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Abstract. The Cyprus Coastal Ocean Forecasting and Ob-
serving System (CYCOFOS) has been producing operational
flow forecasts of the northeastern Levantine Basin since 2002
and has been substantially improved in 2005. CYCOFOS
uses the POM flow model, and recently, within the frame of
the MFSTEP project, the flow model was upgraded to use the
hourly SKIRON atmospheric forcing, and its resolution was
increased from 2.5 km to 1.8 km. The CYCOFOS model is
now nested in the ALERMO regional model from the Uni-
versity of Athens, which is nested within the MFS basin
model. The Variational Initialization and FOrcing Platform
(VIFOP) has been implemented to reduce the numerical tran-
sient processes following initialization. Moreover, a five-day
forecast is repeated every day, providing more detailed and
more accurate information. Forecast results are posted on the
web pagehttp://www.oceanography.ucy.ac.cy/cycofos. The
new, daily, high-resolution forecasts agree well with the
ALERMO regional model. The agreement is better and re-
sults more reasonable when VIFOP is used. Active and slave
experiments suggest that a four-week active period produces
realistic results with more small-scale features. For runs in
September 2004, biases with remote sensing sea surface tem-
perature are less than 0.6◦C with similar expressions of the
flow field present in both. Remotely-observed coastal up-
welling south of Cyprus and advection of cool water from
the Rhodes Gyre to the southern shores of Cyprus are also
modeled. In situ observed hydrographic data from south
of Cyprus are similar to the corresponding forecast fields.
Both indicate the relatively fresh subsurface Atlantic Wa-
ter and a near-surface anticyclone south of Cyprus for Au-
gust/September of 2004 and September 2005. Plans for fur-
ther model improvement include assimilation of observed
XBT temperature profiles, CTD profiles from drifters and
gliders, and CT data from the CYCOFOS ocean observatory.
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(dhayes@ucy.ac.cy)

1 Introduction

Forecasting seawater movements and properties is of impor-
tance in understanding the effects of human activities on the
marine environment as well as the effect of marine conditions
on human operations in the sea. Flow modelling is consid-
ered a useful operational tool for decision-making in case of
marine accidents. Some examples where operational fore-
casting is vital include search and rescue, oil spill fate mod-
elling, and dispersion of pollutants. The practical real-time
benefits of operational oceanography also bring improved
understanding of environmental conditions and change at
many levels. These operational activities imply a close at-
tention to marine conditions on a daily basis over a period of
years and from basin scales down to coastal scales.

The Cyprus Coastal Ocean Model (CYCOM) is one of the
coastal/subregional models of the Mediterranean Forecasting
System (MFS) project (Pinardi et al., 2003), for high resolu-
tion flow simulations in the Cyprus and the NE Levantine
basins. CYCOM has been running continuously since 2002
in various configurations. In this study, it is nested within
the Aegean Levantine Eddy Resolving Model (ALERMO),
which covers the whole Eastern portion of the Mediterranean
Sea. In this paper the performance of CYCOFOS is investi-
gated by examining the effects of downscaling and initializ-
ing from the regional model and the degree of agreement of
the forecasts with remote-sensing and in situ observations.
The effect of downscaling is investigated for October 2005,
during the period of transition between the bilinear interpo-
lation and the variational method of initialization. The ef-
fect of initializing at weekly or monthly intervals is examined
for 2 periods: September 2004 and January 2005, when spe-
cial “active- slave” runs were conducted. The agreement of
forecasts with remote-sensing takes place also for Septem-
ber 2004 and January 2005. Comparisons with in situ data
are made first for August 2004, January 2005 (active-slave
runs), then September 2005 and July 2006 (operational fore-
casts).
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Fig. 1. Bathymetry and domain of CYCOM.

The known features of the general circulation near Cyprus
as well as the climatological output for CYCOM are dis-
cussed by Zodiatis et al. (2003). In summary, Cyprus has
no significant river discharge, very narrow coastal areas with
steep topographic gradients for shelf breaks and a shoreline
exposed to the open sea. The coastal/shelf areas of the Levan-
tine Basin are dominated by the mesoscale flow phenomena
of the neighboring deep regions, such as the jet of Atlantic
Water that meanders south of Cyprus, the Asia Minor Cur-
rent, the Rhodes Gyre, and various eddies that can persist
south of Cyprus for months. Storm surges are not important
because of only moderate storm intensity, small tidal range
(less than 0.3 m), and generally steep coastlines. Only the
near-surface layers are affected by persistent westerly winds,
which result in an upwelling feature on the southern or south-
western coast of Cyprus.

2 Methods and model descriptions

Both CYCOM and ALERMO use numerical schemes that
are modified versions of POM (the Princeton Ocean Model).
The POM model has been widely used both within the frame-
work of the MFS and elsewhere to simulate the flows in
both regional and subregional sea areas of the Mediterranean
Sea. POM has been extensively described in the literature
(Blumberg and Mellor, 1987; Lascaratos and Nittis, 1998;
Zavatarelli and Mellor, 1995). The POM model is a primitive
equation, 3-D ocean circulation model based on the full non-
linear equations of momentum and mass conservation and
their depth-averaged forms. The model comprises a bottom-
following sigma coordinate system, a free surface, and split
mode time steps. At each time-step, the surface elevation and
vertically integrated mass transports (that is, the barotropic
mode) are computed from the depth-averaged equations by
an explicit leapfrog scheme. The vertical structure of the
current (baroclinic mode) is obtained from the horizontal

momentum equations with a longer time step (Lardner and
Cekirge, 1998). Advancing the baroclinic mode is compu-
tationally much more demanding and the use of a longer
time step for it makes the overall computational scheme quite
efficient. All sub-grid-scale phenomena are considered as
mixing processes by introducing separate horizontal and ver-
tical mixing terms. The horizontal viscosity and diffusion
terms are evaluated using the Smagorinsky (1963) horizontal
diffusion formulation while the vertical mixing coefficients
for momentum and tracers are computed according to the
Mellor-Yamada 2.5 turbulence closure scheme (Mellor and
Yamada, 1982). Heat and salinity transport sub-models are
included. Potential temperature, salinity, velocity and sur-
face elevation, are the prognostic variables of the model.

2.1 Cyprus Coastal Model (CYCOM)

The domain of CYCOM (Fig. 1) is bounded by coastline
on the north and east (maximum latitude of 36◦55′ N and
maximum longitude of 36◦13′ E). The open boundary to the
south is the 33◦30′ N latitude line, and the open boundary
to the west is the 31◦30′ E meridian. Horizontal Cartesian
co-ordinates are in the Mercator projection with an Arakawa
C-grid, and the resolution is uniform at one minute (ap-
proximately 1.8 km) for a total of 284×206 horizontal grid
points. The grid-spacing is sufficiently small to resolve steep
bathymetry in the region as well as features with internal
Rossby radius length scales (10–15 km). In the vertical, a
non-uniform grid of 25 sigma layers was used with expo-
nentially decreasing spacing near the surface and sea bed to
provide finer resolution of the surface and bed layers. The
bottom topography is based on the 1′

×1′ U.S. Navy Dig-
ital Bathymetric Database. The minimum depth is 20 m.
The equations used in CYCOM are described in Zodiatis et
al. (2003).

In order to initialize CYCOM, the ALERMO data are
downscaled from its lower resolution, larger domain using
VIFOP (Variational Initialization and Forcing Optimization
Platform). The Variational Initialization technique (Auclair
et al., 2000a, b) analyzes the outputs of the regional scale cir-
culation model used as initial field of high resolution ocean
models to reduce the amplitude of the numerical transient
processes following the initialization. The VIFOP package
was successfully implemented and configured in the CY-
COM model as in ALERMO, which had first used VIFOP
for downscaling from the Mediterranean basin model. Previ-
ously, bilinear interpolation in the horizontal was used. (No
interpolation is necessary in the vertical since the same sigma
layers and bathymetry are used.) The procedure for nesting
within ALERMO (resolution of 3 km) is identical to that de-
scribed by Zodiatis et al. (2003). A passive, one way inter-
action is used (Spall and Holland, 1991), where the nesting
provides for information to be passed along the open bound-
aries from the ALERMO coarse grid to the CYCOM high-
resolution grid model.
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Fig. 2. Sea surface temperature for operational mode forecasts from(a) ALERMO (b) CYCOM, using the VIFOP method of initialization.
(c) The temperature difference field of (a) and (b).(d). The same as (c) but using the CYCOM forecast that did not use VIFOP. The output
fields are 24-h averages on 2 October 2005, which was the fourth day of the forecast.

Surface and bottom boundary conditions are applied as
described in Zodiatis et al. (2003). Surface boundary forc-
ing is provided by the SKIRON 5-day forecast (Kallos et
al., 1997). The high-resolution (0.1◦) and high-frequency
(hourly) forecast is available daily and starts at midnight. It
provides 10-m wind speed, 2-m air temperature and relative
humidity, the precipitation rate, the shortwave radiative gain
by the ocean and the infrared atmospheric radiation reach-
ing the sea surface. These daily atmospheric forecasts are
used for each new ocean forecast using the bulk flux formula-
tion. Downward shortwave and longwave radiation are used
directly from SKIRON, while heat loss terms are calculated
from SKIRON-provided parameters. Sensible and latent heat
are calculated from Budyko (1963), longwave loss is calcu-
lated from Bignami (1995). Evaporation is also calculated
from Budyko (1963) and combined with SKIRON-provided
precipitation for surface salinity flux. Surface momentum
fluxes are calculated using the computed drag coefficient of
Hellerman and Rosenstein (1983). There is no relaxation of
surface fields.

The daily average fields required by the MFSTEP
project for all partners are posted on the web site:
http://www.oceanography.ucy.ac.cy/cycofos. Five subre-
gions can be viewed online and forecast data can be down-
loaded for user-visualization using the Visual Interface of
Oceanographic Data, VIOD, or for use in the oil spill model,
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Fig. 3. Root-mean-square differences of temperature between var-
ious runs throughout the January 2005 experiment. Solid lines
are for surface temperature, dotted are for 30 m. Cyan line is for
ALERMO slave minus CYCOM slave. Green line is for ALERMO
active minus CYCOM active.

MEDSLIK. Both of these programs are freely available. In
addition, 6-h averages are also now available.
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Fig. 4. Sea surface temperature comparison for day 12 of active-slave experiment.(a) ALERMO slave.(b) CYCOM slave.(c) ALERMO
active. (d) CYCOM active. (e) Difference between ALERMO slave and CYCOM slave.(f) Remotely-sensed image for the same day.
ALERMO figures are 24-h averages, while CYCOM images are 6-h averages.

The ALERMO model covers the geographical area 20◦ E–
36.4◦ E, 30.7◦ N–41.2◦ N and has one open boundary located
at 20◦ E as shown in Fig. 1. The computational grid has a
horizontal resolution of 1/30◦×1/30◦ (493×316 grid points),
25 sigma levels, and a minimum depth of 25 m. The one-
way nesting with the global Mediterranean OGCM is applied
along the western boundary of ALERMO and is described in
Korres and Lascaratos (2003).

2.2 Operational mode

During the MFSTEP project, ALERMO was initialized every
Wednesday from a 24-h average field from the MFS basin
model (day one of a ten-day forecast, averages centered at
00:00 UT). The first set of five daily average fields from
ALERMO was centered at noon Wednesdays and was used
to initialize CYCOM every Thursday. For surface forcing,
the Wednesday SKIRON forecast was applied. Since CY-
COM begins at noon, the first 12 h of the SKIRON forecast
are lost, and CYCOM can run only 4.5 days. Average fields
were used because they were required from all partners of the

Ocean Sci., 4, 31–47, 2008 www.ocean-sci.net/4/31/2008/
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Fig. 5. Expendable bathythermograph section from 13–14 January
2005.

Fig. 5. Expendable bathythermograph section from 13–14 January 2005.

project for end users. Instantaneous fields could also have
been used without difficulty.

A second run on Thursdays was initialized with the instan-
taneous fields of the first run and forced with the Thursday
SKIRON forecast. Forecasts run days other than Thursday
were also initialized with an instantaneous field from a pre-
vious CYCOM forecast, and applied the newly available at-
mospheric forecast. At the time of this study, ALERMO was
running weekly, so some of the daily CYCOM forecasts used
MFS basin model lateral boundary conditions. In this way,
it was possible to compute 4.5-day forecasts every day. Cur-
rently, ALERMO is running daily, and the CYCOM daily
run is using the current day’s SKIRON meteorological fore-
cast and lateral boundary conditions from ALERMO.

3 Results

3.1 Model-model comparisons

3.1.1 Downscaling from regional to coastal models

When initializing CYCOM, it is important to maintain agree-
ment with the basin model (and therefore ALERMO), since
it has assimilation of observed data. A forecast produced
on 28 September 2005 is now examined in order to com-

pare the results of two methods of downscaling: bilinear
interpolation and Variational Initialization (VI). During the
period of 28 September to 17 October 2005, both methods
were used in two parallel forecasting systems for compari-
son, after which the bilinear method was stopped. Average
CYCOM fields of sea surface temperature centered at noon
of the fourth day of the forecast, 2 October 2005 are com-
pared with the ALERMO forecast on the same day (fifth
day for that forecast) (Fig. 2). Comparison is better when
the bilinear interpolation method is replaced by the VIFOP
method of downscaling. The use of VIFOP reduces errors
when an interpolated velocity interacts with high-resolution
coastal features not present in the lower resolution model.
Most importantly, using VIFOP improves flow direction and
strength in many cases. Flow into the coast is less com-
mon. Errors in surface temperature are also seen when us-
ing bilinear interpolation. The surface temperature field pro-
duced by ALERMO (Fig. 2a) and CYCOM using the VI-
FOP method (Fig. 2b) differ in small areas near the coast
(Fig. 2c). In these regions, the models differ by a few tenths
of a degree Celsius up to 1◦C for a very small number of
grid points. Over the whole domain, the mean difference is
−0.0020◦C (CYCOM slightly warmer), and the standard de-
viation is 0.154◦C. When bilinear interpolation is used, CY-
COM differs much more from ALERMO in the regions near

www.ocean-sci.net/4/31/2008/ Ocean Sci., 4, 31–47, 2008
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Fig. 7. (a) and (b) Hydrographic section along 33◦ E collected during CYBO-18 (16–25 August 2004).(c) Zonal geostrophic velocity
relative to 700 m.

to the coast of Cyprus (Fig. 2d). In this case, the mean tem-
perature difference is−0.0357◦C and standard deviation is
0.238◦C. Assuming a normal distribution and using the num-
ber of ALERMO ocean points in the Cyprus region (12 569),
the difference field is not distinguishable from zero at the
95% confidence level when using VIFOP. When using bilin-
ear interpolation, the bias is significant.

3.1.2 Slave-active comparisons

Experiments have been performed in order to investigate the
effect of initialization of a model nested within a coarser res-
olution model. As in the operational mode, in the “slave”
mode, the high resolution model, CYCOM, is initialized ev-
ery week from the coarse resolution model (ALERMO) using
VIFOP. The dynamical features that develop over this period
are compared to those of an experiment with the same bound-
ary and initial conditions, but with four weeks of integration
without initialization (“active” mode). These experiments
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Fig. 8. Same section as Fig. 7, but from 21 August 2004 active CYCOM forecast. Note model domain extends south only to 33.5◦ N.

have been performed at the regional and subregional scales
(Sofianos et al., 2006). The goal is not to determine which
model is “better” but if a more realistic forecast can be pro-
duced by initializing less frequently. Two periods were cho-
sen to represent summer and winter: September, 2004, and
January, 2005, respectively. The active runs were run for
both periods and the slave only for January, 2005. Note that,
aside from using analysis rather than forecast atmospheric
forcing and nesting within the similarly-forced ALERMO
runs, the slave and operational model simulations are set up
identically.

The RMS differences in temperature, salinity, and veloc-
ity, as well as bias in temperature between the two active runs
grow steadily in the January 2005 experiment. The RMS
of the surface temperature difference field increases over the
four weeks to 0.3◦C (green line, Fig. 3). The same pattern is
present for surface salinity and velocity components at 0 m
and 30 m, with 30 m variability slightly lower than 0 m (not
shown). The slave run only reaches an RMS surface temper-
ature difference of 0.13◦C just before each weekly initializa-
tion. The mean temperature bias between the two active runs
increases over the four weeks: CYCOM is cooling relative
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to ALERMO (Sofianos et al., 2006). The difference reaches
0.12◦C. For the slave mode runs, re-initialization causes a
sudden cooling of slave relative to active which is larger over-
all than the slow relative warming of the slave between ini-
tializations (not shown). Biases in salinity and velocity are
not evident.

3.2 Model-observations comparison

3.2.1 Active-slave and remote sensing

The active CYCOM run from January, 2005, is now com-
pared to remotely-observed sea surface temperature. Images
of SST of the Levantine Basin are collected by the University
of Cyprus Oceanography Center’s HRPT ground receiving
station for the NOAA-AVHRR satellite system. Images have
a spatial resolution of about 1 km. A SmarTrack software for
stand-alone data reception is used, while for the processing
of the raw IR data an integrated software package specifically
developed by the CYCOFOS collaborators is in use for auto
mode rectification (geometric correction) of the images and
the computations of the SST. The computation of the SST is
based on the algorithms recommended by NOAA, using IR
channels 4 and 5. The system is set up to receive data only
from night or early morning satellites passages in order to
avoid the hot spots that appear during daily SST images of
the Levantine Basin most of the year.

An SST image collected on 12 January 2005, 00:30 UT is
compared with the active and slave runs for January 2005 in
Fig. 4. The SST of the two ALERMO runs (slave and active)
are shown on the left column, and the two CYCOM runs
on the right hand side. Firstly, all model runs have a sim-
ilar structure and temperature range, with varying degrees
of small-scale variability in the form of fronts and instabili-
ties. Note that all panels use the same temperature scale. The
gross similarity is due to the inheritance of all fields from the
MFS basin model. Secondly, it is clear that the two active
runs have more small scale structure than their correspond-
ing slave runs, and the two CYCOM runs (6-h averages),
being at higher resolution and using shorter temporal aver-
age, have more small scale structure than the ALERMO runs
(24-h averages). In turn, ALERMO has more small scale
structure than the basin model, so that at each nesting level,
the models have more local structure, particularly near the
coast (Sofianos et al., 2006). The spatial nature of the dif-
ferences between active-active and active-slave model runs
consists of regions of order 10 to 100 km in size with dif-
ferences of the order of±0.5◦C (not shown). However, the
temperature difference field of ALERMO slave minus CY-
COM slave (Fig. 4e) contains similarly-sized errors in a nar-
row zone adjacent to all coastlines. The interior differences
are much less. The same behavior is seen in 30 m tempera-
ture, but no corresponding zone exists for surface salinity or
velocity at surface or 30 m. It is likely that the reinitialization
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Fig. 9. Dynamic height at surface relative to 700 m for:(a) CYBO-
18. (b) Active CYCOM run averaged over 16–25 August 2004
(CYBO-18 period).

introduces this difference, which is “forgotten” by the system
after a sufficient time of “active” simulation time.

The remotely-sensed image (Fig. 4f), essentially instanta-
neous, has many similarities with the large scale structure of
the model runs: a cool pool west of Cyprus (the eastern edge
of the Rhodes Gyre), a warm northward current along the
Syrian coast which seems to continue into the northern Cili-
cian basin as the Asia Minor current, and a relatively warm
anticyclonic eddy east of Cyprus (although with slightly dif-
ferent locations). However, the models indicate a branch of
cool water from the Rhodes Gyre passing SW of Cyprus (en-
tering the domain at 34◦ to 35◦ N and exiting at 32.5◦ to
34◦ E), whereas the NOAA image shows a large patch of
warm water in this region. An XBT transect from this pe-
riod shows a slightly cooler surface SW of Cyprus (Fig. 5).
In the XBT transect, there is a change from 18.8 to 18.4◦

covering a distance of about 20 km in the region, which is
not evident in the NOAA image and is slightly less than the
change in temperature seen in the model field in this region.
Other SST images during January (of which there are few
clear sky images) are similar to the one shown here. Both
XBT and SST data were used by the MFS basin model (but
not ALERMO) for assimilation (XBT) or surface flux cor-
rections (SST), and the analyses fields of the basin model
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Fig. 10. Same section as in Fig. 7, but for CYBO-19 (9 to 19 September 2005).

indicate a reduction in the strength of the model cool cur-
rent relative to the forecast field (not shown). It appears the
assimilation of XBT data dominated the effect of correcting
surface heat fluxes, and thus maintained the cooler surface
waters SW of Cyprus.

In contrast, the active CYCOM run of September, 2004
agrees qualitatively with the remotely-sensed SST images
available (Fig. 6). 3, 8, 14, 20 September and 28 are each rep-
resented by a row of images; the first image is the remotely-
sensed SST from the NOAA AVHRR system. The second
column is the active CYCOM 6-h average closest to the time
of the satellite observation. Also shown are the correspond-

ing 24-h average ALERMO slave fields. The main features
of the observed fields are present in the forecast fields: a large
anticyclone southeast of Cyprus, warm water along the east-
ern and northern coasts of the Levantine, cooler waters off
the south coast of Turkey and around the southern and west-
ern coast of Cyprus. The latter cooler waters are most likely
due to a combination of upwelling and advection from the
Rhodes Gyre, both observed in this region. The region west
and south of Cyprus is cooler in the forecasts than in obser-
vations. In the near-coastal areas south and east of Cyprus,
the active CYCOM model is in slightly better agreement with
observations than is the slave run of ALERMO (similar to the
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operational slave run of CYCOM, not shown here). While
the CYCOM active run appears to contain smaller scale fea-
tures than the coarse slave model and therefore be more re-
alistic, it is informative to calculate the bias and root-mean-
square differences over the basin between the observations
and each model. See Table 1. The rms differences are nearly
the same for both models. For four of the five cases, the
CYCOM mean is closer to observations, while for the other
ALERMO active is closer. All means are significant at the
95% level. It is difficult to conclude quantitatively, then, that
one model is “better” than the other, but we can conclude that
the one month active mode of running is as good or better
than the one week slave mode. It is significant that the mean
difference between observed and active run surface tempera-
tures does not grow over time.

3.2.2 Active run and in situ data, August 2004

Intensive annual or semi-annual hydrographic cruises south
of Cyprus have been carried out since 1995, and they enable
model validation at a high level of detail. The cruises are part
of the Cyprus Basin Oceanography (CYBO) program of the
Oceanography Centre. Data are collected with an SBE 911+
system, which is calibrated on an annual basis. Downcast
data were processed first by manual removal of the initial
thermal adjustment period and spikes. Next pressure, tem-
perature, and salinity were low-pass filtered with time con-
stants of 0.15, 0.5, and 1.0 s, respectively. The data discussed
here were collected during the period of 16–25 August 2004,
(cruise CYBO-18). A special experiment was performed in
which CYCOM was nested directly within the MFS-basin
model (Pinardi, 2003) using the analysis output of August
2004. This active mode experiment was initialized 1 August
2004, and used MFS-basin model lateral and surface forc-
ing. The MFS-basin model meteorological forcing comes
from ECMWF.

Two vertical temperature sections and dynamic height
from observations and the model experiment are compared
here. The north-south vertical section of in situ measure-
ments along 33◦ E (Fig. 7) indicates clearly the warm, salty
summertime mixed layer down to 30 m, the influence of At-
lantic Water (AW) from 30 m down to 100 m, the Levan-
tine Intermediate Water (LIW) from 100 m to 500 m, and the
Eastern Mediterranean Deep Water (EMDW) below 500 m.
The low salinity (<38.9 psu) AW is known to traverse the
Levantine basin in the form of a meandering jet: the Mid-
Mediterranean Jet (MMJ) (Zodiatis et al., 2005). The cor-
responding geostrophic velocity perpendicular to the section
presents a strong reversal in flow direction: eastward velocity
north of 33.5◦ N and westward velocity south of this location
(Fig. 7c). The active forecast from 21 August 2004, the day
of the observed transect, shows the same overall situation,
although the model domain extends no farther south than
33.5◦ N (Fig. 8). Absolute values of temperature and salinity
are close to observations; at any given depth forecast tem-

Table 1. Mean and standard deviation of difference between
remotely-sensed sea surface temperature (TREM) and either CY-
COM active forecast (TCY) or ALERMO slave forecast (TAL ).
Five dates in September were analyzed (see Fig. 6 for temperature
fields). The number of ocean points for CYCOM is 41 939, for
ALERMO is 12 569 and for remote sensing is 77 128.

Day of TREM-TCY TREM-TAL
Sep. 2005 (◦C) (◦C)

STD MEAN STD MEAN

3 1.7 0.38 1.8 0.64
8 0.44 0.60 0.75 1.3
14 0.96 −0.57 1.0 −0.35
20 0.89 −0.11 0.95 0.20
28 0.59 −0.30 0.64 −0.53

perature is generally within 1◦C of observations, and fore-
cast salinity is within 0.1 psu of observations. Note that the
same color scales are used throughout. The high salinity and
temperature surface layer is present, but slightly less sharply
defined. The surface layer in the model is fresher, shallower,
and slightly warmer. The Atlantic Water signature is evident
but weaker, and LIW is present but less saline in the north
part of the section. The model predicted the northern half of
the geostrophic velocity dipole, the southern half being out of
its domain (Fig. 8c). However, the current speeds are much
higher than calculated from observations.

The dynamic height relative to 700 m for CYBO-18
presents strong evidence for the presence of a barotropic
jet south of Cyprus (Fig. 9a). The jet enters the domain
from the south, between 32◦ E and 33◦ E, makes an anti-
cyclonic loop and exits the domain. The jet appears to bi-
furcate near 33.75◦ N and 34◦ E, with some flow southward
out of the domain and some northward along the edge of an-
other anticyclonic feature visible at the eastern edge of the
domain. A weaker current enters the domain from the west
around 34.5◦ N, bifurcates west of Cyprus, and the southern
branch joins the current system discussed above. The CY-
COM active forecast averaged over the cruise period (16–25
August 2004) indicates elevated sea surface height in the re-
gion south of Cyprus, a region of known anticyclonic activity
(Fig. 9b). The anticyclonic feature southeast of Cyprus is fur-
ther south and weaker in the forecast and in its place is strong
cyclonic gyre not present in the cruise data. Note the contour
intervals are the same, as are the full scale ranges.
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Fig. 11. Same section as Fig. 7, but from 9 September 2005 operational CYCOM forecast (day four of that forecast, 13 September).

3.2.3 Operational run and in situ data, September 2005

Hydrographic data from CYBO-19 (9 to 19 September 2005)
are now compared with the operational CYCOM forecasts
of September, 2005. The hydrographic data for the north-
south section along the 33◦ E meridian again indicate the
influence of Atlantic Water from 34.0 to 34.4◦ N, and at
depths between 30 m and 90 m (Fig. 10a). The AW signal
is weaker than observed in 2004. The summertime surface
layer (slightly deeper than in 2004), LIW, and EMDW are all
present. As in 2004, the surface layer deepens and warms

from north to south (Fig. 10b). Much like CYBO-18, a
dipole in zonal geostrophic velocity relative to 700 m is cen-
tered at 33.6◦ N and extends from the surface down to 300 m
(Fig. 10c). Compared to the observations, the model fore-
cast section from the 13 September daily average contains
a weaker and deeper low salinity core in the northern part
(Fig. 11a). Differences in the sharpness of the thermocline
and halocline are evident, the forecast indicating weaker
stratification, as in 2004. Also, the surface layer deepens
in the model from north to south, but not in the observa-
tions (for the region in the model domain: north of 33.5◦ N).
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Fig. 12. Hydrographic section along 34.5◦ N collected during CYBO-19 (9 to 19 September 2005).
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Fig. 13. Same section as Fig. 12, but from average of 7–17 September 2005 CYCOM operational forecast (day 3 from each which covers
CYBO-19 period).

As in 2004, the LIW is slightly fresher in the model. The
geostrophic velocity section does not indicate a dipole, but
a weaker, more shallow eastward flow north of 33.5◦ N. It
should be noted once again that the model domain does not
extend south of this point, where the westward geostrophic
flow was indicated by CYBO-18 and CYBO-19 observa-
tions. An east-west section for CYBO-19 along 34.5◦ N
shows evidence of the AW (Fig. 12a). Between 33 and 34◦ E,
however, where the bathymetry is relatively shallow, the AW
signal is weak, and the surface layer is very thin. The east-
west section of forecast data (averaged over the sampling pe-
riod of the CYBO-19 section) indicates AW is present in the

west but shifted west of 32◦ E and the surface layer is present
but shallower and fresher (Fig. 13). The intermediate depths
are approximately 0.1 psu fresher in the forecast, and there
is generally more horizontal variability visible in the fore-
cast. Note that this variability is beyond the resolution of the
observations.

Dynamic topography from observations and the forecast
(Fig. 14) for September 2005 again suggest an anticyclonic
circulation south of Cyprus. However, this time the re-
gion is much larger and the implied geostrophic zonal cur-
rent weaker. The anticyclone in the model is much weaker
and slightly south and west of the observed location. Both
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Fig. 14. Dynamic height at surface relative to 700 m for:(a) CYBO-19. (b) Active CYCOM run (day 3 outputs) averaged over CYBO-19
period.

forecast and observations show the edge of a cyclonic region
west of Cyprus and regions of low sea surface height around
the south coast. The major difference between the two is near
the eastern edge of the domain where the model indicates in-
creasing sea surface height (a secondary anticyclone) while
the data do not.

3.2.4 Operational run and in situ data, July 2006

A coastal cruise carried out on 12 July 2006 collected wa-
ter velocity profiles near the south coast of Cyprus us-
ing an Acoustic Doppler Current Profiler (ADCP). An RDI
300 KHz Workhorse Sentinel was deployed over the side of
a small boat one meter below the surface. One minute en-
sembles, each containing 37 water pings were collected, and
five ensembles were averaged for each station. Vertical bins
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Fig. 15. Daily average sea surface height (shading) and current velocity field at 30 m on 12 July 2006 from day one output of July 11
operational CYCOM forecast. Inset shows a zoom of forecast velocities overlaid with ADCP-observed 30 m velocity vectors.

were three meters thick, and velocity was referenced to the
bottom track velocity. Water depth at each of the stations
did not exceed 100 m. Weather conditions during the ex-
periment consisted of clear skies and no wind, until a sea
breeze began near the end of the experiment. For 12 July, the
operational forecast indicated a cyclonic circulation at 30 m
in the open sea south of Cyprus (Fig. 15). The barotropic
flow field that would be surmised from the geostrophy of sea
surface height (color shading) indicates a similar flow pat-
tern. In the experimental area, this resulted in a nearly due
westward flow of about 0.20 m s−1 peaking between 10 m
and 20 m, with decreases to near zero values at the surface
and at depth. The ADCP profiles on the morning of 12 July

agree with the day’s average forecast currents in direction
and are larger in magnitude by about 0.10 m s−1 in the 10 m
to 30 m depth range. The 30 m velocities show similar direc-
tions and slightly larger magnitudes (Fig. 15). The open sea
circulation has a strong influence on near coastal circulation.

4 Conclusions

An ocean forecasting system for the waters surrounding
Cyprus and the Levantine basin is fully operational and pro-
ducing good results. Through the internet, it provides fore-
casts of ocean flow, temperature, and salinity (daily and 6-h
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average fields are computed for the coming five days, every
day). The Cyprus coastal flow model, CYCOM, is initialized
from the regional ALERMO model, using a variational ini-
tialization method (VIFOP). In this configuration, the daily
CYCOM forecast is shown to be in especially good agree-
ment with the regional forecast on large scales, with most
differences being small, near the coast, and/or beyond the
resolution of ALERMO. Twin 28-day numerical experiments
have been carried out where in one CYCOM is initialized
every week from the coarse model (slave), and in the other
initialized only at the beginning (active). Results indicate
that the root-mean-square difference between the active and
slave modes for CYCOM (near the surface and for all vari-
ables) increases quickly in the first 14 days, but then grows
more slowly. Simulated and remotely-sensed sea surface
temperature show a qualitatively better agreement for the ac-
tive runs due to the finer scale structures present (and illus-
trate the need for improved data assimilation in some regions
and seasons). The differences between active or slave mean
model temperatures from the mean remote sensing observa-
tions do not grow over a month of simulation. We feel that
the operational results of the forecasting system would bene-
fit from a longer “active” period, perhaps two weeks instead
of one. The potential drawback of unrealistic model fields
appears to be insignificant, and the simulated (and realistic)
increase in small-scale features is desired. Another benefit of
longer active run simulations is the decrease in differences
in temperature near the coast, seen in slave-slave compar-
isons even five days after initialization. Comparable results
are found in forecasts (both active and operational) and in
situ hydrographic data for 2004 and 2005. Both forecast and
observations show the presence of relatively fresh Atlantic
Water, plus the other characteristic water masses of the re-
gion. Geostrophic calculations for both numerical and obser-
vational data show generally eastward flowing near-surface
currents encircling an anticyclone south of Cyprus and cy-
clonic circulations west and southeast of Cyprus, in agree-
ment with previous field studies (Zodiatis et al., 2004, 2005)
and climatological numerical studies (Zodiatis et al., 2003).

By using a high resolution model, end-user applications
are often more reliable. For example, when the forecast cur-
rents are used in an oil-spill model to predict the fate of a
near-coast spill, basin and regional models are often insuffi-
cient in resolution. More accurate results are obtained from
coastal models like CYCOM, because of resolution of coast-
line and bathymetry, and small scale wind and current and
temperature features. It is true that localized features visible
in remotely-sensed sea surface temperature are not simulated
extremely well, but it should be noted that the images are es-
sentially instantaneous, while model output shown here were
six–hourly averages. Also, the assimilation of sea surface
temperature (done at the basin scale model, carried through
ALERMO to CYCOM slave runs) is based on composite
fields, which are generally smoother than instantaneous im-
ages. Finally, even with a perfectly initialized model state,

the physical system is too complex to expect accurate pre-
dictions of individual temperature filaments and plumes after
a week or more of running.

CYCOM will be developed further by implementing
assimilation of local observations such as expendable
bathythermographs (XBTs), conductivity-temperature-depth
(CTD) profiles from drifters and gliders, and CT data from
the CYCOFOS ocean observatory. Assimilation will be par-
ticularly useful for improving forecast skill of open sea fronts
and mesoscale activity, from the surface to the depth extent
of the measurements (no more than 1000 m). Because of
the tight relation between near coast and open sea features
near Cyprus, forecast skill for coastal conditions will be in-
directly improved. Sea level anomaly can also be assimilated
at times when satellite altimeter tracks are available in our
region. Another, simpler, possibility for model improvement
would be a relaxation to the coarse model, rather than initial-
ization, therefore keeping some locally-generated features.
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