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Abstract. The first turbulence profiler observations beneath
land fast sea ice which is directly adjacent to an Antarctic ice
shelf are described. The stratification in the 325 m deep water
column consisted of a layer of supercooled water in the up-
per 40 m lying above a quasi-linearly stratified water column
with a sharp step in density at mid-depth. Turbulent energy
dissipation rates were on average 3×10−8 m2 s−3 with peak
bin-averaged values reaching 4×10−7 m2 s−3. The local dis-
sipation rate per unit area was estimated to be 10 m Wm−2

on average with a peak of 50 m Wm−2. These values are
consistent with a moderate baroclinic response to the tides.
The small-scale turbulent energetics lie on the boundary be-
tween isotropy and buoyancy-affected. This will likely in-
fluence the formation and aggregation of frazil ice crystals
within the supercooled layer. The data suggest that the large
crystals observed in McMurdo Sound will transition from
initial growth at scales smaller than the Kolmogorov length-
scale to sizes substantially (1–2 orders of magnitude) greater
than the Kolmogorov scale. An estimate of the experiment-
averaged vertical diffusivity of massKρ yields a coefficient
of around 2×10−4 m2s−1 although this increased by a fac-
tor of 2 near the surface. Combining this estimate ofKρ

with available observations of average and maximum cur-
rents suggests the layer of supercooled water can persist for
a distance of∼250 km from the front of the McMurdo Ice
Shelf.

Correspondence to:C. L. Stevens
(c.stevens@niwa.cri.nz)

1 Introduction

Ice shelf cavities contain large reservoirs of seawater below
the surface freezing point, giving rise to some unique thermo-
haline properties (Jacobs et al., 1996; Williams et al., 2001).
Rising plumes containing buoyant glacial meltwater are con-
strained by the ice shelf basal plane, but upon exiting the
cavity can be significantly supercooled and laden with ice
crystals (e.g. Payne et al., 2007; Holland et al., 2007). The
fate and transformation of these waters influences the devel-
opment of regional sea ice which in turn has a significant
impact on climate (Hellmer, 2004). This relationship, com-
bined with greater than predicted losses in Arctic sea ice in
recent years (Stroeve et al., 2007), suggests there is some
urgency in understanding the processes controlling transport
and mixing in high southern latitudes and their influence on
the sea ice-ocean system.

McMurdo Sound’s relative accessibility makes it a useful
natural laboratory for examining such processes. However,
more than this, it’s proximity to the McMurdo and Ross Ice
Shelves (Fig. 1) means it has intrinsic importance as a con-
duit for shelf-affected seawater. Recent analyses have quan-
tified the large scale flows and internal wave processes in
McMurdo Sound region (Albrecht et al., 2006; Robinson
et al., 2009). At smaller scales, Jacobs et al. (1981) exam-
ined glacier tongue-affected water 15 km to the north of the
present site and resolved diffusive-convective layering over
horizontal scales of 5 km or more. Some of the first under-ice
turbulence observations were recorded in McMurdo Sound
but from very inshore locations (Mitchell and Bye, 1985).
Very recently Muench et al. (2009) quantified turbulence on
the shelf slope 800 km to the north. To date there has been
little oceanographic work focusing on turbulence and mixing
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Fig. 1. Map showing(a) the McMurdo Sound field site in the context of the Ross Sea and the Ross Ice Shelf,(b) Ross Island and environs
including the Ross Ice Shelf, McMurdo Ice Shelf, Ross Sea and McMurdo Sound – the detailed sampling location is marked CA and
expanded in(c). This shows the sampling location (CA), locations of Robinson et al. (2009) data (R03) and Scott Base (SB).

in the fast ice-shelf interface region. As well as directly in-
fluencing biological production (Arrigo et al., 2008), these
small-scale processes influence ice formation and growth un-
der sea ice and ice shelves (McPhee and Morison, 2001;
Leonard et al., 2006; Stevens et al., 2006; McPhee, 2008;
McGuiness et al., 2009). One important pathway for this in-
fluence is the effect on appearance and growth of frazil ice
crystals both in their role as the initial building block of sea
ice and as further contributors once ice thickens (Leonard et
al., 2006). The objectives of the present work are to (i) docu-
ment the observed turbulent properties in this under-sampled
location, (ii) quantify the likely influence of this turbulence
on the transport of ice shelf-influenced water and frazil ice
crystals and (iii) compare the relative influences of the ice
cover and the local topography on the turbulence.

2 Scales of turbulence

Turbulent mixing is characterized using the rate of dissipa-
tion of turbulent energy (ε, m2 s−3). This dissipation rate
is part of a balance whereby the generation of turbulent ki-
netic energy is partitioned into changes in velocity structure,
potential energy and dissipation of turbulent kinetic energy
(Tennekes and Lumley, 1972). Viewed from the perspective
of length scale, instability of some form initiates an energy
cascade that creates eddies at an “energy-bearing” vertical
scale,Le. There are both upper and lower limits on the length
scales in this cascade. At the largest scale, the earth’s rota-
tion limits growth of the boundary-layer to a scale related to
a planetary lengthscale∼0.03u∗/f whereu∗ is the friction
velocity andf is the Coriolis parameter (McPhee, 2008).
However, close to topography there is the potential that local

boundary effects dominate over this streering. Water column
stratification provides an upper limit on eddy size so that as
the energy bearing scale is created it is limited in initial scale
by buoyancy. This limit is given by the Ozmidov length scale

LOz =

( ε

N3

)1/2

whereN is the buoyancy frequency (the square of which
is given byN2

=(g/ρ0)∂ρ/∂z; gravitational accelerationg,
reference densityρ0, and∂ρ/∂z is the vertical derivative of
density). The energy is transformed from this large scale to
smaller and smaller scales until it reaches a scale at which its
variability is dissipated by viscosity. The Kolmogorov scales
define these smallest scales of turbulent variability and pro-
vide the lower limiting length scale

LK =

(
ν3

ε

)1/4

whereν is the kinematic viscosity.
Non-dimensional parameters based on the scalesLK , Le,

andLOz enable the categorisation of instantaneous samples
to be placed in a mechanical context by effectively locating
the observed turbulence between these scales in a mechanis-
tic framework. The turbulent Froude number is described
as the ratio (to the power 2/3) of the stratification limit to
energy-bearing scale (Stacey et al., 1999; Imberger and Ivey,
1991);

Frt =

(
LOz

Le

)2/3

.

If buoyancy-limited eddies are smaller than the energy-
bearing scale (Fr t<1) then eddies are squashed to the point
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that growth is transformed into internal waves. Similarly, the
turbulent Reynolds number

Ret =

(
Le

LK

)4/3

compares the energy-bearing scale with the minimum turbu-
lent length scale. This parameter effectively quantifies the
scales turbulence must traverse in the cascade between gen-
eration and dissipation. A similar analysis for scalar prop-
erties, for example the dissipation rate of thermal variance,
can be developed (Tennekes and Lumley, 1972) but temper-
ature variance is not readily resolvable in the present quasi-
isothermal conditions (see Sect. 2.3).

The length scalesLK , Le, andLOz can be resolved using
either profiles through the water column (e.g. Robertson et
al., 1995; Fer and Widell, 2007; Rainville and Winsor, 2008)
or, as has been more typical in sub-sea ice turbulence stud-
ies, through the use of timeseries of velocity fluctuations at
fixed depths (Mitchell and Bye, 1985; McPhee, 1992, 2004).
A number of studies have sought to place turbulence obser-
vations in theFr t−Ret domain (Imberger and Ivey, 1991;
Stacey et al., 1999; Keeler et al., 2005) but none so far in a
polar context.

Here we relate the turbulence scaling to sea ice processes
associated with supercooled sea water. Significant volumes
of supercooled water are typically observed in the outflow
regions of ice shelves. Water formed through ice-ocean in-
teraction at depth becomes supercooled as it rises through
the water column on emergence from the sub-ice shelf cav-
ity. Transport and dilution of this water along the underside
of sea ice cover represents a significant ocean heat sink, and
hence is a factor in the growth of land fast sea ice adja-
cent to ice shelves (Leonard et al., 2006). Furthermore, if
this supercooled water encounters sufficient nucleation op-
portunities, suspended frazil ice forms within the water col-
umn (Leonard et al., 2006). Turbulence will then influence
the growth and aggregation of these suspended ice crystals
(McGuiness et al., 2009) which can become integrated into
the sea ice (Leonard et al., 2006). In the following we present
a description of the observational techniques and analysis
methodology and then the essential results. The Discussion
then considers the questions posed above, both in the light
of the data presented here, and in the context of studies in
related systems.

3 Location and methods

3.1 Southern McMurdo Sound

Observations of oceanic turbulence were recorded beneath a
sea ice camp located on the fast ice in the newly-gazetted
Haskell Strait, southern McMurdo Sound (77 52.257′ S; 166
44.041′ E). The primary measurements were resolved using

Fig. 2. Measured tidal elevation from Scott Base, the present sam-
pling extended over the shaded period.

a shear profiler through a hole in the∼2 m thick fast mul-
tiyear ice in 325 m of water around 2 km from the southern
tip of Hut Point Peninsula (Fig. 1). The field site was more
than 50 km from extensive open water and so was not directly
influenced by wind, nor were there any nearby grounded ice-
bergs acting as large sources of atypical local turbulence. The
mainly diurnal spring tidal elevation amplitudes are of the or-
der of 1.2 m (Goring and Pyne, 2003) and our measurements
commenced just after spring tide and extended through to
neap tide (Fig. 2). Robinson et al. (2009) measured flows in
the region (77 52.77′ S; 166 50.04′ E, 2.6 km to East, Fig. 1c)
that, when vertically-averaged, peaked at around 0.25 m s−1.
However, they also observed that maximum flows occurred
during the neap of the tidal cycle, an explanation for which
might be that, with weaker vertical mixing comes stronger
buoyancy-driven flows (Stacey et al., 2001).

3.2 Microstructure profiling

Shear profiles were resolved with a Rockland VMP500 mi-
crostructure loose-tethered free-fall profiler with dual shear
sensors (Macoun and Lueck, 2004; Lueck, 2005). The pro-
filer did not fall all the way to the bed because of cable length
restrictions, and so stopped as much as 50 m above the bed,
depending on flow conditions. Hence, the benthic boundary-
layer was not resolved in these data. The profiler was typ-
ically removed from the water in between profiles to avoid
platelet growth (a common issue in the McMurdo region, see
Leonard et al., 2006) as well as minimizing interference with
and by seals that would use the hole every 40 or so minutes.
This removal then required the profiler be left in the hole for
several minutes prior to each profile to thermally equilibrate
(Morison et al., 1994).

Energy dissipation rates were resolved from the dual shear
probe profiler using standard techniques (Prandke, 2005).
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Fig. 3. Example shear spectrum including accelerometer spec-
trum (grey) and model dissipation spectrum (dotted; dissipation rate
shown). The vertical dashed line is the cutoff where the vibration
started to influence the spectrum.

Analysis first corrected for profiler vibration, identified the
reliable section of the spectrum by comparing with the vi-
bration spectrum derived from accelerometers, and then iso-
lated a dissipation spectrum (Fig. 3). The tail beyond the
noise limit was substituted with the tail of the Nasmyth
model spectrum. The dissipation rate was then calculated
with the integralε=7.5ν

∫
k

S dk (e.g. Roget et al., 2006;

Prandke, 2005) wherek is the wave number andS is the
shear spectrum. The noise floor in terms ofε was around
3×10−10 m2 s−3. This was, however, not a fixed quantity as
it depended on a number of variables like cable influence that
were not exactly the same in every profile. Forty six profiles
were recorded with a total profiled distance of 11 km. The
data were separated into 5 m bins that were overlapped by
50% and so provided 4370 estimates of dissipation above the
noise floor.

The highly variable density structure makes it difficult
to properly determine the vertical structure of temporally-
averaged profiled properties. We referenced individual pro-
files to a new depth coordinate by cross-referencing with a
time-averaged density profile. This density profile was an
average derived from data recorded using Seabird (SBE) con-
ductivity and temperature sensors mounted on the profiler
which enabled calculation of temperature and salinity. At the
temperatures encountered in the region (i.e.−1.91±0.03◦C),
the density field was almost totally dominated by salinity.
Temperature, therefore, plays a role only (i) as a nearly pas-
sive tracer and (ii) as an indicator of the presence of super-
cooled fluid. The buoyancy frequencyN was calculated us-
ing the sorted, equilibrium density profile.

Fig. 4. Example of a single profile showing (left) sorted densityσT

(black), buoyancy frequency squared (blue), and temperature (red)
and the in situ freezing temperature of water (red dash-dot). The
right panel shows the centred lengthscaleLc (black) overlying the
Thorpe scale segments (rectangular boxes). The dissipation rateε

estimates are shown as green bars.

The temperature and salinity profiles also made it possi-
ble to derive a vertical displacement scale that is a proxy
for Le (Dillon, 1982). Here we use the centred lengthscale,
Lc, by associating eddy scales with their centre rather than
their edge (Imberger and Boashash, 1986).Lc is essentially
a version of the Thorpe scale. Here it is derived by (i) first
applying a low pass filter/threshold on the density profile to
account for sensor spatial resolution (Galbraith and Kelley,
1996), (ii) sorting to obtain a monotonic density profile, (iii)
placing the scale at the mid-point of the resorting lengthscale,
and finally (iv) bin-averaging the results. The sensor limita-
tions mean that there will be far fewer reliable estimates of
Lc than ofε. This processing (see example in Fig. 4) pro-
vided all the elements required for the lengthscale and phase-
space analysis; i.e.,Le, LOz, LK , Fr t andRet . It is possible
to mount fast fp07 thermistors on the VMP500 in order to di-
rectly estimateχθ , the rate of dissipation of thermal variance
which is the thermal equivalent toε. However, our experi-
ence with using fp07s mounted on SCAMP thermal gradient
profilers in these quasi-isothermal conditions suggests it is
very difficult to resolve thermal gradient spectra above the
noise floor even with the SCAMP’s direct analogue deriva-
tive. Furthermore, the thermistors are expensive but less ro-
bust than a shear sensor and are quickly damaged by the pres-
ence of frazil crystals in the water column. Consequently, it
was not possible to directly measureχθ . Instead vertical dif-
fusivity of massKρ was resolved through use of two bulk
approaches. The commonly-used Osborn (1980) model

KρO = 0
〈ε〉〈
N2
〉

typically assumes0=0.2 and the ensemble averages〈〉 were
found from the depth-corrected bin-average.0 is not a
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Fig. 5. Overview results from VMP showing (top) shear, (middle)
upper water column temperature and (bottom) density in the form of
σT . The four data days are separated by a blank profile column and
bad profiles have been discarded so “profile number” is arbitrary
and the actual profile number is in the text on the top of the plot –
along with local time (NZDT).

universal constant however and should be considered as an
upper bound (e.g. Fer and Widell, 2007). Shih et al. (2005)
use numerical simulations to propose an alternative diffusiv-
ity formulation for the case whereε/(νN2)>100, denoted
here as

KρS = 2ν

(
〈ε〉

ν
〈
N2
〉)1/2

.

In the following we calculate and compare both.

4 Results

The majority of the sampling period captured phases where
the isopycnals at the sampling location were moving deeper
into the water column with time (Fig. 5). The downward
propagation speed of the isopycnals was around 3.5 mm s−1.
In addition there were sharp rises in density structure rem-
iniscent of internal bores. This is most apparent in profile
8, and to a lesser extent profile 21, where in the time be-
tween profiles the isopycnals rose by 50–100 m. The “fronts”

Fig. 6. Waterfall plot showing offset density profiles (starting with
zero offset in the left-most profile) from Friday the 10 October, 2008
where each profile is colour coded with dissipation rate.

of the apparent bores were variable in their dissipation rate
signature in that the front around profile 8 had only a weak
increase inε whereas the front around profile 21 sustained
some of the highestε of the observation period. This is best
illustrated with dissipation rate-coded offset density profiles
(Fig. 6) which show bands of high and low dissipation rate
that tended to follow the downward pattern. The localε

peaks were clearly located at the top of the main deepen-
ing pycnocline although by profile 21 the high dissipation
region covers over 70 m. Potentially these high dissipation
events relates to instability in the high shear as some form
of bore or flow-topography interaction develops. There is a
shallower pycnocline at around 80–100 m but this does not
move as much vertically nor does it sustain such highε.

There was also a generally elevated dissipation rate in the
uppermost measurements 8–13 m beneath the ice with a clear
increasing trend inε moving closer to the ice from a depth of
about 30 m. Consideration of the temperature data expanded
in the middle panel of Fig. 5 shows distinct differences be-
tween the first two days and the second two days, with colder
water appearing around the start of sampling on day 3 (pro-
file 23). The colder water was actually centred between 15
and 30 m depth. Note that the weak influence of this tem-
perature effect was dominated by salinity and the water was
lighter. There is a hint that this effect increased on day 4.

There was a strong change in water column characteris-
tics at profile 31 where there seemed to be a strong jump
in density at around 150–200 m, while the rest of the den-
sity structure remained largely unchanged. Directly after this
time the water column variability seemed to rapidly dampen,
with the dissipation rate decreasing by an order of magnitude.
The only other systematic difference in dissipation rate oc-
curred during the last sampling day when measured dissipa-
tion rates were universally lower throughout time and depth.
Unfortunately, due most likely to frazil ice fouling, the scalar
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Table 1. Turbulence parameter statistics (a the upper limit imposed
by the dissipation measurement noise floor).

Mean Standard Maximum
deviation (bin mean)

Dissipation rate
ε (m2 s−3) 3.0×10−8 9.0×10−8 2.0×10−7

Vertical diffusivity
of massKρS (m2s−1) 2.0×10−4 5.0×10−4 1.0×10−2

LK (m) 0.003 0.001 0.008a

Lc (m) 8. 9. 60

LOz (m) 6.3 13. 700.

sensors were only working for a few casts on the last day.
However, these casts showed that the lower part of the wa-
ter column had relatively low density and that there was less
cast to cast variability. This last sampling day was also when
the tidal amplitude range was smallest (Fig. 2). Robinson et
al.’s (2009) velocity data, from nearby but a different season
(summer) and year (2003), show that vertically-averaged cur-
rents were not necessarily smaller on neap tide. However, in
the present microstructure data it appears that the dissipation
rates were substantially smaller during neap tide.

There were only subtle differences in the vertical dis-
tribution of properties in the bin-averaged profiles (Fig. 7)
but at the broadest level the stratification was separated al-
most at mid-depth into lower and upper regions with the
upper part of the water column sustainingN2

≈3×10−6

(rad sec)−2 whereas the lower portion was around half of this
(Fig. 7a). The experiment-average energy dissipation rate
ε (Fig. 7b) was 3×10−8 m2 s−3 with peak values reaching
4×10−7 m2 s−3. The same partitioning was seen with the
lower water column being around a factor of 3 more dissipa-
tive than the upper water column.

The under ice boundary layer was also apparent in the up-
permost 35 m of the time-averaged profiles where the aver-
aged dissipation rate rose with proximity to the underside
of the ice (Fig. 7b). Energy dissipation rates were elevated
in the shallowest reliable data bin (starting at 8 m depth –
6 m beneath the underside of the ice) reaching a maximum
of 2×10−7 m2 s−3. This layer of elevated dissipation rate
decreased from this level over the subsequent 15 m (8–28 m
depth, Fig. 7b).

There were several isolated events generating high dissi-
pation rates in a single isolated bin for a single profile. These
were typically at mid-depth (Fig. 7b) and located in the cen-
tre of the density structure where the large scale velocity
shear is typically concentrated and where there is likely the
greatest variability. Essentially, we sampled sufficiently of-

ten to capture one or two of the rare but highly energetic
events. There was no increase inε at the base of the pro-
files so it was likely that profiler did not penetrate the bottom
boundary layer.

The relatively small variability inN2 meant that the two
estimates ofKρ mirrored theε record quite closely (Fig. 7c).
The Shih et al. (2005) estimate is around a factor of 15
smaller than the Osborn estimate (Fig. 8) and following Fer
and Widell (2007) will be used here except where noted. Ad-
ditionally, it is instructive to note that there was an almost
order of magnitude difference inKρS introduced by consid-
ering instantaneous values ofε andN2, rather than ensemble
averages. The increase largely comes about because of the
locally small N2 generated by energetic events. The esti-
mated vertical diffusivity of massKρS had an average value
of 10−4 m2 s−1 (Fig. 7c) with values near the ice rising to
almost 10−3 m2 s−1.

Turbulence properties and scales are collated in Table 1.
Kolmogorov lengthscalesLK were in the range 1–8 mm,
with a small proportion of sample bins containing values that
fell on the noise floor. In these cases, at lower dissipation
rates one would expect theLK to be larger than 8 mm. With
respect to those scales that were measurable, the most com-
mon LK was around 2 mm. Contrary to this narrow range,
bothLOz andLc extended over three decades from 0.1 m in
size and up – with some values reaching 50 m or more. The
bias was substantially towards the conditionLc<LOz, the
implications of which will be considered in the next section.

5 Discussion

5.1 Turbulence quantities

Here we compare the observations with both profiler (Fer and
Widell, 2007; Robertson et al., 1995; Rainville and Winsor,
2008) and timeseries (Fer and Widell, 2007) observations
made beneath sea ice. As topography in the form of the 3 km
wide Hut Point Peninsular 1 km to the north of the sampling
appears to play a large role it is also worthwhile comparing
results with examples of shelf break (St. Laurent, 2008) and
strait flows (Wesson and Gregg, 1995).

Robertson et al. (1995) recorded microstructure in the
Weddell Sea at an ice camp well offshore beneath multiyear
ice. Their focus was mainly on mixing in the deep pycno-
cline. However, their observations also showed dissipation
rates of around 10−8 m2 s−3 in the upper ocean and their
general flow speeds were in the range of 0.10–0.25 m s−1.
This near-surface dissipation rate is around a factor of 4 less
than that observed here despite the background flows being
similar. The structure here sustained comparable, if slightly
lower,ε to that observed by Fer and Widell (2007) in an Arc-
tic fiord, again with similar flow speeds.

There are few direct comparisons, polar or otherwise, be-
tween profile and timeseries observations of turbulence. In a
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Fig. 7. Profiles of(a) average density anomaly and (orange) associated buoyancy frequency,(b) energy dissipation rateε (dark line shows
bin-averages, shaded region shows bin-average plus standard deviation), and(c) vertical diffusivity estimates where OsbornKρO (black)
and Shih et al. (2005)KρS , (red) are based on ensemble-averages.

polar context Fer and Widell (2007) found quite good com-
parison between the two methods and that, in some instances,
the profiled dissipation rates even exceeded the timeseries
rates. McPhee and Stanton (1996) made direct comparisons
of stationary and profiling microstructure measurements at
the edges of freezing leads, and at depths within range of the
measurements described here. They were able to estimate
heat flux from thermal variance measurements and observed
reasonably good agreement for eddy diffusivities. The good
agreement suggests there is a lower degree of variability at
longer periods (i.e. profile interval timescales) than in open
water surface layers. It is usual that timeseries observations
generate higher estimates of dissipation rate than profiled ob-
servations with the argument being that the poorer tempo-
ral resolution in the profiled data means that the trade-off in
seeking vertical structure reduces the ability to capture tem-
poral variability (Stevens and Smith, 2004).

Integrating the average dissipation rate for the present Mc-

Murdo data,
0∫

H

ρε dz, suggests dissipation to be 10 m Wm−2

although the maximum vertical average ofε suggests a max-
imum dissipation during these tides of around 50 times
greater but perhaps for an hour or less. This estimate of
vertically-integratedε is likely a lower bound as we did not
sample during the larger spring tides, nor did we sample the
benthic boundary layer. During these phases we expect maxi-
mum speeds to be twice those observed here (as suggested by
Robinson et al., 2009). Asε is proportional to speed-cubed
we would expect maximum dissipation rates to be almost a
factor of 10 larger.

When comparing the present results with microstructure
experiments in non-ice covered, but otherwise similar, situa-

tions (i.e., large strait flows), this level of dissipation rate is,
as one would expect, low compared to high energy locations
like the crest of the Gibraltar sill (Wesson and Gregg, 1994)
where average values were around two orders of magnitude
greater than here. The present results are more in line with
observations by St. Laurent (2008) in the South China Sea.

It is important to recognise that this level of tidal dissipa-
tion rate is not an open ocean value and that the present situa-
tion has two constraining features: (i) the presence of both an
ice shelf and sea ice, and (ii) the tide-topography interaction.
Sea ice will serve to remove the influence of wind but add the
effect of drag on the under-side of the ice. The present ob-
servations suggest also that locally dissipation appears to be
“small” in terms of that used by large scale modelling (e.g.
Zaron and Egbert, 2006). Furthermore, with regard to direct
measurements, by not profiling the bottom 10–20% of the
water column, it is possible that we underestimate the total
dissipation (St. Laurent, 2008).

In an instantaneous sense the rate of dissipation of energy
is only weakly related to the energy bearing scale as there
is typically a lag between production and dissipation to the
extent that related quantities are not captured in the same
profile. There is a stronger link between the observed en-
ergy bearing scale and the stratified limit to scale quantified
by theLOz scaling (Fig. 9). The self-consistency between
finescale scalar-derived (Lc) and microscale-derived (theε
in LOz) values is strong support for confidence in the data.

Consideration of the locus of the results in the turbulent
phase space (Fig. 10) suggests that, despite the low dis-
sipation rates, the flow is largely isotropic (Imberger and
Ivey, 1991), but occasionally limited by the stratification (cf.
Stacey et al., 1999). The small variation inFr t indicates that
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Fig. 8. Distribution of the ratio of the OsbornKρO and Shih et
al. (2005)KρS vertical diffusivity estimates.

there is a relatively tight relationship betweenLc andLOz

but with the eddies being close to their buoyancy-limited
scale. These data are intermediate between the lake data of
Imberger and Ivey (1991) and the highly energetic estuarine
tidal flow of Stacey et al. (1999) and far from the highly strat-
ified turbulence found in weakly tidal estuarine embayments
(Stevens, 2003).

5.2 Turbulence influence on frazil crystals and super-
cooled water

The smallest scales of overturning at, and just above,LK

may have some influence in the present system on ice for-
mation. This is because they aid aggregation and generate
shear at the frazil crystal scale. In a survey of polar frazil
crystal measurements, a few frazil crystal discs were found
to be larger than 5–10 mm in radius, but most discs were
smaller than 3 mm in radius (McGuiness et al., 2009). Smed-
srud and Jenkins (2004) considered nascent frazil crystals to
commence life at scales around one tenth of this. They then
followed their growth in a suspended phase up to 0.8 mm in
radius. McMurdo Sound waters appear to support conditions
allowing frazil crystals to grow to far larger scales (Leonard
et al., 2006) and the present authors have observed crystals
exceeding 10 cm in radius. The derived estimates ofLK are
in the range 1–7 mm (Fig. 11), and by definition smaller than
LOz andLe. With spring tidal flows being around twice those
during the observation period, the scalingLK∼(1/ε)1/4 im-
plies a factor of 2(−3/4) – so one might see a minimumLK

around 0.6 mm.
Comparison of crystal size and turbulence scales using the

present data suggests the crystals start life at a scale smaller
than the minimum eddy size,LK , but grow to a scale be-

Fig. 9. Calculated Ozmidov lengthscaleLOz as a function of ob-
served centred displacement scaleLc for individual bins.

yond this. However, crystals of size smaller thanLK still
experience velocity shear. If we defineφ=Lf /LK whereLf

is the frazil crystal size, it is reasonable to expect the frazil
crystals to experience shear of the order ofφVK/LK where
VK is the Kolmogorov velocity scaleVK=(εν)1/4. With ε

in the range 2.0×10−8–5×10−7 m2 s−3 then shear will be in
the range 0.14–0.7 s−1. This comparability in scale between
crystal size andLK also implies that there will be sufficient
motion at the scale of the crystals to bring them together (and
apart) thus influencing crystal-crystal interaction including
breeding collision and possibly aggregation (e.g. Svensson
and Omstedt, 1998).

Turbulence acts at scales greater thanLK (Ret>10) up un-
til it reaches the bounding scaleLOz (Fr t<1). If the large
scales of turbulence dominate over smaller scales then it may
promote rapid growth of even larger frazil crystals (Leonard
et al., 2006; Dempsey et al., 2009) by sweeping supercooled
water, originally at the base of the ice shelf-affected fluid
layer, closer to the surface and so increasing the thermal
deficit even more. However, this would require some form of
covariance measurement in order to identify these upwards
bursts of newly-supercooled water.

Questions relating to the influence of turbulence and strat-
ification on sea ice production also exist at the scale of
McMurdo Sound. The supercooled water exiting the Mc-
Murdo Ice Shelf Cavity, typically in the upper 30–50 m,
will disperse through the Sound influencing frazil growth.
It is useful to consider the role of vertical diffusion in this
redistribution. The vertical flux of heat into the super-
cooled water layer is described byFH =ρcpKz∂θ/∂z (where
specific heat capacitycp=4000 J kg−1◦C−1) and is of the
order of 0.3 W m−2 (from Fig. 7c, KρS=5×10−4 m2 s−1,
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Fig. 10. TurbulentFrt-Ret phase diagram with regimes associated
with isotropy and internal waves (Imberger and Ivey, 1991).

dθ /dz=0.005/30◦C m−1). If the thermal energy deficit in the
layer (thicknessh, here taken as 50 m), per unit area of the
water column, is considered to beE=ρcph1θ , then the time
required for the supercooled layer to diffuse to a temperature
above that of supercooling (E/FH ) scales only withKρS and
h and is around 60 days. The local current residual is around
0.1 m s−1 (Robinson et al., 2009) is likely an upper bound
for flows in the Sound-proper. Estimating a flow of around
half this implies the supercooling should penetrate∼250 km
beyond the ice shelf front. This is over an order of magni-
tude larger than the tidal envelope in the region of around
10 km (Robinson et al., 2009). Although this persistence has
not been directly observed in the Ross Sea, Hellmer’s (2004)
model analysis shows that the differences in sea ice with and
without the ice shelf cavity extend for over 1000 km north
from Ross Island.

5.3 Under ice boundary-layer versus topographic
effects

The source of the observed mixing is obviously relevant to
understanding how the mixing behaves under different condi-
tions (e.g. season, tidal phase, location). There are three po-
tential drivers of mixing. These are (i) the effect of ice shelf
and sea ice on boundary-roughness and convective processes,
(ii) the tide-topography interaction and (iii) baroclinic pro-
cesses generating internal shear and ultimately mixing (e.g.
McPhee, 1992; Fer and Widell, 2007). In the present loca-
tion there are sharp changes in topography at the sea floor,
along the shore and at the surface across the sea ice to ice
shelf transition. All are likely to generate substantial internal
motion and shear. With the large observed changes in density
(Fig. 5c) being potentially related to flow-topography inter-
action it is important to examine the measurements to assess
the relative importance of the under ice boundary layer. Lo-
cal flow circulation drives bed and internal shear turbulence

Fig. 11. Distribution of Kolmogorov lengthscaleLK , where the
dashed line is an upper bound cut-off associated with the minimum
resolvable energy dissipation rate.

as well as under-ice boundary turbulence. Consequently, it
is difficult to separate the competing influences of sea ice
boundary-friction from topographically-induced turbulence.

It is useful to compare the measuredε nearest the ice to
that expected from boundary-layer scaling. First, a friction
velocity scaleu∗ is derived using a drag coefficient approx-
imation (Pease et al., 1983; McPhee, 2002) so that max-
imum u∗ is around 0.01 m s−1. We were unable to reli-
ably sample at depths shallower than 6 m beneath the ice
(i.e. depths>8 m). This is deeper than the planetary scale
0.03u∗/f (f =Coriolis parameter∼0.00014 s−1 at this lati-
tude) associated with Coriolis’ influence (McPhee, 2008) al-
though it’s not clear that this scale is unaffected by the influ-
ence of the local topography. Measured energy dissipation
rates in the 8–13 m depth bin were around 2×10−7 m2 s−3.
The boundary-layer estimateεBL using the scaling for the
law of the wall wherebyεBL=u3

∗/(Kz) (von Karman’s con-
stant K=0.4), so that using our uppermost measurements
centred at 10.5 m depth, and for flows around 0.15 m s−1, we
expectε=10−7 m2 s−3. Maximum observed dissipation lev-
els were of this order although this is lower than the observa-
tions of Fer and Widell (2007) and McPhee (2002) where
the dissipation rate near the under-side of the ice reached
10−6 m2 s−3.

Internal and benthic boundary layer processes can cer-
tainly generate dissipation rates of this order and higher in
the case of benthic boundary layers. It is likely that in the
middle of the water column reasonable and persistent strati-
fication restricts mixing originating at the bed from influenc-
ing the supercooled water under the ice. The local maximum
in dissipation rate just under the sea ice, the lower dissipa-
tion rate in the mid-upper column and the higher dissipation
rates tracking the central pycnocline suggest that these pro-
cesses act together and the influence on frazil ice and biology
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will depend very much where they are in a three-dimensional
sense.

5.4 Future work

These first turbulence profiler observations from adjacent to
the climatically important McMurdo Ice Shelf generate a
number of themes for future examination. With improved
survey work we hope to locate the major flow pathways in
the region and repeat this dissipation rate sampling over a
greater proportion of the spring-neap tidal cycle. Interest-
ingly, as there seems to be something of a universality in
the available literature with regard to observations all being
most commonly from tides generating flows of around 0.1–
0.25 m s−1. It would be interesting to consider these types of
measurements and processes in both significantly slower and
faster flow situations.

This, in conjunction with mooring work, will enable the
development of a quasi-seasonal picture of the small-scale
processes in the strait and associated region. Improved flux
and exchange estimates will ultimately enhance our under-
standing of the way the McMurdo and Ross Ice Shelf Cav-
ities interact with the wider Ross Sea and the implications
this has for sea ice growth, ventilation of the sub-ice shelf
cavity and the impact on ice shelf basal melt. But this large
scale picture also requires work at the frazil crystal scale
to understand how turbulence influences the actual growth,
downward resuspension and aggregation processes of this
ice, which forms a significant fraction of the sea ice cover
in McMurdo Sound (Dempsey et al., 2009; Leonard et al.,
2006; McGuiness et al., 2009).
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