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Abstract. Barrier layers are defined as the layer between
the pycnocline and the thermocline when the latter are dif-
ferent as a result of salinity stratification. We present a re-
visited 2-degree resolution global climatology of monthly
mean oceanic Barrier Layer (BL) thickness first proposed by
de Boyer Mont́egut et al.(2007). In addition to using an ex-
tended data set, we present a modified computation method
that addresses the observed porosity of BLs. We name poros-
ity the fact that barrier layers distribution can, in some areas,
be very uneven regarding the space and time scales that are
considered. This implies an intermittent alteration of air-sea
exchanges by the BL. Therefore, it may have important con-
sequences for the climatic impact of BLs. Differences be-
tween the two computation methods are small for robust BLs
that are formed by large-scale processes. However, the for-
mer approach can significantly underestimate the thickness
of short and/or localized barrier layers. This is especially the
case for barrier layers formed by mesoscale mechanisms (un-
der the intertropical convergence zone for example and along
western boundary currents) and equatorward of the sea sur-
face salinity subtropical maxima. Complete characterisation
of regional BL dynamics therefore requires a description of
the robustness of BL distribution to assess the overall impact
of BLs on the process of heat exchange between the ocean
interior and the atmosphere.

1 Introduction

Generally, the base of the oceanic mixed layer coincides with
the top of the pycnocline (Fig.1, left). When a barrier layer
(BL) is present the density change responsible for the pycno-
cline is produced by a salinity change, the mixed layer salin-
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ity being lower than the salinity in the layer below (Fig.1,
right). The BL is then defined as the layer between the pycn-
ocline and the thermocline, which is found at greater depths.
In this case, the temperature in the BL, immediately below
the surface mixed layer, is thus either the same or slightly
higher than the temperature in the mixed layer itself. BLs re-
ceived their name (Godfrey and Lindstrom, 1989) from their
property of inhibiting turbulent and entrained heat exchange
between the atmosphere and the cold subsurface ocean. They
can form under various mechanisms (see de Boyer Montégut
et al. (2007) andMignot et al.(2007) and references therein).
Strong shallow salinity stratification can arise from intense
precipitation (as under the ITCZ in the equatorial Pacific),
river outflow (in the Bay of Bengal and close to the mouth
of the Amazon), or subduction at the eastern edge of the Pa-
cific Warm Pool. Mesoscale processes and Ekman vertical
pumping can also contribute significantly to the formation
mechanisms as well as large scale layering.

An early analysis of the distribution of the barrier layer for
the global tropical ocean (Sprintall and Tomczak, 1992) was
based on the first available version of the World Ocean At-
las (Levitus, 1982). De Boyer Mont́egut et al. (2007) and
Mignot et al. (2007) recently extended the analysis to the
global ocean, using a much larger and not already interpo-
lated observational data base (more than 500 000 temperature
and salinity profiles from the period 1967–2002 and Argo
profiles collected from 1996 until January 2006). These stud-
ies show the barrier layer thickness derived as the mean or the
median from all available observations, for the four seasons.
They allow researchers and others to identify ocean regions
where heat exchange between the atmosphere and the sub-
surface ocean is inhibited.

Yet, when one of us (M.T.) investigated occurrences of
barrier layers in the central Pacific Ocean as part of the sci-
ence program of voyage S216 on SSV Robert C. Seamans of
the Sea Education Association, it became evident that there
was spatial variability in not only the thickness of BLs but
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Fig. 1. Examples of obseved hydrographic profiles. Temperature (black), salinity (blue), and density (red) profiles are measured(a) from a
WOCE profiler float on 3 February 1999 in the northern tropical Atlantic and(b) from an Argo float on 31 January 2002 in the southeastern
Arabian Sea (de Boyer Mont́egut et al., 2007). Note the different vertical and horizontal scales used for the two profiles. The red solid
dot shows the depth where the density criteria is reached, thus definingDσ (see text). The black solid dot shows the depth where the
temperature criteria is reached, thus definingDT -02 (see text). Figure1a is an example where both criteria are reached at the same depth,
and there is no BL. Figure1b is an example of classic BL case, where the temperature is approximately homogeneous below the density
mixed layer. In this case,Dσ andDT -02 are different and they limit the barrier layer (BL). See Fig. S1 for an additional example (see
http://www.ocean-sci.net/5/379/2009/os-5-379-2009-supplement.pdf).

also their presence/absence (Fig.2). The observed patchiness
has the potential to modify the importance of the BL on air-
sea heat exchange, since the BL can only effectively obstruct
the heat transfer if it is sufficiently persistent or if it is contin-
uous over a sufficiently large area. If the barrier layer is dot-
ted with “holes”, in other words if it is relatively “porous”, its
role as an inhibitor of heat transfer can be greatly reduced, to
the extent that the area available in the “holes” may allow tur-
bulence and entrainment to act in the normal way. Regarding
temporality,Sprintall and McPhaden(1994) investigated the
persistence of BLs using mooring data at 0◦, 165◦ E. They es-
timated the dominant timescale of BL thickness in the west-
ern equatorial Pacific to be around 12–25 days. This is less
than a month. Given these observed characteristics of the
BL, what is the meaning of a 2◦×2◦-monthly climatology?

To investigate this issue further, we propose to repeat the
analysis ofde Boyer Mont́egut et al.(2007) with a slightly
amended methodology. The 2007 analysis determines the BL
thickness as the median from all available observations, in-

cluding stations with no barrier layer. This methodology was
directly inspired from the computation of the mixed layer
depth byde Boyer Mont́egut et al.(2004). However, while
the mixed layer, as a fluid surface boundary layer, is a per-
manent feature of the ocean, BLs are not necessarily present
in the ocean. They can appear or disappear according to
the space and time scales of their formation and destruction
mechanisms. BLs distribution at a specific grid point is thus
not necessarily Gaussian but rather skewed toward high val-
ues. As a result, the former approach on a 2◦

×2◦-monthly
grid possibly underestimated the BL thickness when it really
occurs. In the present work, we determine the median thick-
ness of all stations that effectively exhibit a barrier layer. In
addition, we calculate the ratio R of the number of stations
where a barrier layer exists to the total number of stations.
This ratio can be considered as a measure of BL persistence.
We define the porosity of the barrier layer as the quantity 1-R.
Our goal is to estimate the BL robustness on a global scale re-
garding our time/space resolution. In some areas, thick BLs
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Fig. 2. Thermocline (blue) and pycnocline (red) depths measured in
the central Pacific from 5◦ S to 15◦ S along approximately 155◦ W
during the science program of voyage S216 on SSV Robert C. Sea-
mans of the Sea Education Association (map in the top right cor-
ner, the crosses indicate the stations, the voyage was undertaken
southward). The measurements took place between 17 and 26 April
2008. The thermocline and pycnocline depths are defined as the
depthsDT -0.2 and Dσ respectively inde Boyer Mont́egut et al.
(2007) (see Sect.2.2). Stations where the pycnocline is shallower
than the thermocline are stations where a barrier layer was detected.

may occur but were not obvious in our previous studies as
they are not persistent and/or do not occur on a large enough
scale. This new study allows a better identification of such
porous BLs that should then be considered carefully regard-
ing their possible climatic impact on air-sea interaction.

The following section presents the new data set and the
new methodology in more detail. The results are presented
in Sect.3, discussed in Sect.4 and summarized in Sect.5.

2 Data and methodology

2.1 Data

The present study is based on the collection of about 750 000
instantaneous temperature and salinity profiles measured be-
tween 1967 and September 2008 (Fig.3). They were ob-
tained from the World Ocean Database (WOD) 2005 at the
National Oceanographic Data Center (NODC) (Boyer et al.,
2006), the World Ocean Circulation Experiment (WOCE)
database (WOCE Data Product Committee, 2002), and the
ARGO data base (from Coriolis Global Data Assembly Cen-
ter). The previous study byde Boyer Mont́egut et al.(2007)
was based on the same data base but included only data until
January 2006 for the ARGO data base and until end of 2002
for the NODC (WOD2001) and WOCE data bases.

The 2007 study did not include statistical information.
The major reason for this was the relatively small num-
ber of profiles available in some locations (Fig. 2a in
de Boyer Mont́egut et al., 2007), which put the significance
of the statistics into question. Extending the period from Jan-
uary 2006 to September 2008 provides an additional 200 000
profiles and therefore improves the application of statistical
analysis.
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Fig. 3. Distribution of profiles including both temperature and salin-
ity data in each 2◦ by 2◦ mesh box. JFM and JAS indicate the
two seasons January-February-March and July-August-September,
respectively. This figure should be compared with Fig. 2a in
de Boyer Mont́egut et al.(2007).

2.2 Methodology

As in de Boyer Mont́egut et al.(2007) and Mignot et al.
(2007), we compute the BL thickness for each profile based
on the difference between two depths:DT -02–Dσ (see
Fig. 1). DT -0.2 is the depth where the temperature has de-
creased by 0.2◦C as compared to the temperature at the refer-
ence depth of 10 m.Dσ is the depth where the potential den-
sity σθ has increased from the reference depth by a threshold
1σ equivalent to the density difference for the same temper-
ature change at constant salinity:

1σ = σθ (T10 − 0.2, S10, P0) − σθ (T10, S10, P0) (1)

T10 andS10 are the temperature and salinity at the reference
depth 10 m andP0 is the pressure at the ocean surface. If
the differenceDT -02–Dσ is positive, the pycnocline is shal-
lower than the thermocline and a BL occurs with BL thick-
ness equal toDT -02–Dσ Note that the layer comprised be-
tween the surface andDT -0.2 can be isothermal but this is not
general, as shown by the presence of subsurface temperature
maxima inde Boyer Mont́egut et al.(2007). If the difference
DT -02–Dσ is negative, the pycnocline is deeper than the cor-
responding thermocline. No BL occurs in this case but there
is a deoth range over which the density change due to the

www.ocean-sci.net/5/379/2009/ Ocean Sci., 5, 379–387, 2009



382 J. Mignot et al.: On the porosity of barrier layers

temperature change is compensated by the effect of a salinity
change (de Boyer Mont́egut et al., 2004).

In order to reduce these individual data over the
2◦

×2◦grid, we first repeat the method employed in
de Boyer Mont́egut et al.(2007) andMignot et al.(2007) by
defining the BL thickness as the positive values of the median
of all differencesDT -0.2−Dσ available for each grid mesh.
This estimation thus mixes together profiles with real BL
events and profiles where no BL is present (DT -0.2−Dσ ≤0).
The interpretation of this climatology is that for each grid
point, the likelihood that a profile has a BL thickness larger
than the given value is 50% and equals the likelihood that its
BL thickness is smaller than the given value.

It is obvious that this methodology underestimates the bar-
rier layer thickness that really occurs, although it is impos-
sible to tell to what degree, since the monthly charts do not
contain information about the number of stations without a
barrier layer. In other words, they do not include informa-
tion on the BL patchiness as observed in the central Pacific
(Fig.2). Therefore, we propose to compare this analysis with
a slightly amended one: for each grid mesh, we now select
profiles that do exhibit a significant BL before computing the
median. The selection criterion, applied to each profile, is
arbitrarily fixed to{

DT -0.2−Dσ > 5 m
DT -0.2−Dσ > 10%(DT -0.2)

(2)

Note that in the previous approach, for clarity of the fig-
ures, we had arbitrarily chosen to shade grid points where
the final median value met these criteria (see figures in
de Boyer Mont́egut et al., 2007 and Mignot et al., 2007).
But all profiles were used for the computation and the data
product includes all final values. Here, the computation
excludes profiles that do not meet these criteria. For all
profiles, we use the complete initial vertical resolution and
not the standard depth casts. For data from WOD2005,
in particular, we thus have a vertical resolution of the or-
der of 2 m. We are aware however that the first condition
(DT -0.2−Dσ >5 m) can be at the limit of the vertical resolu-
tion of the data, for ARGO floats in particular. However,
as in de Boyer Mont́egut et al. (2004), a linear interpola-
tion between observed levels is used for each profile to es-
timate the exactDT -0.2 and Dσ . Furthermore, inspection
of individual profiles confirmed the existence of BLs of less
than 10m thickness (Fig. S1, seehttp://www.ocean-sci.net/5/
379/2009/os-5-379-2009-supplement.pdf). BL porosity was
consequently reduced by up to 25% in the deep Tropics when
the threshold was increased to 10 m. This collection of ar-
guments motivated the choice of this condition. The sec-
ond condition (DT -0.2−Dσ >10% (DT -0.2)) is particularly
needed in the extra-tropics where isopycnal and mixed lay-
ers are relatively deep so that an absolute difference of 5m
does not have the same meaning and impact as in the trop-
ics. In order to give more robustness to the statistics, we only
consider grid points where at least 5 profiles are available.

In both approaches, no kriging of the final data is applied in
order to keep a point-wise interpretation of the comparison.

In addition to the BL thickness itself, the second approach
provides statistics on the amount of profiles with a BL sat-
isfying the criterion (Eq.2) compared to the total number of
profiles available at the specific grid point with bothDT -0.2
andDσ defined. This ratio R can be interpreted as a mea-
sure of the BL persistence: it gives information on the ro-
bustness of the measured BL as compared to the totality of
the measurements that were done at the location. We define
the BL porosity as the quantity (1-R) expressed in percent.
The greater the BL porosity, the more uneven the distribu-
tion of the BL with respect to the space/time scale considered
and the greater the transmissivity of the region. By using the
term “porosity”, we deliberately propose an analogy with the
situationin porous rocks where water can pass through the
crevices and other openings but not through the rock itself.
Note that this concept of BL porosity is close to the concept
of sea ice concentration that defines, for a given grid point,
the percentage of area covered by sea ice.

3 Results

3.1 BL porosity

Monthly maps of BL porosity on the global 2◦
×2◦ grid are

shown on Fig.4. In several areas, BL porosity is less than
25%, i.e. the majority of available profiles show a significant
BL thickness. In these areas, the BL can thus be considered
as a robust, non-transmissive feature and the heat transfer
from the atmosphere to the ocean is quasi-permanently hin-
dered for the observed month. In the tropics, these areas are
essentially the ones thatMignot et al.(2007) highlighted as
the thickest and the most persistent: the Bay of Bengal and
the southeastern Arabian Sea, where the BL thickness peakes
in February, the eastern tropical Indian Ocean, peaking in
November, the northwestern tropical Atlantic, the western
Mediteranean Sea, peaking in boreal winter, and finally the
Pacific warm pool and the South Pacific Convergence Zone
(SPCZ) where the BL thickness is maximum in austral au-
tumn and winter. As detailed inMignot et al.(2007), these
BLs are due to the large scale advection of various freshwa-
ter sources (river outflow and precipitation). Thus, they ex-
tend over macro-areas and they are logically not very porous.
They are also expected to have a real and robust impact on
air-sea exchanges (the quantification of the latter is beyond
the scope of the present paper).

Permanent differences betweenDT -02 andDσ are also de-
tected at high latitudes in winter (North Pacific, Labrador
Sea, Norwegian Sea and Austral Ocean south of 50◦ S). As
discussed inde Boyer Mont́egut et al.(2007), these differ-
ences are due to the layering of different water masses rather
than air-sea interface physics. Their low porosity results
from this large scale characteristic. However, their climatic
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Fig. 4. Selection of 4 monthly maps showing the BL porosity measured as 100*(1-R), where R is the ratio of the number of profiles where a
significant BLT is detected over the total number of profiles available at this location withDT -02 andDσ both defined. Light grey oceanic
areas show grid points where BL porosity is 100%, i.e. no BL was ever detected. White areas show grid points where less than 5 profiles
where available with bothDT -02 andDσ defined. See Fig. S2 for the full 12 monthly maps.

impact is probably limited because they occur at greater
depths, since the winter mixed layer is deep at these latitudes
(below 100 m in the North Pacific and 200 m in the Labrador
Sea). Therefore, we do not comment further on the poten-
tial climatic role of the BLs detected in these regions. Note
that significant BL thickness also appears in the south-east
Pacific, where the SubAntarctic Mode Water is formed. It is
beyond the scope of the present study to investigate its origin
in detail but since many recent studies point to this region
and this water mass as carrying signatures of climate change
through direct air-sea interaction and subduction of gases,
this should be done in a following study.

Next, Fig. 4 also contains areas where the BL porosity
is comprised roughly between 25 and 60%. In particular,
porosity index under the central and eastern Pacific ITCZ
away from the warm pool is around 25–40% in boreal sum-
mer. This value suggests that 1/2 to 3/4 of the summer
profiles collected in this area exhibit a BL. Another way to
see this value is that BLs detected in this area persist over
slightly more than half of the sampling time, that is one
month here. This porosity ratio can be linked to the BL for-
mation mechanism: under the ITCZ, mesoscale turbulent ac-
tivity is thought to play an important role in generating BLs
(e.g. You, 1995, Cronin and McPhaden, 2002). Since this
activity is not resolved by our 2◦×2◦ monthly grid, we do
expect a relatively high porosity ratio (it increases to up to
75% in boreal winter). It becomes evident here that the no-
tion of porosity cannot be separated from the time and space
scale of the study.

Another major area of porous tropical BL is the southern
Arabian Sea in summer, studied recently byThadathil et al.

(2008). This BL area was already detected inMignot et al.
(2007) but it had not been commented upon because of its
small thickness. The present analysis emphasizes that it is
not necessarily thin but rather porous (about 50% or more).
de Boyer Mont́egut et al. (2009) show that during this sea-
son, BL formation is linked to the southward displacement
of a high salinity front and its associated mesoscale instabil-
ities. This mechanism is consistent with a relatively porous
BL. Note also the intermediate porosity ratio of the winter
BL located offshore of California and already mentioned in
de Boyer Mont́egut et al.(2007).

Winter BLs located equatorward of the subtropical SSS
maxima were one of the major findings ofMignot et al.
(2007). It was shown that their formation mechanism is still
under discussion, with the relative influence of the large scale
layering of different water masses on the one hand, and of
seasonal vertical turbulent mixing on the other hand not be-
ing well established. These BLs clearly appear in Fig.4 with
intermediate porosity indexes, generally less than 50%. This
tends to confirm some influence of turbulent mixing below
the 2◦-monthly scales, at least that subsurface advection of
salty waters is not the only factor inducing the formation of
these BLs.

Figure4 also reveals several grid points where the porosity
index amounts to 60–90%. This corresponds to very porous
BLs, which probably have a relatively limited impact on air-
sea heat exchange and thus climate. Indeed, in this case, the
exchange of heat between the mixed layer and the ocean in-
terior is perturbed by an intermittent BL, but it is not perma-
nently blocked. Figure4 shows that such intermittent BLs
are potentially present in all regions of the globe, in any
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season in the tropics and mostly in winter in the mid to high
latitudes. They are also detected along the western bound-
ary currents in summer, especially along the Gulf Stream. In
this region, indeed, BLs may occur due to mesoscale eddies
coming from instabilities of the current and bringing fresh
water lenses from the north (de Boyer Mont́egut et al., 2007
and references therein). This formation mechanim is again
consistent with the transient feature revealed by Fig.4.

Finally, the figure still reveals areas where no BLs are ever
detected (porosity above 90%). These are essentially the
winter mid-latitudes (compensation areas) and the summer
northern mid-latitudes (except along the western boundary
currents as indicated above).

3.2 BL thickness

We compare now the BL thickness given by the ap-
proach developed here (Fig.5) with the one developed in
de Boyer Mont́egut et al.(2007) and Mignot et al. (2007)
updated with the new data set (not shown – see online sup-
plementary material:http://www.ocean-sci.net/5/379/2009/
os-5-379-2009-supplement.pdf). The first thing to note is
that the new computation retrieves many more climatological
barrier layers than when all stations are used to compute the
final median value of the BL thickness, and that BLs com-
puted by the n ew approach are naturally generally thicker
than the ones computed by the former method (Fig.6). Dif-
ferences are mostly evident in areas where the BL porosity
(Fig. 4) is intermediate to high (40 to 90%). Indeed, in these
regions, a large proportion of profiles without barrier layers
pushes the median toward a very low value of BL thickness
if they are included in the computation. On the other hand,
a low porosity (say less than 30 to 40%) means that the ma-
jority of the collected profiles are captured by the criterion
given in Eq. (2), so that the two methods become equivalent.
And when a BL is too porous (more than 90%), it is most
probably very thin, so that both approaches also give similar
values. Therefore, the major significant finding of this new
product concerns BLs of intermediate porosity. In this case,
the 2007 method takes a large amount of profiles that do not
present a significant BL into account so that it strongly un-
derestimates the resulting BL thickness.

In the tropics and subtropics, the maps of differences
(Fig. 6) are rather patchy. Consistent with the discussion
above, differences are small (generally less than 5 m) in
the tropical Indian Ocean, the Pacific warm pool, under the
SPCZ and in the northwestern tropical Atlantic. They can
amount to 10–25 m in the central equatorial Pacific and to 5–
10 m in the central equatorial Atlantic (under the ITCZ). In
the Indian Ocean, some significant differences are visible in
the Bay of Bengal in March, in the northern Arabian Sea in
January and February and in the southern Arabian Sea in Au-
gust. Figure4 revealed a higher porosity ratio during these
specific months than during the rest of the year. As reviewed
in Mignot et al.(2007), these months correspond to the end

of the thick BL cycle at the corresponding location, so that it
is not surprising to detect less BLs, particularly towards the
end of the month. In this respect, this new approach of the
BL thickness computation can also give insight into the char-
acterization of BL seasonality. Finally, we note differences
up to 30 m in thickness for BLs located equatorward of the
subtropical SSS maxima in winter. This amounts to 40 to
70% of the BL thickness computed by the new approach.

Large differences (Fig.6) are also found at mid to high
latitudes in winter. In these areas, BLs can indeed be very
thick (over 150–200 m,de Boyer Mont́egut et al., 2007), so
that incorporating or neglecting profiles where a BL is absent
makes a strong difference in the resulting BL thickness. No-
ticeable differences are also seen along the western boundary
currents in the northern hemisphere all year long.

To conclude, this new BL thickness climatology
(Fig. 5) is probably more realistic than the previous one
(de Boyer Mont́egut et al., 2007), but it should not be con-
sidered without the associated porosity ratio (Fig.4).

4 Discussion

As already discussed above, a porosity ratio of 33% for ex-
ample means either that only 2/3 of the profiles collected in
the area exhibit a BL, or that BLs detected in this area per-
sist over 2/3 of the sampling time, that is one month here.
In both cases, however, it means that air-sea interactions are
hindered by a BL during 66% of the sampling period. Our
method is however unable to distinguish between time and
space variability. A fortiori, it does not allow to quantify the
relative importance of spatial or temporal patchiness regard-
ing the climatic impact of BLs. In the classical view, this
impact is a one-dimensional process. In this sense, the time
patchiness might have more direct implications. But lateral
and diffusive effects might also play an important role for the
mixed layer heat budget, so that spatial patchiness must also
be taken into account.

Concerning time variability, note also that our study does
not indicate whether the BL period is continuous over the
observed month, and followed by a continuous period where
no BL is present, or whether the BL is present intermittently
on a daily time scale for example. These two extreme cases
might have themselves different climatic impacts. Poros-
ity as we present it here is an attempt to estimate the life
time of monthly BLs and thus their robustness relative to this
timescale (one month). It thus depends to some degree on the
way in which data are grouped for the statistics. Our study
groups them into bins of 12 months.

One way to gain better insight into the problem of quan-
tifying the climatic impact of BLs would be to base the
analysis on shorter time intervals, for example weekly bins.
Shorter bins however reduce the number of observations
in each bin and render the statistics unsafe. The final an-
swer can probably only be obtained through time series with
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Fig. 5. Selection of 4 monthly maps of the differenceDT -02-Dσ computed as described in Sect.2.2: for each grid mesh corresponding to a
square of 2◦×2◦, we plot the median of all differences that are larger than 5m and 10% ofDT -02. Light grey oceanic areas show grid points
where no BL was ever detected. White areas show grid points where less than 5 profiles were available with bothDT -02 andDσ defined.
See Fig. S3 for the full 12 monthly maps.
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Fig. 6. Selection of 4 monthly maps of the BLT differences between the two computation methods. See Sect.2.2 for more details. See
Fig. S4 for the full 12 monthly maps.

sufficiently high resolution in time. Maybe a detailed assess-
ment of barrier layer porosity requires dedicated field studies
in regions of interest that can generate time series capable of
resolving processes at time scales of days. With such data
in hand, an absolute timescale giving the life expectancy of
the BL could be defined. This notion is indeed probably as
important as the BL spatial extent in order to evaluate its cli-
matic impact.

Sprintall and McPhaden(1994) carried out such an anal-
ysis using mooring data at 0◦, 165◦ E. As indicated earlier,
they estimated the dominant timescale of BL thickness in
the western equatorial Pacific to be around 12–25 days. It
is however difficult to link this result with our study because
our definition of porosity is also relative to our space resolu-
tion (2◦). In the observations obtained in the the central Pa-
cific by SSV Robert C. Seamans, a barrier layer was present
at 7 stations and absent at 10 stations (Fig. 1), yielding a

www.ocean-sci.net/5/379/2009/ Ocean Sci., 5, 379–387, 2009



386 J. Mignot et al.: On the porosity of barrier layers

porosity of about 59%, somewhat larger than but not incon-
sistent with the value derived from the climatology for March
(Fig. 3). With an average station spacing of 40 nm (70 km)
the resulting porosity could be interpreted as the result of
variability in space, perhaps reflecting the localized charac-
ter of tropical rain storms. However, SSV Robert C. Sea-
mans being a sailing vessel crossing an ocean with moderate
to low winds it took the ship more than a week to cover the
1250 km, so some of the observed variability could be the re-
sult of changes in time as well. This discussion illustrates the
duality between time and space scales regarding the notion of
BL porosity.

In our view, another aspect of BLs should be considered
to assess their climatic impacts on top of the thickness and
porosity: it is the intensity of the salinity stratification. In-
deed, we think one should distinguish “strong” BLs, charac-
terized by a robust salinity stratification that would require
a relatively intense surface cooling for compensation from
“weak” BLs that can potentially be “broken” by a relatively
weak surface cooling. This is probably a crucial parame-
ter to estimate the robustness of the BL and its efficiency in
limiting the heat exchange between the surface and the cold
deeper ocean. Further studies are however needed to define
clearly the quantity that should be used to describe this as-
pect.

As a perspective, we note also that this study does not
adress the question of the long term trend in the BL thick-
ness. Obviously, answering this question is limited by the
available data. Yet, we propose that attempts could be made
to examine this in the more data-rich regions such as the sub-
tropical North Atlantic.

5 Summary

This study presents an amended climatology of the global
barrier layer thickness ofde Boyer Mont́egut et al.(2007).
In addition to using an extended data set, we propose a mod-
ified computation method in order to take into account the
observed porosity of barrier layers. We name porosity the
fact that barrier layers distribution can, at least in some ar-
eas, be very uneven in space and in time. This porosity may
have important consequences for the climatic impact of BLs.

The new computation method is based on an a priori cri-
terion of BL thickness applied to individual profiles before
reducing the data set on a regular grid. It differs from the
previous approach where reduction on the grid consisted of
taking the median ofall individual differencesDT -02−Dσ ,
without considering whether it corresponds to a BL (i.e.
DT -02−Dσ >0) or not. The new computation goes along
with a measure of the ratio R of the amount of profiles that
exhibit a significant BL over the total amount of available
profiles, for each grid point. 1-R is a measure of the BL
porosity relative to the space and time scales that are consid-
ered. The monthly mean differencesDT -02−Dσ computed

with the new method and using the extended data set, as well
as the monthly porosity ratio, can be downloaded fromhttp://
www.locean-ipsl.upmc.fr/∼cdblod/blt.html. They show that
the BL phenomenon potentially occurs nearly everywhere
but with different porosity indexes. If the latter is high (over
75 to 90%), then the potential impact of the BL for air-sea
interactions and climate is likely to be negligible.

One major finding of this analysis is the link between the
BL’s formation mechanism and the associated porosity in-
dex. Note thatTomczak(1995) already mentioned a possible
link between BL formation and its persistence in the tropical
western Pacific Ocean. Our global product confirms this link
for well-known BLs and gives insight into potential forma-
tion mechanisms in other areas. In the tropical Indian Ocean
(except for the southern Arabian Sea), the western tropical
Pacific and Atlantic, BLs are formed by large-scale, mostly
advective, processes and they are thus rather impermeable. In
these areas, the analysis showed very weak differences (less
than 5 m) with the previous climatology (de Boyer Mont́egut
et al., 2007). On the other hand, BLs under the ITCZ and in
the Arabian Sea in boreal summer develop under the action
of mesoscale, turbulent processes that are not resolved by our
time and space scales. These BLs were thus logically asso-
ciated with a larger porosity index. The former computation
largely underestimated these BLs and their detection through
the new climatology constitutes a major improvement. Con-
cerning the BLs detected equatorward of the subtropical SSS
maxima in winter, their intermediate porosity index gives
confidence in the fact that some turbulent activity probably
plays a role in their formation. A similar distinction could
be made at mid to high latitudes: strongly impermeable BLs
due to the layering of fresh and cold waters over warmer and
saltier waters are found at high latitudes in winter while more
permeable BLs are found at mid latitudes in areas of strong
turbulent activity (along the Gulf Stream in particular).
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Blanke, B.: Barrier layers in the Arabian Sea during the sum-
mer monsoon, in preparation, 2009.

Godfrey, J. S. and Lindstrom, E. J.: The heat budget of the equa-
torial western Pacific surface mixed layer, J. Geophys. Res., 94,
8007–8017, 1989.

Levitus, S.: Climatological Atlas of the world ocean. Technical
report, NOAA Prof. Pap. 13, 163 pp., 1982.

Mignot, J., de Boyer Montégut, C., Lazar, A., and Cravatte, S.: Con-
trol of salinity on the mixed layer depth in the world ocean. Part
II: tropical and subtropical areas, J. Geophys. Res., 112, C10010,
doi:10.1029/2006JC003954, 2007.

Sprintall, J. and Tomczak, M.: Evidence of the barrier layer in the
surface layer of the Tropics, J. Geophys. Res., 97, 7305–7316,
1992.

Sprintall, J. and McPhaden, M. J.: Surface layer variations observed
in multiyear time series measurements from the western equato-
rial Pacific, J. Geophys. Res., 99, 973–979, 1994.

Thadathil, P., Muraleedharan, P. M., Somayajulu, Y. K., Gopalakr-
ishna, V. V., and Reddy, G. V.: Seasonal variability of the ob-
served barrier layer in the Arabian Sea, J. Phys. Oceanogr., 38(3),
624–638, 2008.

Tomczak, M.: Salinity variability in the surface layer of the tropi-
cal western Pacific Ocean, J. Geophys. Res., 100(C10), 20499–
20515, 1995.

WOCE Data Product Committee: WOCE Global Data, version 3.0,
Technical Report 180/02, WOCE Int. Project Off., Southampton,
UK, 2002

You, Y.: Salinity variability and its role in the barrier-layer forma-
tion during TOGA-COARE, J. Phys. Oceanogr., 25(11), 2778–
2807, 1995.

www.ocean-sci.net/5/379/2009/ Ocean Sci., 5, 379–387, 2009


