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Abstract. Data assimilation methods often use an ensem-1 Introduction

ble to represent the background error covariance. Two ap-

proaches are commonly used; a simple one with a static enbata assimilation methods can use ensembles to obtain and
semble, or a more advanced one with a dynamic ensemblgropagate the system state and the background error covari-
The latter is often non-practical due to its high computationalance. Two different approaches are often used. The first
requirements. Some recent studies suggested using a hgne, referred to as ensemble optimal interpolation (EnOl,
brid covariance, which is a linear combination of the covari- Evensen, 2003), uses a static ensemble of model states. The
ances represented by a static and a dynamic ensemble. Hersscond and theoretically more consistent approach, uses a
the use of the hybrid covariance is first extensively testeddynamic ensemble, as for example the ensemble Kalman fil-
with a quasi-geostrophic model and with different analysister (EnKF, Evensen, 2007). Dynamic ensembles provide a
schemes, namely the Ensemble Kalman Filter (EnKF) andlow-dependent background error covariance, but they can
the Ensemble Square Root Filter (ESRF). The hybrid covari+equire of the order of 100 model realizations for realistic
ance ESRF (ESRF-OI) is more accurate and more stable thaoceanic applications (Natvik and Evensen, 2003). Therefore,
the hybrid covariance EnKF (EnKF-Ol), but the overall con- in practice one has to either favour the high model resolu-
clusions are similar regardless of the analysis scheme usedion combined with an inferior data assimilation method, or a
The benefits of using the hybrid covariance are large commore optimal data assimilation method at the expense of the
pared to both the static and the dynamic methods with a smalnodel resolution. However, in many applications it is im-
dynamic ensemble. The benefits over the dynamic methodportant to have a sufficient model resolution for obtaining a
become negligible, but remain, for large dynamic ensemblesrealistic representation of the dynamics. For example, Chas-
The optimal value of the hybrid blending coefficient appearssignet et al. (2005) show the importance of the model resolu-
to decrease exponentially with the size of the dynamic en4ion for placing accurately the fronts in the Gulf of Mexico.
semble. Finally, we consider a realistic application with the Yin and Oey (2007) and later Counillon and Bertino
assimilation of altimetry data in a hybrid coordinate ocean(2009a) investigate ensemble forecasting with a small en-
model (HYCOM) for the Gulf of Mexico, during the shed- semble (10 members) and a high resolution model of the Gulf
ding of Eddy Yankee (2006). A 10-member EnKF-Ol is of Mexico. Yin and Oey (2007) show that a probabilistic
compared to a 10-member EnKF and a static method callegorecast provides a better accuracy than a single forecast,
the Ensemble Optimal Interpolation (EnQOl). While 10 mem- and Counillon and Bertino (2009a) show using an advanced
bers seem insufficient for running the EnKF, the 10-memberperturbation system that the ensemble spread is correlated in
EnKF-OlI reduces the forecast error compared to the EnOlspace and time with the model error. This indicates that even
and improves the positions of the fronts. small dynamic ensembles can be useful for data assimilation
purposes.

Hamill and Snyder (2000) suggest a hybrid scheme called
EnKF-3DVAR that combines the covariance from a dy-
namic ensemble with the static background covariance from
3DVAR. Each ensemble member is updated with perturbed

Correspondence tcE. Counillon observations. The method is tested with a quasi-geostrophic
m (francois.counillon@nersc.no) model, and it shows improvements relative to 3DVAR. The
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improvements are largest in case of a sparse observation netiewed as a compromise between a theoretically superior but
work. A similar approach was also suggested by Lorenccomputationally expensive data assimilating system based on
(2003). Etherton and Bishop (2004) suggest a hybrid schemea dynamic ensemble, and a computationally cheap and robust
called the ETKF-3DVAR. It uses the ensemble transformbut theoretically inferior system based on a static ensemble.
Kalman filter (ETKF, Bishop et al., 2001) analysis scheme A primary objective of our study is to test the hybrid co-
for updating the dynamic ensemble. In order to reduce thevariance when localization and hybrid covariance are applied
computational cost, only the ensemble mean is updated witho both the ensemble mean and ensemble covariance, by do-
the hybrid covariance, whereas the ensemble is updated usag a clear-cut comparison for different analysis schemes
ing the ETKF. The ETKF-3DVAR is shown to outperform (EnKF, ESRF). A secondary objective resides in applying the
the 3DVAR in a two-dimensional turbulent model. Wang hybrid covariance to a realistic application and to an ocean
et al. (2007) use the ETKF-3DVAR, with localization for application.
the ensemble mean, and compare it to the ESRF with local- The outline of this paper is as follows. The hybrid co-
ization (Whitaker and Hamill, 2002) for a two-layer prim- variance method is presented in Sect. 2. The method is
itive equation model. The ETKF-3DVAR outperforms the then validated on a simple 1.5-layer reduced gravity quasi-
ESRF for small dynamic ensemble size (5 members), progeostrophic model in Sect. 3. Finally, we demonstrate the
duces similar results for intermediate dynamic ensemble siz&éenefit of the hybrid covariance for a realistic application in
(20 members), but is outperformed by the ESRF for largerthe Gulf of Mexico, in Sect. 4, and present our conclusion in
dynamic ensembles. Finally, Wang et al. (2008a,b) demonSect. 5.
strates that the benefit of hybrid covariance remains when
assimilating real observation on a coarse model.

For ocean applications, observations are typically less fre

quent than for the atmospheric applications, so that the modql . Lo . .
) . . . n sequential data assimilation, the system error covariance is
integration step often dominates the computational cost rela-

tive to the assimilation step. In this case, an update of bot often calculated from an ensemble of model states. With the
the ensemble mean and covariance using the hybrid covari- ?glétngfgzgca?sembks and the centred static ensemble
ance will lengthen the assimilation step, but will remain neg-""¢ '

ligible Wi_th respe_ct to the total _C(_)mputational cost. Ifusing A, = [ ¥1... ¥y, and A=A, — A, e RN (1)

the hybrid covariance is beneficial for an update of the en- ) ] ) )
semble mean, it should also be beneficial for updating theVhere ¥ is a model state vectol; is the size of the static
ensemble covariance. Furthermore, an update of the enserfiSémbley is the size of the model state vector, and the
ble mean and covariance is more in line with the Kalmanoverbar denotes ensemble average. The square brackets de-
Filter. We also use a method comparable to 3DVAR referred0té @ horizontal concatenation of the matrices separated by a
as EnOl (Evensen, 2003), which was successfully applied iffomma. A static ensemple may gontaln thg model' states sam-
the GOM (Counillon and Bertino, 2009b). To analyze the pled from a long model |_ntegra_t|on. T_he mtegraﬂpn should
benefit of the hybrid covariance, we compare the hybrid co-P€ 10ng enough to contain a wide variety of possible model
variance EnKF (called hereafter EnKF-Ol) to the EnKF, and States. N _

the hybrid covariance ESRF (called hereafter ESRF-OI) to Similarly A;eR"*™ represents the centred dynamic en-
the ESRF. The ESRF is a deterministic formulation of the Sémble matrix, wheré/, is the size of the dynamic ensem-
EnKF, and yields a better performance than EnKF for smallPle: ) ) )
ensemble size (Whitaker and Hamill, 2002). Note also that The ensemble covariance matrix calculated from the static
another approach is proposed in Wan et al. (2009), where in€nSemble is denoted;, and the one calculated from the dy-
stead of combining the covariance matrix, the dynamic and'@mic ensembl€,. They are both assumed to represent the

2 Hybrid covariance methodology

the static ensemble are “dressed”. forecast erroe:
_ We see the main reason for using the hybrid_covariance“_T ~C, = o A;(A;)T’ )
is expanding the subspace of ensemble anomalies produced Ny —1

by a small dynamic ensemble. While systems based on thgpq

ensemble Kalman filter can yield a theoretically optimal up- 1

date, in practice this can only happen with an ensemble oke™ ~ C; = ——— A/ (A))T. 3)

a sufficient rank to span the system error subspace. With an Na—1

ensemble of insufficient rank, the analysis becomes not onlyThe superscript T denotes a matrix transpose. The variance
suboptimal, but also degenerative, resulting in a collapse obf the static ensemble is usually different from the forecast
the ensemble. In contrast, a theoretically suboptimal EnOl-error variance, so that a scaling factois introduced in the
based system is often able in similar circumstances to yieldraditional EnOl framework (Evensen, 2003). The parameter
meaningful updates and to provide an overall robust data asx is part of the tuning of an EnOl system, and is kept constant
similation system. The hybrid covariance can be thereforein the following.
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As suggested by Hamill and Snyder (2000), we compute X o 7 . o 5 .
a linear combination of the two covariance matrices with an % . . % 3 60
adjustable blend parametgt: i . ’ . .. . 1
~ .o .’ ... .o .' ... .o 40
C=BC, + (1- p)Cq. @ % . . S e

When =0 (resp.8=1) the hybrid covariance is expressed L 120
entirely by the dynamic ensemble (resp. static ensemble). y ‘.

Wang et al. (2007) manipulate the mat®HTeR"*™, = i . :
with H being the measurement operator relating the prog- | ' 3 10
nostic model state variables to the measurementsyaite . F .
number of measurements. However, for a large number ob+ . P .. 1-20
servationsCHT remains a large matrix. Here the matrix 4 el
A'HTeRN ™ is used instead, whef® is the matrix of com- ‘. A “ _40
bined ensemble anomalies: . “ . & CRES
~ ,30[ 1 _ ,8 .-. ‘.. ...‘-. 0.. . .o. _ 6 O
A= N,+N;s—1 AL ALl 5 A R .
so that Fig. 1. Typical sea level elevation state (in dimensionless units)
~ 1 ~ ~IT from the quasi-geostrophic model; the dots indicate an example of
C= M+—]\HA (A)" (6) the observation locations.
The Kalman filter equation is then solved as:

o o N=N;+N,, and the time needed for assimilation becomes
A_Zz = A-g’; + 6K (d — HA£), (7 longer than both the dynamic method and the static method.
, However, usuallyN; <« Ny, so that the cost remains similar

9= (I —KH)C}, 8) tothe EnOl.

where _ _
1 3 A quasi-geostrophic model

K = CHT (HCHT + R) 9)

In order to analyze the capability of the hybrid covariance,
is the Kalman gainR is the observation error covariance We first apply it to a simple 1.5-layer reduced-gravity quasi-
matrix, | is the identity matrix,d is a vector of measure- geostrophic (QG) model with double-gyre wind forcing and
ments. An ensemble data assimilation system gets subogiharmonic friction. It is a non-linear model with dimension
timal due to the limited ensemble size and partially inade-(127x127) (see Fig. 1), and model subspace dimension of
quate priors assumptions. Such suboptimalities can lead torder of 16-1C°. The model is eddy resolving as it gen-
an excessive reduction of the ensemble spread, which ca@rates eddies of siz€(10) of the model grid (see Fig. 1).
be maintained pragmatically by multiplying the assimilation More details about the model are given in Sakov and Oke
anomalies with a terni called the ensemble inflation. The (2008). The model is run over 1000 model time steps, and
superscript “a” refers to the analysis state and “f” to the fore-is assimilating 300 sea surface height (SSH) observations
cast. every 10 time steps. The observations are extracted from

Different schemes can be used for solving Eq. (8). In thea model run with lower viscosity, to which white noise is
following we apply the two most widely used: the EnKF and added with a varianéef 4. The observations are distributed
the ESRF. The EnKF is based on a Monte Carlo samplinguniformly over the domain, with a different random offset
of Eq. (7) and applies perturbations to the observations thafor each assimilation in order to mimic the typical distri-
can impair the stability of the results for small ensembles. Tobution of satellite tracks (represented by dots on Fig. 1).
circumvent this problem, the deterministic ESRF solves theBoth the model code and the framework of the data assim-
analysis Egs. (7) and (8) without perturbing the observationsjlating system used in the experiments are available from
and can provide more accurate and stable results (Whitakéittp://enkf.nersc.no/Code/EnKF-Matlab.
and Hamill, 2002).

The cost of the assimilation time step is usually in
O(N xmxn). When the hybrid covariance is used,

2The scales and the units are dimensionless in this synthetic
model.

18 corresponds to &-in the notations of Hamill and Snyder
(2000).
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Fig. 2. EnKF-OlI (a) and ESRF-O[b) values of errorg depending on the inflatiofiand the blend parametgr for 15 dynamic members
and 200 static members. A white circle is used for the runs that have failed.

The parametew is fixed at a value for which the EnOl It is similar for all runs, and the random seed is fixed, so
is robust and performs with lowest erfofw=0.04). This that all runs of similar ensemble size use the same random
value is also optimal with the hybrid covariance method (notperturbation.

shown). The localization is applied with a Gaussian localiza- e vary the three adjustable parameters of the method
tion function to the state error covariance matrix by meansyne |inear blending coefficieng, the inflation parametes

of a Schur product (Houtekamer and Mitchell, 2001). The 5, the size of the dynamic ensemblg, and evaluate the
localization radius is set to 25 grid cells. The localization resulting errore. The parametep is chosen from 0 to 1
and the assimilation time step were both chosen large enougfith an increment of 0.1. the paramedeirom 1 to 1.6 with

to challenge the data assimilation method. For comparisory increment of 0.05, as shown in Fig. 2 where every circle
Sakov and Oke (2008) assimilate every four time steps, angapresents the run average forecast esroalculated for a
show that a smaller localization radius (of approximately 159ivenﬂ s andN,. The values oV, are chosen as reported

grid cells) provides more stable and accurate results. in Table 1. The optimal setting minimizes the ereorThe
The hybrid covariance blends 200 static members gatheregayes at optimum are denotet] *, §*, and are reported in

randomly over a period of 500000 model time steps with tgpje 1.
an increasing number of dynamic members until the perfor- When =0, the EnKF-OI (resp. ESRF-OI) coincides with

mance in terms of RMSE saturates. Four data assimilation
schemes are compared here: the EnKF, the ESRF and tht%e EnkF (re_sp- ESRF) method. Whgr1, every memb_er
of the dynamic ensemble is updated by the static covariance.

hybrid covariance EnkF-Ol and ESRF-OI. e best guess is still provided by the ensemble average in
The accuracy ofthe system is assessed by the time avera is case, so that the method does not strictly coincide with

root mean re error: )
oot mean square erro the EnOl. In these experiments we observe that the EnKF-

'y P 2 Ol and ESRF-OI withB=1 provide a slightly better estimate
8:# Z 1 Z (AZ;(P, - v (p, k)) . (10) than the traditional EnOl, which is in agreement with the re-
pr—potl =\ 17 sults of Wang et al. (2007). This is a consequence of the

] ~__ non-linearity of the QG model, because in a linear model, the
¢ is calculated from the ensemble mean before assimilationyegration of the ensemble mean coincides with the mean
and start at iteratiopo (here po=10 in order to remove the  of the integrated ensemble. Note that the hybrid covariance

data assimilation spin-up time)p is the total number of  method withg=1 is failing when inflation (or deflation) is
assimilation steps (herg;=100). ¥’ represents a known | ;ged.

true field, from which synthetic observations are extracted. . . .
y We start our experiment with 5 dynamical members. It

30ur notation ofx follows that of Evensen (2003) and Counillon IS characterized by a big proportion of failed runs. How-

and Bertino (2009b) but correspondsitbin Oke et al. (2005) and ~ ever, there is a clear core of runs that complete for hybrid co-
in the EnKF-Matlab toolbox. variance methods (EnKF-OIl and ESRF-OI) with high values
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Table 1. Quasi-geostrophic summary table of #fe g*, ands* obtained for each number of dynamic members with the EnKF-Ol, EnKF,
ESRF-0I, and ESRF analysis schemes. The EnKF-Ol with a single dynamic member corresponds exactly to the EnOl. Empty cells indicate
that all runs have failed for a given number of dynamic members.

Ny 1(EnQl) 5 10 15 20 25 30 35 40
EnKF-Ol ¢* 2.32 170 145 138 129 1.23 122 117 115
EnKF-Ol g* 1 0.7 0.6 0.5 0.6 0.1 0 0.4 0.1
EnKF-Ol §* 155 135 14 126 115 1.26 1.2 1.2
EnKF¢* 203 165 131 122 120 119
EnKF§* 145 145 115 1.26 1.2 1.2
ESRF-Ole* 2.32 161 134 121 119 110 1.087 1.06 1.02
ESRF-OIS* 1 0.7 0.6 0.4 0.3 0.2 0.1 0.1 0
ESRF-OI§* 1 15 125 125 115 115 115 115 1.15
ESRFe* 227 149 123 1114 1116 1.07 1.02
ESRFs* 15 135 13 1.15 1.2 115 1.15

of B, whereas neither the EnKF nor the ESRF (i.e. with ‘ ‘ ‘ ‘ o
B=0) have completed. This indicates that the hybrid covari- v R —— EnkF
ance methods avoid divergence in some configurations with | =iy
a small dynamic ensemble, in agreement with Wang et al. ‘ Enol
(2007). Using the hybrid covariance also reduces the error
¢ by approximately 26% compared to the EnOl. The hybrid 15| S s
covariance methods become more stable with 10 dynamic ol
members, as fewer runs fail. At the same time, only a single s
run have complete with the ESRF, but it is of similar accu-
racy to the EnOl. For 15 members (see Fig. 2), all of the
four schemes converge. When more than 25 dynamic mem-
bers are used, the benefit from using the hybrid covariance osf
over the EnKF/ESRF is only slight, and the bests loosely
defined on a broad range of valuesgoénds.

When the dynamic ensemble is large enough, the sampling  © s 10 1 20 ps P P 2
error becomes negligible. The EnOl makes the additional number of dynamical members
assumption that historical ensemble is representative of in-
stantaneous forecasting error. Therefore, when dynamical ) ) .
ensemble is self-sufficient, one merely expects the adjunc—F'g' 3. Quas'.'gec’StrOph'C summary plot of minimum ereor
tion of static covariance to deteriorate the results therefore\f' the dynamic ensemble size, for each data assimilation method.
. . ; L he observation error has standard deviation of 2.
in this caseg*=0. In Table 1, this occurs two times: for 30
dynamic members with the EnKF-OI and for 40 members
with the ESRF-OI. The first occurrence with the EnKF-Ol  |n Table 1 and Fig. 4, the relationship between the blend
is likely to be the result from random variations, &% is parametep and the size of the dynamic ensembigis an-
again positive with a larger dynamic ensemble. The secondilyzed. The value o8* decreases with increasimg,. This
occurrence with the ESRF-OI seems more reliable becausgesult seems natural, as with an increase of the dynamic en-
the ESRF with an ensemble of 40 members does convergsemble size, the need for a static ensemble is reduced. In
to its maximum accuracy. After refining the discretization Fig. 4, the curve oB* for the ESRF-OI is relatively regular.
in B ands, we obtaing*=0.05. It indicates that even when The relationship is noisier with the EnKF-OI due to its Monte
the EnKF has nearly converged to its maximum accuracy, theCarlo nature, but overall the curves match, and can be fitted
use of hybrid covariances is still beneficial (see Fig. 3). Thisby an exponential (green line on Fig. 4). This indicates that
seems to contradict Wang et al. (2007) where the ESRF givethe parametef* may be independent of the analysis scheme
better result than the ETKF-OI for a large dynamic ensem-chosen. We suggest that the valuggéfreflects the balance
ble. However, their result may be caused by the differencebetween the rank of the dynamic ensemble and the model er-
between the ESRF with full localization and the ETKF with ror subspace dimension, which implies that one can predict
localization only for updating the ensemble mean. the optimal value op* for a given size of dynamic ensemble,

and the dimension of the model error subspace.

minimal
ah
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Table 2. Gulf of Mexico model total average RMSE and nowcast average RMSE for a 10-member EnKF-Ol with different values of
B and for the EnOl. The gain represents the percentage of improvement relative to the EnOl.

EnKF-OlI B=0(EnKF) pB=0.2 p=05 pB=0.65 pB=0.8 B=0.9 pB=0.95 p=1 ENOI
g1(m) 0.147 0.075 0.069 0.07 0.065 0.066 0.063 0.067 0.070
Total average gain (%) -110 -7 2 0 7 6 10 5 0

£3(m) at nowcast 0.166 0.094 0.093 0.094 0.089 0.088 0.084 0.09 0.097
Nowcast gain (%) —70 3 5 4 8 9 14 8 0

T

— % — EnKF-0I

— & — ESRF-0I
Exp fit

o
©
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0.4+ o \ X

021
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I
10 40

Fig. 4. Quasi-geostrophic summary plot of optimal blending coef-
ficient 8* vs. the dynamic ensemble size, for the EnKF-Ol and the
ESRF-OI. The green solid line is an exponential fit to the ESRF-OI
experiment.

4 A realistic application: Gulf of Mexico nested model

The dynamics in the Gulf of Mexico (GOM) are domi-

resolution and lateral boundary conditions for accurate pre-
diction of the fronts there. A nested configuration can satisfy
these two requirements with reasonable computing cost. The
TOPAZ3 system provides lateral boundary conditions to a
high-resolution model of the GOM (Chapter 15 in Evensen,
2007) using nesting techniques described in Browning and
Kreiss (1982).

TOPAZ3 is a real-time forecasting system for the Atlantic
and Arctic basins with a configuration of HYCOM, capable
of monitoring the circulation patterns in the Atlantic. The
grid is created using a conformal mapping of the poles to
two new locations by the algorithm outlined in Bentsen et al.
(1999). The horizontal resolution varies from 11 km in the
Arctic to 18 km near the Equator (approximately °)/8The
model is initialized from the GDEM3 climatology (Teague
et al., 1990) and spin-up for 16 years. The TOPAZ3 proto-
type used in this work only provides the boundary conditions
and does not include data assimilation, because of computer
Ccosts.

The high-resolution GOM model is set-up with 5km
horizontal resolution, which is sufficient to resolve the
mesoscale features considering the Rossby radius in the area
(R,~30km). The model uses a fourth order numerical
scheme for treating the advection of momentum in the prim-
itive equations (Winther et al., 2007). To minimize the spin-
up time, the initial state is interpolated from an equilibrium

nated by the northward Yucatan Current flowing into a semi-State of TOPAZ3, and spin-up for 3 years.

enclosed basin. This current forms a loop (called the Loop For both models, there are 22 layers in the vertical. The
Current, LC) and exits through the Florida Straits. At ir- bathymetry is specified using the General Bathymetric Chart
regular intervals (Vukovich, 1988; Sturges and Leben, 2000)f the Oceans database (GEBCO) withrdsolution, inter-

the LC sheds large eddies that propagate westward acrog¥lated to the model grids. The models are forced by the
the GOM. The eddy shedding involves a rapid growth of 6-hourly and 0.5 analyzed fields from the European Cen-
non-linear instabilities (Cherubin et al., 2005b), and thesetre for Medium range Weather Forecasting (ECMWF, see
are difficult to forecast (Chassignet et al., 2005; Counillon http://www.ecmwf.int). The system is described in more de-
and Bertino, 2009b). In particular, Eddy Yankee (2006) wastail in Counillon and Bertino (2009b).

problematic for the offshore industry operating in the north- At the time of writing the article, we can afford a dynamic
ern shelf of the GOM. Thus, it is used for investigating the ensemble of 10 members in real-time. Here we compare a
benefits of hybrid covariance for a realistic system conductedlO-member EnKF-Ol, a 10-member EnKF, and an EnOl by
below. assimilating altimetry data. The EnOl uses a historical en-
semble that is composed of 122 weekly model outputs over a
2.5 years period, without data assimilation. All methods use
a fixed localization radidsof 150 km. A smooth transition

4.1 Experimental setup

Chassignet et al. (2005) demonstrate the skill of HY COM for
the GOM. They emphasize the importance of both horizontal

4This may be refined by a depth-dependent radius as in Counil-
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is ensured at the edges of the localization area by applyingForecast

a weight function to the innovations. This function depends range

on the distance between the observation and the target poin

(Counillon and Bertino, 2009b). A value af0.23 is found Nowcast |/ a

to be optimal for both the EnOIl and the EnKF-Ol set-up at Anaysis

the nowcast forecast horizon, and has is used in the experi-

ments below. In order to identify the optimal valuefwe

run the EnKF-Ol with the values shown in Table 2. Fig. 5. Schematic of the ensemble forecast experiment. The arrows
The dynamic ensemble for the EnKF and the EnKF-Ol represent the model integration. The thick solid lines represent the

is spun-up in order to provide realistic correlation. The ini- data assimilations. The letteta—c) correspond to the panels in

tial set of restart files is randomly extracted from an a threeFig. 7.

weeks EnOl run that precedes the starting date, in order to re-

duce the spin-up time of the ensemble. The ensemble spread

is then maintained by using perturbations and inflation over ) ) ] ]

the successive assimilation cycle. In Counillon and Bertino  The experiment starts six weeks prior to the shedding of

(2009a), perturbations are applied to the atmospheric forcing_'?ddy ankee, n orde_r to spin-up the perturbation system (as

the lateral boundary conditions, and the assimilated state fof? Counillon and Bertino, 2009a). Seven runs are processed

the GOM model. The perturbations of the assimilated stataVith weekly assimilation of sea level anomaly (S'-_A) and are

appear to control the main position of the large features of thd1ereafter referred to as Run 1 to Run 7 (see Fig. 5). The

GOM (e.g. LC, eddies), whereas perturbations of the bound{irst assimilation is applied on the 7 June and the last one on

ary conditions (atmospheric and lateral) control the growthth® 19 July 2006. Each run is integrated for 7 days, which

of cyclonic eddies at their boundary. The same techniquecorresponds tp a noyvcast with respect to the availability of

is used here for perturbing the boundary conditions, but théhe near real-time altimeter data.

assimilated state is perturbed similarly to the EnKF; i.e. by

perturbing the measurements during assimilation. The per#-2 Forecasterrors

turbations of the atmospheric fields (wind stress, air temper-

ature) are simulated with a spectral method (Evensen, ZOOS)EnKF is analyzed by calculating the RMSE between the

using a 50 km decorrelation radius, which is too small tq bemodel daily average SLA with the daily SLA data maps. The
represented in the ECMWF data, but large enough to stimu- : . '

. calculation starts from the 5 July (i.e. Run 5) to allow suffi-
late the ocean model. The perturbations of the lateral bound-

ary conditions are simulated by introducing a time lag to cient ensemble spin-up prior to the pre-shedding (with the

. L7 “non-linear growth of cyclonic eddies), the shedding and the
the boundary conditions, which is set randomly at the be near-reattachment of Eddy Yankee. Furthermore, this start-

ginning of each model run, betweer87 and +37 days from ing date corresponds to the start of available daily altimetr
the actual date. This perturbation system introduces an initial 9 P y y

i o . maps. During the shedding event, the fast dynamics of the
barotropic imbalance, which is damped within a day. In ald_eastern GOM contrast with the slower activity of the remain-
dition, we use an ensemble inflation of 15%, which increases : : . y L

Ing domain. In order to clearly identify the benefit in the

:ir:ﬁeensemble spread and slightly improves the accuracy Ovesrhedding area, the statistics are calculated over a restricted

I . area such that the longitude is within ; 83.5 W] and
The assimilated SLA maps are provided by Ssalto/ Duacsthe latitude north of 22.29\. The ar[;l.i, shaIIow]er than
on a 1/3 Mercator grid (Le Traon et al., 2003), with a one

week del The standard deviation of the m rement i300m are also excluded from the statistics due to inaccurate
eek delay. The standard deviation of the measurements i .-« e ments.

ass“_”_‘Ed to be cons_tant_, and it is using the average value In order to analyze different aspects of the performance of
specified by the provider in the GOM area (3 cm). The mea- L , .

. the data assimilation methods that use the hybrid covariance,
surements are less accurate in the coastal area, therefore mea- . o )

. : we form the following characteristics of the system errors:

surements are selected only in regions deeper than 300 m,
from the coast. Accordingly, a Gaussian covariance with a  yajye ofg* (see Table 2).
decorrelation radius of 50 km is used for the observation er-
ror. As the SLA needs to be referred to a mean SSH, a two- — The average of the run erres, for analyzing the stabil-
years average of TOPAZ3 SSH is interpolated to the high- ity of the methods over the successive runs (see Fig. 6b).
resolution grid. Qualitatively, it compares well with the mean

dynamic topography based on satellites and in situ measure- — The error average at a given forecast horizgn for

Run1 . Run 5 Run6 Run7  time
06/07 07/05 07/12 07/19

he benefit of the hybrid EnKF-OI over the EnOIl and the

ments (Rio and Hernandez, 2004). characterizing the persistence during model integration
(see Fig. 6a). In particular, the error average at the now-
lon and Bertino (2009b). cast is reported in Table 2.
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Fig. 6. Gulf of Mexico model daily error values§) vs. forecast horizon, average over the last three g@ndRun error average, (b).

The EnKF with 10 members yields a largarthan all the The EnKF-OIl with =1 is performing better than the
other schemes (see Table 2). This result is expected becaugmOl, as shown with the QG model. Itis more accurate to 5%
the dynamic ensemble has too few members. In particularpn average, and to 8% at the nowcast stage to the EnOl (see
we note that the errar, (Fig. 6b) should decrease in the last Table 2). This indicates that imbalances caused by the per-
run because the eddy has almost reattached to the LC, artdrbation system are too low to deteriorate the performance,
the complexity of the prediction is reduced. This does notand that the sources of variability are efficient.
occur for the EnKF system, for which the run error average
g2 increases with successive runs. The error for the EnKF4.3  Frontal analysis
Ol with 8=0.2 also does not decrease for the last run. This

indicates that with 10 members, the EnKF might diverge, andour main objective is to represent accurately the position
that a minimum value o>0.2 is necessary for reaching of eddies (orientation, centre, shape) during the shedding
stability with the hybrid covariance method. events. Large velocities are located at the fronts, at the outer
In Table 2, there is a clear trend indicating that hlgh ValUESedge of eddies; with maximal values where the Cyc|onic and
of g are preferable, but the minimum is once again looselyanticyclonic eddies interact. In this Section, we conduct a
defined, possibly due to the random perturbations of obserfrontal analysis for the EnOl and for the EnKF-OI (with

vations and boundary conditions. However, the three statisg—0.95) in order to qualitatively interpret the statistical gain
tics e1, €2, andes indicate that a value of abo#=0.95 is observed above.

optimal for the hybrlq EnKF-Ol. On average over the three Chassignet et al. (2005) show that ocean colour (OC) data
runs, the EnKF-Ol with=0.95 reduces the total error aver- s yseful for identifying the position of the fronts of the LC
ageey by approximately 10%, and the nowcast error averagéang the eddies. Furthermore, it provides an independent
e3 by approximately 14% compared to the EnOl. Although sqyrce of validation, and has higher resolution than the al-
the blending parameter is largely on the EnOl side, the gaitimetry data. In Fig. 7a the deep blue contour area represents
In accuracy seems important. _ the low chlorophyll water£0.3 mg/n?) that originates from

In Fig. 6a, the erroes is doubling during one week of the Caribbean Sea. The light green areas characterize the
model integration Wl.th qll schemes. However, one can ob-yater with higher chlorophyll concentratiosQ.5 mg/n?),
serve that the EnOl is diverging faster than the run with the,\hich, is usually found in areas of high biological production
hybrid covariance method. Counillon and Bertino (2009a) along the coast or within cyclonic eddies. The high chloro-

show that a high value af allows for higher accuracy ini- vl water often propagates along the outer edge of the LC
tially but diverges faster with model integration. A lower gqdies and clearly defines the front.

value ofu tested for both the EnKF-OI and the EnOl leads
to more stable but less accurate predictions at the nowcasf,
stage.

The position of the front is analyzed for the last three runs
the nowcast stage (represented with the letters a-c in Fig. 5)
for the EnKF-Ol with=0.95 and for the EnOl. This period
covers the shedding and the near reattachment of Eddy Yan-
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025 03 035 04 045 05mg/m’

Fig. 7. Overlay of model ensemble fronts with the non-assimilated ocean colour data (contour iﬁ)rftg/me 12 July(a), the 19 July(b),

and the 26 Julyc). Blue color (resp. green) indicates low (resp. high) concentration of chlorophyll, and cloud covered areas are in white.
The thick black line represents the front derived from SSH altimeter data. The pink lines represent the nowcast of each ensemble member
of the EnKF-OlI, and the red thick line is the ensemble mean. The thick yellow line is the EnQlI front. The points A and B represent the

locations where correlations are analyzed in Sect. 4.4.
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var-SSH (m°): 0.000 Q003 0.006 0.009

Lat

Fig. 8. Ensemble variance (in ?*m of the static(a) and of the nowcast dynamic ensemble EnKF-Ol with0.95 on the 19 Julyb). The
points A and B represent the locations where correlations are analyzed in Sect. 4.4. The black line represents the 300 m isobaths.
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Fig. 9. Ensemble spatial correlation of SSH at the target point A (marked by a cross) for the static erg@ntidedynamic ensembld),
and the hybrid ensemb(e). The white arrows represent the correlation with eastward and northward velocities. The black circle represents
the localization radius.

kee (2006). On the 12 July (Fig. 7a) there is a pre-sheddingator of the error in the assimilated SSH data, or be used to
scenario with a deep cyclonic penetration from the east. Orocate the front when clouds mask the OC data. The fronts of
the 19 July (Fig. 7b), Eddy Yankee is on the verge of beingthe model and SSH data are the 10 cm SSH isolines, which
shed from the LC. On the 26 July (Fig. 7c) Eddy Yankee hasappears to fit best with the front from OC data.
shed, rotated around a cyclonic eddy located on its eastern On the 12 July, the shape of the front obtained with the
side, and started to reattach from the east. EnKF-Ol is better positioned than that obtained with the
In Fig. 7, the ensemble fronts from the EnKF-OlI are rep- EnOl. In particular, the eddy sheds too early with the EnOI.
resented by pink lines over the OC data. The EnKF-Ol en-Furthermore, the northern frontis slightly too far to the north.
semble mean provides the best guess and is represented Bne can also notice that both nowcasts are relatively accurate
the thick red line. The front calculated from the EnOl is in- with respect to the altimetry data.
dicated by the thick yellow line. The front position derived  On the 19 July, both methods misrepresent the northern
from altimeter SSH maps (hereafter referred to as SSH datafyont. Indeed in the OC data, the shape of Eddy Yankee is
is represented by a thick black line. Although OC data hasdeformed by a cyclonic eddy that is squeezed between its
a higher resolution, the SSH data may also be a useful indinorthern front and the northern shelf. The reason is that this
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Fig. 10. Ensemble spatial correlation of SSH with the target point B (marked by a cross) for the static ens@nalyi@amic ensemblb),
and hybrid ensemblge). The white arrows represent the correlation with eastward and northward velocities. The black circle represents the
localization radius. The black line represents the 300 m isobath. The correlation with SSH is all positive.

cyclonic eddy was poorly represented in the gridded SLAof Eddy Yankee, because a small displacement of a front in-
data assimilated on the 12 July, because of its proximityduces a large difference in the SSH. The dynamic ensemble
to the coast. In the rest of the domain, the EnKF-OIl de-is expected to be most useful in the dynamic areas and in the
scribes the remaining connection of Eddy Yankee with theupper-shelf coastal area, but its contribution in the middle of
LC, whereas the eddy appears as already shed in the EnOl.the basin should be small because the variance from the static
On the 26 July, the EnOlI has placed Eddy Yankee slightlyensemble dominates there.
too far to the west, and the EnKF-Ol better represent its Inthe centre of the basin (point A in Fig. 8), the correlation
northern front. The “comet” shape of the eddy seems to beof SSH and velocity from the static ensemble clearly reflects
better represented in the ENKF-OI than in the altimetry datathe geostrophy, as a higher SSH increases the anticyclonic
One can notice that the eastern LC base is systematicallgurrents around the target point (see Fig. 9), and there is a
too broad in the model, with both assimilation schemes. Thisslight anisotropy due to the interaction with the resident LC.
may be caused by a model bias. Overall, the EnKF-Ol im-The SSH correlation from the dynamic ensemble highlights
proves the representation of the fronts over the EnOl duringhe position of the southern front of the eddy, but it is noisy

the shedding of Eddy Yankee. and uneasy to interpret. In total, the hybrid correlation is
nearly identical to the static ensemble.
4.4 Hybrid correlation In the coastal area, (point B in Fig. 8), the correlation of

SSH and velocity from the static ensemble is dominated by

In order to obtain a better understanding of the benefitghe seasonal variability. The problem of seasonal variability
from the hybrid covariance, the correlation of SSH from the when using a static ensemble is rather common, and can be
static, dynamic and hybrid ensembles are analyzed belowtackled e.g. by filtering out the seasonal signal (Oke et al.,
In Counillon and Bertino (2009b), a statistical analysis of 2005), but this was not applied here because seasonal vari-
the static ensemble throughout the GOM is conducted at twability in the GOM is not large. An increase of SSH at the
typical locations, one in the centre of the basin and one ortarget point increases the SSH almost uniformly in the whole
the upper-shelf. The correlation is found to be realistic in thearea, and induces a weak shelf current (see Fig. 10). In the
centre of the basin, but has some limitations near the upperdynamic ensemble, there is a positive correlation with a small
shelf area. Here, we analyze the spatial correlation of SSHanticyclonic ring, and with a vortex of opposite sign at its
at the same locations, marked with letters A and B in Fig. 8.boundary. This correlation seems realistic because small an-
This analysis is repeated for the static, dynamic, and hybridicyclones and cyclones with a radius smaller than 75 km in-
ensembles (witl8=0.95). teract with the shelf there (Hamilton and Lee, 2005), but it

Figure 8 shows the variance of the static ensemble and thads noisy due to a small number of dynamic members. In the
of the dynamic ensemble. As expected, the variance of thdwybrid ensemble, the correlation with the anticyclonic ring is
static ensemble shows a maximum value induced by the res:zlearer than in the static ensemble, both for the SSH and cur-
ident LC base, and a positive track induced by the passageents. Furthermore, the hybrid correlation is smoother than
of eddies that drift westward. However, the variance at loca-that of the dynamic ensemble.
tions closer to the shelf is very small, in particular at point B. ~ The benefits of using hybrid covariance compared to the
The dynamic ensemble shows a large variance near the frorgtatic covariance may not appear as large, but they are still
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important as they occur at locations where the static covari-calculated from a hybrid ensemble seems more realistic than
ance is known to be inadequate. that of the static and of the dynamic ensembles, and it is pos-
sible that an increase of the localization radius can further
) improve the accuracy of the results. Furthermore, Hamill and
5 Conclusions Snyder (2000) indicated a larger benefit when a sparse obser-

. . . vation network data were assimilated. It seems probable that
This study follows the work from Hamill and Snyder (2000); the benefit from the hybrid covariance could increase if SLA

Lorenc (2003); Etherton and Bishop (2004); Wang et al. e : :
) ) track data were assimilated instead of the interpolated maps.
(2007, 2008a,b) and analyzes the benefits of using the hy- The results obtained from both models indicate that the

brid covariance. The hybrid covariance combines the co-h brid covariance method n imorove both th h
variance from a dynamical ensemble and from a static en- y covariance methods ca prove bo € accuracy

. : : : and the stability of the system. For 10 members, the optimal
semble. Unlike previous works, the hybrid covariance and alue 8* is larger with the GOM model than with the QG

localization are applied to updates both the ensemble meal) . L
and the covariance. We also evaluate the hybrid covarianc@Odel’ which possibly indicates thaF the GQM model has
with the EnKF and the ESRF analysis schemes instead of tnhdnore degrees of freedom. It could be interesting to extend the

ETKF (Etherton and Bishop, 2004; Wang et al., 2007), or Ofstudy for an increasing number of dynamic members for the
e ¢ ' N : _GOM application when more computing power is available.
a variational approach (Hamill and Snyder, 2000). As a con Ilt would allow for a better comparison between the QG and

sequence, we found the hybrid covariance to be beneficiah GOM . s | teular. it Id be int i
compared to the dynamical approach; even when a large dyt- € experiments. In particufar, 1t would be interesting

namical ensemble is used. In addition, the hybrid covariancénO rir;)alfzi (;N?]etri?r rin r?t()p(:nerlmal dec;eai\rsﬁ;t)WétgmeThi
methods are applied for the first time to a realistic applica- umber of dynamic members aiso occurs € - IS

tion (i.e. assimilating real observations, using a state of thecoz!d provide a usetf_ul |n|df|cat|on ?f the eﬁpected error when
art model at a resolution capable of resolving the dynam-s'e INg Up an operational forecasting system.

ics, and thus applicable in an operational setting), and to the
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