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1Laboratoire des Ecoulements Géophysiques et Industriels (LEGI/CNRS), Grenoble, France
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Abstract. In the context of stand alone ocean models, the at-
mospheric forcing is generally computed using atmospheric
parameters that are derived from atmospheric reanalysis data
and/or satellite products. With such a forcing, the sea surface
temperature that is simulated by the ocean model is usually
significantly less accurate than the synoptic maps that can
be obtained from the satellite observations. This not only
penalizes the realism of the ocean long-term simulations,
but also the accuracy of the reanalyses or the usefulness of
the short-term operational forecasts (which are key GODAE
and MERSEA objectives). In order to improve the situation,
partly resulting from inaccuracies in the atmospheric forc-
ing parameters, the purpose of this paper is to investigate a
way of further adjusting the state of the atmosphere (within
appropriate error bars), so that an explicit ocean model can
produce a sea surface temperature that better fits the available
observations. This is done by performing idealized assimila-
tion experiments in which Mercator-Ocean reanalysis data
are considered as a reference simulation describing the true
state of the ocean. Synthetic observation datasets for sea sur-
face temperature and salinity are extracted from the reanaly-
sis to be assimilated in a low resolution global ocean model.
The results of these experiments show that it is possible to
compute piecewise constant parameter corrections, with pre-
defined amplitude limitations, so that long-term free model
simulations become much closer to the reanalysis data, with
misfit variance typically divided by a factor 3. These results
are obtained by applying a Monte Carlo method to simu-
late the joint parameter/state prior probability distribution. A
truncated Gaussian assumption is used to avoid the most ex-
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treme and non-physical parameter corrections. The general
lesson of our experiments is indeed that a careful specifica-
tion of the prior information on the parameters and on their
associated uncertainties is a key element in the computation
of realistic parameter estimates, especially if the system is
affected by other potential sources of model errors.

1 Introduction

One of the most accurate and ubiquitous information about
the surface state of the ocean is provided by the satellite mea-
surements of sea surface temperature. It is in particular sig-
nificantly more accurate than the sea surface temperature that
is simulated by any state-of-the-art general circulation ocean
model. Part of this discrepancy is explained by the relative
inaccuracy of the atmospheric parameters that are used to
compute the air-sea momentum, heat and fresh water fluxes
which determine the surface boundary condition of the ocean
model (WGASF, 2000). There is thus an important potential
benefit to expect from the improvement of these parameters
using the available sea surface observations. In practice, the
atmospheric parameters controlling the air-sea fluxes (i.e. air
temperature, relative humidity, cloud fraction, precipitation
or wind speed) are derived from atmospheric reanalysis data
(as delivered for instance by the ECMWF or NCEP cen-
ters) and from a variety of satellite products. For instance,
the atmospherically forced ocean hindcast simulations per-
formed byThe DRAKKAR Group(2007) compute their air-
sea fluxes by using forcing data that merge a variety of dif-
ferent data sets (in situ, satellite and NWP products), with
objective corrections based on observations (Large and Yea-
ger., 2008; Brodeau et al., 2009). Hence, as long as forced
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models are used to simulate the ocean component alone, the
control of the atmospheric parameters using ocean surface
observations is certainly an appropriate way of improving
the realism of model interannual simulations, the accuracy
of ocean reanalyses or the usefulness of sea surface temper-
ature operational forecasts. It is thus also an important con-
tribution to the GODAE1 objectives (GODAE, 2008), which
is the reason why a large part of the MERSEA2 effort in the
development of data assimilation has been devoted to this
problem.

In this study, which has been conducted as part of the
MERSEA project, this problem is investigated using ideal-
ized experiments in which Mercator-Ocean3 ocean reanaly-
sis data are used as the reference simulation (i.e. the “truth”
of the problem). Synthetic observation datasets (for sea sur-
face temperature and sea surface salinity) are extracted from
the reanalysis to be assimilated in a coarse resolution global
ocean model. With respect toSkachko et al.(2009), who
investigated a similar problem using twin assimilation exper-
iments, the present study is thus more realistic, since the dif-
ference between model and reanalysis is now very similar in
nature to the real error. It is closer to the real problem even if
the experiments are still somewhat ideal in the sense that no
real observations are assimilated, and that the full reference
model state (the reanalysis, in three dimensions) is available
for validation. Another difference with respect toSkachko
et al.(2009) is that, in this paper, we extend the control vector
to 6 atmospheric parameters instead of 2 turbulent exchange
coefficients in their example (but we exclusively focus on
the control of the parameters, while they also considered
the joint optimal estimate of the ocean state vector together
with the atmospheric parameters). However, in order to solve
this more realistic problem, we needed to further develop the
methodology towards a better specification of the prior infor-
mation about the parameters and their associated uncertainty.
We observe indeed that making appropriate assumptions on
that respect is increasingly important as the estimation prob-
lem is becoming more realistic, because it is more and more
difficult to make the distinction between forcing errors and
the other potential sources of error in the system. An addi-
tional important objective is thus to find means of identifying
properly the part of the observational misfit that can be inter-
preted as resulting from inaccurate atmospheric parameters.

In order to reach this objective, the plan is to apply se-
quentially a Bayesian inference method to compute piece-
wise constant optimal parameter corrections. A possible al-
gorithm to solve this problem is to compute the optimal pa-
rameters by direct maximization of the posterior probability
distribution for the parameters, using for instance a 4DVAR
scheme (as done inRoquet et al., 1993 or Stammer et al.,
2004). But, in addition to the technical difficulties that the

1http://www.godae.org
2http://www.mersea.eu.org
3http://www.mercator-ocean.fr

algorithm may involve, this solution requires that the cost
function resulting from the optimal probabilistic criterion be
quadratic or at least differentiable everywhere in parameter
space, so that it is by no way straightforward to optimally im-
pose strict inequality constraints to the parameters (by setting
zero prior probability in prohibited region of the parameter
space for instance). This is why, in this study, we prefer using
a Monte Carlo algorithm to simulate the ocean response to
parameter uncertainty, and use the resulting ensemble repre-
sentation of the prior probability distribution to infer optimal
parameter corrections from the ocean surface observations.
It is in the specification of this prior probability distribution
that two methodological improvements are introduced with
respect toSkachko et al.(2009). First, the error statistics
are computed locally in time for each assimilation cycle, by
performing a sequence of ensemble forecasts around the cur-
rent state of the system (while they are assumed constant in
their study). And second, the probability distribution is as-
sumed to be a truncated Gaussian distribution (as proposed
by Lauvernet et al., 2009, as an improvement to the classi-
cal Gaussian hypothesis), in order to avoid the most extreme
and non-physical parameter corrections. These two improve-
ments are indeed found necessary to solve the more realistic
assimilation problem at stake in this paper.

However, before explaining this in more detail, we first
summarize in Sect.2 the background existing elements that
are used to perform the study: the ocean model, the assim-
ilation method for parameter estimation and the Mercator-
Ocean reanalysis data. Then, in Sect.3, we present the de-
tails of the method that is used to perform the assimilation
experiments: experimental setup and statistical parameteri-
zation. And finally, in Sect.4, we discuss and interpret the
results, focusing on the accuracy of the mixed layer thermo-
haline characteristics and on the relevance of the parameter
estimates.

2 Background

In this section, we present the three existing ingredients that
are used later as a background information to set up our as-
similation system (Sect.3) and to perform the experiments
(Sect.4): (i) the ocean model, focusing on the role of the at-
mospheric forcing parameters, (ii) the assimilation method,
in order to introduce the various approximations and param-
eterizations that are needed to solve the problem, and (iii) the
Mercator-Ocean reanalysis, from which the synthetic obser-
vations are extracted.

2.1 Ocean model

The OGCM used in this study is a global ocean configuration
(ORCA2) of the NEMO-OPA model (Madec et al., 1998),
using a 2◦×2◦ ORCA type horizontal grid, with a merid-
ional grid spacing reduced to 1/2◦ in the tropical regions
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in order to improve the representation of the equatorial dy-
namics. This is a free surface configuration based on the
resolution of primitive equations, with a z-coordinate ver-
tical discretization. There are 31 levels along the vertical,
and the vertical resolution varies from 10 m in the first 120 m
to 500 m at the bottom. The lateral mixing for active trac-
ers (temperature and salinity) is parameterized along isopy-
cnal surfaces, and the model uses a turbulent kinetic energy
(TKE) closure scheme to evaluate the vertical mixing of mo-
mentum and tracers (Blanke and Delecluse, 1993).

The model is forced at the surface boundary with heat,
freshwater and momentum fluxes. The fluxes through the
ocean surface are estimated from the atmospheric parame-
ters at the anemometric height, using the bulk semi-empirical
aerodynamic formulas. Daily atmospheric variables (wind,
humidity, air temperature, cloud coverage) from NCEP
and monthly mean precipitation from CMAP (CPC Merged
Analysis of Precipitation) are used to interactively diagnose
the net heat and fresh water fluxes (QNET and FWNET),
which can be written respectively:

QNET = QS + QL + QLW + QSW (1)

FWNET = E − P − R (2)

whereQS is the sensible heat flux,QL the latent heat flux,
QLW the long wave radiation flux,QSW the short wave solar
radiation flux, andE, P , R are the three terms related to the
fresh water budget, respectively evaporation, precipitations
and river runoffs. The flux parameters which are involved
in the computation of these quantities are the latent heat flux
coefficient (CE), the sensible heat flux coefficient (CH), sea
surface temperature (Tw), air temperature (Ta), air pressure,
atmospheric specific humidity (qa), wind speed (W10), cloud
coverage (C) and precipitation (P ). For more detail on these
bulk formulas, the reader can refer to the CLIO (Coupled
Large-scale Ice Ocean) model description inGoosse et al.
(1999).

The turbulent latent and sensible heat fluxes are calcu-
lated from the classical ocean-atmosphere transfer equations
(Large and Pond, 1982):

– the latent heat flux:

QL = ρaLeCEW10 max(0, qs − qa) (3)

whereρa is the air density,Le the vaporization latent
heat, andqs the saturation specific humidity;

– the evaporation fresh water flux :

E = QL/Le (4)

– the sensible heat flux:

QS = ρac
a
pCHW10(Tw − Ta) (5)

whereca
p is the air specific heat;

– the long-wave radiation flux, which is parameterized by
following Berliand and Berliand(1952):

QLW=εσsbT
4
a (0.39−0.05

√
ea)(1−χC2)+4εσsbT

3
a

(Tw − Ta) (6)

whereea (in mb) is the vapor pressure deduced from
qa, ε, the surface emissivity,σsb the Stephan-Boltzmann
constant,(1−χC2), a correction factor to take into ac-
count the effect of clouds;

– the short-wave radiation flux, following the proposed
formula byZillmann (1972):

QSW = (1 − α)(1 − 0.62C + 0.0019β)QCLEAR (7)

whereα is the ocean albedo,β, the zenith angle at noon
andQCLEAR, the solar radiation at the ocean surface in
clear weather.

For the momentum flux, we did not use aerodynamic bulk
formulas to calculate the wind stress vector. It is directly
specified in the model, using ERS scatterometer data com-
plemented by in-situ observations of TAO derived stresses
(Menkes et al., 1998). No relaxation to observed SST and
SSS is applied in our simulations.

2.2 Assimilation method

The purpose of this section is to briefly describe the assim-
ilation methods that are applied to perform this study. Only
general algorithms and equations are given here; the spe-
cific parameterizations on which they depend are presented
in Sect.3.

2.2.1 Estimation of model parameters

The problem of estimating model parameters from ocean ob-
servations can be formulated using the Bayesian inference
framework. From a prior probabilityp(α) for a vector of un-
certain parametersα, and the conditional probability distri-
butionp(y|α) for obtaining a vector of observationsy given
the vector of parametersα, the Bayes theorem:

p(α|y) ∼ p(α) p(y|α) (8)

provides the posterior probabilityp(α|y) for the parameters
given the observations. A best estimateα∗ for the vector
of parameters can then be obtained as the mean (minimum
variance estimator) or the mode (maximum probability es-
timator) of this posterior distribution. The most common
methods to computeα∗ are direct minimization techniques
(to compute the mode), Monte Carlo integration (to compute
the mean) or a direct formula (for instance, if the distribu-
tions are assumed Gaussian).
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In this problem, the observationsy are usually not di-
rectly related to the parametersα, but to the model solu-
tion x that is a function ofα, so that the probability distri-
bution p(y|α) is usually defined as a function of the misfit
between the observations and the model solution correspond-
ing to α: y−Hx(α) (innovation vector), whereH is the ob-
servation operator. This makes the computation ofα∗ more
difficult, either with direct minimization techniques, because
every evaluation of the function to minimize requires one
model simulation (and also one adjoint model simulation if
the gradient is also computed), or with Monte Carlo methods,
because they require an ensemble model forecast using an
ensemble of parameter vectors drawn from their prior proba-
bility distribution.

In this study, Monte Carlo simulations are performed to
compute the model counterpartx to an ensemble of param-
eter vectors, sampled fromp(α). This ensemble forecast
characterizes the prior probability distributionp(x̂) for the
augmented vector̂x=[α, x(α)], characterizing the model re-
sponse to parameter uncertainty. It is important to note that,
up to this point, linearity has not been assumed, and that it
is only at this stage that a Gaussian parameterization is used
for the prior distributionp(x̂), with the consequence of lin-
earizing the inference rules relating the model parametersα

to the observationsy (see below). In order to mitigate the ef-
fect of this linearization, the problem is divided in a sequence
of short periods of time (assimilation cycles) and the param-
etersα are estimated separately and sequentially for every
element of the sequence (see Sect.3 for more detail).

2.2.2 Optimal estimate under Gaussian assumption

If the probability distributionp(x̂) and p(y|x̂) can be as-
sumed Gaussian:

p(x̂) ∼ N (x̂b, P̂) and p(y|x̂) ∼ N (Ĥx̂, R) (9)

wherex̂b is the background simulation,P̂ is the background
error covariance matrix in the augmented space,Ĥ=[0, H]

is the augmented observation operator andR the observation
error covariance matrix, it is known that the posterior proba-
bility distributionp(x̂|y) is also Gaussian:

p(x̂|y) ∼ N (x̂a, P̂a) (10)

where the mean̂xa and the covariancêPa are given by the
standard linear observational update formulas:

x̂a
= x̂b

+ K(y − Ĥx̂b) and P̂a
= (I − KĤ)P̂ with

K = (ĤP̂)T (ĤP̂ĤT
+ R)−1 (11)

Equation (11) are also the equations of the observational
update of a Kalman filter written for an augmented control
vector (including model parameters in addition to the model
state). This method can be applied to control other sources
of error in addition to parameter error (as explained, for in-
stance, inSkachko et al., 2009). However, in the present

study, Eq. (11) are only going to be used to obtain improved
parameter estimates.

It is interesting to note that the solution given by Eq. (11)
is not equivalent to minimizing

J (α)=
1

2
αT P−1

α α+
1

2
[y−Hx(α)]T R−1 [y−Hx(α)] (12)

(wherePα is the block ofP̂ corresponding to the vector of
parameters) using a variational method, as soon as the func-
tion x(α) relating the model solution to the parameters is
nonlinear. This variational solution only assumes Gaussian-
ity of p(α) and p(y|x) while keeping the nonlinear func-
tion x(α) in the expression of

p(α|y) ∼ p(α)p(y|α) ∼ exp[−J (α)] (13)

which is not Gaussian. However, there is no prerequisite
of Gaussianity in Monte Carlo methods, that may also of-
fer other advantages. It is for instance easier to apply strict
inequality constraints (by modifying the prior Gaussian as-
sumption). This possibility is exploited in this study to con-
fine the parameter estimates in a predefined region of the pa-
rameter space (see Sect.3.5).

2.2.3 Reduced rank approximation

If the background error covariance matrix is available in
square root form̂P=ŜŜT , with a rank given by the numberr
of independent columns in̂S(the error modes), then the prob-
lem can be simplified to the estimation of a reduced vectorξ

(of sizer), giving the amplitudes of the correction tox̂b along
each column of̂S, using a reduced observation vectorη (of
sizer) resulting from the projection of the innovations onto
the error modeŝS:

x̂=x̂b
+ŜUξ and η=3(ĤŜU)T R−1(y−Ĥx̂b) (14)

whereU (unitary matrix) and3 (diagonal matrix) are the ma-
trices with eigenvectors and inverse eigenvalues of ther×r

matrix:

(ĤŜ)T R−1(ĤŜ) = U3−1UT (15)

By transformation (14), the probability distributions (Eq.9)
transforms to

p(ξ) ∼ N (0, I) and p(η|ξ) ∼ N (ξ , 3) (16)

so that

p(ξ |η) ∼ N (ξa, 3a) with ξa
= [I + 3]

−1η and

3a
= [I + 3]

−13 (17)

With the transformationU, the observational updates for ev-
ery components of theξ vector are independent (all matri-
ces in Eqs.16 and17 are diagonal). This is a simple way
of obtaining directly the equation of the observational up-
date for the SEEK filter (the reduced order Kalman filter de-
veloped byPham et al., 1998), that are otherwise deduced
from Eq. (11) using the Sherman-Morrison-Woodbury for-
mula.
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2.3 Mercator-Ocean reanalysis

Mercator-Ocean is an operational oceanography center based
in Toulouse, France. It develops and runs operational ocean
analysis/forecast systems specially designed to provide use-
ful products for several downstream applications: research,
institutional and operational applications, private sector ap-
plications and environmental policy makers. Mercator-
Ocean also periodically delivers ocean reanalyses, that are
produced using up-to-date ocean models, observations and
assimilation methods. In this study, we are using the data
from a Mercator-Ocean coarse resolution global reanalysis
(PSY2G2). The main application of this reanalysis is to pro-
vide ocean initial conditions for coupled seasonal prediction
applications (Balmaseda et al., 2008), but it is also used for
research purposes as it provides a long coherent time series
of the ocean state (from 1980 to present). The ocean model
used in the reanalysis is similar in many points to the one
that is used in our experiments: same numerical code OPA,
same grid, same physics, but different atmospheric forcing,
which is computed using the ERA-40 reanalysis for the pe-
riod January 1979 to December 2001. The assimilated ob-
servations are subsurface temperature and salinity, SLA data
and SST maps. The subsurface data come from the EN-
ACT/ENSEMBLES data base provided by the CORIOLIS4

data center; the altimetric data are along-track SLA (from
November 1992 to present) provided by SSALTO/DUACS;
and the SST maps are obtained from the Reynolds OIv2
product (Reynolds et al., 2002). The reanalysis data assim-
ilation scheme is a reduced order Kalman filter using the
SEEK formulation (Pham et al., 1998). The forecast error
covariance is based on the statistics of a collection of 3-D
ocean state anomalies (typically a few hundred) and is sea-
sonally variable. The statistical analysis produces tempera-
ture and salinity as well as barotropic velocity increments,
from which zonal and meridional velocity fields are deduced
using physical balance operators. For the present study, we
extracted 1993 and 1994 data (temperature and salinity) for
use in our assimilation experiments.

3 Method

3.1 Setup of the assimilation experiments

The general idea of the experiments presented in this paper
is to use the Mercator-Ocean reanalysis as reference simula-
tion from which synthetic observation datasets are extracted,
and to assimilate these observations into our ocean model as
a constraint to the atmospheric forcing function. These ex-
periments are ideal in the sense that no real observations are
assimilated and that the full reference model state (in three
dimensions) is available for validation. But they are also re-
alistic (clearly distinct from twin experiments) because dif-

4http://www.coriolis.eu.org

ferences of model simulations with respect to the reanalysis
are similar in nature to differences with respect to the real
world. It is indeed expected that the assimilation of the real
observations to build the reanalysis moved the model trajec-
tory towards a more realistic description of the ocean. The
starting date of the experiments is 30 December 1992 (with
an initial condition from a standard simulation performed by
Castruccio et al., 2008). The first six months are used as
an initialization period for the assimilation system, so that
the one year diagnostic period extends from 30 June 1993 to
29 June 1994. Figure1 (left panel, top black line) shows the
time evolution of the RMS error (difference with respect to
the reanalysis) in the free simulation (i.e. without parameter
corrections) for sea surface temperature (SST) and sea sur-
face salinity (SSS), as computed over the world ocean south
of 70◦ N, to avoid some problematic ice covered regions. We
can observe on the figure that the SST RMS error is stable in
time (in the interval 0.85–1.05◦C) but that the SSS RMS er-
ror is drifting from the beginning of the simulation (at a rate
of about 0.1 psu per year).

The error is however very inhomogeneous horizontally, as
can be seen in Fig.2, showing maps of SST and SSS sys-
tematic error (top panels) and maps of SST and SSS error
standard deviations (bottom panels), averaged over the one
year diagnostic period. The largest systematic errors (up
to 2◦C and 0.8 psu) or error standard deviation (up to 1.5◦C
and 1 psu) are localized in the regions of the Western bound-
ary currents and the Antarctic Circumpolar Current (ACC).
These large errors are due to the poor representation and
localization of the ACC and the boundary currents in our
low resolution ocean model. Since these currents are asso-
ciated to the most intense SST and SSS fronts in the ocean,
it is mostly the misplacement of the currents that leads to
the largest SST and SSS errors. In these regions, the atmo-
spheric forcing function is not the dominant cause of error, so
that the identification of forcing errors is almost impossible
there (with a low resolution model). This is why they will be
masked in several diagnostics involving horizontal averages.
The right panel of Fig.1, for instance, shows the same re-
sult as the left panel as obtained by masking the 10% of the
ocean with the largest free run RMS misfit. The mask is thus
different for SST and SSS, and can be visualized in Fig.2, as
the region with the largest misfit (i.e. essentially the Western
boundary currents and a part of the ACC). The RMS error
for this 90% subdomain remains quite large in the free sim-
ulation with a reduction of about 10% for SST and 30% for
SSS with respect to the global RMS error.

The purpose of our experiments is to identify the part of
the misfit between model simulation and reanalysis that can
be explained by errors in the atmospheric forcing function.
This means that the experiments are dedicated to the im-
provement of the forcing function of long term free model
simulations: no correction is applied directly to the evolution
of the model state, which remains a solution of the model dy-
namical equations. But we need to apply corrections on the
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Fig. 1. Misfits between the simulations and the SST (top panels) or SSS (bottom panels) observations for the

world ocean (south of 70◦ N) as computed, without masking any regions (left panels) or by masking the 10%

of the ocean surface that is charcterized by the largest free run RMS misfit (right panels). The figures show the

free simulation (upper black solid line), the relaxation towards a perfect initial condition (dashed black line), the

modified free simulation starting from this perfect initial condition (lower black solid line), the simulation with

parameter optimization (green line), the simulation with parameter optimization starting from perfect initial

condition (red line). The vertical dashed-dotted line marks the beginning of the one year diagnostic period.

24

Fig. 1. Misfits between the simulations and the SST (top panels) or SSS (bottom panels) observations for the world ocean (south of 70◦ N)
as computed, without masking any regions (left panels) or by masking the 10% of the ocean surface that is charcterized by the largest free
run RMS misfit (right panels). The figures show the free simulation (upper black solid line), the relaxation towards a perfect initial condition
(dashed black line), the modified free simulation starting from this perfect initial condition (lower black solid line), the simulation with
parameter optimization (green line), the simulation with parameter optimization starting from perfect initial condition (red line). The vertical
dashed-dotted line marks the beginning of the one year diagnostic period.

Fig. 2. Maps of systematic error (top panels) and error standard deviation (bottom panels) for SST (in◦C, left panels) and SSS (in psu, right
panels) in the free model simulation (starting from perfect initial condition).
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forcing parameters using a sequential assimilation method.
The simulation is thus divided in a sequence of time inter-
vals (the assimilation cycles, with a length of 7 days), for
which we estimate the forcing parameters by combining op-
timally forcing prior knowledge and available ocean obser-
vations. In our experiments, the forcing parameter estimates
are obtained using SST and SSS observations extracted from
the reanalysis at the model resolution with global coverage
and perfect accuracy.

3.2 Initial condition

In such a kind of experiment, an important difficulty occurs
if we start the assimilation experiment from the initial condi-
tion of the free model simulation on 1 January 1993, because
at the end of the first one-week assimilation cycle, most of
the error (difference with respect to reanalysis) is due to ini-
tial condition error and not to errors in the atmospheric forc-
ing (corresponding to this first cycle). To avoid this difficulty,
we first present results that are obtained without initial con-
dition error. In that way, a better view of the behaviour of the
method can be produced, thus facilitating the interpretation
of the results. The influence of initial condition error is only
briefly considered in a second stage.

In order to build a perfect initial condition for the assim-
ilation experiments, we simply perform an ideal assimila-
tion experiment with perfect incrementδxk, computed as the
difference between the model forecast of the current cycle
(numberk) and the corresponding ocean state in the reanal-
ysis. This increment is then introduced into the model using
the incremental analysis update algorithm (as inOurmìeres
et al., 2006). Moreover, in order to distribute the effort over
the firstp assimilation cycles, this increment is divided by
the factor max(p−k+1, 1). In that way, only onepth of
the full increment is applied during the first cycle, and the
cycle p is the first cycle with the full perfect increment.
Figure1 (left panel, dashed black line) shows the SST and
SSS RMS error reduction during this initialization procedure
from 30 December 1992 to 10 March 1993 (10 cycles of
7 days withp=8). This last date is the initial condition of
our simplified assimilation experiments (with negligible ini-
tial condition error). For comparison purpose, a free model
simulation starting from this perfect initial condition is also
presented in Fig.1 (lower black solid line), showing that the
corresponding SST and SSS misfits quickly increase with
time to reach asymptotically the typical misfit (for SST) or
the typical trend (for SSS) that is observed in our original
free model simulation (with wrong initial conditions).

3.3 Forcing parameters prior probability distribution

As explained in Sect.2.2, the estimation of model param-
eters using Bayesian inference requires the definition of a
prior probability distribution for the parameters. And the first
thing to decide about this probability distribution is the list of

uncertain parameters to include in the control vector (step a
in Table1); other parameters are then considered perfectly
accurate. In this study, we decide to estimate the follow-
ing parameters of the atmospheric forcing function: air tem-
perature (Ta), air relative humidity (qa), cloud fraction (C),
precipitation (P ), the latent heat flux coefficient (CE) and the
sensible heat flux coefficient (CH). The reason for this choice
is that they are expected to be the most important inaccurate
parameters that are involved in the computation of the net
heat and fresh water fluxes at the air-sea interface. They are
assumed to be responsible for most of the error in the com-
putation of these net fluxes, and thus to be one of the most
important source of error in the heat and salt budget of the
ocean mixed layer. One important missing parameter is wind
velocity, which is a key parameter to control the heat flux
computation (Mourre et al., 2008). The reason for which it is
not included in the list of control parameters is that it is also
correlated to the momentum flux (zonal and meridional wind
stress components), which we have chosen not to control in
this study. The decision not to control this important source
of model error results from the necessity of proceeding step
by step to avoid unpredictable difficulties in the solution of
the inverse problem. However, we must be aware that, as
any uncontrolled error (like the localization of the boundary
currents), this can introduce compensation problems in the
parameter estimates (see Sect.4.3).

In order to define the prior probability distribution for
these control parameters (step b in Table1), we first as-
sume that the error on the parameters is constant over the
current assimilation cycle, which already means that the
overal flux correction in our experiments is necessarily piece-
wise constant (with weekly forcing parameter increments).
Second, we assume that the parameter error pdf is Gaus-
sianN (0, Pα), with zero mean and with the covariancePα

of the time variability of the parameters in the free model
simulation (here over the period 1992–1998). Using time
variability as a uniform way of parameterizing parameter un-
certainties is obvioulsy rather crude, especially if a better in-
formation is potentially available (as forCE and CH), but
this is a useful simplification for the definition of statistics
and the interpretation of the results. With this method, it is
also easy to obtain directly a reduced rank parameterization
of the covariance matrix. In the definition ofPα, we indeed
retain the 200 first EOFs of the full signal, representing about
92% of the total variance. Figures3 and4 show respectively
the resulting mean and standard deviation maps for every pa-
rameter. As SST and SSS misfit standard deviations shown
in Fig. 2, the parameters standard deviations are very inho-
mogeneous horizontally, and the patterns of maximum vari-
ability are very diverse. These figures are used as a reference
in further discussions.

However, it must be mentioned here that most parameters
are constrained by bounds:
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Table 1. The four steps of the parameter estimation scheme, with a short description of the procedure and basic assumptions.

Steps Procedure Assumptions

Step a: definition of the
augmented control
vector

Include a list of uncertain atmospheric
forcing parameters in the control vector:
x̂=[T , S,U, V︸ ︷︷ ︸

x

, CE, CH , C, P, qa, Ta︸ ︷︷ ︸
α

]

The other parameters are perfectly accurate.

Step b: forcing
parameter prior proba-
bility distribution

Postulate a Gaussian pdf for the atmospheric
forcing parameters, based on their natural vari-
ability simulated by the free model over 7 years,
92–98. (200 EOFs retained).

–Parameter errors are constant over the current
assimilation cycle.
–The parameter error prior pdf is Gaussian:
N (0, Pα).
–The prior pdf is kept unchanged between
assimilation cycles.

Step c: augmented
control vector prior
probability distribution

–Sample random parameter maps (100 mem-
bers) from their pdf.
–Perform a model simulation for each mem-
ber: the covariance of the ensemble forecast is
the error covariance in the augmented control
space.
–Apply an order reduction (50 EOFs selected,
∼90% of total variance).

–Parameters are constrained by boundsH⇒ the
input parameter pdf is not really Gaussian.
–Assume a truncated Gaussian augmented vec-
tor distribution p(x̂) by imposing zero prior
probability to large parameter increments.

Step d: parameter
estimation using obser-
vations

Apply observational update formulas to com-
pute parameter corrections.

Atmospheric forcing parameters are the only
source of error.

0 ≤ qa≤1, 0 ≤ C≤1, P≥0, CE≥0, CH≥0 (18)

so that the prior pdf cannot be really Gaussian. In practice,
this means that each time that maps of parameter increments
are sampled from the prior distributionN (0, Pα) and added
to the reference parameter maps, all values falling outside the
physical bounds are reset to the value of the closest bound.
For instance, a negative precipitation value is reset to 0, or a
cloud fraction value exceeding 1 is reset to 1. This set of op-
erations implicitly define the prior pdf that is effectively as-
sumed. This also means that the parameter perturbation may
not be constant in time (and consequently that the correction
may not be exactly piecewise constant) as soon as parameter
values are found outside of their physical bounds.

As a last approximation in our experiments, the prior pdf
for the error on the parameters is kept unchanged from one
assimilation cycle to the next. This means that it is assumed
that nothing is learnt about the parameters of the current
cycle from the previous estimates. This is quite an impor-
tant difference with respect to the experiments performed by
Skachko et al.(2009), with the advantage that we do not
need to parameterize the time dependence of parameter er-
rors (since zero correlation is assumed). It is also safer to
keep a zero mean error pdf around the reference parameter
value. In that way, we can be certain to avoid any drift of the
parameters from the reference (as observed inSkachko et al.,
2009) and we do not need to add feedback to the reference
(as they did) to prevent for filter instability.

3.4 Augmented control vector prior probability
distribution

In order to use the ocean observations to estimate the pa-
rameters, we need to derive a prior probability distribution
for the augmented control vector (step c in Table1), in-
cluding the ocean state and the forcing parameters (as ex-
plained in Sect.2.2). In our experiments, this prior prob-
ability distribution is approximated by a 100-member sam-
ple, that is obtained by sampling the forcing parameter
probability distributionN (0, Pα) (described in Sect.3.3):
α(i), i=1, . . . , n=100 (using the method described in the ap-
pendix of Fukumori, 2002) and by performing the corre-
sponding ensemble model forecast for the current assimila-
tion cycle: x(i), i=1, . . . , n=100. The 100 model forecasts,
with their associated parameter mapsx̂(i)

=[x(i), α(i)
] repre-

sent the sample that we need to parameterize the prior prob-
ability distribution for the augmented control vector. This
sample characterizes the sensitivity of the model forecast to
parameter error around the current state of the system. This is
a very important point because this sensitivity depends very
much on the current ocean state. This is why it is impossi-
ble to perform the ensemble forecast once for all; it must be
computed for each assimilation cycle from the current initial
condition. Moreover, since the forcing parameters are the
only source of error that is introduced in our ensemble ex-
periments (no perturbation of the initial condition, no other
model noise), the resulting probability distribution represents
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Fig. 3. Mean parameters in the free model simulation over the period 1992–1998. The figure showsCE×10−3 (top left panel),CH×10−3

(top right panel),C (middle left panel),P (in mm, middle right panel),Ta (in K, bottom left panel) andqa (bottom right panel).

only that part of the total error that is caused by the forcing
parameters. This is fully consistent with the experimental
setup described in Sect.3.1, since we only seek to control the
forcing parameters, but this also means that all other sources
of errors in the system must be considered as observational
error (and thus included in the parameterization of the obser-
vation error covariance matrix).

From the 100-member ensemble forecastx̂(i), we parame-
terize the prior probability distribution of the augmented con-
trol vector as a Gaussian distributionN (x̂b, P̂), wherex̂b is
the background forecast obtained with zero parameter pertur-
bation, and̂P is given by

P̂ =
1

n

n∑
i=1

(
x̂(i)

− x̂b
) (

x̂(i)
− x̂b

)T

(19)

In parameterizingN (x̂b, P̂), we do not use the mean and co-
variance of the sample aŝxb and P̂ because model nonlin-
earities can create a bias betweenxb and the sample mean
x̄=

1
n

∑n
i=1 x(i). In our experiments, we want to improve the

background model solutionxb, not the ensemble mean̄x,
which is never used as best estimate of the state of the sys-
tem (as it could be in ensemble methods). To be consistent,

we thus also need to characterize the sensitivity of the model
forecast aroundxb and not around̄x. An additional reason
is that the value obtained for the biasx̄−xb is related to the
shape of the prior pdf for the forcing parametersp(α), which
is not likely to be very accurately represented by our arbitrary
Gaussian choiceN (0, Pα). This bias problem arises because
we try to solve a non-Gaussian problem approximately using
a Gaussian approach. A rigourous solution can thus only be
obtained by moving to a more general non-Gaussian scheme
for the observational update. In this paper, we choose to leave
these developments for further studies and to use the above
Gaussian parameterization as an approximation.

Moreover, as an additional approximation, we only retain
the first 50 principal components of the covariance matrix
defined by Eq. (19), representing in general most of the total
sample variance (around̂xb). Figure5 presents one column
of the resulting correlation matrix (correlation with respect to
SST at 66◦ E, 1◦52 S), forTa, qa, C andCE, showing for in-
stance that the correlation is the largest close to the reference
SST location, and decreases with the distance (as a general
behaviour). It is dominantly positive for air temperatureTa
and negative for the other parametersqa, C andCE, consis-
tently with the common physical sense. The horizontal shape
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Fig. 4. Parameters standard deviation in the free model simulation over the period 1992–1998. The figure showsCE×10−3 (top left panel),
CH×10−3 (top right panel),C (middle left panel),P (in mm, middle right panel),Ta (in K, bottom left panel) andqa (bottom right panel).

of the correlation structure is highly anisotropic, with zonal
correlations (along the equator) remaining significant over
larger distance than meridional correlations, as a direct con-
sequence of the anisotropy of the equatorial dynamics. We
can even identify the correlated and anti-correlated separa-
tion zones forqa andC, to the separation between the North
Indian Ocean currents (influenced by the Asiatic Monsoon)
and the currents of the South Indian Ocean (influenced by the
atmosphere anticyclonic circulation). The figure also shows
that, due to the low rank (r=50) parameterization of the co-
variance matrix̂P, the correlations do not vanish at long dis-
tances as they do in the real world. This is why, in order to
compensate for this deficiency in the parameterization ofP̂,
we impose vanishing long range correlation coefficients (see
Testut et al., 2003; Brankart et al., 2003), using local observa-
tional updates (still performed in a reduced dimension space
using Eq. (17), with locally definedŜandR matrices).

After the observational update, it may be that the updated
parameters do not satisfy the inequality constraints given by
Eq. (18). If this situation occurs, the out-of-range parameter
values are simply reset to the closest valid value as explained
in Sect.3.3 for the ensemble experiments. This is of course
an additional and quite crude approximation in the computa-

tion of the posterior parameter estimates. The difficulty origi-
nates from the assumption of a constant parameter increment
that is added to parameter maps that are not constant over the
assimilation cycle. It is thus impossible to impose inequality
constraints on the increment, and to use them to improve the
shape of its prior probability distribution (for instance, by a
truncated Gaussian assumption, as inLauvernet et al., 2009
or by a nonlinear change of variable, as inBéal et al., 2009).

3.5 Truncation of the prior Gaussian distribution

In any inference problem, the accuracy of the posterior esti-
mates crucially depends on the quality of the assumptions on
the prior probability distributions, which in our problem are
parameterized as Gaussian distributions:p(x̂)=N (x̂b, P̂),
p(y|x̂)=N (Ĥx̂, R). In the first distribution, we only include
error that are due to forcing parameters, so that all other
sources of errors must be included in the second distribu-
tion to correctly explain the dispersion of the observations
(i.e. their covariance must be included in the observation er-
ror covariance matrixR). In our experiments, underestimat-
ing R is dangerous, because this means giving too much con-
fidence to the observations, or in other words, interpreting
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Fig. 5. Correlation with respect to SST at66◦ E, 1◦52 S, forTa (top left panel),qa (top right panel),C (bottom

left panel),CE (bottom right panel).
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Fig. 5. Correlation with respect to SST at 66◦ E, 1◦52 S, forTa (top
left panel),qa (top right panel),C (bottom left panel),CE (bottom
right panel).

an excessive part of the misfit with respect to the observa-
tions as due to forcing errors. The direct consequence is an
excessive correction applied to the forcing parameters, that
corresponds to very low prior parameters probability. Pro-
hibitive values of the parameters, never occuring in the real
system, can be reached because of the excessive tendency
of fitting the observations (whose dispersion can only be ex-
plained by the existence of other sources of error in the sys-
tem). Naturally, overestimatingR is also dangerous, because
this means not exploiting enough the observational informa-
tion, and missing a part of the error variance that can be ex-
plained by forcing errors.

In order to reconcile the necessity to maintain the esti-
mated forcing parameters inside a realistic range of values
with the difficulty of producing a parameterization of the ob-
servation error covariance matrixR that is sufficiently accu-
rate, we decide to proceed in the following way. First, we
use a quite crude parameterization for the observation error
covariance matrix: uncorrelated errors (diagonalR matrix)
with uniform and quite small standard deviation: 0.1◦C for
SST observations ans 0.02 psu for SSS observations. We can
thus be quite sure that too much confidence is given to the
observations (underestimatedR). But second, we truncate
the prior probabilityp(x̂) by imposing zero prior probability
to large parameter increments. More precisely, the distribu-
tion in the reduced spacep(ξ) is truncated by the inequality
constraints:|ξi |≤γ, i=1, . . . , r. |ξi | values larger thanγ
are thus assumed impossible. This corresponds to excluding
an increment of the parameters along each error mode (each
eigenmode in Eq. (14), left equation) if it is larger thanγ
times the standard deviation along that error mode. In our ex-
periments, we setγ=3, which excludes any increment (along
each mode) that is outside the 99.7% prior Gaussian confi-
dence interval (i.e. occcuring typically in 0.3% of the param-

eter maps sampled from a free model simulation, according
to a Gaussian assumption).

From this modified prior probability distributionp(ξ), it
can be deduced from the Bayes theorem (8) that the poste-
rior pdf p(ξ |y) is given by the same solution (17) as in the
Gaussian problem but truncated by the constraints|ξi | ≤ γ

(since there is only multiplications by zero in Eq. (8), see
Lauvernet et al., 2009, for more detail). The difference is
that the previous Gaussian best estimateξa may not satisfy
the constraints, and thus no more corresponds to maximum
probability (but to zero probability). With the set of simple
constraints|ξi |≤γ , it is not difficult to see that the new max-
imum probability is obtained for

ξ∗

i = ξa
i min

(
1,

γ

|ξa
i |

)
, i = 1, . . . , r (20)

Since ther inference problems are still independent, the
maximum joint probability is indeed obtained if each one-
dimensional pdf is maximal (i.e. nearest toξa

i within the
valid interval). With this assumption, we can thus compute
from ξa

i the forcing parameters that are capable of explaining
the largest part of the misfit with respect to the observations,
while remaining in a realistic range of variation (along each
of the error modes). In that way, we expect that we can an-
swer to the initial question (Sect.3.1): identifying what part
of the misfit between model simulation and reanalysis can be
explained by errors in the atmospheric forcing function.

4 Results

4.1 1-year model simulation with parameter optimiza-
tion

In this section the results of the free simulation are compared
to those obtained with parameter optimization (without di-
rect correction of the model state). In Fig.1, the red line
corresponds to the SST or SSS time evolution of the RMS
error (difference with respect to the reanalysis) in the optimal
simulation, that includes the application of our correction of
the atmospheric forcing parameters. Starting from the per-
fect initial condition as indicated in Sect.3.2, we observe
in the first assimilation cycles that the initial error trend is
strongly reduced by the parameter correction (compare with
the black curve starting from the same condition). This al-
ready shows the ability of the scheme to control a signifi-
cant part of the model error that is due to the original forcing
parameters. The large error reduction observed at the end
of the initialization period then stabilizes over time over the
one year diagnostic period. Much of the SST and SSS er-
ror in the free simulation is cancelled and the error variances
(over the full domain) becomes about 3 times smaller than
the corresponding values in the free simulation. Both curves
stabilizes in time at around 0.5◦C RMS for SST and around
0.15 psu RMS for SSS with a drift that is now almost fully
under control.
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Fig. 6. Maps of systematic error (top panels) and error of standard deviation (bottom panels) for SST (in◦C, left panels) and SSS (in psu,
right panels) as obtained for the model simulation with parameter optimization (starting from perfect initial condition).

However, this error remains very inhomogenous horizon-
tally. Figure6 shows maps of the spatial distribution of the
SST and SSS misfit in terms of systematic error (top pan-
els) and error standard deviation (bottom panels). As in
Fig. 2, both statistics are computed for the one-year diag-
nostic period. Globally, by comparison to Fig.2, we observe
an important reduction of the SST and SSS systematic er-
ror and standard deviation everywhere in the global ocean.
The only regions where a significant residual error remains
are the Gulf Stream and Kuroshio regions, the Confluence
region and the ACC and, to a lesser degree the Eastern Pa-
cific equator (for SST) and the Western Pacific equator (for
SSS). These errors are the consequence of the presence of
other sources of error in the system which it is impossible to
correct by just optimizing the forcing function. In particular,
in the Western boundary currents and the ACC, an important
part of the original error is due to the bad representation and
localization of the ocean currents in our low resolution ocean
model. This is why, in this case the parameter correction cor-
responding to an important bias is, for a large part, unrealistic
as will be explained in Sect.4.3.

In order to have a better view of what occurs in the other
regions (covering most of the ocean), the results in Fig.1
are also presented (in the right panel) by excluding from
the average the 10% of the ocean with the largest free run
RMS misfit (for SST and SSS respectively). As compared to
the full ocean results (left panel), the error reduction is here
even more significant, with RMS misfits stabilizing at about
0.25◦C for SST ans 0.01 psu for SSS (without any residual
drift). It appears that without considering the problematic ar-
eas listed above, the optimization of the atmospheric forcing
parameters has a significant positive impact on the simula-

tion, leading to surface ocean properties that are in very good
agreement with the Mercator-Ocean reanalysis, and this re-
sult concerns up to 90% of the ocean surface.

4.2 Diagnostic of the mixed layer properties

In order to provide an idea of the vertical structure of the
RMS error, on temperature and salinity, Fig.7 shows the mis-
fit with respect to the reanalysis for the simulation obtained
with (dotted lines) and without (solid lines) parameters opti-
mization. The figure is organized according to zonal bands:
the Northern zone (between 55◦ N and 19◦ N, top panels),
the Tropical zone (between 19◦ N and 22◦ S, middle pan-
els) and the Southern zone (between 22◦ S and 56◦ S, bot-
tom panels). Each panel shows the results for the Atlantic
ocean (black), the Pacific ocean (red) and the Indian ocean
(green). In general, dotted lines show smaller RMS misfit
than solid lines, indicating the positive impact of the param-
eters optimization over the whole depth of the mixed layer.
However, this impact is more significant in the mid–latitudes
than in the tropics because the large subsurface difference ob-
served at the equator, are associated to the thermocline (and
thus well below the mixed layer), and are not connected to
errors in the heat and fresh water flux. They correspond to
errors in the depth of thermocline that result from wind forc-
ing differences (likely connected to errors in the wind stress)
or from the effect of data assimilation in the reanalysis. On
the contrary, in the mid–latitudes, the error becomes much
more constant along the vertical if the atmospheric param-
eters are optimized. The large error close to the surface in
the free simulation (without parameter optimization) corre-
sponds indeed to errors in the mixed layer that are clearly
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due to forcing errors, and that can be very substantially re-
duced by the optimization of the forcing parameters.

4.3 Diagnostic of the parameter estimates

In the previous sections, we have analyzed the impact of
the parameter optimization on the temperature and salinity
fields, and demonstrated globally that it produces thermo-
haline properties of the mixed layer that are in much bet-
ter agreement with the Mercator-Ocean reanalysis. However,
these positive results concerning temperature and salinity do
not mean necessarily that the parameters themselves have
been improved. This is much more difficult to demonstrate
because our experiments are not twin experiments, so that we
do not know the true values of the parameters. This is very
different from the previous study bySkachko et al.(2009)
who used twin experiments to demonstrate the accuracy of
the parameter estimates. In our experiments, only indirect
arguments can be proposed to study the relevance of the cor-
rected atmospheric parameters. This can be done by trying
to detect the two situations in which the T/S fields can be
improved by irrelevant parameter corrections:

– the optimization scheme produces irrelevant parameter
corrections that compensate for other sources of error,

– the optimization scheme produces irrelevant parameter
corrections that compensate each other.

The first situation means that perhaps too much confidence
has been given to the observations, and that part of the inno-
vation is unduly attributed to atmospheric parameter errors.
In this, we must also include compensations for wind errors,
which have not been included in the control vectors of the
assimilation scheme (see Sect.3.3). And the second situa-
tion means that the parameters may not be simultaneously
controllable by the observations, i.e. the problem may be un-
derdetermined.

The evaluation of the relevance of our parameter correc-
tions will be based on two diagnostics: the time average of
the parameter increment over the diagnostic period (Fig. 8)
and the time standard deviation of the parameter increment
(Fig. 9). The average increment can be compared to the mean
parameter map in the original dataset (in Fig. 3) to get an idea
of the average relative correction. And the standard deviation
of the increment can be compared to the standard deviation
of the time variability in the original data (in Fig. 4) to get
an idea of the importance of the corrections with respect to
the natural variability of the parameters. On these maps, we
can see that almost identical corrections are computed every-
where forCE andCH consistently with their modelling by the
aerodynamic bulk formulas. (Both are linear functions of the
turbulent friction velocity.) Since the perturbations applied
to the parameters in the ensemble forecast have the same co-
variance as a free model simulation,CE andCH can only be
corrected in that way by the assimilation scheme.

Fig. 7. RMS misfit with respect to the reanalysis temperature (left panel) and salinity (rightpanel). The Figure is organized according to

zonal regions: the Northern zone (between 55◦ N and 19◦ N, top), the Tropical zone (between 19◦ N and 22◦ S, middle) and the Southern zone

(between 22◦ S and 56◦ S, bottom). Each panel shows the results for the Atlantic ocean (black), the Pacific ocean (red) and the Indian ocean

(green). Solid lines correspond to the free simulation and dashed lines correspond tothe simulation with optimized atmospheric parameters.

For this figure, the 10% of the ocean with the largest free run RMS misfit havealso been excluded from the computation of the horizontal

averages.
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Fig. 7. RMS misfit with respect to the reanalysis temperature (left
panel) and salinity (right panel). The figure is organized according
to zonal regions: the Northern zone (between 55◦ N and 19◦ N, top),
the Tropical zone (between 19◦ N and 22◦ S, middle) and the South-
ern zone (between 22◦ S and 56◦ S, bottom). Each panel shows the
results for the Atlantic ocean (black), the Pacific ocean (red) and
the Indian ocean (green). Solid lines correspond to the free simula-
tion and dashed lines correspond to the simulation with optimized
atmospheric parameters. For this figure, the 10% of the ocean with
the largest free run RMS misfit have also been excluded from the
computation of the horizontal averages.

The first important thing to notice is that the amplitude of
the correction is never larger than a few times the standard
deviation of the natural variability of the parameters. This is
the direct consequence of the limitationγ=3 that we have
imposed on the correction in the reduced space. Moreover,
approaching this maximal correction in average (i.e. a fac-
tor larger than 1 and even approaching 3 between Figs. 4
and 8) means that the correction is saturating on theγ=3
limit, which already indicates that the scheme is attempting
to correct large temperature and salinity misfits that cannot
be fully explained by the postulated level of parameter inac-
curacy. This occurs first in regions of strong TS fronts result-
ing from important currents, where the scheme compensates
the misplacement of the currents by irrelevant corrections of
the parameters. In the Gulf Stream region, for instance, satu-
rated corrections of the cloud fraction and relative humidity
are produced North of the real position of the front (as repre-
sented by the reanalysis) to compensate for the overshooting
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Fig. 8. Time average of the optimized parameter increment over the diagnostic period. The figure shows this result for parametersCE×10−3

(top left panel),CH×10−3 (top right panel),C (middle left panel),P (in mm, middle right panel),Ta (in K, bottom left panel) andqa (bottom
right panel).

of the current in the model solution. The same phenomenon
happens in the ACC, but over a much larger area and with
an even stronger impact on the parameters (see the mean and
standard deviation of the cloud fraction and relative humidity
around 60◦ S). A similar problem also occurs in the Equato-
rial regions where surface temperature differences (certainly
induced by wind errors) are here compensated by heat flux
corrections. (The negative average precipitation increment in
the Western Pacific is applied by the scheme to compensate
for the negative salinity bias in this region; compare Figs. 2
and 6). In all these problematic regions, the saturation of the
parameter increment (with theγ mechanism) also explains
why it is also in these regions that SST and SSS differences
with respect to the reanalysis (shown in Fig. 6) remain the
largest. There, the scheme refused the large parameter cor-
rections that would have been necessary to fully compensate
the SST/SSS differences. The consequence is that the large
SST/SSS misfits remain, while the parameters stay inside a
reasonable range.

As a distinct kind of problem, it is interesting to remark the
very large correction applied in the Southern ocean (along
the Antarctic coast) to theCE andCH coefficients on the one

hand, and on the air temperatureTa on the other hand. These
very large increments are not there to compensate very large
SST and SSS errors (compare Figs. 2 and 6), so that they
mainly compensate each other to produce the required SST
and SSS corrections. This behaviour denotes the difficulty
to control simultaneously several parameters using only SST
and SSS observations. In this particular case, the large cor-
rections are made possible by the very large standard devi-
ation of these parameters in the natural variability of this
region, and the scheme exploits this possibility as much as
possible to fit the observations. There, the covariance of the
parameter variability is certainly inadequate to represent cor-
rectly parameter errors.

The previous discussion summarizes the list of regions
where the limitations of the method are most obvious. But
everywhere else, the corrections are much smaller than the
error bars that have been imposed and nevertheless suffi-
cient to obtain temperature and salinity improvements (as ob-
served by comparing Fig. 6 to Fig. 2). Such a result demon-
strates that for the largest part of the ocean (in absence of
other sources of errors strongly influencing SST and SSS),
it is possible to produce moderate atmospheric parameter
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Fig. 9. Standard deviation of the optimized parameter increment over the diagnostic period. The figure shows this result for the parameters
CE×10−3 (top left panel),CH×10−3 (top right panel),C (middle left panel),P (in mm, middle right panel),Ta (in ◦K, bottom left panel)
andqa (bottom right panel).

corrections that can drive the mixed layer properties of long-
term ocean simulations very close to reanalysis data.

4.4 Influence of initial condition errors

Our first concern was to investigate ways of correcting the
errors due to the atmospheric forcing and to dissociate them
from other sources of error, like intrinsic model error or ini-
tial conditions errors. Up to here, we focused on that by start-
ing the simulations from a perfect initial condition. As an
additional experiment it is however useful to study the influ-
ence of initial condition error. For that purpose, we started
a new free model simulation with parameters optimization
from the initial date (30 December 1992) of the original ref-
erence simulation (without the relaxation that was performed
to reach the perfect initial condition). This simulation (still
without state correction) is illustrated by the green line in
Fig. 1. What we observe first is the rapid error decrease dur-
ing the first assimilation cycles of the experiment, showing
the ability of the scheme to reduce the SST and SSS error
that is present in the initial condition and to control the model
error due to original parameters forcing. The comparison of

the corresponding SST and SSS misfits with those obtained
with perfect initial conditions (red lines), shows that the two
experiments have the same kind of asymptotic behaviour on
the long term, which means that the initial condition is pro-
gressively forgotten with time. Even if there is an impact
of the initial error on the long term behaviour, particularly
obvious for SSS, both simulations are characterized by er-
ror with similar magnitude over the diagnostic period, which
means that the method can be applied with a similar success
in presence of initial condition errors.

5 Conclusions

In this study, data assimilation experiments have been per-
formed with the aim of controlling the parameters govern-
ing the atmospheric forcing, using idealized sea surface tem-
perature and salinity observations, that are extracted from
the Mercator-Ocean reanalysis data set. The results show
that it is possible to compute piecewise constant parameter
corrections, with predefined amplitude limitations, so that
long-term free model simulations become much closer to the
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reanalysis data, with misfit variances typically divided by a
factor 3 (for the global ocean) or by a factor 5 (if we exclude
the frontal zones). However, the model that is used to per-
form these experiments is a low resolution model that does
not represent correctly the Western boundary currents and
other important circulation features which depend on resolu-
tion. The consequence is that part of this model error is incor-
rectly ascribed to the parameters so that the prescribed am-
plitude limitations saturate in these regions, thus indicating
that the parameter corrections are irrealistic. Such problems
can only be circumvented either by improving the model (for
instance by increasing the resolution) or by controlling this
error by data assimilation (for instance using altimetric ob-
servations). On the other hand, our experiments also suggest
that a large part of the error (i.e. the misfit with respect to the
reanalysis) can be explained by a bias on the reference pa-
rameters, with the consequence that our estimation scheme
cannot be considered optimal (since centered prior probabil-
ity distributions are assumed). All these results point towards
the need for accurately specifying the prior parameter prob-
ability distribution and, despite of the deficiencies just men-
tioned, the experiments performed in this study already rep-
resent a significant step in this direction: by constructing the
prior distributions locally in time, and by imposing strict lim-
itations to the amplitude of the correction, we can be sure at
least (by construction) that the parameter estimates always
remain in a realistic range of values (i.e. inside their local
range of variation in the input atmospheric data).

From a methodological point of view, the application of
such state dependent prior constraints is made practically
possible by the use of a Monte Carlo method to simulate the
joint parameter/state probability distribution. For that pur-
pose, a truncated Gaussian assumption is used to parame-
terize these distributions, so that the posterior parameter es-
timates can be computed very efficiently. However, in the
present study, the constraints have been defined according to
a statistical criterion (99% confidence interval), which is cer-
tainly not the best way of summarizing the prior information
about the parameter range of validity. In order to improve the
definition of the estimation problem, the best perspective is
certainly to give a more physical basis to the specification of
the constraints. This can only be done by defining directly
the range of validity in parameter space (and no more in the
reduced space as in this paper), so that the simplifications
that we brought to the truncated Gaussian filter ofLauvernet
et al. (2009) would no more be applicable. Even if the al-
gorithm can become somewhat more complex, this potential
solution is certainly a good candidate to continue improving
the prior parameter probability distribution, which we have
just shown to be a key issue in the computation of more real-
istic parameter estimates.
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