observations of

The context of this work lies in the study and the forecast ofthe ocean biology. The use of satellites allowed the commu-
the dynamics of the ocean and the evolution of its biology.Nity to obtain important informations on the surface biology.
Important economical stakes involve a better optimization of The observed surface ocean color provides informations on
the management of the natural environment, especia”y b}the distribution of the surface Chlorophyll for a Iarge area of

fisheries. So analysis and short term forecasts of the primarjhe oceans, and thus the distribution of the phytoplankton.
production will be more and more useful to environmental Satellite observations are also dependent on the atmospheric

conditions (for example clouds), leading to loss of data of the
ocean surface. Finally, the observations can present impor-
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data are on average of the order of 30% of the vatiedg Furthermore they pointed out the benefits to update the er-
and Casey2004), with important variations depending on ror covariance of the analysis according to the Kalman filter
the area. In the same way, in situ measurements lead to equations rather than using a fixed base of the error subspace.
better understanding of the vertical components of the bi-Twin experiments of assimilation of simulated in situ nutri-
ological systems in the interior of the ocean. Neverthelesents data with a SEIK filterRfham 2001) in the Cretan Sea
these data have heterogeneous spatial and temporal distribled to similar conclusionsTgiantafyllou et al, 2003. Fi-

tions. The in situ data networks are still quite poor, mainly nally, experiments o€Carmillet et al.(2001) suggested that
localized near the coast, and finally are not able to provideonly variables in the upper part of the mixed-layer be cor-
information covering the 3-D global ocean. rected and allow for the propagation of the correction by the

The interest for data assimilation methods focus on theirmodel to deepest part of the ocean, rather than using the
ability to combine in an optimal way (in a sense to define) theanalysis scheme in all the water column, assuming that the
heterogeneous and potentially erroneous information providreduced-order initial error covariance matrix may damage the
ing by the models and the observations. These methods carbvariances on the vertical direction.
be classified in two categories: (1) the probabilistic approach Finally for realistic experiments in 3-D ocean ecosystem
based on the theory of the statistical estimation — the Kalmammodels,Natvik and Evense2003ab) successfully assimi-
filter (Kalman 1960 and its extensions — and (2) the vari- lated SeaWiFS data (surface ocean color) with an EnKF over
ational approach based on the theory of the optimal controk short period (2 months) in a North Atlantic configuration:
(Sasaki 1955 Lions, 1968 Le Dimet and Talagrand. 986 updated states were consistent with data in the surface and,
Courtier et al. 1994. These methods can be applied to im- as expected, the analysis steps were reducing the variance
portant classes of problems: the optimization of parameterdields for different ecosystem components (in the surface and
of the model conditionally to the observations, the sensitivity sub-surface). However, long term trends of the ensemble
analysis of the model (to parameters, observations, etc.) ansitatistics were not investigated, as well as the improvement
the state estimation. Both are equivalent for linear systemsof the analyzed estimates (non-observed variablsgrger
Data assimilation methods have been successfully appliednd Gregd2007) noted a significant improvement of the sur-
in the fields of meteorology and physical oceanography andace chlorophyll estimate when assimilating daily SeaWiFS
some of them are now used for operational forecast. Nevdata with a univariate static SEIK filter in a global ocean
ertheless their application in ecosystem forecasting is quiteconfiguration. Only the surface chlorophyll concentration
recent: they have started to be applied to ecosystem modelsas directly modified by the assimilation. Furthermore the
mainly during this last decade. Furthermore, the use of bio-assimilation used a logarithm transformation of the chloro-
logical observations could be relevant to improve the forecasphyll, according to the assumption of log-normal distribu-
of the physical model, leading to a real interest for coupledtion of the chlorophyll and errors in chlorophylCampbell
ocean-biogeochemical models. 1995. Similarly, Gregg(2008 demonstrated the capabilities

Data assimilation methods based on the Kalman filter haveof a monovariate assimilation of SeaWiFS data with a sim-
been successfully applied in numerous cases. In 1-D vertiple method (Conditional Relaxation Scheme Method) over
cal ocean ecosystem models, real biological in situ data havéong periods. For a more important overview of works deal-
been assimilated with an Ensemble Kalman Filter (EnKF)ing with the problem of data assimilation in ocean ecosystem
(Evensen1994 2003 2006. Allen et al. (2003 noted that  model, we refer t@regg et al(2009.
an high frequency assimilation of chlorophyll data (one anal- The focus of this present paper is the application of the
ysis every two days) was leading to an improvement of theEnKF for state estimation in coupled ocean ecosystem mod-
chlorophyll hindcast of the ecosystem model. This studyels. Considering that the EnKF performs multivariate analy-
showed that the EnKF could be a suitable method for operasis and allows an evolution of the covariance errors according
tional data assimilation systems. Assimilation of chlorophyll to the nonlinear dynamics of the system, it appears to be one
and nutrients data with an EnKF in an upwelling influenced of the most advanced data assimilation method able to deal
estuary Torres et al.2006 led to a large improvement of the with the assimilation of surface satellite data in ecosystem
ecosystem solution (in comparison of the simulation withoutmodels. Nevertheless application of data assimilation meth-
assimilation). Nevertheless improvements were required, noeds based on linear statistical analysis to such models in an
tably on the physical dynamics, in order to achieve a goodefficient way is a theoretically and practically challenging is-
representation of the ecosystem dynamics. sue.

In 3-D ocean ecosystem models, twin experiments of as- On the one hand, the strongly nonlinear behavior of
similation of simulated satellite surface chlorophyll data with ecosystem models (especially during the period of the spring
a SEEK filter Pham et a].1998 in a North Atlantic con-  bloom) raises the question of which stochastic model to be
figuration have been done lyarmillet et al.(2001). They  used Bertino et al, 2003. Nonlinear methods like particle
demonstrated the ability of a multivariate reduced order sefilters seem attractive for such models as they appear to be
quential updating scheme to correct all the components of variance minimizing schemes for any probability density
an ecosystem model observing a single surface variable onlyfunction. Losa et al(2004 applied successfully a Sequential
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Importance Particle filter (sd2oucet et al.2001) foracom- 2 The Ensemble Kalman filter with Gaussian
bined parameters-state estimation in a 1-D ecosystem model. anamorphosis
Nevertheless for realistic configurations, the size of the en-
semble required for an efficient application of such a filter We describe in this section the algorithm of the EnKF with
is too important to be considered. On the other hand one i§3aussian anamorphosis suggestedbytino et al.(2003.
also confronted with the model constraints: the analysis statd he principle is simple and consists of introducing non-linear
has to be consistent with the model, especially under the conchanges of variables in order to realize the analysis step in a
straints of positiveness of some variables. Most variables of Gaussian” space, while the forecast step is realized in the
ecosystem models are concentrations of a given tracer, and ghysical space.
cannot be negative. Nevertheless this problem is also known The main benefit of such algorithm is to alleviate in one
for the assimilation in physical ocean models. One thinkspass two important limitations of the application of linear
for example to the correction of layer thickness while as-Statistical analysis scheme in ecosystem models (described
similating data in hybrid coordinates model (HYCOM). Sev- in introduction). The assumption of a Gaussian distribution
eral solutions have been suggested to deal with such protef the variables appears now to be relevant for the trans-
lems. The one oThacker(2007 introduces inequality con- formed variables during the analysis step. Furthermore there
straints via Lagrange multipliers, leading to a 2-passes 3Dis no “physical” constraint (constraint of positiveness, etc.)
Var. Such approach can also be applied to a Kalman filteron the transformed variables during the analysis, removing
Into the framework of stochastic methodsguvernet et al.  post-processing steps that are compulsory when the analysis
(2009 developed a truncated Gaussian filter with inequality state vector is not consistent with the physical model.
constraints. But positiveness is only one example of non-
Gaussianity among many others. We focus here on a moré-1  Algorithm
general approach to non-Gaussianity. ) i .
Finally the non-Gaussian distributions of most biogeo- T.he a!gorlthm is based on the skeleton of the EnKF and di-
chemical variables break an important assumption of the lin-id€S into two steps: _ _ ,
ear analysis, leading to a loss of optimality of the EnKF (and _ FOrecast the forecast step is a propagation step in the
other filters). The optimality of the linear statistical analysis ENKF that uses a Monte-Carlo sampling to approximate the
is proved under some assumptions, notably an assumption §precast density by realizations:
Gaussianity made on the distribution of the variables (of the,,. i a,i i
model and the observations) and the errors. Vi=LiN, Xt = fa 0 e @
In the context of Kalman filtering, a way to deal with \yiih x, the state vector at timg, f,_1 the nonlinear model
these last two difficulties is the introduction of anamorphosisande the model error.
functions in the filter, as suggested Bgrtino et al.(2003. Analysis: the analysis step conditions each forecast mem-
They presenteq an EnKF in which 'Fhey mtrodu.ce non-linearyer to the new observatioy, by a linear update. The
changes of variables (anamorphosis function) in order to reznamorphosis functions are introduced in this step.
allzg the angly&s step in a Gaussian space. Numerical €X- For each variable of the model, at timewe apply a func-
periments with a 1-D ocean ecosystem model led to promisyjon v, which is a nonlinear bijective function from the phys-
ing results. The present paper comes within the continuityica| space to a Gaussian space. We treat each variable sep-
of these works and deals with the application of this eXte”'arater. In order to simplify the notations, we assume that

sion of the EnKF in a more realistic 3-D ocean ecosystemye nave one variable in our model (so one functigy). It
models. Even if our experimental framework appears to bgg5qs:

close to the works oNatvik and Evenseif20033, impor- _ '

tant differences remain: in this present study, we realized &i =1: N, %" =, (x]") 2

twin experiment to investigate the influence of the assimila-

tion methodology over longer term trends (one year) both onln Practice, it means that we apply the changes of variable

observed and non-observed variables of the model. for each variable in every point of the discretized domain.
The outline of the paper is as follows. We present the In the same way, we introduce an anamorphosis function

EnKF with Gaussian anamorphosis and a way to build ax» for the observationg, at timez,:

monovariate anamorphosis function in Sect. 2. We describe

our experimental framework in Sect. 3. Results of the methYn = Xn Yn)- ®)

ods are discussed in Sect. 4, and we present our conclusioRSiyen the observation operaterlinks the physical variables

in Sect. 5. and the observations. We define the observation opefigtor
linking the transformed variables and observations by the for-
mula

FIn:XnOHOw;l 4)
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whereo defines the function composition. By assuming that2.2 Construction of a monovariate anamorphosis

H,, is linear (this assumption is discussed in the remarks that function

follow), the linear analysis equation in the Gaussian space

reads formally as the classical linear analysis equation: ~ The performances of the extended EnKF described above are
strongly dependent on the choice of the anamorphosis func-

(5) tions v, and x,,. Several strategies can be applied to the

construction of functions that improve the Gaussianity of the

with K,, the classical Kalman gain matrix in the Gaussian distribution of the variables. A first idea is to use “classical”

space and?" the observation errors in the Gaussian spaceanalytic function as the logarithmic function or the Cox-box

which follow a normal law €' ~ A/(0, £°)). The trans-  functions.

formed Kalman gain matriX, is built on the forecast er- Rather than using analytic functions that require prior

ror covariance matri<; approximated by the covariance of knowledge of the distribution of variables, we construct

Vi=1:N, =% 4R, — A%+ e

ool
(Xn )i:l:N-

The pull-back to the physical space is realized by using the
inverse of the anamorphosis function:
Vi =

The analyzed mear and the covariance matri€; are

LN, x¢ =y, & (6)

the anamorphosis functions directly from a sample of vari-
ables.The idea is to build the anamorphosis functions from
the empirical marginal distributions of the variables. For that
we assume that the variables at different locations and on
a limited time period are identically distributed condition-

ally to the past observations and the physics. The algorithm

of the construction of a monovariate anamorphosis function

approximated by the ensemble average and covariance dPne function per variable) divides into three parts:

X' )i=1:N - i i i
X" Ji=1:N 1. Construction of the experimental anamorphosis
function based on the empirical marginal distribu-
Remarks ) ) :
tion. Such functions and the way to build these are well
1. The construction of relevant anamorphosis functigns known in the geostatistical community. A brief descrip-

andv, is not straightforward. Analytic functions as log
or Cox-Box can be used for variables which initially
have a “good” distribution, but are not guaranteed to im-
prove the distribution in general. A more general way
to build relevant anamorphosis function can be obtained
from the empirical marginal distribution. More details
about their constructions are given later.

tion of the algorithm is given in Appendik. More de-
tails can be found irChiles and Delfinef1999. The
computational costs of this step are negligible in com-
parison with the costs of forecast steps in the EnKF.

2. Interpolation of the experimental anamorphosis

function. Classical polynomial interpolations can be
used. Nevertheless, high order polynomial interpola-
tions generate oscillations (close to the extrema of the

2. The use of nonlinear functions may introduce non lin- 3 ) :
earities on the transformed observ);;tion operétorin empirical anamqrphoss) .that need a part!cular treat-
some practical cases, a “good” choicetdf and x, \Tvzn;hv(‘;gig ﬁﬁgglrnigttehrect)?:tsioorr itrr:set;%notonlcfunctlon.
leads to a linear operator. In the case when observed P '
variables are part of the state vectdris obviously lin- 3. Definition of the tails of the function. It is an impor-
ear. If. can EOt be guaranieted for gtﬁnerEal Igélses. | For tant step due to the fact that one defines the bounds of
a nonr:near f’ we sl_ugges 0 use et n antag'b the physical variables. The definition of the physical
ISE"S s¢ er;go orzggn Inéar measurements suggested by 4ynds is the way to introduce the physical constraints
venser(2003 9. of the model (for example a minimum value equal to
3. This algorithm based on the use of monovariate anamor- zero will correspond to a constraint of positiveness). For

phosis functions does not handle multivariate non-
Gaussianity of the state vector. Even if each trans-
formed variables follows a Gaussian distribution, their
bivariate (and more generally their multivariate) distri-

butions will not be necessarily bi-Gaussian (resp. multi-

check due to the large size of the vectors. We assume

the bounds of the Gaussian space, one has to take unre-
alistic high values of the analysis into account which
causes the tails to extend towards infinity.

These three steps of the construction of the anamorphosis

> ) > s >M function for the chlorophylk variable are summarized in
Gaussian). In practice this property is really difficult to Fig. 1

that the improvements of the monovariate distributions Remarks

will improve the multivariate distribution. More sophis-

ticated transformations should be investigated in the fu- 1. The anamorphosis function of a Gaussian variable is lin-

ture (seeSchdlzel and Friedrichs2008.
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1- Empirical anamorphosis

2- Interpolation
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Fig. 1. Surface chlorophyll: observations: the steps of the construction of a monovariate anamorphosis function.

2. The anamorphosis functions as constructed here are dehe conformal mapping algorithm outlined Bentsen et al.
signed for continuous distribution functions and may (1999.

not improve “pathological” distributions such as Dirac  The physical model used is the HYbrid Coordinate Ocean
or bimodal. Model, HYCOM, @Bleck, 2002. The vertical coordinates
are isopycnal in the open, stratified ocean, and change to z-
level coordinates in the mixed layer and/or unstratified seas.
The model uses 23 layers with a minimum thickness of 3m
bt the top layer. The model presents 21644 horizontal

grid points which corresponds to a horizontal resolution of
50km. This is sufficient to broadly resolve the large-scale
circulation.

The bi v h licit ion in af The evolution of the ice cover in the North part of the do-
i el 1as on yl'kastr?n explict et?qcl)reésmn ina TW pa:'main (mainly in the Arctic Ocean) is taken into account by an
icular cases, fike the exponential. ne general way 1o, jinq coupling between the physical ocean model and an
avoid the bias is to randomly sample the forecast distri-

bution. In the EnKF, this sampling is realized by using ice module including a thermodynamic modBlrange and

an ensemble during the forecast step. Nevertheless fo§imonsen 199§ and a dynamic model (using the elastic-
: i -plastic rheol Hunk Dukowicz 1999.
the other methods such as the Ensemble Optimal Interylscous plastic rheology ofiunke and Dukowicz1999

) ; Finally the ERA40 synoptic fields and climatological river
polatlo_n (EnOl) or the Extended Kalman Filter (EKF), runoffy(excluding nut%en{os) are used to force the %mdel.
samplings are compulsory. . . :

The ecosystem model is the NORWegian ECOlogical
4. We assume that the variables at different locations inModel system, NORWECOM,Skogen and Sgiland 998
space are identically distributed. In practice, this as-Aksnes et al. 1995. This model includes two classes
sumption can not be checked for localized events, leadof phytoplanktons (diatoms and flagellates), several classes
ing to a loss of relevance of anamorphosis functions.of nutrients, and includes oxygen, detritus, inorganic sus-
The spatial refinements of these functions is still anpended particulate matter (ISPM) and yellow substances
open issue and has to be investigated. classes. Nevertheless in our experiments ISPM and yellow
substances were not activated. The ecosystem state vector is
made up of 7 variables.

This configuration is illustrated in Fi@ by a snapshot of
surface chlorophyll: on 22 October 1997.

3. Without Monte-Carlo sampling the introduction of non-
linear functions in order to realize the linear analysis
estimation in another space can lead to an assimilatio
bias as follows.

Ely, 191 # v, L(EIX]) ©)

3 Description of the experimental framework
3.1 The coupled ocean ecosystem model

The experiments were performed in a North Atlantic and3.2 Data assimilation experiments

Arctic configuration of the HYCOM-NORWECOM coupled

model. We describe briefly this configuration, which corre- We focus on data assimilation in the ecosystem model. The

sponds to the coarse resolution onélemsen and Samuelsen multivariate assimilation of both physical and biological

(2009. states is a challenging work and remains an open issue. The
The domain of the model covers the North Atlantic and state vector corresponds to the ecosystem state vector only,

the Arctic oceans from 305. The grid was created using namely seven 3-D variables. Due to the lack of feedback in

www.ocean-sci.net/5/495/2009/ Ocean Sci., 5, &44%-2009
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Fig. 2. Arctic and North Atlantic configuration: surface

chlorophylla concentration (mg/ﬁ) on 22 October 1997.
Fig. 3. Surface chlorophyll observations: network of available ob-
servations on 31 December 1997.

the coupling from the ecosystem model to the physical one,

the assimilation does not correct the ocean physical state. S
Our aim is to compare the performances of the extende®f Phytoplankton starts to decrease. Then data assimilation is

EnKF with Gaussian anamorphosis to those of a “classicarincluded as from 24 September 1997. At this date the spring
EnKF. In that way twin experiments have been realized: th bloom is over and the global concentration of phytoplankton

true state and the observations are issued from a simulatiol§ '0W @nd decreases. Assimilation cycles are then performed
of the coupled model. The benefits of such a framework isPVer 0neé year with afrequency of one analysis step per week.

the knowledge of all the components of the solution which  The synthetic observations are the surface chlorophyll-
leads us to check the impact of the assimilation, in space agPtained by a spatial sampling of the noised true state§q.
well as in time, over all the variables of the model. of every third grid index. Furthermore the observations un-
Two assimilation systems have been implemented in the€r ice or too close to coasts (the depth of the water column
same configuration described bellow. The first one calledMust be greater than 300m) are not assimilated in order to
ECO corresponds to the direct application of the EnKF. Atake_ |r_1to accgunt sever.al constraints of t_he aSS|m|Iat|9n of
post-processing step is added to remove negative values Aealistic satellite data. Finally the qbseryathns present m_the
well as too important values: negative values are increased t§°Uthern boundary area (last 15 grid points in the y-direction)
zero while unlikely high values are replaced by an arbitrary@'€ not §135|mllated_elther, nor are the_observatl_ons presentin
upper bound (this value corresponds to the biological maxthe Arctic ocean (flrst_ 50 grid points in the y?dlregtmn). It
imum bound introduced in the construction of the anamor-/€2ds to a time evolutive network of observations illustrated
phosis functions, cf. Tabl#). The second one called ANA N Fig. 3 0on 31 December 1997.
corresponds to the application of the EnKF with Gaussian The observations are defined as follows
anamorphosis. No post-processing step is included, as the
method does not require any. Yo =HpX, xe
The temporal linking of the experiments is as follows.
Started from an already spun-up simulation at the date of 10Vith Z, ~ N (0,0 =0.3). It means that we construct the ob-
July 1997, the true state is generated by running the mode$ervations by adding to the true surface chlorophylivhich
without perturbation, while the ensemble is generated by runis assumed to have a lognormal distribution, an observation
ning the same model with perturbations (more details abougrror with a spatial average around 30%, which corresponds
the generation of the ensemble come below). This simulatiorio the "usual” error of real satellite data. However, the ob-
is issued from the work dfiansen and Samuels2009 and ~ servation error may locally reach high values (around 75%)
corresponds to the results of a spin-up started in 1958. At thigs noted for the case of real daﬁé. is a bias reduction term
date the spring bloom is at a late stage and the concentratiofobservation error).

(Zn—0?/2) 8)
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Table 1. Anamorphosis functions: maximal biological bounds.

Variables NIT PHO SIL DET SIS FLA DIA CHLA

mgm—3 1000 210 4000 100 200 150 150 30

The strategy for estimating the observation eedin the strategy may appear simplistic, nevertheless the multivariate
EnKF changes with the assimilating systems. In the ECObiophysical assimilation is still an open issue.
system, the observation error at each observation pgoint  The random perturbations are generated by a spectral
is assumed to have a Gaussian distribution with a mean ofnethod Evensen2003 in which the residual error is sim-
zero and a standard deviation of 30% of the value of the obylated using a spatial decorrelation radius of 250km. The
servation:e”(p) ~N'(0,0 =0.3xy, (Pg)- It prevents from  decorrelation time-scale is of five days. The standard devia-
negative perturbed observationg, {-¢,) that are normally  tions of the fields perturbed are: 0.03 N'ffor the eastward
truncated to zero, leading to less frequent unrealistic negand northward drag coefficient/2.5ms™® for the wind
ative values in the analysis ensemble. Even if it may artifi-speed,/0.005W n12 for the radiative fluxes and®Xelsius
cially increase the uncertainties of the observations with highfor the air temperature. These values correspond to the ones
value, this approach leads to a significant improvement of thq,se in the TOPAZ operational forecast and monitoring sys-
performances of the EnKF comparing to a observation errotem,.
built on an average value of the observations (not shown). Finally both systems use localization as suggested by
In the ANA system, the observation error in the transformedEvensedzooa_ The radius is constant and equal to 500 km
space has a Gaussian _d|sotr|but|on with a mean of zero and & g cell-grids in the two horizontal directions) therefore at
standard deviation of.8: ¢ ”_N (0,0 =0.3). The anamor-  3¢h point we assimilate between 2 and 10 observations de-
phosis functions being designed to generate transformegending on the area. The aim of this work being the com-
variables with a normal distribution, the observation error in parison of the intrinsic behavior of the two assimilation sys-
the transformed space is supposed to be around 30% of thg ys e have not introduced advanced operational processes
transformed observation. as the decrease of the radius close to the coast for exam-

Atan observation point{ relates linearly the chlorophyll- e in order to have a better understanding of the benefits
a concentration CHLA to the model diatoms and flagellates ¢ anamorphosis functions.

concentrations (DIA and FLA) by Eq9).
DIA +FLA 3.3 Construction of the monovariate anamorphosis

CHLA = 11 ©) functions

The initial ensemble as from 24 September 1997 is the same ) )

for both systems (ECO and ANA). Itis made up of 100 mem- \We assume that each variable and the chlorophyt-dif-
bers obtained by running the model from 10 July 1997 with fergnt locations in space are identically distributed in a time
perturbations of the atmospheric fields in the physical modeP€riod of three months centered on the datum of the analy-
only (as done iNatvik and Evenser20033. The perturba- SIS Step. In that way we obtain time evo!vmg qnamorphoss
tions induced in the physics then cascade in the ecosystefyinctions. The choice of three months is motivated by the
component of the coupled model. As the state vector is maddme scale of bloom phenomena which is about 4 months.
of the biological component only, the assimilation cannot Such a moving window allows for a representation of the
correct the errors induced by the perturbations in the physdifferences of distribution at the beginning and the end of the
ical component of the coupled model. Nevertheless the conbPloom in the construction of the anamorphosis functions.
text of twin experiments in a coarse resolution model leads The experimental anamorphosis functions are computed
to a low bias in the physical component, the main structurefrom weekly output from a four year integration of the
being similar in the ensemble and in the reference simulamodel. The anamorphosis function is piecewise linear, using
tion. It allows for us to focus only on the improvement of linear interpolation of the experimental anamorphosis func-
the ecosystem component of the coupled system. For th&on. The middle of steps are used to interpolate the empirical
future realistic framework, a first step will consist to correct anamorphosis functions, with the exception of the last right
the errors in the physical component by assimilating physicaistep for which the maximal value of the data set is used. The
data, as already done in the TOPAZ operational forecast anthils of the anamorphosis are defined as follows:

monitoring systemBertino and Liseete2008, and then the

assimilation of chlorophylk: satellite data will be done in the — Biological bounds: the minimum values are equal to
ecosystem component of the coupled model. Direct pertur-  zero (constraint of positiveness) and the maximum val-
bations of the ecosystem component can also be added. This ues are unlikely high values summarized in Table
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— Gaussian bounds: the minimum values are equaldo  part of the North Atlantic (mainly off Spain) in the ensemble
(value with a probability around £ 1071%). We do  which is earlier than the blooms present in the data set used
not define maximum values, the right tails extending to- for building the anamorphosis functions. So it means that

wards infinity. we reach the problem of the bias of anamorphosis functions
based on moving windows. A way to deal with this problem
Remark would be to include more extreme events in the data set used

for the construction of the anamorphosis functions.
In case of model bias (which would occur with assimila-

tion of real data), the model-based anamorphosis func-
tions may be impaired by the bias, especially when us-4 Data assimilation results
ing a short moving window. For example, the main
bloom could be modeled too early or too late by a cou-4.1 Observation error
ple of weeks, which would make high concentrations of
plankton too likely or too unlikely at different stages of Atfirstwe are interested in the evolution with time of the spa-
the bloom. Thus the moving time window should be tial averages of the true observation error and its estimate by
shorter than the bloom, but not too short by comparisonthe filter in both systems (Fi@). For the case of the EnKF
to usual ecosystem model delays. We consider threevith Gaussian anamorphosis (ANA configuration), the spa-
months as a reasonable compromise. tial average is computed in the transformed space, while this
value is computed in the physical space for the true observa-
The interpolated anamorphosis functions (step 2) oftion error and the plain EnKF (ECO configuration).
chlorophylla, diatoms and flagellates (phytoplankton) and  First we note that the curve of the spatial average of the
silicate (nutrient) are shown in Fig.during three periods of true observation error presents large deviations around the
the year: in winter (31 December 1997) when the primaryspecified value (30%). We note also the presence of more
production is low, during the spring bloom (14 May 1998) important errors in the observation at the beginning of the
and in fall (3 September 1998) when the concentration ofspring bloom in March—April. These variations of the ob-
phytoplankton decreases slowly. servation error introduce difficulties for its estimation by the
We note that the shape of the anamorphosis functions ofilter. The specification of relevant estimate of the observa-
the chlorophylla and the two phytoplanktons are quite simi- tion error is an important problem reached when dealing with
lar (see in Fig4). The anamorphosis presents a curvature inreal observations.
the interval[—1,1] of the Gaussian space, affecting around For the case of the ECO configuration, the evolution of
65% of the values (the transformed variables have a normathe spatial average of the observation error estimate is al-
distribution A/ (0,1)). Had the distribution been a truncated- most constant around 30%, according to the observation er-
Gaussian, the anamorphosis would have been a straight linegr variance specified in the filter. This value corresponds to
intersecting the abscissa. Furthermore the impact of the seahe average value of the true observation error. However, the
son appears mainly on the localization around zero of thepresence of variations in the true observation error leads to
strong non-linearity of the functions, and on the maximum a succession of under- and overestimate of the observation
value present in the biological data set. Finally the anamor-error in the analysis steps.
phosis functions of the silicate variable present many nonlin- Finally we note a continuous overestimation of the ob-
earities all along the shape of the functions, and particularlyservation error in the ANA configuration, exception to few
near the high values of the biological data set. It is also theanalysis steps during the spring bloom. This is explained
case for the other nutrient variables (not shown). by the chlorophylla anamorphosis function not being ex-
The results of the application of anamorphosis functionsactly an exponential function. It leads to persistent weaker
on the distribution of the diatoms and the silicates are showrtorrections in the Gaussian space than the ones that could
in Fig. 5 during the same three periods of the year previouslyhave been obtained with a more relevant estimate and weaker
shown. In this present study, we focus on diatoms which arghan in the ECO configuration. Furthermore, we note sig-
linked to the chlorophylk (observation) by a linear relation nificant variations with time around 35% of the observation
and on the silicates which limit the rate of the production of error estimate, which seem to follow the low frequency oscil-
diatoms but not the production of flagellates. lations of the true observation error. We have no explanation
First we note that the time evolving anamorphosis func-for these similar trends and this result may not be observed
tions provide more Gaussian distributed variables as exin future experiments. However, transformed observations
pected. This is globally true for the other variables of the with a normal distribution would have led to an almost con-
ecosystem model (not shown). Nevertheless the histograrstant estimate of the observation error around 30% in average
of the transformed diatoms during the spring bloom allows (rather 35% in the present experiments). It means that the
for the appearance of the superimposition of two Gaussiarchlorophyll« anamorphosis function cannot produce trans-
functions. It can be explained by the bloom in the easternformed variable with a normal distribution as expected. This
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Fig. 6. Observation error: one year evolution of the spatial averageéz L
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bloom. The RMS error and the standard deviation increase
should improve when including observations in the data seffom March to June. During that period, the analysis steps

used to build the anamorphosis functions. are efficient and lead to a significant decrease of the RMS er-
ror and standard deviations of the solutions. Furthermore, we
4.2 Overall error evolution note that the RMS error in the ANA experiment is slightly

lower than in the ECO configuration. In the second part
We are interested in the evolution in time of the true Rootof the bloom (June—August), the RMS error and STD start
Mean Square error (RMS) and the ensemble standard deviao decrease. The analysis steps are less efficient and may
tions (STD) of the solution of the two systems. The expres-damage the solution in the ANA configuration, leading to a

sion at timey, of these two quantities is as follows: slightly lower RMS error in the ECO experiment. This is ex-
plained by the presence of observations out of the range of
RMS(1,) = \/% Y keq X (12, K) —X(1,. k))? the model data set used to build the anamorphosis functions.

(10)  Itmay lead to unlikely high values for the transformed obser-
_ /1 1 N m - 2 vation if the right tail of the anamorphosis function is not de-

STD() = \/N_—lmZkEQZ'"Zl(X (1, K) =Xt K)) fined carefully, leading to locally biased analysis. The addi-
with © the domain of computation,S#the number of grid  tion of more extreme events and observations in the anamor-
points of the domain used for the computation of the RMS Phosis function data set can efficiently remedy for this model
and STD,N the number of members! the true state, ankl ~ dias. Finally the third phase corresponds to the end of the
the mean of the ensemble. bloom. The RMS error and the standard deviation decrease

Figure7 represents the evolution of the RMS error and the Slowly to reach their initial values. Furthermore the lack of
standard deviations over one year for the surface chlorophyliobservations in shallow waters leads to some difficulties in
a (what we observe). In that casis the top layer of the ~ cOrrecting the solution in several areas (cf. S&c.
model. We note that both systems present the same evolu- Finally the truncation due to the post-processing step in the
tion of RMS error and standard deviations, even if slight dif- ECO experiment affects a very few number of state variables
ferences are observed during the period of the spring blooninot shown) thanks to the local specification of the observa-
(April-August). We note also that the standard deviation istion error as a percentage of the value of the observation: by
higher than the RMS error for both systems, expressing a€ducing the frequency of appearance of negative perturbed
over-estimation of the error by the filters. observations during the cold period comparing to an obser-

Furthermore we observe three phases in the evolution o¥ation error defined uniformly from an average error value,
the curves. The first one corresponds to the end of the bloon Prevents the appearance of negative values in the analysis
and the winter (October 1997-March 1998). During that €nsemble.
phase, the RMS error is low and the assimilation of obser-
vations does not significantly improve the solution, indeed
may damage it when the observation error locally reaches
high values. The second phase corresponds to the spring
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tigated to reduce the transfer of local bias from the model
to the anamorphosis function and to improve the local distri-
bution of the transformed variables. In the case of the ECO
configuration, the observation error defined by a percentage
of the value of the observation leads to a decrease (resp. an
increase) of the confidence in observations with high values
(resp. low values). It can be useful when the observation er-
ror increases the value of the observation comparing to the
true state, as noted at the poiit in July 2008 (Fig9). On

the other hand, it can induce an underestimation of the error
for observations lower than the true state or with low values,
leading to too strong corrections towards erroneous observa-
tions as noted at the poi in May 2008 (Fig.9).

N mg/m®
&

oo

4.4 Errors in the sub-surface
25% | In order to explore the multivariate aspect of the data as-
similation, we focus on the evolution of the RMS error and
the standard deviation, computed on only one grid point
(58.8° S, 38.7 E) in the area of the Gulf Stream, for the di-
atoms and the silicate. This point, call®d and localized

by a red cross on Fig, is in the 8th layer (waters between
30 m and 38 m) of the model, the deepest one locally before
) vanishing of the diatoms. As the concentrations of diatoms at
4.3 Local evolution of the ensemble this point can change quickly with time, it is a good indicator

of the front of structures.

We are interested in the evolution with time of the mean Once again we do not note significant differences between
and standard deviations of the ensembles and observationge two systems (not shown). The RMS error and the stan-
as well as the true state at different grid points localized indard deviations remain low: the RMS error reaches a max-
the vicinity of the Gulf Stream (Fig9). Our aim is to study  imum of 4 mgn? for the diatoms and 20 mghfor the sil-

the local effects of the linear analysis on the observed variicate. Furthermore, both assimilating systems overestimate
able for both systems in order to highlight assimilation biaseshe error.

that could have been hidden in the previous diagnostic due to
the spatial averaging. This area is characterized by strong.5 Regional distribution of the errors
dynamics in both components of the coupled model (strong
spring bloom in area of the Gulf Stream). The investigatedWe examine the spatial localization of the error on the sur-
points P, and P, are localized by red crosses on RgSince  face chlorophylla before, during and after the main bloom.
we are interested in the behavior of the analysis, the severdtigures 10, 11 and 12 represent the maps of the surface
diagnostics are computed in the Gaussian space for the ANA&hlorophylla component ok? —x’ on 31 December 1997,
configuration. 14 May 1998 and 3 September 1998. As stated previously,
First, we note that both assimilating systems are efficientthe observations present in the southern boundary area are
the mean of the ensemble is very close to the true state de?ot assimilated, due to this, important errors remain in this
spite the presence of observations with significant errorspart of the domain. The maps of RMS error focus only on
Nevertheless, some assimilation biases appear. For the catiee regions of interest (North Atlantic and Arctic regions).
of the ANA configuration, we note an increase of the stan- On 31 December, we note that the error is mainly local-
dard deviation of the ensemble at the beginning of January irzed in the south of the domain where the concentration of
both locations. At this time, few outliers with very low values chlorophyll« is highest. Slight differences appear in the dis-
appear in the forecast ensemble (not shown). These valudsibution of the errors. For the ANA configuration, the mean
being unlikely when considering the data set used to buildof the analyzed ensemble tends to be higher than the true
the anamorphosis function, this results in the presence of fevgtate while the error is better balanced in the ECO configura-
outliers with high negative values in the transformed fore-tion. The observation error being overestimated in the ANA
cast ensemble, hence an artificial increase of the transformecbnfiguration, it leads to weaker corrections by the filter in
forecast error estimate in the filter. This leads to few correc-area of high chlorophyli production.
tions towards erroneous transformed observations. Spatial On 14 May, during the spring bloom, we note an increase
refinements of the anamorphosis function have to be invesef the error comparing to winter. The mean solution of the

.
60°W o°

Fig. 8. chlorophylle« concentration (mg/ﬁ): the top layer on 23
April 1998. The pointsPy, P and P3 are localized by a red cross.
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Fig. 9. Surface chlorophylk:: one year evolution of the mean and the standard deviations of the ensembles, the observation and the true state
at the pointsP; and P,. The variables are represented in the Gaussian space for the ANA configuration.

ensemble is slightly better in the ANA configuration. Nev- spheric forcings (likely more resuspension in average for ex-
ertheless, the overestimation of the observation error in thample).

transformed space does not allow the EnKF to efficiently re- After the spring bloom, on 3 September, we observe er-
duce the error issued from a too strong spring bloom in therors in a chlorophylle structure localized south of Green-
forecast ensemble. In the ECO configuration, the bloom idand for both configurations. However, the solutions present
too weak in the domain from the North American coast to significant differences in this area: the concentration of
Europa. This negative error is an inherited consequence ofhlorophylla is underestimated in the ECO configuration
the underestimation of the observation error at the beginningvhile this one is overestimated in the ANA configuration.
of the spring bloom (April-May) that generates important These are apparently inherited from the previous biases ob-
local analysis step in direction of erroneous low observation.served during the spring bloom. We note also significant er-
Furthermore, the lack of observations on the European Northiors in the North Sea and the Barents Sea where no observa-
West Shelf leads to important persistent errors in the Northtions are present.

Sea (between UK and Norway) for both configurations. This

bias is a nonlinear response to the perturbations of atmo-
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True state x* ECO: x* — x!

Fig. 10.%¢ —x': surface chlorophylk: component (mg//) on 31 December 1997. Errors in the equatorial Atlantic Ocean are not plotted.

ANA: x* — x! True state x* ECO: x* — x*

25%

o

Fig. 11.x% —x’: surface chlorophylk component (mg/ﬁ]) on 14 May 1998. Errors in the equatorial Atlantic Ocean are not plotted.

5 Conclusions of simulations. It is an easy and elegant solution to perform

Kalman filter estimation in an extended framework of vari-
A twin experiment has been conducted with a realistic cou-ables with non-Gaussian distributions. We thus encourage
pled physical-ecosystem model of the North Atlantic and users of data assimilation to consider the pdfs of the state
Arctic Oceans, assimilating simulated surface chlorophyll- variables and observations before setting up the data assimi-
with an EnKF, with and without Gaussian anamorphosis.  lation experiment.

The study reveals that applying the plain EnKF with a The Gaussian anamorphosis is by no means reserved to
simple post-processing of negative values or the EnKF withthe EnKF but is naturally applied there because of Monte-
Gaussian anamorphosis leads to similar results. Both syscarlo formalism. It could be applied in a non-Monte-Carlo
tems present low RMS errors as well as an overestimation ofmethod provided that a random sampling is performed before
the error from the ensemble statistics. However, when conthe analysis step.
sidering that the observation error was clearly overestimated The assimilation of real satellite data with the EnKF with
in the EnKF with Gaussian anamorphosis (between 5 and 1@Gaussian anamorphosis has now to be investigated. It raises
percentage points), the anamorphosis seems to have an aghe challenging problem of model bias, well known in the
vantage in efficiency. The advantage should become clearatata assimilation community, and particularly crucial for
when using more accurate observations, would they becomgéhe use of anamorphosis functions built on the empirical
available in the future. marginal distributions of model variables. Furthermore two

The introduction of Gaussian anamorphosis in the EnKFlimits of the algorithm have been reached during these ex-
does not present any drawbacks. Furthermore, its computgeriments: the first one concerns the assumption on an iden-
tional overload is almost null comparing to the cost of the tical spatial distribution of the variables in the construction of
Forecast step of the EnKF that requires to run a large numbethe anamorphosis functions and the second one concerns the
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ANA: X% — xt True state x*

25%

Fig. 12.%¢ —x!: surface chlorophylt: component (mg//f) on 3 September 1998. Errors in the equatorial Atlantic Ocean are not plotted.

monovariate aspect of the algorithm. Works on the refine- — Define the empirical anamorphosis
ments in space of the anamorphosis functions or on multi-

variate transformations would allow a practical improvement N
of the algorithm. The statistical classification tools appear to v(y)= Zzil[yl._l,y,.[(y) (A5)
be an interesting approach for the local refinement in space i=1

of the anamorphosis functions.

The empirical anamorphosis functignbeing non-bijective,
one has to interpolate it. This is the aim of the last two steps
of the algorithm (the interpolation of the empirical anamor-
phosis function and the definition of the tails).

Appendix A

Construction of the empirical anamorphosis

function based on the empirical marginal distribution AcknowledgementsThe authors wish to thank the two referees
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GivenZ(x) the spatially distributed variable of interest. We g study has been funded by the eVITA-EnKF project from
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Y such that authors are thankful to C. Hansen and K. A. Lisaeter for providing
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Z(x) =y (Y (x)) (A1) janguage corrections.

with Y (x) following a predefined marginal distribution. Here
Y (x) is assumed to have a normal distributidi(0,1). The
practical implementation of the anamorphosis follows:
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