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Abstract. This study focuses on an accurate estimation ofmodel capable of representing well the modeled phenomena.
ocean circulation via assimilation of satellite measurementsThe second aspect is the data assimilation approach com-
of ocean dynamical topography into the global finite-elementbining a numerical model with direct observations of ocean
ocean model (FEOM). The dynamical topography data arestate. Many authors have already demonstrated the suitabil-
derived from a complex analysis of multi-mission altimetry ity of satellite altimetry for the estimation of ocean circula-
data combined with a referenced earth geoid. The assimilation variability (Fu and Chelton2002; Fukumori 2003, Le
tion is split into two parts. First, the mean dynamic topogra- Traon and Morrow2001). A major advantage of satellite
phy is adjusted. To this end an adiabatic pressure correctionbservations are their global coverage, continuity and synop-
method is used which reduces model divergence from theicity. This is especially important for studies of the Southern
real evolution. Second, a sequential assimilation techniqué&cean where observations with conventional technique are
is applied to improve the representation of thermodynamicalksparse. However, it is known that the use of only temporal
processes by assimilating the time varying dynamic topograsea surface height anomalies obtained from altimetry is not
phy. A method is used according to which the temperatureenough to correct the mean ocean state (see, kixgnan
and salinity are updated following the vertical structure of et al, 2009. To this end assimilation of the absolute dynam-
the first baroclinic mode. It is shown that the method leads toical topography is necessary. This presents a difficult task
a partially successful assimilation approach reducing the rmbecause ocean general circulation models commonly show
difference between the model and data from 16 cm to 2 cmsystematic deviation from the mean dynamic topography.
This improvement of the mean state is accompanied by sig- On the model side, this systematic deviation can be caused
nificant improvement of temporal variability in our analysis. by a variety of reasons including poor knowledge of sur-
However, it remains suboptimal, showing a tendency in theface forcing and details of the bottom topography represen-
forecast phase of returning toward a free run without data astation selected during the model design. Slow equilibration
similation. Both the mean difference and standard deviatiornprocesses mediated by baroclinic Rossby waves can lead to
of the difference between the forecast and observation datahanges in barotropic circulation via changes in deep pres-
are reduced as the result of assimilation. sure across the major topographic features and, in this way,
to systematic difference between the observed mean dynamic
topography and model elevation.
1 Introduction This is a well known problem which can be partly solved
by adjusting the model forcingdi and Leetma#1997) ad-
Reliable estimation of the ocean circulation is one of the cendress this problem by a careful choice of the time-mean
tral topics in the oceanography. This problem has two asWwind stress used to force the model and by calculating ob-

pects. The first one is the availability of an adequate ocearserved anomalies and assimilating them as anomalies for
their model climatologyYu and O’Brian(1997) tried a vari-

ational scheme in which the wind-stress field is a control
Correspondence tdS. Skachko variable.Derber(1989 developed a continuous variational
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scheme specifically to address the problem of model bias. The goal of this paper is exploring the feasibility of as-
Frieland (1969 proposed augmenting the state vector by asimilation of the global altimetric signal based on sequen-
model biasDee and da Silvg1998 have applied thisideato tial assimilation technique. As follows from the discussion
numerical weather predictiorBell et al. (2004 built on the  above this requires different technologies with respect to the
ideas of the latter work and applied a term of “pressure cor-systematic (mean) part of the difference between the model
rection” combining it with the augmenting state vector con- and observational data, and its variable part. The success of
cept. the approach suggested in this paper is based on two key el-
A natural way to address this problem would be to useements.
a variational assimilation scheme, where the significant sys- First, recognizing that systematic drift of mean surface el-
tematical errors can be eliminated by slight changes in temevation in numerical ocean circulation models is associated
perature and salinity profiles at ocean deptfe(zel et al.  with systematic changes in their thermohaline structure we
2001, Stammer et a).2009. However, such a procedure is suggest to use the methods of adiabatic correction of the
hard to set up and computationally expensive. This is why itmodel Sheng et aJ2001; Eden et al.2004) to effectively re-
is useful to look for alternative schemes that are numericallyduce systematic difference between mean state of the model
less expensive and easy to implement. In this paper, we wiland the mean state derived from the dynamic topography.
use a sequential technique based on the sequential evolutivEhis method of correction consists in representing the dy-
interpolated Kalman filter (SEIK)Rham 2001). namically active density field as a linear combination of the
Further, an open problem is how to project the assimilationdensity given by the model,, and the climatological in-situ
update derived from the altimetry data into the interior of the densityp,:
ocean. In order to resolve this probldde Mey and Robin-
son (1987; Dombrowsky and De Mey1992); Fischer and p* =apm+ L —a)p. @
Latif (1995 used vertical Empirical Orthogonal Functions
(EOFs) for the assimilation of altimetric sea level anomalies

(SLA) into limited-area numerical ocean models. They have - . o
. . . Second, the proper functioning of the sequential assimi-

shown that the use of vertical EOFs is very effective and ap-_.. . . i .
lation part requires of an appropriate algorithm of mapping

plicable to assimilate satellite products. However, an opery - . ) .
. . . .~ the statistically derived surface elevation updates into up-
question of these works is the nature of the space in which

the statistics are calculate@avart and De Mey1997) in- dates of the temperature and sghnlty fields. This paper uses
. ;... the method proposed Byukumori et al(1999 according to
troduced the isopycnal EOF method for data assimilation. . . ,
: : which the temperature and salinity updates follow the first
The authors used isopycnal EOF profiles calculated from hy- - . . L
) . . . aroclinic mode in the vertical direction.
drographic data in the Azores region. The use of isopycna -
. X . . We demonstrate that combining these two key elements
EOFs proved efficient in capturing the vertical structure of . ;
) . : . allows one to noticeably reduce the difference between the
dominant processes in ocean, a quasi-homogeneous vertica : . :
. : . : : model state and observations. This reduction, however, re-
displacement of isopycnals with quasi-conservation of water__ . . .
: L . . .~ mains suboptimal partly because the vertical modes used
masses and potential vorticity on the isopycnal grid. Besides . .
. . "in the method byFukumori et al.(1999 deviate from real
isopycnal EOFs appeared to be more observable from altime- o )
. modes of variability. The latter are affected by thermal wind
try than vertical EOFs. and variable bottom topography and are sensitive to the hor
Another approach of vertical update projection is based on pography

X o . .~ _lzontal size of perturbations. The other reason is the remain-
a water property conservation principle and exploits the idea

of water column vertical shiftGooper and Haines996. Ing systematic bias which cannot be fully removed by the

One more approach departs from the fact that extractin ar"il diabatic correction method.
PP P 9 The structure of the paper is as follows. Secti@nend

efficient and coherent description of the large-scale oceani% present the ocean model and the assimilation methodol-

thermohaline field is useful for data assimilatidduf and . . .
.. 0ogy. The observational data are compared with the model in
Watts 2001). The authors proposed a gravest empirical ) . :
L . . Sect.3; Sect. 5 describes the experimental setup and Sect. 6
mode approach by projecting hydrographic profiles onto a ; : .
: ) .__presents the results of the experiments. The final section con-
geostrophic stream function for a Southern Ocean appllcab ludes
tion. Finally, Fukumori et al.(1999 proposed the method '
of vertical modes decomposition where the temperature and
salinity are updated according to the vertical structure of thep Ocean model
first baroclinic mode. In this work we rely on this latter
method because the empirical approaches require additiondlhe ocean model used to perform this study is the Finite-
data profiles to represent the variability. This fact makes theElement Ocean circulation Model (FEOM)Wéang et al.
use of such methods in global ocean models problematic a2008 Danilov et al, 2004. The model is configured on
present time. Besides, the method~olkumori et al (1999 a global almost regular triangular mesh with the spatial

is easy to implement and computationally effective. resolution of 15°. There are 24 unevenly spaced levels

On average,Sheng et al(200)) find «=0.5 to be the most
appropriate value in Eqlj.
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in the vertical direction. The model uses continuous lin- Zentrum (GFZ), Potsdam, Germany. The data cover the pe-
ear representation for the horizontal velocity, surface elevatiod between January 2004 and January 2005.
tion, temperature and salinity, and solves the standard set First of all, the sea surface topography was computed on
of hydrostatic ocean dynamic primitive equations. It usesthe ground tracks of the missions similar to the approach de-
a finite-element flux corrected transport algorithm for tracerscribed in Albertella et al, 2008. The geoid heights were
advection [6hner et al.1987). spectrally smoothed by a Gaussian filt&Wahr et al, 1999
The model is forced at the surface with momentum fluxeswith the filter length of 175 km applied on the spherical har-
derived from the ERS scatterometer wind stresses commonic coefficients in order to remove the striping patterns
plemented by TAO derived stressédgnkes et al. 1998. plaguing the gravity fields derived exclusively by data of the
Vertical mixing is parameterized by Pakanowsky-PhilanderGRACE gravity mission. To achieve spectral consistency
scheme Pakanowski and Philandet981). The thermody- the same filter length was used for the smoothing of the al-
namic forcing is replaced by restoring of surface temper-timetric sea surface heights, which are smoothed along the
ature and salinity to monthly mean surface climatology of ground track of satellite missions. The systematic difference
WOAO1 (Stephens et gl2002. The model is initialized by  between one-dimensional filtering of sea surface heights and
mean climatological temperature and salinity Gouretski  two-dimensional (spectral) filtering of geoid heights was cor-
and Koltermanr{2004. rected by means of so called filter corrections, which were
This configuration of the model is further referred tdas ~ derived as differences between the mean sea surface CLSO1
It is used only for comparison. The assimilation experiment(Hernandez and Schaeffez00Q smoothed along the pro-
is based on a configuration where the adiabatical pressurBles and two-dimensionally. The geodetic sea surface to-
correction method o8heng et al(2001); Eden et al(2004 pography was defined as difference between smoothed sea
(see Sectl) is applied. This configuration is denoteds  surface heights corrected by means of filter corrections and
(we have found that introducing this correction strongly re- smoothed geoid heights. As for the assimilation the geodetic
duces the drift of model state with time). Climatologic fields sea surface topography in the form of 10 day grids were re-
used for this correction are monthly mean temperature andjuired the block mean values of the sea surface topography
salinity of Gouretski and Kolterman(2004. The success available along track were computed for each time span of
of this correction is discussed in the Se@sand5. Both ten days.
model variants are spun up from the state of rest over a 10- The ice contamination makes the altimetry data unusable
year time period before the 1-year experiment is run. in the polar areas as far as the Sea of Okhotsk. This is the
main reason of the lack of data in the Southern ocean where
the ice covered area drifts zonally with the seasonal cycle
3 Comparison of model results with observations so that the significant part of the surface appears to be ice-
covered at least for some time during the year. Hence, the
The observational data assimilated in the present work are &ariability contained in such data can not be reliable to use it
combination of the simultaneously measuring altimeter mis-in data assimilation problems.
sions ENVISAT, GFO, Jason-1 and TOPEX/Poseidon mis- The Indonesian region is characterized by complex bottom
sions interpolated onto the model grid so that the obsertopography where neither geoid measurements nor model re-
vations are available at every point of the model grid ev-sults appear to be accurate enough, and where huge discrep-
ery ten days. The altimeter data of these missions werancies between them are observed. This is also true for the
homogenized (with respect to the same reference ellipsoidMediterranean Sea. Hence, the observational data in these
and time scale), upgraded with the most recent correctionsireas were substituted by the values of the RIO05 mean dy-
and models, and cross-calibrated. Most important, the in-namical topography (MDT) Rio and Hernande2004 Rio
verted barometer correction for all missions was replacecet al, 2005. In order to prevent possible discontinuity ap-
by the dynamic atmospheric corrections (DAC) producedpearing at the boundary of the two areas we applied a filter
by CLS Space Oceanography Division using the MOG2Dwhich smoothly extrapolates our measured dynamic topog-
model from Carere and Lyard2003. Ocean and load- raphy towards that of RIO05 in the transition zone. These
ing tides were computed using the FES2004 modsjlard areas are shown in the top right panel of Higs the deep-
et al, 2006. The cross-calibration was carried out by meansblue rectangular areas.
of the discrete multi-missions crossover-analysiBogch The first necessary test is the comparison of the ocean
2007 Bosch and Savchenk@007 in order to remove the model state with the dynamical topography data to be as-
mission specific relative biases and to correct radial errorssimilated. The top left panel of the Fig.shows the mean
The altimetric sea surface heights were finally reduced by ardynamical topography obtained from observations covering
equipotential surface (geoid) to construct the absolute sigthe period from January 2004 till January 2005. The top right
nal, the dynamical topography of the sea surface. The geoighanel of Fig.1 shows the standard deviation for the same pe-
used for this purpose, EIGEN-GL04S1 gravity field model riod.
(Forste et al. 2008 is obtained from the Geo-Forschung
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Fig. 1. The upper row: The mean dynamical topography (left) and standard deviation (right) for the period from January 2004 till January
2005. The deep-blue rectangular areas correspond to the locations where the RIO05 MDT was substituted in the data (no variability). The
middle row: The mean difference between the dynamical topography obtained from the observationmade! run (left) and the standard
deviation ofVq (right). The bottom row: The same as in the middle row, butgrversion of the model.
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Difference: V1 10-year spin-up - Observation, m Difference: V2 10-year spin-up - Observation, m
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Fig. 2. The difference between the first observation and initial model state obtained as a result of 10-year spingpmwitel (left) and
Vo model (right).

The mean dynamical topography corresponds to the relaKuroshio current. The Tropical belt variability is smaller too
tively broad Gulf Stream and Kuroshio and smooth Antarcticthan in the observational data. In the Antarctic Circumpo-
Circumpolar Current. It qualitatively agrees with the model lar Current (ACC) region there are regions of overestimated
(not shown) and does not contain finer details than the modeVariability in V1 compared to observations.
state. In this respect the model resolution is adequate to cap- The strong systematic difference between the observations
ture the main features contained in the data. and the model demands seeking for the methods capable
After a 10-year spin up from the state of rest, versibns to reduce the model drift. The adiabatic pressure correc-
andV; are run for one additional year and the output is storedtion suggested bySheng et a).2001;, Eden et al. 2004
every 10 days. It is used to compute the mean and standangorks through modifying the velocity fields leaving consis-
deviation presented in the middle and bottom rows of Eig. tent tracer fields. In this way it suppresses the temperature
The middle left panel of the figure depicts the difference be-and salinity advection by the erroneous velocity field which
tween the mean dynamical topography obtained from obserhappens in the model which does not use such a correction.
vations and the mean calculated frémmodel run. The dif-  The utility of this correction method was consistently demon-
ference is significant in many places over the world oceanstrated in Eden et al(2004, and is also exploited here.
reaching£0.5m in some areas. The pattern of these dis- The circulation in configuratiorV, is adiabatically cor-
crepancies follows in many places the significant elevationrected toward the velocity field which would correspond to
of bottom topography. Many of them develop as the resultthe climatological temperature and salinity. The bottom pan-
of model adaptation to the bottom topography and present &Is of Fig.1 show mean difference (left) and standard devi-
systematic model bias. Probably, many other issues can bation (right) calculated using this model configuration (see
responsible for this bias. An apparent issue is the lack of reSect.1). The difference in the mean fields is reduced com-
alistic forcing and the absence of coupling with an ice model.pared to theV; version in all regions, especially in North
In this way we cannot exclude that much finer tuning of the Atlantic. Although it still remains relatively high it is much
model is required to minimize the discrepancy between thecloser to the level comparable to typical variability. Thus ap-
model and data mean SSH fields, and that bottom topographplying the adiabatic correction by modeling the density as a
is an important, but only one of many key features. Clearly,linear combination of the climatology and the model density
so large mean differences cannot be compensated by locélelps to reduce the deviation of the model mean compared to
changes in the steric height which makes further applicatiorthe mean obtained from the satellite observation.
of sequential data assimilation questionable. The price paid for this reduction is that it simultaneously
The middle right panel of Figl shows standard deviation reduces the variability and the standard deviatiorVefis
of the sample for the model versidn. As seen from the much smaller than that of the observations (top right) and
figure, theV; model variability differs from the variability V1 model run (middle right). Although the main regions of
of the observations but remains on the same scale reachingigh variability are still visible, the amplitude is significantly
12 cm in the most energetic areas. Compared to the data, th@maller. The physical reason of this effect is also clear — by
model overestimates variability in the Gulf Stream and Ag- correcting pressure one affects (reduces) the amplitude and
ulhas currents regions, but underestimates it in the area gbhase speed of baroclinic Rossby waves and in this way a
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certain part of variability. Other algorithm of adiabatic cor- with model (representativeness) and probably not data error
rection are to be tested (seden et al.2004), but itis notat-  in satelite altimetry or the geoid used. The diagonal nature
tempted in this paper. This fact limits the use of the proposedf R is by convenience only. Note however, that the assim-
method for seasonal numerical experiments. To prevent thdation increment (change in model state) is correlated due
reduction of inter-annual variability it is also of interest to to the presence of the forecasted error covariance matrix.
try more sofisticated correction methods such Bsli(et al, Once the analysis is completed, the second-order accurate
2004). sampling technique is used for generation of new ensemble

Let us also consider the differences in the states obtainethembers that have the mean and covariance equgil and
after ten years of the spin up with both versions of the model.P{. This analysis ensemble is propagated with the full non-
The left plot of Fig.2 shows the difference between the ini- linear model to the next assimilation time step. In this study,
tial state of the SSH (here and below we use the abbreviwe apply the local version of the SEIK filteNérger et al.
ation SSH, sea surface height, to refer to the dynamical to2006 so that the analysis for each water column of the model
pography) obtained via the 10-yeldr model spin-up and the  depends only on observations within a specified influence re-
corresponding observed initial state. This plot reveals largegion. Here, the influence region is a circle with a radius of
discrepancies between thé model state and the observed 200km. This value was chosen due to preliminary experi-
dynamical topography mainly in the Southern Ocean, Northments with different subdomains. The experiment with the
Atlantic and Pacific. radius value of 200 km showed better results. In practice, ex-

The 10-yeaV>, model spin-up (right panel in Fi@) with cept for high latitudes, it indeed corresponds to taking into
the adiabatic pressure field correction results in a state whiclaccount only all the nearest neighbours.
is much closer to the observed state. Overall, we see that the The strategy of our assimilation experiment is as follows.
benefits of the original; model are carried over to the model In order to minimize the deviation of the model mean from
V. However, the discrepancies compared to the observationthe observed mean we use thig version of the model. At
are still present, although their magnitudes are significantlyeach time the observations are available, the analysis of the
reduced almost everywhere. Hence, themodel state will SSH field is carried out applying the local SEIK filter. Us-
be used as the first input to the model run in our assimilationing this information, the vertical profiles of temperature and
experiment. salinity are updated according to the vertical structure of the

first baroclinic modeRukumori et al. 1999 with the ampli-
tude computed from the elevation update, i.e. the temperature

4 Assimilation scheme and salinity fields are updated using the following formulas:

In this study we use the sequential evolutive interpolated

Kalman filter (SEIK) introduced byPham (2001). This gpoh(z) 8T

a 71/ -
method has been used in a number of studidstéit et al, Ty, 2) =T y.2) 4 dn(x. y) p0) 9z (. ).
2007, 2005 Triantafyllou et al, 2003 Nerger et al. 2007, 2poh(2) 35
Nerger 2004. In the SEIK algorithm (se€ham 20017, S9(x,y,2) = 8 (x, y,2) + 8n(x, y) —(x,y). )

the forecast field is computed as an average over the ensem- p©O oz

ble members, and the forecast error covariance matrix is obHere, overbars denote the reference state calculated as a
tained as the corresponding covariance matrix from the enmean from the one year free model run of thg model,
semble. Since the forecast error covariance matrix has aranp and / are locally defined vertical structures of the first
that depends on the number of ensemble members, it is refraroclinic modes of velocity and displacement calculated us-
resented in the algorithm in its reduced form. This allows ing the local vertical profiles of the Bruntaisala frequency

that the analysis covariance matRg be calculated initsre-  and density from thé/, model Gill, 1982. The function
duced form too. The calculated analysis error covarid&fce sy (x, y) is the analysis increment, i.e. the difference between

is then used to obtain the analysis using formulas: the analysis of SSH;{ and its forecasﬁ]{, and g is the ac-
~ ~ celeration due to gravity. The velocity field is left unchanged
e = 'f—i—K(a—H .f) N .
k= Mk ke = Py ) so that it is simply the result of the model evolution.
Ki = P{HIR L. (2) In order to generate the initial error covariance matrix a

model run was performed to produce a set of 10-day fore-
Here, n,{ , Ny andn? respectively denote forecast, analysis casts from a series of initial conditions distributed at 10-day
and observations of SSH field at timg Hy in our case is intervals over a year. This procedure produces an ensemble
identity since the observations are interpolated prior to theof 37 model states.
assimilation onto the model grid. The matk is the ob- The 10-day interval is chosen to correspond to the fre-
servation error covariance matrix that is diagonal, with thequency of observational updates in the assimilation experi-
diagonal values equal to 25 émConsidering the model per- ments, and the series of the initial conditions is used so that
formance, the largest contribution to matRxis associated the covariance of the ensemble will be representative of the
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Fig. 3. Evolution of RMS error of SSH for the world ocean (except zones corresponding to RIO05 MDT location in the data Sed Rig.
green and yellow solid lines show the errors corresponding t&thend V-, free simulations (without assimilation), respectively. The blue
lines with bullets represent th%f 10-day model forecasts, while the dotted red lines correspond ttziétlmalysis.vl model which was
spun up was re-initialized at the initial time with the initial conditionif

full period of the experiments. The initial error covariance sponding state of the sequential analyse¥4s(ii) the ver-
matrix is then approximated with a lower rank matrix using tical mode update for the temperature and salinity fields as
the first eight empirical orthogonal functions (EOFs) of the described in Sect (and horizontal structure obtained from
ensemble. The first eight EOFs represent more than 90 pethe statistical innovation of the SSH); and (iii) adiabatic pres-
cent of the variability. This covariance matrix is a consis- sure correction as in th& model. Hence, the initial states
tent estimator of the 10-day model error covariance, and idor every model forecast (blue circles in FB).are superpo-
adequate for parameterizing the filter background error cositions of statistical updates from the filtering applied on the
variance. The initial field is taken as a result of a 10-yearSSH and the results of the vertical mode update applied to
model spin up of thé, as described in the previous section. the temperature and salinity fields. Of course, the correction
Eight ensemble members are used in the implementation aferm applied to the model also influences the model forecast
the local SEIK algorithm. evolution. The model states corresponding to the forecast of

the V3 model will be denoted aggf.

The statistical analysis of the SSH' is stable and pro-
vides accurate estimates of the SSH during the whole period

Three simulations were performed for the period betweenof our experl_ment (F'g3)a‘ The RMS error W'th respect to
he observations for thg; decreases monotonically from 8

January 2004 and January 2005. The first two are the alread o .
mentionedV; and V, model configurations described in 0 2 cm beginning from the fourth observational update. The

Sect.2. These simulations were free model runs, i.e. modelV4 model forecasts are also stable and the RMS error is gen-
integrations within the chosen time period without data as-erally 7cm and 2cm lower than those of tgandV; free
similation. v; model which was spun up was re-initialized at Model run RMS errors, respectively.
the initial time with the initil condition ofV, which was cho- The initial background covariance matrix is imperfect.
sen as initial condition for all the models in our experiments. However, its evolution in time leads to more appropriate er-
Fig. 3 shows the evolution of the RMS error of the SSH aver- ror representation which is evidenced by monotonic decrease
aged over the entire ocean (except for the zones correspon@f the analysis error as the time goes on. On the other hand,
ing to the RIO05 MDT location in the data see Fij. The the improved initial states (red dots) of thg analyses lead
green and yellow lines show the errors corresponding to thdo improvedVs forecasts. Their quality is then always bet-
V1 and V; free model simulations, respectively. Overall, we ter than the quality of thé’, forecasts. At the first analysis
observe that in th&, run there is no extra model drift. The (day 10) the fit to observations is better than the fit of the
results of theV, are stable, and the error standard deviationsfollowing analysis steps. The price for the good fit is that
are generally 5 cm lower than those of thigfree model run.  innovation is propagated via the imperfect error covariance
Note that this is a global result. A similar error analysis in to the full model state which reacts accordingly by deviat-
only the ACC area reveals a more significant improvement ining from a balanced solution. Later the covariance becomes
the V» run on the order of 8cm. more “educated” and leads to increments that are better sus-
The third simulation denotedts is characterized by (i) tained.
presence of the sequential data assimilation applied to the The quality of the model forecasts is always better than the
SSH field (red circles in the Fi@); let us denote the corre- quality of theV; and V» free model simulations. However,

5 Hindcast experiment
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Fig. 4. Spatial distribution of RMS errors of the SSH fields with respect to observations. The upper plots areVfo(léfg and V> (right)
model versions. The bottom plots correspond to\tge(left) andvyg (right) estimates.

the drift of forecasl/sf towards thé/; state is still significant Overall, we see that a significant part of the systematic

which can partly be explained by the fact that the verticalerror is already corrected by ti& model compared to the
mode structure does not always catch all the thermodynamioriginal V1 model. However, the main discrepancies in the
features like, for instance, the horizontal shift of the isopyc- Southern Ocean, Tropical and Northern Pacific and the Gulf
nals (the first baroclinic mode used in the methodFoku-  Stream area are still observed for thg version. TheV{
mori et al, 1999 accounts for only vertical displacement). SSH is much more accurate than thefree run. However,
Hence, there is still an uncertainty in the resulting temperathe RMS error in the Gulf Stream area is even larger than for
ture and salinity profiles that are not always fully consistentthe v, version. Apparently, th&$ SSH field is the most ac-
with the updated SSH field. On the other side, the temperacurate estimate in our experiments, although the RMS error
ture profiles obtained from the modal structure are stable angh some places of the Gulf Stream region reaches 10 cm.
realistic. Figure 5 shows spatial distribution of the SSH standard
The upper plots of the Figt show spatial distributions of  deviation with respect to the observations. Here the mean
the RMS errors of the SSH with respect to the observationsbserved signal is excluded and panels show the ability of
for the V1 (left) and V2 (right) model versions. The bottom each model to correct for the temporal variability. As we see
plots in the figure correspond to th’gf (left) and V4 (right). from the figure, thé/, model does not improve significantly
These plots demonstrate the ability of the model to correcthe temporal variability of the SSH in high-energetic areas of
for the mean state, which was not subtracted in the RMS calthe world ocean. The temporal variability inferred from the
culations. V3f shown in the bottom left plot of the Fid is improved
almost everywhere except in the Gulf Stream area.
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Fig. 5. Spatial distribution of standard deviation on SSH with respect to observations. The upper plgis(af§ and V> (right). The
bottom plots correspond to the:{ (left) and V' (right).

This improvement can be explained by the fact that every 10ment in the mean field compared to the version of the
day model forecasts start from the corrected model sigfes model. Comparing the variability of the SSH in the, V>
(bottom left plot in Fig.5) which is accurately estimated in  (Fig. 1 right) andV3 models (Fig.6 right) we can conclude
the sense of temporal variability and the mean-state error corthat the variability of the/ field (upper right panel of Fig)
rection (cf. Fig.4). The slight problems of the SSH analysis is very similar to the variability of the observations (upper
in the Gulf Stream area are also visible in this figure. right panel of Fig.1), except that the analyzed fields result
Finally, let us compare the differences in the mean and'n overestimated variability in the Gulf Stream region. The

standard deviation between thg and V3 and the obser- ;/ariability of theV3 (lower right panel) is everywhere closer
vations as done in Fidl for the V4 and V» versions of the 0 the_ observational_variabillty thgn to th.@ variability (bot-
model. In Fig.6 on the left the differences between the mean tom right panel of Figl). The Va”ab'“ty in the Gulf Stream
SSH obtained from the observations and the mean calculatel§ Significantly overestimated in the sample.

from the V' (upper panel) and/3 (lower panel) samples

are shown. The difference between the mean of the analy-

sis estimates and the mean of the observations is very smai Conclusions

throughout the world oceans. However, some discrepancies

with small amplitudes can be seen in the Gulf Stream re-This work concentrates on the methodology of applying se-
gion and the ACC region. Although the difference in the quential data assimilation to assimilating the absolute dy-
mean of the forecasts sample and the observations is muamamical topography (including a geoid as a reference mean
larger than the analysis difference, we still see an improve-state) into the global coarse-resolution FEOM. The problem
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Difference: mean(V;) - mean(Obs), m Standard deviation for V3, m
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Fig. 6. Difference on mean SSH betweeV' (upper line, Ieft),Vg (bottom line, left) and observations. The standard deviation (with respect
to its own mean) fov' (upper line, right),V3f (bottom line, right).

which has to be solved before applying the sequential datahe first, a superposition of the first two, five and all the pos-
assimilation technique is the reduction of systematic errorssible modes. And we found that the first mode gives better
between the data and the model. We demonstrate that theesults.
method of adiabatic pressure correction propose&iwng Taken together, these three techniques (adiabatic pressure
et al. (2001); Eden et al(2009 suppresses strong system- correction, local SEIK filter and the method IRukumori
atic deviations so that they remain on the level comparableet al, 1999 allow a successful reduction of the errors. Hav-
to the variable part of the difference between the model andng applied them together, we have managed to decrease the
observations. global mean RMS error of the reference model from 16 cm
Further improvement of the estimates of the ocean state i$0 9 cm.
achieved by assimilating SSH satellite data using the local It is also clear that despite its success the approach sug-
SEIK filter. The common problem encountered when apply-gested here remains suboptimal. One of the reasons why it
ing such techniques in conjunction with the satellite altimetryis so is that the vertical structure of the first baroclinic mode
data is poor covariances whereby statistical update of tempelis computed without taking into account the vertical veloc-
ature and salinity has flaws and is also conductive to numerity shear (the horizontal density gradient). This changes the
ical instabilities. To overcome this difficulty this work uses structure of modes (compared to the true vertical structure)
the method proposed Hyukumori et al(1999. According  reducing the amplitude of temperature and salinity updates
to this method, the temperature and salinity update are asn the upper layers. Computing the true vertical structure is
sumed to follow the vertical structure of the first baroclinic much more difficult and additionally it turns out to be depen-
mode. In our experiments, we tried different sets of modes.dent on the horizontal wavenumber of perturbations.
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The other reason is applying the adiabatic correction. Al-Derber, J. C.: A variational continuous assimilation technique,
though it essentially reduces the model drift and in this way Mon. Weather Rev., 174, 2437-2446, 1989.
is indispensable, it also reduces the sensitivity of the velocityPombrowsky, E. and De Mey, P.: Continuous assimilation in an
fields to the temperature and salinity updates. In this way, OPen dqmain of the northeast Atlantic. Part 1. Methodology and
even if the vertical structure of the baroclinic mode were per- APplication to AthenA88., J. Geophys. Res., 97, 9719-9731,

. . . : ey . 1992.
p P Y P ing an Eddy-Permitting Model Using Large-Scale Hydrographic

dated elevation. Th? dlﬁergnc.e between the elevation just Data: Application to the Gulf Stream and the North Atlantic Cur-
after the update and its equilibrium value propagate as a sur- yent 3. phys. Oceanogr., 34, 701-719, 2004.

face wave leading to error growth in the forecast phase. Fischer, M. and Latif, M.: Assimilation of temperature and sea-
These issues as well as several other questions remain for |evel observations into a primitive-equation model of the tropical

the future research. Namely, an impact of the ocean state Pacific, J. Marine Syst., 6, 31-46, 1995.

update on the ocean circulation and heat and salt conterftorste, C., Schmidt, R., Stubenvoll, R., Flechtner, F., Meyer, U.,

changes implied by data assimilation should be analyzed Konig, R., Neumayer, H., Biancale, R., Lemoine, J.-M., Bru-

and compared to results of variational data assimilation tech- insma, S., Loyer, S., Barthelmes, F., and Esselborn, S.: The Geo-

niques. Also, one needs to find out how the use of a tempo- ForschungsZentrum Potsdam / Groupe de Recherche de Geode-

. ) . . . . sie Spatiale stellite-only and combined gravity field models:
:ﬁgyg‘éigsgfo%‘zgg ;?C”uraet:gr:” amore precise estimation of - 2 -2\ ) 0451 and EIGEN-GLO04C, J. Geodesy, 82, 6, 331

346, 2008.
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