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Abstract. Data assimilation methods often use an ensem-
ble to represent the background error covariance. Two ap-
proaches are commonly used; a simple one with a static en-
semble, or a more advanced one with a dynamic ensemble.
The latter is often non-practical due to its high computational
requirements. Some recent studies suggested using a hy-
brid covariance, which is a linear combination of the covari-
ances represented by a static and a dynamic ensemble. Here,
the use of the hybrid covariance is first extensively tested
with a quasi-geostrophic model and with different analysis
schemes, namely the Ensemble Kalman Filter (EnKF) and
the Ensemble Square Root Filter (ESRF). The hybrid covari-
ance ESRF (ESRF-OI) is more accurate and more stable than
the hybrid covariance EnKF (EnKF-OI), but the overall con-
clusions are similar regardless of the analysis scheme used.
The benefits of using the hybrid covariance are large com-
pared to both the static and the dynamic methods with a small
dynamic ensemble. The benefits over the dynamic methods
become negligible, but remain, for large dynamic ensembles.
The optimal value of the hybrid blending coefficient appears
to decrease exponentially with the size of the dynamic en-
semble. Finally, we consider a realistic application with the
assimilation of altimetry data in a hybrid coordinate ocean
model (HYCOM) for the Gulf of Mexico, during the shed-
ding of Eddy Yankee (2006). A 10-member EnKF-OI is
compared to a 10-member EnKF and a static method called
the Ensemble Optimal Interpolation (EnOI). While 10 mem-
bers seem insufficient for running the EnKF, the 10-member
EnKF-OI reduces the forecast error compared to the EnOI,
and improves the positions of the fronts.
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(francois.counillon@nersc.no)

1 Introduction

Data assimilation methods can use ensembles to obtain and
propagate the system state and the background error covari-
ance. Two different approaches are often used. The first
one, referred to as ensemble optimal interpolation (EnOI,
Evensen, 2003), uses a static ensemble of model states. The
second and theoretically more consistent approach, uses a
dynamic ensemble, as for example the ensemble Kalman fil-
ter (EnKF, Evensen, 2007). Dynamic ensembles provide a
flow-dependent background error covariance, but they can
require of the order of 100 model realizations for realistic
oceanic applications (Natvik and Evensen, 2003). Therefore,
in practice one has to either favour the high model resolu-
tion combined with an inferior data assimilation method, or a
more optimal data assimilation method at the expense of the
model resolution. However, in many applications it is im-
portant to have a sufficient model resolution for obtaining a
realistic representation of the dynamics. For example, Chas-
signet et al. (2005) show the importance of the model resolu-
tion for placing accurately the fronts in the Gulf of Mexico.

Yin and Oey (2007) and later Counillon and Bertino
(2009a) investigate ensemble forecasting with a small en-
semble (10 members) and a high resolution model of the Gulf
of Mexico. Yin and Oey (2007) show that a probabilistic
forecast provides a better accuracy than a single forecast,
and Counillon and Bertino (2009a) show using an advanced
perturbation system that the ensemble spread is correlated in
space and time with the model error. This indicates that even
small dynamic ensembles can be useful for data assimilation
purposes.

Hamill and Snyder (2000) suggest a hybrid scheme called
EnKF-3DVAR that combines the covariance from a dy-
namic ensemble with the static background covariance from
3DVAR. Each ensemble member is updated with perturbed
observations. The method is tested with a quasi-geostrophic
model, and it shows improvements relative to 3DVAR. The
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improvements are largest in case of a sparse observation net-
work. A similar approach was also suggested by Lorenc
(2003). Etherton and Bishop (2004) suggest a hybrid scheme
called the ETKF-3DVAR. It uses the ensemble transform
Kalman filter (ETKF, Bishop et al., 2001) analysis scheme
for updating the dynamic ensemble. In order to reduce the
computational cost, only the ensemble mean is updated with
the hybrid covariance, whereas the ensemble is updated us-
ing the ETKF. The ETKF-3DVAR is shown to outperform
the 3DVAR in a two-dimensional turbulent model. Wang
et al. (2007) use the ETKF-3DVAR, with localization for
the ensemble mean, and compare it to the ESRF with local-
ization (Whitaker and Hamill, 2002) for a two-layer prim-
itive equation model. The ETKF-3DVAR outperforms the
ESRF for small dynamic ensemble size (5 members), pro-
duces similar results for intermediate dynamic ensemble size
(20 members), but is outperformed by the ESRF for larger
dynamic ensembles. Finally, Wang et al. (2008a,b) demon-
strates that the benefit of hybrid covariance remains when
assimilating real observation on a coarse model.

For ocean applications, observations are typically less fre-
quent than for the atmospheric applications, so that the model
integration step often dominates the computational cost rela-
tive to the assimilation step. In this case, an update of both
the ensemble mean and covariance using the hybrid covari-
ance will lengthen the assimilation step, but will remain neg-
ligible with respect to the total computational cost. If using
the hybrid covariance is beneficial for an update of the en-
semble mean, it should also be beneficial for updating the
ensemble covariance. Furthermore, an update of the ensem-
ble mean and covariance is more in line with the Kalman
Filter. We also use a method comparable to 3DVAR referred
as EnOI (Evensen, 2003), which was successfully applied in
the GOM (Counillon and Bertino, 2009b). To analyze the
benefit of the hybrid covariance, we compare the hybrid co-
variance EnKF (called hereafter EnKF-OI) to the EnKF, and
the hybrid covariance ESRF (called hereafter ESRF-OI) to
the ESRF. The ESRF is a deterministic formulation of the
EnKF, and yields a better performance than EnKF for small
ensemble size (Whitaker and Hamill, 2002). Note also that
another approach is proposed in Wan et al. (2009), where in-
stead of combining the covariance matrix, the dynamic and
the static ensemble are “dressed”.

We see the main reason for using the hybrid covariance
is expanding the subspace of ensemble anomalies produced
by a small dynamic ensemble. While systems based on the
ensemble Kalman filter can yield a theoretically optimal up-
date, in practice this can only happen with an ensemble of
a sufficient rank to span the system error subspace. With an
ensemble of insufficient rank, the analysis becomes not only
suboptimal, but also degenerative, resulting in a collapse of
the ensemble. In contrast, a theoretically suboptimal EnOI-
based system is often able in similar circumstances to yield
meaningful updates and to provide an overall robust data as-
similation system. The hybrid covariance can be therefore

viewed as a compromise between a theoretically superior but
computationally expensive data assimilating system based on
a dynamic ensemble, and a computationally cheap and robust
but theoretically inferior system based on a static ensemble.

A primary objective of our study is to test the hybrid co-
variance when localization and hybrid covariance are applied
to both the ensemble mean and ensemble covariance, by do-
ing a clear-cut comparison for different analysis schemes
(EnKF, ESRF). A secondary objective resides in applying the
hybrid covariance to a realistic application and to an ocean
application.

The outline of this paper is as follows. The hybrid co-
variance method is presented in Sect. 2. The method is
then validated on a simple 1.5-layer reduced gravity quasi-
geostrophic model in Sect. 3. Finally, we demonstrate the
benefit of the hybrid covariance for a realistic application in
the Gulf of Mexico, in Sect. 4, and present our conclusion in
Sect. 5.

2 Hybrid covariance methodology

In sequential data assimilation, the system error covariance is
often calculated from an ensemble of model states. With the
EnOI, the static ensembleAs and the centred static ensemble
A′

s are defined as:

As = [ ψ1, .., ψNs
] and A′

s = As − As ∈ Rn×Ns , (1)

where ψ is a model state vector,Ns is the size of the static
ensemble,n is the size of the model state vector, and the
overbar denotes ensemble average. The square brackets de-
note a horizontal concatenation of the matrices separated by a
comma. A static ensemble may contain the model states sam-
pled from a long model integration. The integration should
be long enough to contain a wide variety of possible model
states.

Similarly A′

d∈Rn×Nd represents the centred dynamic en-
semble matrix, whereNd is the size of the dynamic ensem-
ble.

The ensemble covariance matrix calculated from the static
ensemble is denotedCs , and the one calculated from the dy-
namic ensembleCd . They are both assumed to represent the
forecast errorε:

εεT ≈ Cs =
α

Ns − 1
A′

s(A
′
s)

T, (2)

and

εεT ≈ Cd =
1

Nd − 1
A′

d(A′

d)T. (3)

The superscript T denotes a matrix transpose. The variance
of the static ensemble is usually different from the forecast
error variance, so that a scaling factorα is introduced in the
traditional EnOI framework (Evensen, 2003). The parameter
α is part of the tuning of an EnOI system, and is kept constant
in the following.
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As suggested by Hamill and Snyder (2000), we compute
a linear combination of the two covariance matrices with an
adjustable blend parameterβ1:

C̃ = βCs + (1 − β)Cd . (4)

Whenβ=0 (resp.β=1) the hybrid covariance is expressed
entirely by the dynamic ensemble (resp. static ensemble).

Wang et al. (2007) manipulate the matrix̃CHT
∈Rn×m,

with H being the measurement operator relating the prog-
nostic model state variables to the measurements, andm the
number of measurements. However, for a large number ob-
servationsCHT remains a large matrix. Here the matrix
Ã

′
HT

∈RN×m is used instead, wherẽA
′
is the matrix of com-

bined ensemble anomalies:

Ã
′
=

√
Ns + Nd − 1

[√
βα

Ns − 1
A′

s,

√
1 − β

Nd − 1
A′

d

]
, (5)

so that

C̃ =
1

Ns + Nd − 1
Ã

′
(Ã

′
)T. (6)

The Kalman filter equation is then solved as:

Aa
d = Af

d + δK(d − HAf
d ), (7)

Ca
d = (I − KH )Cf

d , (8)

where

K = C̃HT
(
HC̃HT

+ R
)−1

(9)

is the Kalman gain,R is the observation error covariance
matrix, I is the identity matrix,d is a vector of measure-
ments. An ensemble data assimilation system gets subop-
timal due to the limited ensemble size and partially inade-
quate priors assumptions. Such suboptimalities can lead to
an excessive reduction of the ensemble spread, which can
be maintained pragmatically by multiplying the assimilation
anomalies with a termδ called the ensemble inflation. The
superscript “a” refers to the analysis state and “f” to the fore-
cast.

Different schemes can be used for solving Eq. (8). In the
following we apply the two most widely used: the EnKF and
the ESRF. The EnKF is based on a Monte Carlo sampling
of Eq. (7) and applies perturbations to the observations that
can impair the stability of the results for small ensembles. To
circumvent this problem, the deterministic ESRF solves the
analysis Eqs. (7) and (8) without perturbing the observations,
and can provide more accurate and stable results (Whitaker
and Hamill, 2002).

The cost of the assimilation time step is usually in
O(N×m×n). When the hybrid covariance is used,

1β corresponds to 1-α in the notations of Hamill and Snyder
(2000).
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Fig. 1. Typical sea level elevation state (in dimensionless units)
from the quasi-geostrophic model; the dots indicate an example of
the observation locations.

N=Ns+Nd , and the time needed for assimilation becomes
longer than both the dynamic method and the static method.
However, usuallyNd�Ns , so that the cost remains similar
to the EnOI.

3 A quasi-geostrophic model

In order to analyze the capability of the hybrid covariance,
we first apply it to a simple 1.5-layer reduced-gravity quasi-
geostrophic (QG) model with double-gyre wind forcing and
biharmonic friction. It is a non-linear model with dimension
(127×127) (see Fig. 1), and model subspace dimension of
order of 102–103. The model is eddy resolving as it gen-
erates eddies of sizeO(10) of the model grid (see Fig. 1).
More details about the model are given in Sakov and Oke
(2008). The model is run over 1000 model time steps, and
is assimilating 300 sea surface height (SSH) observations
every 10 time steps. The observations are extracted from
a model run with lower viscosity, to which white noise is
added with a variance2 of 4. The observations are distributed
uniformly over the domain, with a different random offset
for each assimilation in order to mimic the typical distri-
bution of satellite tracks (represented by dots on Fig. 1).
Both the model code and the framework of the data assim-
ilating system used in the experiments are available from
http://enkf.nersc.no/Code/EnKF-Matlab.

2The scales and the units are dimensionless in this synthetic
model.
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Fig. 2. EnKF-OI (a) and ESRF-OI(b) values of errorsε depending on the inflationδ and the blend parameterβ, for 15 dynamic members
and 200 static members. A white circle is used for the runs that have failed.

The parameterα is fixed at a value for which the EnOI
is robust and performs with lowest error3 (α=0.04). This
value is also optimal with the hybrid covariance method (not
shown). The localization is applied with a Gaussian localiza-
tion function to the state error covariance matrix by means
of a Schur product (Houtekamer and Mitchell, 2001). The
localization radius is set to 25 grid cells. The localization
and the assimilation time step were both chosen large enough
to challenge the data assimilation method. For comparison
Sakov and Oke (2008) assimilate every four time steps, and
show that a smaller localization radius (of approximately 15
grid cells) provides more stable and accurate results.

The hybrid covariance blends 200 static members gathered
randomly over a period of 500 000 model time steps with
an increasing number of dynamic members until the perfor-
mance in terms of RMSE saturates. Four data assimilation
schemes are compared here: the EnKF, the ESRF and the
hybrid covariance EnKF-OI and ESRF-OI.

The accuracy of the system is assessed by the time average
root mean square error:

ε=
1

pf −p0+1

pf∑
p=p0

√√√√ 1

n−1

n∑
k=1

(
Af

d (p, k)− ψ t (p, k)

)2

. (10)

ε is calculated from the ensemble mean before assimilation
and start at iterationp0 (herep0=10 in order to remove the
data assimilation spin-up time).pf is the total number of
assimilation steps (herepf =100). ψ t represents a known
true field, from which synthetic observations are extracted.

3Our notation ofα follows that of Evensen (2003) and Counillon
and Bertino (2009b) but corresponds toα2 in Oke et al. (2005) and
in the EnKF-Matlab toolbox.

It is similar for all runs, and the random seed is fixed, so
that all runs of similar ensemble size use the same random
perturbation.

We vary the three adjustable parameters of the method,
the linear blending coefficientβ, the inflation parameterδ
and the size of the dynamic ensembleNd , and evaluate the
resulting errorε. The parameterβ is chosen from 0 to 1
with an increment of 0.1, the parameterδ from 1 to 1.6 with
an increment of 0.05, as shown in Fig. 2 where every circle
represents the run average forecast errorε calculated for a
givenβ, δ andNd . The values ofNd are chosen as reported
in Table 1. The optimal setting minimizes the errorε. The
values at optimum are denotedε∗, β∗, δ∗, and are reported in
Table 1.

Whenβ=0, the EnKF-OI (resp. ESRF-OI) coincides with
the EnKF (resp. ESRF) method. Whenβ=1, every member
of the dynamic ensemble is updated by the static covariance.
The best guess is still provided by the ensemble average in
this case, so that the method does not strictly coincide with
the EnOI. In these experiments we observe that the EnKF-
OI and ESRF-OI withβ=1 provide a slightly better estimate
than the traditional EnOI, which is in agreement with the re-
sults of Wang et al. (2007). This is a consequence of the
non-linearity of the QG model, because in a linear model, the
integration of the ensemble mean coincides with the mean
of the integrated ensemble. Note that the hybrid covariance
method withβ=1 is failing when inflation (or deflation) is
used.

We start our experiment with 5 dynamical members. It
is characterized by a big proportion of failed runs. How-
ever, there is a clear core of runs that complete for hybrid co-
variance methods (EnKF-OI and ESRF-OI) with high values
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Table 1. Quasi-geostrophic summary table of theε∗, β∗, andδ∗ obtained for each number of dynamic members with the EnKF-OI, EnKF,
ESRF-OI, and ESRF analysis schemes. The EnKF-OI with a single dynamic member corresponds exactly to the EnOI. Empty cells indicate
that all runs have failed for a given number of dynamic members.

Nd 1(EnOI) 5 10 15 20 25 30 35 40

EnKF-OI ε∗ 2.32 1.70 1.45 1.38 1.29 1.23 1.22 1.17 1.15
EnKF-OIβ∗ 1 0.7 0.6 0.5 0.6 0.1 0 0.4 0.1
EnKF-OI δ∗ 1.55 1.35 1.4 1.26 1.15 1.26 1.2 1.2
EnKF ε∗ 2.03 1.65 1.31 1.22 1.20 1.19
EnKF δ∗ 1.45 1.45 1.15 1.26 1.2 1.2
ESRF-OIε∗ 2.32 1.61 1.34 1.21 1.19 1.10 1.087 1.06 1.02
ESRF-OIβ∗ 1 0.7 0.6 0.4 0.3 0.2 0.1 0.1 0
ESRF-OIδ∗ 1 1.5 1.25 1.25 1.15 1.15 1.15 1.15 1.15
ESRFε∗ 2.27 1.49 1.23 1.114 1.116 1.07 1.02
ESRFδ∗ 1.5 1.35 1.3 1.15 1.2 1.15 1.15

of β, whereas neither the EnKF nor the ESRF (i.e. with
β=0) have completed. This indicates that the hybrid covari-
ance methods avoid divergence in some configurations with
a small dynamic ensemble, in agreement with Wang et al.
(2007). Using the hybrid covariance also reduces the error
ε by approximately 26% compared to the EnOI. The hybrid
covariance methods become more stable with 10 dynamic
members, as fewer runs fail. At the same time, only a single
run have complete with the ESRF, but it is of similar accu-
racy to the EnOI. For 15 members (see Fig. 2), all of the
four schemes converge. When more than 25 dynamic mem-
bers are used, the benefit from using the hybrid covariance
over the EnKF/ESRF is only slight, and the bestε∗ is loosely
defined on a broad range of values ofβ andδ.

When the dynamic ensemble is large enough, the sampling
error becomes negligible. The EnOI makes the additional
assumption that historical ensemble is representative of in-
stantaneous forecasting error. Therefore, when dynamical
ensemble is self-sufficient, one merely expects the adjunc-
tion of static covariance to deteriorate the results, therefore
in this caseβ∗=0. In Table 1, this occurs two times: for 30
dynamic members with the EnKF-OI and for 40 members
with the ESRF-OI. The first occurrence with the EnKF-OI
is likely to be the result from random variations, asβ∗ is
again positive with a larger dynamic ensemble. The second
occurrence with the ESRF-OI seems more reliable because
the ESRF with an ensemble of 40 members does converge
to its maximum accuracy. After refining the discretization
in β andδ, we obtainβ∗=0.05. It indicates that even when
the EnKF has nearly converged to its maximum accuracy, the
use of hybrid covariances is still beneficial (see Fig. 3). This
seems to contradict Wang et al. (2007) where the ESRF gives
better result than the ETKF-OI for a large dynamic ensem-
ble. However, their result may be caused by the difference
between the ESRF with full localization and the ETKF with
localization only for updating the ensemble mean.
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Fig. 3. Quasi-geostrophic summary plot of minimum errorε∗

vs. the dynamic ensemble size, for each data assimilation method.
The observation error has standard deviation of 2.

In Table 1 and Fig. 4, the relationship between the blend
parameterβ and the size of the dynamic ensembleNd is an-
alyzed. The value ofβ∗ decreases with increasingNd . This
result seems natural, as with an increase of the dynamic en-
semble size, the need for a static ensemble is reduced. In
Fig. 4, the curve ofβ∗ for the ESRF-OI is relatively regular.
The relationship is noisier with the EnKF-OI due to its Monte
Carlo nature, but overall the curves match, and can be fitted
by an exponential (green line on Fig. 4). This indicates that
the parameterβ∗ may be independent of the analysis scheme
chosen. We suggest that the value ofβ∗ reflects the balance
between the rank of the dynamic ensemble and the model er-
ror subspace dimension, which implies that one can predict
the optimal value ofβ∗ for a given size of dynamic ensemble,
and the dimension of the model error subspace.
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Table 2. Gulf of Mexico model total average RMSEε1 and nowcast average RMSEε3 for a 10-member EnKF-OI with different values of
β and for the EnOI. The gain represents the percentage of improvement relative to the EnOI.

EnKF-OI β=0 (EnKF) β=0.2 β=0.5 β=0.65 β=0.8 β=0.9 β=0.95 β=1 EnOI

ε1(m) 0.147 0.075 0.069 0.07 0.065 0.066 0.063 0.067 0.070
Total average gain (%) -110 −7 2 0 7 6 10 5 0
ε3(m) at nowcast 0.166 0.094 0.093 0.094 0.089 0.088 0.084 0.09 0.097
Nowcast gain (%) −70 3 5 4 8 9 14 8 0
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Fig. 4. Quasi-geostrophic summary plot of optimal blending coef-
ficient β∗ vs. the dynamic ensemble size, for the EnKF-OI and the
ESRF-OI. The green solid line is an exponential fit to the ESRF-OI
experiment.

4 A realistic application: Gulf of Mexico nested model

The dynamics in the Gulf of Mexico (GOM) are domi-
nated by the northward Yucatan Current flowing into a semi-
enclosed basin. This current forms a loop (called the Loop
Current, LC) and exits through the Florida Straits. At ir-
regular intervals (Vukovich, 1988; Sturges and Leben, 2000)
the LC sheds large eddies that propagate westward across
the GOM. The eddy shedding involves a rapid growth of
non-linear instabilities (Cherubin et al., 2005b), and these
are difficult to forecast (Chassignet et al., 2005; Counillon
and Bertino, 2009b). In particular, Eddy Yankee (2006) was
problematic for the offshore industry operating in the north-
ern shelf of the GOM. Thus, it is used for investigating the
benefits of hybrid covariance for a realistic system conducted
below.

4.1 Experimental setup

Chassignet et al. (2005) demonstrate the skill of HYCOM for
the GOM. They emphasize the importance of both horizontal

resolution and lateral boundary conditions for accurate pre-
diction of the fronts there. A nested configuration can satisfy
these two requirements with reasonable computing cost. The
TOPAZ3 system provides lateral boundary conditions to a
high-resolution model of the GOM (Chapter 15 in Evensen,
2007) using nesting techniques described in Browning and
Kreiss (1982).

TOPAZ3 is a real-time forecasting system for the Atlantic
and Arctic basins with a configuration of HYCOM, capable
of monitoring the circulation patterns in the Atlantic. The
grid is created using a conformal mapping of the poles to
two new locations by the algorithm outlined in Bentsen et al.
(1999). The horizontal resolution varies from 11 km in the
Arctic to 18 km near the Equator (approximately 1/8◦). The
model is initialized from the GDEM3 climatology (Teague
et al., 1990) and spin-up for 16 years. The TOPAZ3 proto-
type used in this work only provides the boundary conditions
and does not include data assimilation, because of computer
costs.

The high-resolution GOM model is set-up with 5 km
horizontal resolution, which is sufficient to resolve the
mesoscale features considering the Rossby radius in the area
(Ro'30 km). The model uses a fourth order numerical
scheme for treating the advection of momentum in the prim-
itive equations (Winther et al., 2007). To minimize the spin-
up time, the initial state is interpolated from an equilibrium
state of TOPAZ3, and spin-up for 3 years.

For both models, there are 22 layers in the vertical. The
bathymetry is specified using the General Bathymetric Chart
of the Oceans database (GEBCO) with 1′ resolution, inter-
polated to the model grids. The models are forced by the
6-hourly and 0.5◦ analyzed fields from the European Cen-
tre for Medium range Weather Forecasting (ECMWF, see
http://www.ecmwf.int). The system is described in more de-
tail in Counillon and Bertino (2009b).

At the time of writing the article, we can afford a dynamic
ensemble of 10 members in real-time. Here we compare a
10-member EnKF-OI, a 10-member EnKF, and an EnOI by
assimilating altimetry data. The EnOI uses a historical en-
semble that is composed of 122 weekly model outputs over a
2.5 years period, without data assimilation. All methods use
a fixed localization radius4 of 150 km. A smooth transition

4This may be refined by a depth-dependent radius as in Counil-
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is ensured at the edges of the localization area by applying
a weight function to the innovations. This function depends
on the distance between the observation and the target point
(Counillon and Bertino, 2009b). A value ofα=0.23 is found
to be optimal for both the EnOI and the EnKF-OI set-up at
the nowcast forecast horizon, and has is used in the experi-
ments below. In order to identify the optimal value ofβ, we
run the EnKF-OI with the values shown in Table 2.

The dynamic ensemble for the EnKF and the EnKF-OI
is spun-up in order to provide realistic correlation. The ini-
tial set of restart files is randomly extracted from an a three
weeks EnOI run that precedes the starting date, in order to re-
duce the spin-up time of the ensemble. The ensemble spread
is then maintained by using perturbations and inflation over
the successive assimilation cycle. In Counillon and Bertino
(2009a), perturbations are applied to the atmospheric forcing,
the lateral boundary conditions, and the assimilated state for
the GOM model. The perturbations of the assimilated state
appear to control the main position of the large features of the
GOM (e.g. LC, eddies), whereas perturbations of the bound-
ary conditions (atmospheric and lateral) control the growth
of cyclonic eddies at their boundary. The same technique
is used here for perturbing the boundary conditions, but the
assimilated state is perturbed similarly to the EnKF; i.e. by
perturbing the measurements during assimilation. The per-
turbations of the atmospheric fields (wind stress, air temper-
ature) are simulated with a spectral method (Evensen, 2003),
using a 50 km decorrelation radius, which is too small to be
represented in the ECMWF data, but large enough to stimu-
late the ocean model. The perturbations of the lateral bound-
ary conditions are simulated by introducing a time lag to
the boundary conditions, which is set randomly at the be-
ginning of each model run, between−37 and +37 days from
the actual date. This perturbation system introduces an initial
barotropic imbalance, which is damped within a day. In ad-
dition, we use an ensemble inflation of 15%, which increases
the ensemble spread and slightly improves the accuracy over
time.

The assimilated SLA maps are provided by Ssalto/Duacs
on a 1/3◦ Mercator grid (Le Traon et al., 2003), with a one
week delay. The standard deviation of the measurements is
assumed to be constant, and it is using the average value
specified by the provider in the GOM area (3 cm). The mea-
surements are less accurate in the coastal area, therefore mea-
surements are selected only in regions deeper than 300 m,
which correspond in the GOM to distances of at least 50 km
from the coast. Accordingly, a Gaussian covariance with a
decorrelation radius of 50 km is used for the observation er-
ror. As the SLA needs to be referred to a mean SSH, a two-
years average of TOPAZ3 SSH is interpolated to the high-
resolution grid. Qualitatively, it compares well with the mean
dynamic topography based on satellites and in situ measure-
ments (Rio and Hernandez, 2004).

lon and Bertino (2009b).

Fig. 5. Schematic of the ensemble forecast experiment. The arrows
represent the model integration. The thick solid lines represent the
data assimilations. The letters(a–c) correspond to the panels in
Fig. 7.

The experiment starts six weeks prior to the shedding of
Eddy Yankee, in order to spin-up the perturbation system (as
in Counillon and Bertino, 2009a). Seven runs are processed
with weekly assimilation of sea level anomaly (SLA) and are
hereafter referred to as Run 1 to Run 7 (see Fig. 5). The
first assimilation is applied on the 7 June and the last one on
the 19 July 2006. Each run is integrated for 7 days, which
corresponds to a nowcast with respect to the availability of
the near real-time altimeter data.

4.2 Forecast errors

The benefit of the hybrid EnKF-OI over the EnOI and the
EnKF is analyzed by calculating the RMSE between the
model daily average SLA with the daily SLA data maps. The
calculation starts from the 5 July (i.e. Run 5) to allow suffi-
cient ensemble spin-up prior to the pre-shedding (with the
non-linear growth of cyclonic eddies), the shedding and the
near-reattachment of Eddy Yankee. Furthermore, this start-
ing date corresponds to the start of available daily altimetry
maps. During the shedding event, the fast dynamics of the
eastern GOM contrast with the slower activity of the remain-
ing domain. In order to clearly identify the benefit in the
shedding area, the statistics are calculated over a restricted
area such that the longitude is within [91◦ W; 83.5◦ W] and
the latitude north of 22.25◦ N. The areas shallower than
300 m are also excluded from the statistics due to inaccurate
measurements.

In order to analyze different aspects of the performance of
the data assimilation methods that use the hybrid covariance,
we form the following characteristics of the system errors:

– The overall average errorε1, for obtaining the optimal
value ofβ∗ (see Table 2).

– The average of the run errorε2, for analyzing the stabil-
ity of the methods over the successive runs (see Fig. 6b).

– The error average at a given forecast horizonε3, for
characterizing the persistence during model integration
(see Fig. 6a). In particular, the error average at the now-
cast is reported in Table 2.
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Fig. 6. Gulf of Mexico model daily error value (ε3) vs. forecast horizon, average over the last three runs(a). Run error averageε2 (b).

The EnKF with 10 members yields a largerε1 than all the
other schemes (see Table 2). This result is expected because
the dynamic ensemble has too few members. In particular,
we note that the errorε2 (Fig. 6b) should decrease in the last
run because the eddy has almost reattached to the LC, and
the complexity of the prediction is reduced. This does not
occur for the EnKF system, for which the run error average
ε2 increases with successive runs. The error for the EnKF-
OI with β=0.2 also does not decrease for the last run. This
indicates that with 10 members, the EnKF might diverge, and
that a minimum value ofβ>0.2 is necessary for reaching
stability with the hybrid covariance method.

In Table 2, there is a clear trend indicating that high values
of β are preferable, but the minimum is once again loosely
defined, possibly due to the random perturbations of obser-
vations and boundary conditions. However, the three statis-
tics ε1, ε2, andε3 indicate that a value of aboutβ=0.95 is
optimal for the hybrid EnKF-OI. On average over the three
runs, the EnKF-OI withβ=0.95 reduces the total error aver-
ageε1 by approximately 10%, and the nowcast error average
ε3 by approximately 14% compared to the EnOI. Although
the blending parameter is largely on the EnOI side, the gain
in accuracy seems important.

In Fig. 6a, the errorε3 is doubling during one week of
model integration with all schemes. However, one can ob-
serve that the EnOI is diverging faster than the run with the
hybrid covariance method. Counillon and Bertino (2009a)
show that a high value ofα allows for higher accuracy ini-
tially but diverges faster with model integration. A lower
value ofα tested for both the EnKF-OI and the EnOI leads
to more stable but less accurate predictions at the nowcast
stage.

The EnKF-OI with β=1 is performing better than the
EnOI, as shown with the QG model. It is more accurate to 5%
on average, and to 8% at the nowcast stage to the EnOI (see
Table 2). This indicates that imbalances caused by the per-
turbation system are too low to deteriorate the performance,
and that the sources of variability are efficient.

4.3 Frontal analysis

Our main objective is to represent accurately the position
of eddies (orientation, centre, shape) during the shedding
events. Large velocities are located at the fronts, at the outer
edge of eddies; with maximal values where the cyclonic and
anticyclonic eddies interact. In this Section, we conduct a
frontal analysis for the EnOI and for the EnKF-OI (with
β=0.95) in order to qualitatively interpret the statistical gain
observed above.

Chassignet et al. (2005) show that ocean colour (OC) data
is useful for identifying the position of the fronts of the LC
and the eddies. Furthermore, it provides an independent
source of validation, and has higher resolution than the al-
timetry data. In Fig. 7a the deep blue contour area represents
the low chlorophyll water (<0.3 mg/m3) that originates from
the Caribbean Sea. The light green areas characterize the
water with higher chlorophyll concentration (>0.5 mg/m3),
which is usually found in areas of high biological production
along the coast or within cyclonic eddies. The high chloro-
phyll water often propagates along the outer edge of the LC
eddies, and clearly defines the front.

The position of the front is analyzed for the last three runs
at the nowcast stage (represented with the letters a-c in Fig. 5)
for the EnKF-OI withβ=0.95 and for the EnOI. This period
covers the shedding and the near reattachment of Eddy Yan-
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Fig. 7. Overlay of model ensemble fronts with the non-assimilated ocean colour data (contour in mg/m3) for the 12 July(a), the 19 July(b),
and the 26 July(c). Blue color (resp. green) indicates low (resp. high) concentration of chlorophyll, and cloud covered areas are in white.
The thick black line represents the front derived from SSH altimeter data. The pink lines represent the nowcast of each ensemble member
of the EnKF-OI, and the red thick line is the ensemble mean. The thick yellow line is the EnOI front. The points A and B represent the
locations where correlations are analyzed in Sect. 4.4.
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Fig. 8. Ensemble variance (in m2) of the static(a) and of the nowcast dynamic ensemble EnKF-OI withβ=0.95 on the 19 July(b). The
points A and B represent the locations where correlations are analyzed in Sect. 4.4. The black line represents the 300 m isobaths.

Fig. 9. Ensemble spatial correlation of SSH at the target point A (marked by a cross) for the static ensemble(a), the dynamic ensemble(b),
and the hybrid ensemble(c). The white arrows represent the correlation with eastward and northward velocities. The black circle represents
the localization radius.

kee (2006). On the 12 July (Fig. 7a) there is a pre-shedding
scenario with a deep cyclonic penetration from the east. On
the 19 July (Fig. 7b), Eddy Yankee is on the verge of being
shed from the LC. On the 26 July (Fig. 7c) Eddy Yankee has
shed, rotated around a cyclonic eddy located on its eastern
side, and started to reattach from the east.

In Fig. 7, the ensemble fronts from the EnKF-OI are rep-
resented by pink lines over the OC data. The EnKF-OI en-
semble mean provides the best guess and is represented by
the thick red line. The front calculated from the EnOI is in-
dicated by the thick yellow line. The front position derived
from altimeter SSH maps (hereafter referred to as SSH data)
is represented by a thick black line. Although OC data has
a higher resolution, the SSH data may also be a useful indi-

cator of the error in the assimilated SSH data, or be used to
locate the front when clouds mask the OC data. The fronts of
the model and SSH data are the 10 cm SSH isolines, which
appears to fit best with the front from OC data.

On the 12 July, the shape of the front obtained with the
EnKF-OI is better positioned than that obtained with the
EnOI. In particular, the eddy sheds too early with the EnOI.
Furthermore, the northern front is slightly too far to the north.
One can also notice that both nowcasts are relatively accurate
with respect to the altimetry data.

On the 19 July, both methods misrepresent the northern
front. Indeed in the OC data, the shape of Eddy Yankee is
deformed by a cyclonic eddy that is squeezed between its
northern front and the northern shelf. The reason is that this
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Fig. 10. Ensemble spatial correlation of SSH with the target point B (marked by a cross) for the static ensemble(a), dynamic ensemble(b),
and hybrid ensemble(c). The white arrows represent the correlation with eastward and northward velocities. The black circle represents the
localization radius. The black line represents the 300 m isobath. The correlation with SSH is all positive.

cyclonic eddy was poorly represented in the gridded SLA
data assimilated on the 12 July, because of its proximity
to the coast. In the rest of the domain, the EnKF-OI de-
scribes the remaining connection of Eddy Yankee with the
LC, whereas the eddy appears as already shed in the EnOI.

On the 26 July, the EnOI has placed Eddy Yankee slightly
too far to the west, and the EnKF-OI better represent its
northern front. The “comet” shape of the eddy seems to be
better represented in the EnKF-OI than in the altimetry data.

One can notice that the eastern LC base is systematically
too broad in the model, with both assimilation schemes. This
may be caused by a model bias. Overall, the EnKF-OI im-
proves the representation of the fronts over the EnOI during
the shedding of Eddy Yankee.

4.4 Hybrid correlation

In order to obtain a better understanding of the benefits
from the hybrid covariance, the correlation of SSH from the
static, dynamic and hybrid ensembles are analyzed below.
In Counillon and Bertino (2009b), a statistical analysis of
the static ensemble throughout the GOM is conducted at two
typical locations, one in the centre of the basin and one on
the upper-shelf. The correlation is found to be realistic in the
centre of the basin, but has some limitations near the upper-
shelf area. Here, we analyze the spatial correlation of SSH
at the same locations, marked with letters A and B in Fig. 8.
This analysis is repeated for the static, dynamic, and hybrid
ensembles (withβ=0.95).

Figure 8 shows the variance of the static ensemble and that
of the dynamic ensemble. As expected, the variance of the
static ensemble shows a maximum value induced by the res-
ident LC base, and a positive track induced by the passage
of eddies that drift westward. However, the variance at loca-
tions closer to the shelf is very small, in particular at point B.
The dynamic ensemble shows a large variance near the front

of Eddy Yankee, because a small displacement of a front in-
duces a large difference in the SSH. The dynamic ensemble
is expected to be most useful in the dynamic areas and in the
upper-shelf coastal area, but its contribution in the middle of
the basin should be small because the variance from the static
ensemble dominates there.

In the centre of the basin (point A in Fig. 8), the correlation
of SSH and velocity from the static ensemble clearly reflects
the geostrophy, as a higher SSH increases the anticyclonic
currents around the target point (see Fig. 9), and there is a
slight anisotropy due to the interaction with the resident LC.
The SSH correlation from the dynamic ensemble highlights
the position of the southern front of the eddy, but it is noisy
and uneasy to interpret. In total, the hybrid correlation is
nearly identical to the static ensemble.

In the coastal area, (point B in Fig. 8), the correlation of
SSH and velocity from the static ensemble is dominated by
the seasonal variability. The problem of seasonal variability
when using a static ensemble is rather common, and can be
tackled e.g. by filtering out the seasonal signal (Oke et al.,
2005), but this was not applied here because seasonal vari-
ability in the GOM is not large. An increase of SSH at the
target point increases the SSH almost uniformly in the whole
area, and induces a weak shelf current (see Fig. 10). In the
dynamic ensemble, there is a positive correlation with a small
anticyclonic ring, and with a vortex of opposite sign at its
boundary. This correlation seems realistic because small an-
ticyclones and cyclones with a radius smaller than 75 km in-
teract with the shelf there (Hamilton and Lee, 2005), but it
is noisy due to a small number of dynamic members. In the
hybrid ensemble, the correlation with the anticyclonic ring is
clearer than in the static ensemble, both for the SSH and cur-
rents. Furthermore, the hybrid correlation is smoother than
that of the dynamic ensemble.

The benefits of using hybrid covariance compared to the
static covariance may not appear as large, but they are still
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important as they occur at locations where the static covari-
ance is known to be inadequate.

5 Conclusions

This study follows the work from Hamill and Snyder (2000);
Lorenc (2003); Etherton and Bishop (2004); Wang et al.
(2007, 2008a,b) and analyzes the benefits of using the hy-
brid covariance. The hybrid covariance combines the co-
variance from a dynamical ensemble and from a static en-
semble. Unlike previous works, the hybrid covariance and
localization are applied to updates both the ensemble mean
and the covariance. We also evaluate the hybrid covariance
with the EnKF and the ESRF analysis schemes instead of the
ETKF (Etherton and Bishop, 2004; Wang et al., 2007), or of
a variational approach (Hamill and Snyder, 2000). As a con-
sequence, we found the hybrid covariance to be beneficial
compared to the dynamical approach; even when a large dy-
namical ensemble is used. In addition, the hybrid covariance
methods are applied for the first time to a realistic applica-
tion (i.e. assimilating real observations, using a state of the
art model at a resolution capable of resolving the dynam-
ics, and thus applicable in an operational setting), and to the
ocean.

The results with the QG model indicate that:

– Using the square-root scheme improves the stability and
the accuracy compared to the EnKF. However, the con-
clusions regarding the hybrid covariance are indepen-
dent of the analysis scheme used.

– The hybrid covariance method provides better results
than both the static ensemble and the dynamic ensemble
methods at equal dynamic ensemble size. The benefits
are large for a small dynamic ensemble, and small for a
large dynamic ensemble.

– The hybrid covariance allows a smooth transition be-
tween the EnOI and the EnKF (or ESRF).

– The optimal linear blending coefficientβ∗ decreases ex-
ponentially with the size of the dynamic ensemble. In
other words, more weight is being put towards the dy-
namical ensemble when its size increases.

In a realistic HYCOM configuration of the GOM, 10 dy-
namic members are insufficient for the EnKF to converge.
The hybrid covariance EnKF-OI improves both the SSH
RMSE (by 14%) and the position/shape of the fronts com-
pared to the EnOI at the nowcast stage. Using a comparison
with ocean colour, we show that the improvements are re-
lated to a better representation of the fronts. However, the
overall results are not as encouraging as with the QG model.
It is clear, considering the very high value ofβ, that a further
increase of the number of members should be largely bene-
ficial. In two characteristic locations studied, the correlation

calculated from a hybrid ensemble seems more realistic than
that of the static and of the dynamic ensembles, and it is pos-
sible that an increase of the localization radius can further
improve the accuracy of the results. Furthermore, Hamill and
Snyder (2000) indicated a larger benefit when a sparse obser-
vation network data were assimilated. It seems probable that
the benefit from the hybrid covariance could increase if SLA
track data were assimilated instead of the interpolated maps.

The results obtained from both models indicate that the
hybrid covariance methods can improve both the accuracy
and the stability of the system. For 10 members, the optimal
valueβ∗ is larger with the GOM model than with the QG
model, which possibly indicates that the GOM model has
more degrees of freedom. It could be interesting to extend the
study for an increasing number of dynamic members for the
GOM application when more computing power is available.
It would allow for a better comparison between the QG and
the GOM experiments. In particular, it would be interesting
to analyze whether an exponential decrease ofβ∗ with the
number of dynamic members also occurs in the GOM. This
could provide a useful indication of the expected error when
setting up an operational forecasting system.
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