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Centre-ville Montŕeal, Qúebec, H3C 3P8 Canada

Received: 22 April 2008 – Published in Ocean Sci. Discuss.: 20 June 2008
Revised: 14 November 2008 – Accepted: 14 November 2008 – Published: 18 December 2008

Abstract. This study focuses on an accurate estimation of
ocean circulation via assimilation of satellite measurements
of ocean dynamical topography into the global finite-element
ocean model (FEOM). The dynamical topography data are
derived from a complex analysis of multi-mission altimetry
data combined with a referenced earth geoid. The assimila-
tion is split into two parts. First, the mean dynamic topogra-
phy is adjusted. To this end an adiabatic pressure correction
method is used which reduces model divergence from the
real evolution. Second, a sequential assimilation technique
is applied to improve the representation of thermodynamical
processes by assimilating the time varying dynamic topogra-
phy. A method is used according to which the temperature
and salinity are updated following the vertical structure of
the first baroclinic mode. It is shown that the method leads to
a partially successful assimilation approach reducing the rms
difference between the model and data from 16 cm to 2 cm.
This improvement of the mean state is accompanied by sig-
nificant improvement of temporal variability in our analysis.
However, it remains suboptimal, showing a tendency in the
forecast phase of returning toward a free run without data as-
similation. Both the mean difference and standard deviation
of the difference between the forecast and observation data
are reduced as the result of assimilation.

1 Introduction

Reliable estimation of the ocean circulation is one of the cen-
tral topics in the oceanography. This problem has two as-
pects. The first one is the availability of an adequate ocean
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model capable of representing well the modeled phenomena.
The second aspect is the data assimilation approach com-
bining a numerical model with direct observations of ocean
state. Many authors have already demonstrated the suitabil-
ity of satellite altimetry for the estimation of ocean circula-
tion variability (Fu and Chelton, 2001; Fukumori, 2001; Le
Traon and Morrow, 2001). A major advantage of satellite
observations are their global coverage, continuity and synop-
ticity. This is especially important for studies of the Southern
Ocean where observations with conventional technique are
sparse. However, it is known that the use of only temporal
sea surface height anomalies obtained from altimetry is not
enough to correct the mean ocean state (see, e.g.,Kivman
et al., 2005). To this end assimilation of the absolute dynam-
ical topography is necessary. This presents a difficult task
because ocean general circulation models commonly show
systematic deviation from the mean dynamic topography.

On the model side, this systematic deviation can be caused
by a variety of reasons including poor knowledge of sur-
face forcing and details of the bottom topography represen-
tation selected during the model design. Slow equilibration
processes mediated by baroclinic Rossby waves can lead to
changes in barotropic circulation via changes in deep pres-
sure across the major topographic features and, in this way,
to systematic difference between the observed mean dynamic
topography and model elevation.

This is a well known problem which can be partly solved
by adjusting the model forcing.Ji and Leetmaa(1997) ad-
dress this problem by a careful choice of the time-mean
wind stress used to force the model and by calculating ob-
served anomalies and assimilating them as anomalies for
their model climatology.Yu and O’Brian(1991) tried a vari-
ational scheme in which the wind-stress field is a control
variable.Derber(1989) developed a continuous variational
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scheme specifically to address the problem of model bias.
Frieland(1969) proposed augmenting the state vector by a
model bias.Dee and da Silva(1998) have applied this idea to
numerical weather prediction.Bell et al.(2004) built on the
ideas of the latter work and applied a term of “pressure cor-
rection” combining it with the augmenting state vector con-
cept.

A natural way to address this problem would be to use
a variational assimilation scheme, where the significant sys-
tematical errors can be eliminated by slight changes in tem-
perature and salinity profiles at ocean depth (Wenzel et al.,
2001; Stammer et al., 2002). However, such a procedure is
hard to set up and computationally expensive. This is why it
is useful to look for alternative schemes that are numerically
less expensive and easy to implement. In this paper, we will
use a sequential technique based on the sequential evolutive
interpolated Kalman filter (SEIK) (Pham, 2001).

Further, an open problem is how to project the assimilation
update derived from the altimetry data into the interior of the
ocean. In order to resolve this problemDe Mey and Robin-
son(1987); Dombrowsky and De Mey(1992); Fischer and
Latif (1995) used vertical Empirical Orthogonal Functions
(EOFs) for the assimilation of altimetric sea level anomalies
(SLA) into limited-area numerical ocean models. They have
shown that the use of vertical EOFs is very effective and ap-
plicable to assimilate satellite products. However, an open
question of these works is the nature of the space in which
the statistics are calculated.Gavart and De Mey(1997) in-
troduced the isopycnal EOF method for data assimilation.
The authors used isopycnal EOF profiles calculated from hy-
drographic data in the Azores region. The use of isopycnal
EOFs proved efficient in capturing the vertical structure of
dominant processes in ocean, a quasi-homogeneous vertical
displacement of isopycnals with quasi-conservation of water
masses and potential vorticity on the isopycnal grid. Besides,
isopycnal EOFs appeared to be more observable from altime-
try than vertical EOFs.

Another approach of vertical update projection is based on
a water property conservation principle and exploits the idea
of water column vertical shift (Cooper and Haines, 1996).
One more approach departs from the fact that extracting an
efficient and coherent description of the large-scale oceanic
thermohaline field is useful for data assimilation (Sun and
Watts, 2001). The authors proposed a gravest empirical
mode approach by projecting hydrographic profiles onto a
geostrophic stream function for a Southern Ocean applica-
tion. Finally, Fukumori et al.(1999) proposed the method
of vertical modes decomposition where the temperature and
salinity are updated according to the vertical structure of the
first baroclinic mode. In this work we rely on this latter
method because the empirical approaches require additional
data profiles to represent the variability. This fact makes the
use of such methods in global ocean models problematic at
present time. Besides, the method ofFukumori et al.(1999)
is easy to implement and computationally effective.

The goal of this paper is exploring the feasibility of as-
similation of the global altimetric signal based on sequen-
tial assimilation technique. As follows from the discussion
above this requires different technologies with respect to the
systematic (mean) part of the difference between the model
and observational data, and its variable part. The success of
the approach suggested in this paper is based on two key el-
ements.

First, recognizing that systematic drift of mean surface el-
evation in numerical ocean circulation models is associated
with systematic changes in their thermohaline structure we
suggest to use the methods of adiabatic correction of the
model (Sheng et al., 2001; Eden et al., 2004) to effectively re-
duce systematic difference between mean state of the model
and the mean state derived from the dynamic topography.
This method of correction consists in representing the dy-
namically active density field as a linear combination of the
density given by the modelρm and the climatological in-situ
densityρc:

ρ∗
= αρm + (1 − α)ρc (1)

On average,Sheng et al.(2001) find α=0.5 to be the most
appropriate value in Eq. (1).

Second, the proper functioning of the sequential assimi-
lation part requires of an appropriate algorithm of mapping
the statistically derived surface elevation updates into up-
dates of the temperature and salinity fields. This paper uses
the method proposed byFukumori et al.(1999) according to
which the temperature and salinity updates follow the first
baroclinic mode in the vertical direction.

We demonstrate that combining these two key elements
allows one to noticeably reduce the difference between the
model state and observations. This reduction, however, re-
mains suboptimal partly because the vertical modes used
in the method byFukumori et al.(1999) deviate from real
modes of variability. The latter are affected by thermal wind
and variable bottom topography and are sensitive to the hor-
izontal size of perturbations. The other reason is the remain-
ing systematic bias which cannot be fully removed by the
adiabatic correction method.

The structure of the paper is as follows. Sections2 and
4 present the ocean model and the assimilation methodol-
ogy. The observational data are compared with the model in
Sect.3; Sect. 5 describes the experimental setup and Sect. 6
presents the results of the experiments. The final section con-
cludes.

2 Ocean model

The ocean model used to perform this study is the Finite-
Element Ocean circulation Model (FEOM) (Wang et al.,
2008; Danilov et al., 2004). The model is configured on
a global almost regular triangular mesh with the spatial
resolution of 1.5◦. There are 24 unevenly spaced levels
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in the vertical direction. The model uses continuous lin-
ear representation for the horizontal velocity, surface eleva-
tion, temperature and salinity, and solves the standard set
of hydrostatic ocean dynamic primitive equations. It uses
a finite-element flux corrected transport algorithm for tracer
advection (Löhner et al., 1987).

The model is forced at the surface with momentum fluxes
derived from the ERS scatterometer wind stresses com-
plemented by TAO derived stresses (Menkes et al., 1998).
Vertical mixing is parameterized by Pakanowsky-Philander
scheme (Pakanowski and Philander, 1981). The thermody-
namic forcing is replaced by restoring of surface temper-
ature and salinity to monthly mean surface climatology of
WOA01 (Stephens et al., 2002). The model is initialized by
mean climatological temperature and salinity ofGouretski
and Koltermann(2004).

This configuration of the model is further referred to asV1.
It is used only for comparison. The assimilation experiment
is based on a configuration where the adiabatical pressure
correction method ofSheng et al.(2001); Eden et al.(2004)
(see Sect.1) is applied. This configuration is denoted asV2
(we have found that introducing this correction strongly re-
duces the drift of model state with time). Climatologic fields
used for this correction are monthly mean temperature and
salinity of Gouretski and Koltermann(2004). The success
of this correction is discussed in the Sects.3 and 5. Both
model variants are spun up from the state of rest over a 10-
year time period before the 1-year experiment is run.

3 Comparison of model results with observations

The observational data assimilated in the present work are a
combination of the simultaneously measuring altimeter mis-
sions ENVISAT, GFO, Jason-1 and TOPEX/Poseidon mis-
sions interpolated onto the model grid so that the obser-
vations are available at every point of the model grid ev-
ery ten days. The altimeter data of these missions were
homogenized (with respect to the same reference ellipsoid
and time scale), upgraded with the most recent corrections
and models, and cross-calibrated. Most important, the in-
verted barometer correction for all missions was replaced
by the dynamic atmospheric corrections (DAC) produced
by CLS Space Oceanography Division using the MOG2D
model from Carr̀ere and Lyard(2003). Ocean and load-
ing tides were computed using the FES2004 model (Lyard
et al., 2006). The cross-calibration was carried out by means
of the discrete multi-missions crossover-analysis (Bosch,
2007; Bosch and Savchenko, 2007) in order to remove the
mission specific relative biases and to correct radial errors.
The altimetric sea surface heights were finally reduced by an
equipotential surface (geoid) to construct the absolute sig-
nal, the dynamical topography of the sea surface. The geoid
used for this purpose, EIGEN-GL04S1 gravity field model
(Förste et al., 2008) is obtained from the Geo-Forschung

Zentrum (GFZ), Potsdam, Germany. The data cover the pe-
riod between January 2004 and January 2005.

First of all, the sea surface topography was computed on
the ground tracks of the missions similar to the approach de-
scribed in (Albertella et al., 2008). The geoid heights were
spectrally smoothed by a Gaussian filter (Wahr et al., 1998)
with the filter length of 175 km applied on the spherical har-
monic coefficients in order to remove the striping patterns
plaguing the gravity fields derived exclusively by data of the
GRACE gravity mission. To achieve spectral consistency
the same filter length was used for the smoothing of the al-
timetric sea surface heights, which are smoothed along the
ground track of satellite missions. The systematic difference
between one-dimensional filtering of sea surface heights and
two-dimensional (spectral) filtering of geoid heights was cor-
rected by means of so called filter corrections, which were
derived as differences between the mean sea surface CLS01
(Hernandez and Schaeffer, 2000) smoothed along the pro-
files and two-dimensionally. The geodetic sea surface to-
pography was defined as difference between smoothed sea
surface heights corrected by means of filter corrections and
smoothed geoid heights. As for the assimilation the geodetic
sea surface topography in the form of 10 day grids were re-
quired the block mean values of the sea surface topography
available along track were computed for each time span of
ten days.

The ice contamination makes the altimetry data unusable
in the polar areas as far as the Sea of Okhotsk. This is the
main reason of the lack of data in the Southern ocean where
the ice covered area drifts zonally with the seasonal cycle
so that the significant part of the surface appears to be ice-
covered at least for some time during the year. Hence, the
variability contained in such data can not be reliable to use it
in data assimilation problems.

The Indonesian region is characterized by complex bottom
topography where neither geoid measurements nor model re-
sults appear to be accurate enough, and where huge discrep-
ancies between them are observed. This is also true for the
Mediterranean Sea. Hence, the observational data in these
areas were substituted by the values of the RIO05 mean dy-
namical topography (MDT) (Rio and Hernandez, 2004; Rio
et al., 2005). In order to prevent possible discontinuity ap-
pearing at the boundary of the two areas we applied a filter
which smoothly extrapolates our measured dynamic topog-
raphy towards that of RIO05 in the transition zone. These
areas are shown in the top right panel of Fig.1 as the deep-
blue rectangular areas.

The first necessary test is the comparison of the ocean
model state with the dynamical topography data to be as-
similated. The top left panel of the Fig.1 shows the mean
dynamical topography obtained from observations covering
the period from January 2004 till January 2005. The top right
panel of Fig.1 shows the standard deviation for the same pe-
riod.
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Fig. 1. The upper row: The mean dynamical topography (left) and standard deviation (right) for the period from January 2004 till January
2005. The deep-blue rectangular areas correspond to the locations where the RIO05 MDT was substituted in the data (no variability). The
middle row: The mean difference between the dynamical topography obtained from the observations andV1 model run (left) and the standard
deviation ofV1 (right). The bottom row: The same as in the middle row, but forV2 version of the model.
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Fig. 2. The difference between the first observation and initial model state obtained as a result of 10-year spin up withV1 model (left) and
V2 model (right).

The mean dynamical topography corresponds to the rela-
tively broad Gulf Stream and Kuroshio and smooth Antarctic
Circumpolar Current. It qualitatively agrees with the model
(not shown) and does not contain finer details than the model
state. In this respect the model resolution is adequate to cap-
ture the main features contained in the data.

After a 10-year spin up from the state of rest, versionsV1
andV2 are run for one additional year and the output is stored
every 10 days. It is used to compute the mean and standard
deviation presented in the middle and bottom rows of Fig.1.
The middle left panel of the figure depicts the difference be-
tween the mean dynamical topography obtained from obser-
vations and the mean calculated fromV1 model run. The dif-
ference is significant in many places over the world ocean,
reaching±0.5 m in some areas. The pattern of these dis-
crepancies follows in many places the significant elevation
of bottom topography. Many of them develop as the result
of model adaptation to the bottom topography and present a
systematic model bias. Probably, many other issues can be
responsible for this bias. An apparent issue is the lack of re-
alistic forcing and the absence of coupling with an ice model.
In this way we cannot exclude that much finer tuning of the
model is required to minimize the discrepancy between the
model and data mean SSH fields, and that bottom topography
is an important, but only one of many key features. Clearly,
so large mean differences cannot be compensated by local
changes in the steric height which makes further application
of sequential data assimilation questionable.

The middle right panel of Fig.1 shows standard deviation
of the sample for the model versionV1. As seen from the
figure, theV1 model variability differs from the variability
of the observations but remains on the same scale reaching
12 cm in the most energetic areas. Compared to the data, the
model overestimates variability in the Gulf Stream and Ag-
ulhas currents regions, but underestimates it in the area of

Kuroshio current. The Tropical belt variability is smaller too
than in the observational data. In the Antarctic Circumpo-
lar Current (ACC) region there are regions of overestimated
variability in V1 compared to observations.

The strong systematic difference between the observations
and the model demands seeking for the methods capable
to reduce the model drift. The adiabatic pressure correc-
tion suggested by (Sheng et al., 2001; Eden et al., 2004)
works through modifying the velocity fields leaving consis-
tent tracer fields. In this way it suppresses the temperature
and salinity advection by the erroneous velocity field which
happens in the model which does not use such a correction.
The utility of this correction method was consistently demon-
strated inEden et al.(2004), and is also exploited here.

The circulation in configurationV2 is adiabatically cor-
rected toward the velocity field which would correspond to
the climatological temperature and salinity. The bottom pan-
els of Fig.1 show mean difference (left) and standard devi-
ation (right) calculated using this model configuration (see
Sect.1). The difference in the mean fields is reduced com-
pared to theV1 version in all regions, especially in North
Atlantic. Although it still remains relatively high it is much
closer to the level comparable to typical variability. Thus ap-
plying the adiabatic correction by modeling the density as a
linear combination of the climatology and the model density
helps to reduce the deviation of the model mean compared to
the mean obtained from the satellite observation.

The price paid for this reduction is that it simultaneously
reduces the variability and the standard deviation ofV2 is
much smaller than that of the observations (top right) and
V1 model run (middle right). Although the main regions of
high variability are still visible, the amplitude is significantly
smaller. The physical reason of this effect is also clear – by
correcting pressure one affects (reduces) the amplitude and
phase speed of baroclinic Rossby waves and in this way a
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certain part of variability. Other algorithm of adiabatic cor-
rection are to be tested (seeEden et al., 2004), but it is not at-
tempted in this paper. This fact limits the use of the proposed
method for seasonal numerical experiments. To prevent the
reduction of inter-annual variability it is also of interest to
try more sofisticated correction methods such as (Bell et al.,
2004).

Let us also consider the differences in the states obtained
after ten years of the spin up with both versions of the model.
The left plot of Fig.2 shows the difference between the ini-
tial state of the SSH (here and below we use the abbrevi-
ation SSH, sea surface height, to refer to the dynamical to-
pography) obtained via the 10-yearV1 model spin-up and the
corresponding observed initial state. This plot reveals large
discrepancies between theV1 model state and the observed
dynamical topography mainly in the Southern Ocean, North
Atlantic and Pacific.

The 10-yearV2 model spin-up (right panel in Fig.2) with
the adiabatic pressure field correction results in a state which
is much closer to the observed state. Overall, we see that the
benefits of the originalV1 model are carried over to the model
V2. However, the discrepancies compared to the observations
are still present, although their magnitudes are significantly
reduced almost everywhere. Hence, theV2 model state will
be used as the first input to the model run in our assimilation
experiment.

4 Assimilation scheme

In this study we use the sequential evolutive interpolated
Kalman filter (SEIK) introduced byPham (2001). This
method has been used in a number of studies (Hoteit et al.,
2007, 2005; Triantafyllou et al., 2003; Nerger et al., 2007;
Nerger, 2004). In the SEIK algorithm (seePham, 2001),
the forecast field is computed as an average over the ensem-
ble members, and the forecast error covariance matrix is ob-
tained as the corresponding covariance matrix from the en-
semble. Since the forecast error covariance matrix has a rank
that depends on the number of ensemble members, it is rep-
resented in the algorithm in its reduced form. This allows
that the analysis covariance matrixPa

k be calculated in its re-
duced form too. The calculated analysis error covariancePa

k

is then used to obtain the analysis using formulas:

ηa
k = η

f
k + K k(η

o
k − Hkη

f
k ),

K k = Pa
kHT

k R−1
k . (2)

Here, ηf
k , ηa

k andηo
k respectively denote forecast, analysis

and observations of SSH field at timetk; Hk in our case is
identity since the observations are interpolated prior to the
assimilation onto the model grid. The matrixRk is the ob-
servation error covariance matrix that is diagonal, with the
diagonal values equal to 25 cm2. Considering the model per-
formance, the largest contribution to matrixR is associated

with model (representativeness) and probably not data error
in satelite altimetry or the geoid used. The diagonal nature
of R is by convenience only. Note however, that the assim-
ilation increment (change in model state) is correlated due
to the presence of the forecasted error covariance matrix.
Once the analysis is completed, the second-order accurate
sampling technique is used for generation of new ensemble
members that have the mean and covariance equal toηa

k and
Pa

k . This analysis ensemble is propagated with the full non-
linear model to the next assimilation time step. In this study,
we apply the local version of the SEIK filter (Nerger et al.,
2006) so that the analysis for each water column of the model
depends only on observations within a specified influence re-
gion. Here, the influence region is a circle with a radius of
200 km. This value was chosen due to preliminary experi-
ments with different subdomains. The experiment with the
radius value of 200 km showed better results. In practice, ex-
cept for high latitudes, it indeed corresponds to taking into
account only all the nearest neighbours.

The strategy of our assimilation experiment is as follows.
In order to minimize the deviation of the model mean from
the observed mean we use theV2 version of the model. At
each time the observations are available, the analysis of the
SSH field is carried out applying the local SEIK filter. Us-
ing this information, the vertical profiles of temperature and
salinity are updated according to the vertical structure of the
first baroclinic mode (Fukumori et al., 1999) with the ampli-
tude computed from the elevation update, i.e. the temperature
and salinity fields are updated using the following formulas:

T a(x, y, z) = T f (x, y, z) + δη(x, y)
gρ0ĥ(z)

p̂(0)

∂T̄

∂z
(x, y),

Sa(x, y, z) = Sf (x, y, z) + δη(x, y)
gρ0ĥ(z)

p̂(0)

∂S̄

∂z
(x, y). (3)

Here, overbars denote the reference state calculated as a
mean from the one year free model run of theV2 model,
p̂ and ĥ are locally defined vertical structures of the first
baroclinic modes of velocity and displacement calculated us-
ing the local vertical profiles of the Brunt Väis̈alä frequency
and density from theV2 model (Gill , 1982). The function
δη(x, y) is the analysis increment, i.e. the difference between
the analysis of SSH,ηa

k and its forecastηf
k , and g is the ac-

celeration due to gravity. The velocity field is left unchanged
so that it is simply the result of the model evolution.

In order to generate the initial error covariance matrix a
model run was performed to produce a set of 10-day fore-
casts from a series of initial conditions distributed at 10-day
intervals over a year. This procedure produces an ensemble
of 37 model states.

The 10-day interval is chosen to correspond to the fre-
quency of observational updates in the assimilation experi-
ments, and the series of the initial conditions is used so that
the covariance of the ensemble will be representative of the
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Fig. 3. Evolution of RMS error of SSH for the world ocean (except zones corresponding to RIO05 MDT location in the data see Fig.1). The
green and yellow solid lines show the errors corresponding to theV1 andV2 free simulations (without assimilation), respectively. The blue

lines with bullets represent theV f
3 10-day model forecasts, while the dotted red lines correspond to theV a

3 analysis.V1 model which was
spun up was re-initialized at the initial time with the initial condition ofV2.

full period of the experiments. The initial error covariance
matrix is then approximated with a lower rank matrix using
the first eight empirical orthogonal functions (EOFs) of the
ensemble. The first eight EOFs represent more than 90 per-
cent of the variability. This covariance matrix is a consis-
tent estimator of the 10-day model error covariance, and is
adequate for parameterizing the filter background error co-
variance. The initial field is taken as a result of a 10-year
model spin up of theV2 as described in the previous section.
Eight ensemble members are used in the implementation of
the local SEIK algorithm.

5 Hindcast experiment

Three simulations were performed for the period between
January 2004 and January 2005. The first two are the already
mentionedV1 and V2 model configurations described in
Sect.2. These simulations were free model runs, i.e. model
integrations within the chosen time period without data as-
similation.V1 model which was spun up was re-initialized at
the initial time with the initil condition ofV2 which was cho-
sen as initial condition for all the models in our experiments.
Fig. 3 shows the evolution of the RMS error of the SSH aver-
aged over the entire ocean (except for the zones correspond-
ing to the RIO05 MDT location in the data see Fig.1). The
green and yellow lines show the errors corresponding to the
V1 andV2 free model simulations, respectively. Overall, we
observe that in theV2 run there is no extra model drift. The
results of theV2 are stable, and the error standard deviations
are generally 5 cm lower than those of theV1 free model run.
Note that this is a global result. A similar error analysis in
only the ACC area reveals a more significant improvement in
theV2 run on the order of 8 cm.

The third simulation denotedV3 is characterized by (i)
presence of the sequential data assimilation applied to the
SSH field (red circles in the Fig.3); let us denote the corre-

sponding state of the sequential analyses asV a
3 ; (ii) the ver-

tical mode update for the temperature and salinity fields as
described in Sect.4 (and horizontal structure obtained from
the statistical innovation of the SSH); and (iii) adiabatic pres-
sure correction as in theV2 model. Hence, the initial states
for every model forecast (blue circles in Fig.3) are superpo-
sitions of statistical updates from the filtering applied on the
SSH and the results of the vertical mode update applied to
the temperature and salinity fields. Of course, the correction
term applied to the model also influences the model forecast
evolution. The model states corresponding to the forecast of
theV3 model will be denoted asV f

3 .

The statistical analysis of the SSHV a
3 is stable and pro-

vides accurate estimates of the SSH during the whole period
of our experiment (Fig.3). The RMS error with respect to
the observations for theV a

3 decreases monotonically from 8
to 2 cm beginning from the fourth observational update. The
V

f

3 model forecasts are also stable and the RMS error is gen-
erally 7 cm and 2 cm lower than those of theV1 andV2 free
model run RMS errors, respectively.

The initial background covariance matrix is imperfect.
However, its evolution in time leads to more appropriate er-
ror representation which is evidenced by monotonic decrease
of the analysis error as the time goes on. On the other hand,
the improved initial states (red dots) of theV3 analyses lead
to improvedV3 forecasts. Their quality is then always bet-
ter than the quality of theV2 forecasts. At the first analysis
(day 10) the fit to observations is better than the fit of the
following analysis steps. The price for the good fit is that
innovation is propagated via the imperfect error covariance
to the full model state which reacts accordingly by deviat-
ing from a balanced solution. Later the covariance becomes
more “educated” and leads to increments that are better sus-
tained.

The quality of the model forecasts is always better than the
quality of theV1 andV2 free model simulations. However,
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Fig. 4. Spatial distribution of RMS errors of the SSH fields with respect to observations. The upper plots are for theV1 (left) andV2 (right)

model versions. The bottom plots correspond to theV
f
3 (left) andV a

3 (right) estimates.

the drift of forecastV f

3 towards theV2 state is still significant
which can partly be explained by the fact that the vertical
mode structure does not always catch all the thermodynamic
features like, for instance, the horizontal shift of the isopyc-
nals (the first baroclinic mode used in the method byFuku-
mori et al., 1999 accounts for only vertical displacement).
Hence, there is still an uncertainty in the resulting tempera-
ture and salinity profiles that are not always fully consistent
with the updated SSH field. On the other side, the tempera-
ture profiles obtained from the modal structure are stable and
realistic.

The upper plots of the Fig.4 show spatial distributions of
the RMS errors of the SSH with respect to the observations
for theV1 (left) andV2 (right) model versions. The bottom
plots in the figure correspond to theV

f

3 (left) andV a
3 (right).

These plots demonstrate the ability of the model to correct
for the mean state, which was not subtracted in the RMS cal-
culations.

Overall, we see that a significant part of the systematic
error is already corrected by theV2 model compared to the
original V1 model. However, the main discrepancies in the
Southern Ocean, Tropical and Northern Pacific and the Gulf
Stream area are still observed for theV2 version. TheV f

3
SSH is much more accurate than theV2 free run. However,
the RMS error in the Gulf Stream area is even larger than for
theV2 version. Apparently, theV a

3 SSH field is the most ac-
curate estimate in our experiments, although the RMS error
in some places of the Gulf Stream region reaches 10 cm.

Figure 5 shows spatial distribution of the SSH standard
deviation with respect to the observations. Here the mean
observed signal is excluded and panels show the ability of
each model to correct for the temporal variability. As we see
from the figure, theV2 model does not improve significantly
the temporal variability of the SSH in high-energetic areas of
the world ocean. The temporal variability inferred from the
V

f

3 shown in the bottom left plot of the Fig.5 is improved
almost everywhere except in the Gulf Stream area.
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Fig. 5. Spatial distribution of standard deviation on SSH with respect to observations. The upper plots areV1 (left) andV2 (right). The

bottom plots correspond to theV f
3 (left) andV a

3 (right).

This improvement can be explained by the fact that every 10-
day model forecasts start from the corrected model statesV a

3
(bottom left plot in Fig.5) which is accurately estimated in
the sense of temporal variability and the mean-state error cor-
rection (cf. Fig.4). The slight problems of the SSH analysis
in the Gulf Stream area are also visible in this figure.

Finally, let us compare the differences in the mean and
standard deviation between theV a

3 andV
f

3 and the obser-
vations as done in Fig.1 for the V1 andV2 versions of the
model. In Fig.6 on the left the differences between the mean
SSH obtained from the observations and the mean calculated
from the V a

3 (upper panel) andV f

3 (lower panel) samples
are shown. The difference between the mean of the analy-
sis estimates and the mean of the observations is very small
throughout the world oceans. However, some discrepancies
with small amplitudes can be seen in the Gulf Stream re-
gion and the ACC region. Although the difference in the
mean of the forecasts sample and the observations is much
larger than the analysis difference, we still see an improve-

ment in the mean field compared to theV2 version of the
model. Comparing the variability of the SSH in theV1, V2
(Fig. 1 right) andV3 models (Fig.6 right) we can conclude
that the variability of theV a

3 field (upper right panel of Fig.6)
is very similar to the variability of the observations (upper
right panel of Fig.1), except that the analyzed fields result
in overestimated variability in the Gulf Stream region. The
variability of theV

f

3 (lower right panel) is everywhere closer
to the observational variability than to theV2 variability (bot-
tom right panel of Fig.1). The variability in the Gulf Stream
is significantly overestimated in theV f

3 sample.

6 Conclusions

This work concentrates on the methodology of applying se-
quential data assimilation to assimilating the absolute dy-
namical topography (including a geoid as a reference mean
state) into the global coarse-resolution FEOM. The problem

www.ocean-sci.net/4/307/2008/ Ocean Sci., 4, 307–318, 2008



316 S. Skachko et al.: Sequential assimilation of dynamical topography

Fig. 6. Difference on mean SSH between:V a
3 (upper line, left),V f

3 (bottom line, left) and observations. The standard deviation (with respect

to its own mean) forV a
3 (upper line, right),V f

3 (bottom line, right).

which has to be solved before applying the sequential data
assimilation technique is the reduction of systematic errors
between the data and the model. We demonstrate that the
method of adiabatic pressure correction proposed bySheng
et al. (2001); Eden et al.(2004) suppresses strong system-
atic deviations so that they remain on the level comparable
to the variable part of the difference between the model and
observations.

Further improvement of the estimates of the ocean state is
achieved by assimilating SSH satellite data using the local
SEIK filter. The common problem encountered when apply-
ing such techniques in conjunction with the satellite altimetry
data is poor covariances whereby statistical update of temper-
ature and salinity has flaws and is also conductive to numer-
ical instabilities. To overcome this difficulty this work uses
the method proposed byFukumori et al.(1999). According
to this method, the temperature and salinity update are as-
sumed to follow the vertical structure of the first baroclinic
mode. In our experiments, we tried different sets of modes:

the first, a superposition of the first two, five and all the pos-
sible modes. And we found that the first mode gives better
results.

Taken together, these three techniques (adiabatic pressure
correction, local SEIK filter and the method byFukumori
et al., 1999) allow a successful reduction of the errors. Hav-
ing applied them together, we have managed to decrease the
global mean RMS error of the reference model from 16 cm
to 9 cm.

It is also clear that despite its success the approach sug-
gested here remains suboptimal. One of the reasons why it
is so is that the vertical structure of the first baroclinic mode
is computed without taking into account the vertical veloc-
ity shear (the horizontal density gradient). This changes the
structure of modes (compared to the true vertical structure)
reducing the amplitude of temperature and salinity updates
in the upper layers. Computing the true vertical structure is
much more difficult and additionally it turns out to be depen-
dent on the horizontal wavenumber of perturbations.
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The other reason is applying the adiabatic correction. Al-
though it essentially reduces the model drift and in this way
is indispensable, it also reduces the sensitivity of the velocity
fields to the temperature and salinity updates. In this way,
even if the vertical structure of the baroclinic mode were per-
fectly known, the elevation which will be in equilibrium with
the updated temperature and salinity is different from the up-
dated elevation. The difference between the elevation just
after the update and its equilibrium value propagate as a sur-
face wave leading to error growth in the forecast phase.

These issues as well as several other questions remain for
the future research. Namely, an impact of the ocean state
update on the ocean circulation and heat and salt content
changes implied by data assimilation should be analyzed
and compared to results of variational data assimilation tech-
niques. Also, one needs to find out how the use of a tempo-
rally varying geoid can help in a more precise estimation of
the general ocean circulation.
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