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Abstract. This study describes a new model implementation
for the Mediterranean Sea with what is currently the highest
vertical resolution over the Mediterranean basin. The resolu-
tion is of 1/16◦×1/16◦ in the horizontal and has 72 unevenly
spaced vertical levels. This model has been developed in the
frame of the EU-MFSTEP project and is the operational fore-
cast model currently used at the basin scale.

The model considers an implicit free surface and this char-
acteristic enhances the model’s capability to simulate the sea
surface height variability and the net transport at the Strait of
Gibraltar.

In this study we show the calibration/validation experi-
ments performed before and after the model was used for
forecasting. The first experiment consists of a six-year simu-
lation forced by a perpetual year forcing, and the other exper-
iment is a simulation from January 1997 to December 2004,
forcing the model with 6-h atmospheric forcing fields from
ECMWF. The model Sea Level Anomaly has been compared
for the first time with satellite SLA and with ARGO data to
provide evidence of the quality of the simulation.

The results show that this model is capable of reproduc-
ing most of the variability of the general circulation in the
Mediterranean Sea. However, some basic model inadequa-
cies stand out and should be corrected in the near future.

1 Introduction

The aim of this study is to give a detailed description of the
Mediterranean Sea forecasting model implementation stud-
ies performed during the MFSTEP project in order to assess
the quality of the numerical model that is now used for the
daily forecasts at the basin scales.

Correspondence to:M. Tonani
(tonani@bo.ingv.it)

The first model used for forecasting at the basin scale has
been described by Pinardi et al. (2003). The previous im-
plementation consisted of a version of the Modular Ocean
Model (MOM) with a 1/8◦×1/8◦ horizontal resolution and
31 levels in the vertical. The present model is a version of
the Oćean PAralĺelisé (OPA) code (Madec et al., 1998) and
its horizontal and vertical resolution is the highest presently
available for the Mediterranean Sea: 1/16◦

×1/16◦ degrees in
the horizontal (approx. 6.5 km) and 72 vertical levels. The
level of depths are unevenly spaced and have a thickness
ranging from 3 m at the surface to 300 m at the ocean bot-
tom. The depth of the first level is 1.5 m and that of the deep-
est is 5000 m. The model could be therefore defined as a
mesoscale-resolving model for the Mediterranean Sea, since
the first internal Rossby radius of deformation is around 10–
15 km in summer and for most of the Mediterranean sub-
regional seas (with the exception of the Adriatic Sea). Fig-
ure 1 shows a comparison between the vertical resolution of
a CTD salinity profile by the 72-level (panel a) and 31-level
models (panel b). The continuous line is the CTD profile
from the bottom down to 300 m and the dots are the posi-
tions of the vertical levels of the model. It is clear that when
there are only few levels (panel b), all the small scales are
missed and, moreover, the depth of the sub-superficial min-
imum is displaced. Several of these comparisons between
data and model level distribution were performed in a pre-
liminary phase in order to decide the number of levels of
the vertical grid of the model. The model is also new for
the Mediterranean Sea since it uses an implicit free-surface
parameterization instead of a rigid lid like all the other mod-
els implemented for the region (Demirov and Pinardi, 2002;
Beranger et al., 2004).This allows for a water flux forcing
in equilibrium with the salt flux. Furthermore, free-surface
models in the Mediterranean Sea allow an important im-
provement in the realism of the simulations permitting a net
water influx at Gibraltar to compensate for the positive wa-
ter losses at the air-sea interface. Rigid lid models cannot
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Fig. 1. Salinity profile from CTD in the eastern Mediterranean and
its discretisazion by the model levels for the case of 72 levels (panel
a) and 31 levels (panelb). The full line is the CTD profiles and the
dots represents the depths of the model vertical levels.

in fact have a net transport at Gibraltar, and this is a fea-
ture missing from all previous high-resolution simulations.
Figure 2 shows a comparison between the dynamic topog-
raphy (panel a) and the steric component (panel b) between
the rigid lid 1/8◦×1/8◦ horizontal resolution model and the
free-surface 1/16◦×1/16◦ model. The comparison was made
for 1999. The low-resolution rigid lid model is not able to
simulate the seasonal variability of the dynamic topography
well, and has a really smooth shape with respect to the free-
surface and high-resolution model. The dynamic topography
has been computed from the sea surface pressure for the rigid
lid model and from the sea surface high for the free-surface
one. Panel b) shows the variability of the sea level high due to
the steric effect. We have computed this variabillity from the
climatological data of MEDATLAS (MEDAR/MEDATLAS
Group 2002) and from the two model simulations. It is clear
from Fig. 2 that the low resolution model has a higher vari-
ability, which could be due to the low vertical resolution of
the model that is not adequate to represent the seasonal vari-
ability of the characteristics of the water column. The high-
resolution model, on the contrary, has a variability much
closer to the steric component of the climatology; it there-
fore seems to be more efficient in the simulation of the water
column property variability due to the seasonal variability.

This paper is organized in the following way: Sect. 2 gives
a detailed description of the model equations and parameter
choices; Sect. 3 describes the experimental design; Sect. 4
describes the simulation results and the comparison with the
observations; Sect. 5 offers the conclusions.

2 Model equations and parameter choices

2.1 Model equations and domain of implementation

The model uses the primitive equations with the Boussinesq
and incompressible approximations written in spherical co-
ordinates(λ, ϕ, z), whereϕ is the latitude,λ the longitude
andz the depth. The set analytical expressions for the equa-
tions are:
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where we recognize that the momentum equations have been
re-written in their vorticity form (Pedlosky 1983). In Eqs. (1)
to (7), u, v,w are the components of the velocity vector;
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−
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)

is the vorticity;a the earth ra-

dius; f =2� sinϕ the Coriolis term with� the constant
earth rotation rate;p the hydrostatic pressure;θ the poten-
tial temperature,S the salinity, ρ the in situ density and
ρo=1020 kg/m3 the reference density;Alm, Avm the hor-
izontal and vertical eddy viscosities;AvT , AvS the vertical
diffusivities;AlT , AlS the horizontal diffusivities;δandµare
the relaxation coefficients, which will be described in details
later.

The numerical model code that discretizes Eqs. (1) to (7)
is OPA (Oćean PAralĺelisé) version 8.2 described in Madec
et al. (1998). Here we use the OPA version with the implicit
free surface so that the latter, denoted byη, is a prognostic
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Fig. 2. comparison between the rigid lid low resolution model and the free-surface high-resolution one. Panel(a) shows the mean dynamic
topography (mm) for 1999 computed from the two models respectively as sea surface high or pressure minus the mean over all of 1999.
The line with triangles is the dynamic topography from the low-resolution model whilst the continuous line is the high-resolution model.
The values are computed as monthly means and are mean over the whole Mediterranean basin. Panel(b) show the comparison of the steric
component (mm) computed from the temperature and salinity fields of the two models (line with triangles for the low-resolution model) and
from the monthly mean climatology MEDATLAS (thick line).

variable. The numerical scheme for the free surface is de-
scribed by Roullet et al. (2000).

The model domain and the bathymetry are shown in Fig. 3:
the coastline resolves 49 islands. The procedure used to
make the coastline, the bathymetry and the vertical level
distribution is described in the Appendix. The Atlantic
box is very large with respect to previous implementations
(Demirov and Pinardi, 2002) and it will be described in de-
tail below.

2.2 Sub-grid-scale parameterizations

The horizontal eddy viscosity (Alm) is considered to be a
constant value of 5×109 m4/s whilst the horizontal diffusiv-
ities (AlT , AlS) are equal and set to the value of 3×109 m4/s.
The vertical diffusivities (AvS, AvT ) and viscosity (Avm) are
a function of the Richardson number as parametrized by
Pakanowsky and Philander-PP (1981), i.e.:

AvT
=

100× 10−4

(1 + 5(N2/(∂Uh/∂z)2))2
+ (1.5 × 10−4) (8)

Avm
=

AvT

1 + 5(N2/(∂Uh/∂z)2)
+ (3 × 10−4) (9)

where the vertical salinity diffusivity is equal to Eq. (8). The
PP parameterization is thought to be relevant for mixed-layer

processes whilst deep convection needs another parametriza-
tion. The model thus uses enhanced vertical diffusion to
produce deep convection: the vertical diffusivity and viscos-
ity coefficients are assigned to be equal to 1 m2/s in regions
where the stratification is unstable.

2.3 Vertical boundary conditions

At the bottom,z=−H(x, y), we impose:

a) for the vertical velocity:

w = −ub
h · 5H (10)

whereub
h=(ub, vb) is the bottom velocity assumed to

be the deepest layer velocity;

b) for the momentum, temperature and salt flux:

Avm ∂

∂z
(uh) | z=−H = CD

√
u2

b + v2
b + ebu

b
h (11)

AvT ∂

∂z
(T , S) | z=−H = 0 (12)

whereCD=10−3 is the drag coefficient andeb is the
bottom eddy kinetic energy due to the tides, internal
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Fig. 3. Model bathymetry and domain.

waves breaking, and to all the other contributions at very
short spatial and temporal scales.

At the surface,z=η, the boundary conditions are:

a) for the vertical velocity

w =
Dη

Dt
− (E − P) (13)

where Dη
Dt

=
∂η
∂t

+uh · ∇η P is the precipitation andE
the evaporation (E). This is the so-called water flux
boundary condition.

b) The momentum boundary condition is:

Avm ∂uh

∂z
| z=n =

(τu, τv)

ρ0
(14)

whereτu, τv are the zonal and meridional wind stress
components respectively.

c) The heat flux boundary condition is:

AvT ∂T

∂z
| z=0 =

Q

ρ0Cp

(15)

whereCp=4000 J/(kg ◦K) and Q (W/m2) is the non-
penetrative net heat flux at the surface. In our case, all
the heat is assumed to be absorbed at the surface.

d) The boundary condition for the salinity is:

ρ0A
vS ∂S

∂z
| z=0 = (E − P)Sρ0 (16)

whereS is the surface salinity which corresponds to the
water flux condition, Eq. (13).

The water flux has been chosen as:

ρ0(E − P) = γ −1 (S − S∗)

S
(17)

whereS is the model surface salinity,S∗ is the climato-
logical surface salinity andγ=−0.007(m2s/kg) is the
salinity relaxation coefficient. The corresponding relax-
ation time is:

1

ρ0
γ −1 (S − S∗

S
=

1z

1t

1t = ρ01zγ

(
S

S − S∗

)
(18)

If 1z=3 m is the first model layer depth,1t∼=5 days.

2.4 The Atlantic box and the Strait of Gibraltar

The model domain shown in Fig. 3 extends into the Atlantic,
and this part is called the Atlantic box. This box is neces-
sary in order to simulate the exchange of water masses at
the Gibraltar Strait properly. The latter therefore considers
relaxation to climatology and vanishing currents at the last
boundary point. The model salinity and temperature fields
along a strip at the latitudinal and longitudinal boundaries of
the Atlantic box (Fig. 3) are relaxed at all depths to the cli-
matology with the terms introduced in Eqs. (5) and (6). The
strip is an area with an extension of 2◦ at the westward and
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southward boundaries and 3◦ at the northern boundary (in
order to cover all the area of the Gulf of Biscay).

The µ coefficient varies spatially, whilstδ is a time
factor: µ is larger closer to the boundary points of the
box and linearly decreases to zero outside the strip and
δ=2.3×10−7 s−1. The horizontal diffusivities are also in-
cremented by a factor of 5 in the Atlantic box strip areas in
order to add a sponge layer.

Some modifications are necessary at the Strait of Gibral-
tar to avoid unrealistic values of the transport at this strait.
The horizontal viscosity is laplacian in the region between
6.25◦ W and 5.125◦ W, whilst in the rest of the basin it is bi-
laplacian. The diffusivity in this area is 10 times larger than
in the rest of the model. In the same geographical area the
bottom friction drag coefficient is linear and ten times larger
then in the other parts of the model. Out of the Strait of
Gibraltar in the Atlantic Box, the bathymetry has been mod-
ified in order to resolve the Camarinam Sill (Sannino et al.,
2004).

2.5 The water flux correction

The domain of Fig. 3 has closed boundaries and care should
be taken in considering the effects of net sources/sinks of
heat and water in the basin. In the Atlantic box, heat and salt
is added or substracted by the relaxation terms in Eqs. (5) and
(6), which are different from zero along the strip of the lateral
boundaries, as described above. These terms will balance
the heat loss and the salt gain from the sea surface, over the
Mediterranean part of the basin in particular.

However, care should be taken for the surface water
boundary condition – Eq. (13) – which sets the sea surface
height of the basin and therefore the mass conservation. We
develop here a way to correct the water balance in a closed
model domain that conserves mass under the conditions of
negative surface net water flux. It is well known that the
Mediterranean basin on a yearly average has a net water loss
due toE exceedingP . The water lost at the surface of the
Mediterranean Sea is balanced by a net inflow of water at the
Gibraltar Strait. We need to enforce this balance so that the
model volume does not drift.

The basin mean (E-P ) is then separated into two compo-
nents, the Atlantic and Mediterranean:

E − P = (E − P)MED + (E − P)ATL (19)

At each time step, the space integral of the Mediterranean
and Atlantic water flux is computed and the sum of this two
components of the water flux,1E−P ,is computed:∫

x,y

(E − P)MED +

∫
x,y

(E − P)ATL = 1E−P (20)

1E−P will be now used to compute a new value for the wa-
ter flux over the Atlantic in order to have the net water flux
equal zero over the whole domain. This does not change
the Mediterranean basin water loss, but it balances it so that
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Fig. 4. Water flux correction factor,1(E −P), over all the Atlantic
box computed for the first five years of the perpetual year simula-
tion. The value of1(E − P) is computed as the percentage of the
total water flux value in the Atlantic Box.

mass is conserved. A value of(E−P)ATL CORR is therefore
recomputed for each Atlantic grid point in the following way:

(E−P)ATL CORR = 1E−P /AREAATL − (E − P)ATL (21)

where AREAATL is the Atlantic surface area. This assump-
tion can be made only if the model is not used for climate
simulations that cover hundreds of years, a period over which
the modification of the water flux into the Atlantic box may
be relevant and non-negligible. Figure 4 shows the value of
1E−P computed as percentage of the(E−P)ATL CORR in
one of the experiments studied in this paper. This value af-
ter the first months of simulation decreases and assumes a
value of ca. 0.005%. This value is small enough, and more-
over does not increase during the simulation. Therefore we
argue that this approximation,is valid for short term forecast-
ing purposes.

2.6 Design of the numerical experiments

The model described in Sect. 2 was run with two different
approximations of the atmospheric forcing:

1) the so-called perpetual year forcing, where the water,
heat and momentum surface fluxes are monthly varying
climatological mean values;

2) with 6-h meteorological forcing for the period January
1997 to December 2004.

In the following we describe the model design for each of
these experiments.

www.ocean-sci.net/4/1/2008/ Ocean Sci., 4, 1–14, 2008
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Fig. 5. Volume integral of the kinetic energy (m2/s2
×10−3) computed for the six years of the experiment with the perpetual year forcing

with a time period averaging ten days (panela) and for the eight years with interannual atmospheric forcing with a time period averaging
one day (panelb).

2.7 Perpetual year experiment (PYE)

The perpetual year experiment, hereafter called PYE, consid-
ers seasonally repeating heat, water and momentum fluxes at
the sea surface. The model was initialized with a salinity and
temperature field from the January monthly mean of ME-
DATLAS climatology (MEDAR/MEDATLAS Group 2002)
and with zero velocity field. A detailed description of the
wind stress climatology, composed of monthly mean wind
stresses previously computed, is given in the Appendix. This
wind stress climatology is used in Eq. (14).

In the perpetual year simulation,Q in Eq. (15) is defined
as:

Q = Q0 +
dQ

dT
(T − T ∗) (22)

whereQ0 is the net heat flux from the monthly mean cli-
matology (described in the Appendix),T is the model sur-
face temperature,T ∗ is the climatological surface tempera-
ture (see Appendix) anddQ/dT =−40(W/m2 ◦K−1) is the
relaxation coefficient. The heat flux relaxation time1τ cor-
responding to the relaxation factor is:

dQ/dT

ρ0Cp

=
1z

1τ
1τ = 1z

ρ0Cp

dQ/dT
(23)

Since the model surface layer thickness is1z=3 m, then
1τ ∼= 3, 5 days.

2.8 Interannual forcing experiment (IYE)

In the interactive physics experiments, hereafter called IYE,
the wind stress for Eq. (14) is calculated interactively starting
from 6-h surface meteorological fields from ECMWF using
bulk formulas.

For the wind stress the surface winds are transformed in
stress using the Hellerman and Rosenstein (1983) bulk pa-
rameterization and are used in Eq. (14).

For the heat flux in Eq. (15) we use:

Q = QS − QB (Ta, T0, C, rh) − LE (Ta, T0, rh, |V W |)

−H (Ta, T0, |V w|) (24)

where the terms on the right-hand site are: the net short wave
incoming radiation,Qs ; the net long wave re-emitted by the
surface,QB ; the latent,LE, and the sensible heat flux,H .
They depend upon the air temperature at 2 m,Ta ; the sea sur-
face temperature computed by the model,T0; the total cloudi-
ness,C; the relative humidity computed from the dew point
temperature at 2 m,rh; the 10 m wind velocity amplitude,
|V w|. The different heat bulk expressions for these terms
were determined by Castellari et al. (2000) and verified later
to give accurate long term heat budgets with ECMWF by
Pinardi and Masetti (2000). Briefly, the bulk formulations
used are: the Smitsonian astronomical formulas modified by
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Fig. 6. Comparison between the total heat flux (W/m2) computed from the model experiments and the NCEP NCAR reanalysis. Both model
and data are monthly mean. Panel(a) shows the results for the six years of the perpetual year forcing experiment. Panel(b) shows the results
for the interannual forcing experiment from January 1999 to December 2004.

Reed (1977) forQs ; the Bignami et al. (1995) forQB ; the
Gill (1982) forLE and Kondo (1975) forH fluxes.

The model initial condition for IYE are the climatological
fields of temperature and salinity from MEDATLAS and zero
velocity.

3 Model results and comparison with data

Both experiments have been studied, intercompared and
compared with observations. One of the key indices of the
circulation is the value of the kinetic energy over the Mediter-
ranean basin. The Atlantic box circulation is neglected be-
cause we consider the Atlantic box as a parameterization of
large scale effects. Figure 5 shows the values of Kinetic En-
ergy for (PYE), panel a) and (IYE), panel b). The values
increase during the first months of simulation in both exper-
iments. The Kinetic Energy reaches a more or less stable
value in (PYE) after the third year of integration. The values
for experiment (IYE) seem to reach a statistically flat trend
after the first two years of its run. As expected, the values of
Kinetic Energy are higher and have more variability in (IYE)
than in (PYE), due to the fact that (IYE) is forced by the at-
mospheric large scale interannual variability (PYE).

The first two years of (IYE) could be considered as the
time necessary for the model spin-up; in the following sec-

tions we therefore show only the results from 1999. The sixth
year of perpetual simulation will be considered as the refer-
ence year for (PYE).

The model results were first compared with independent
data sets for the heat and wind stress forcing. Figure 6 shows
a time series of the total heat flux, described in Eq. (24)
and computed as basin mean for (PYE) and (IYE) over a
time period mean of one month. The model values are com-
pared with the NCEP/NCAR re-analysis values (Kalnay et
al., 1996). (PYE), panel a), does have lower values than
NCEP/NCAR during the summer but it reproduces the sea-
sonal cycle rather faithfully. (IYE), panel b), on the contrary,
reproduces the summer well, and shows a large interannual
variability in the winter fluxes, as was expected. Overall, we
may say that the model is forced by consistent heat fluxes in
both the (PYE) and (IYE) experiments.

The monthly wind stress mean over the basin is now ana-
lyzed together with the monthly mean wind stress curl.

Figure 7 shows the wind stress and wind stress curl com-
puted for both experiment (PYE) and (IYE). The values of
wind stress of (PYE) have been compared with the wind
stress computed from the NCEP/NCAR data (panel a). The
major difference between (PYE) and NCEP/NCAR data is
during summer. NCEP/NCAR shows a summer minimum
whilst (PYE) reaches a secondary maximum during the same
period. Examining the wind stress pattern (not shown) we

www.ocean-sci.net/4/1/2008/ Ocean Sci., 4, 1–14, 2008
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×106) from model simulations and NCEP-NCAR data as mean over the Mediterranean

Basin. Panel(a): climatological monthly mean wind stress from NCEP-NCAR (thin line) and monthly mean from the sixth year of the
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and the perpetual year simulation values (thin line). Panel(c): wind stress curl from the model simulations from January 1999 to December
2004 (thick line) and the perpetual year experiment (thin line).

Fig. 8. Map of wind stress curl computed as average from the model experiments over the years 1999–2004.
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Fig. 9. Baroclinic transport (Sv) at the Strait of Gibraltar and wind stress and wind stress curl as mean in the Alboran Sea. Panel(a): net
transport (eastward minus westward) at the Strait of Gibraltar over the period January 1999–December 2004. Panel(b): eastward transport
at Gibraltar (thick line) and wind stress (thin line) as mean over the Alboran Sea (6◦ W–1◦ W) for the same period. Panel(c): eastward
transport at Gibraltar (thick line) and wind stress curl (thin line) as mean over the Alboran Sea (6◦ W–1◦ W) for the same period.

note that the large amplitude meridional winds characteriz-
ing the summer regimes over the Eastern Mediterranean are
very weak in the NCEP/NCAR climatology, and this could
explain the difference. The (PYE) forcing, calculated from
ECMWF re-analysis (Korres et al., 2000), have the large am-
plitude signal of the Etesian winds, however.

Panel b) represents the wind stress from (IYE) over the
years 1999–2004 compared with (PYE). Both curves show
a large seasonal signal but (IYE) shows a higher amplitude,
especially during winter. The first three years of (IYE) are
characterized by lower values of wind stress with respect to
the final three years. Panel c) shows the wind stress curl from
(PYE) and (IYE). The values of the wind stress curl are char-
acterized by a seasonal signal and are mainly positive for the
Mediterranean basin (as the basin is forced to have a cyclonic
vorticity input). The years 2002, 2003 and 2004 have the
largest wind stress curl values. In conclusion, we may ap-
proximately say that the atmospheric forcing variability in
(PYE) and (IYE) reproduces the well-known patterns and is
consistent with an independent data set.

Figure 8 shows a map of the wind stress curl computed
as mean over (IYE) from 1999 to 2004. The curl is posi-
tive over a vast area of the northern part of the basin, with

the exception of the western part of the Gulf of Lion. The
curl is mainly negative in the southern part of the Mediter-
ranean, however. This is the well-known pattern of the
wind stress curl over the Mediterranean (Pinardi and Mosetti,
2000; Demirov and Pinardi, 2002) that has been advocated
in the past as the main cause for the cyclonic character of
the basin-scale general circulation and anticyclonic circula-
tion prevailing in the southern and south-eastern parts of the
basin.

The mass transport at the main straits of the Mediterranean
Sea is another important index of the basin scale circulation,
and is also connected to deep and intermediate water forma-
tion processes in the basin. The two main straits are the Strait
of Gibraltar that connects the Mediterranean sea with the At-
lantic Ocean and the Sicily Strait, subdividing the Mediter-
ranean Sea into the western and eastern parts.

The transport at the Gibraltar Strait is characterized by the
inflow of the surface Atlantic water, corresponding to low
salinity and the outflow of salty Mediterranean waters below
150 m approximately. The Strait of Gibraltar is 13 km wide
at its narrowest part and has a maximum depth of 350 m. It is
difficult for a model with a horizontal resolution of approx-
imately 7 km to simulate the exchange at this strait well (in
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the model the strait at its narrowest part is represented by 2
grid points). As explained in Sect. 2, special parameteriza-
tions have been developed for this area. With a free-surface
model, the net transport is different from zero and the inflow
should be bigger than the outflow to balance the net water
loss at the sea surface. The eastward and westward transport
at the Strait of Gibraltar it is computed through a section at
6◦ W. The net transport is the difference between these two
components. It is shown in Fig. 9, and seasonal cycle is large
and reaches maximum values in autumn. In March of some
years, the net transport (panel a) may be negative, but the
average values over the year are always positive. It is clear
that the net transport has a large seasonal cycle with inter-
annual fluctuations superimposed. The eastward and west-
ward transport at the Strait of Gibraltar have approximately
the same fluctuation with no clear evidence of a seasonal sig-
nal. The variability of the eastward and westward transport is
strictly related to the wind stress, as has already been pointed
out in other works (Beranger et al., 2005). The wind stress
and wind stress curl monthly mean have been computed over
the area between 6◦ W and 1◦ W of longitude, correspond-
ing to the Alboran Sea, for the years 1999–2004. Panels b)
and c) of Fig. 9 show the value of the wind stress and the
wind stress curl respectively superimposed with the eastward
transport. It is evident that the variability of the transport is
more strongly correlated with the wind stress curl than with
the wind stress intensity. When the curl is strongly negative

(positive) the transport is high (low). When the curl is nega-
tive (positive) the vorticity is anticyclonic (cyclonic) and the
wind direction should be mainly eastward (westward). Jan-
uary 2001 has a high transport and the curl is negative, whilst
in December 2001 the transport reaches its minimum value
and the curl is strongly positive, but in both cases (panel b)
the wind stress is high. The time series of panel c) of Fig. 9
shows clearly how the correlation between the transport and
the wind stress curl is well respected during all the period of
study.

Figure 10 shows the transports at the Sicily Strait: panel
a) the net transport and panel b) the eastward and westward
component. From panel b) it is clear that the westward and
eastward values have larger values than at Gibraltar, confirm-
ing the results from Pinardi et al. (1997) with lower reso-
lution models. The net transport, panel a), has values and
shape comparable to the net transport at Gibraltar. The west-
ward and eastward components have a high variability with
high values of transport in winter that are lower in summer.
The time variability is in good agreement with observations
made over the years 1999–2001 (Beranger et al., 2004), and
the values of the maximum transport simulated by the model
also have values comparable with those observed. For exam-
ple, the maximum at the beginning of 2001 evidenced from
observation is well reproduced by the model simulation. The
model seems, however, to over-estimate the minimum values
of the transport, which are around 0.7 Sv during the period
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Fig. 11. Sea Level anaomaly mean over the Mediterranean basin for the period January 1999-December 2004. The unit of measure is mm.
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of 1999–2001 from the observation and never less then 1 Sv
from the model simulation for the same period.

Another way to assess the interannual model performance
is to compare the model output with the satellite Sea Level
Anomaly (SLA) time series. The model computes values of
Sea Surface Height (SSH) without considering the steric ef-
fect because it solves the incompressible continuity equation
described in Eq. (4). Mass changes do not create a three-
dimensional divergence and thus the steric effect is a diag-
nostic quantity for our model. The steric component was then
computed from the density field of the model and added to
the SSH. Figure 11, panel a), shows the values of the steric
component for both (PYE) and (IYE). The values are very
similar for the two experiments and the seasonal cycle is
clear with higher values during the summer. The values oscil-
late between−40 mm in winter and +40 mm in summer. The
area average values of SSH from the model are also shown in
panel b), and in this case the difference between (PYE) and
(IYE) is evident. The signal ranges between−25 mm and
+20 mm in (IYE) and−5 mm and +10 mm for (PYE) show-
ing that the sea level interannual signal is half of the steric
seasonal signal in the Mediterranean Sea. In other words sea
level variations induced by large scale circulation changes

produced by wind, water and heat fluxes over the Mediter-
ranean Sea have half the amplitude of the steric seasonal ef-
fects.

The SLA from the model has been defined as the sum of
the steric component and the model SSH where every year
its mean value has been subtracted. This time mean is equiv-
alent to subtracting the mean sea level or mean dynamic to-
pography of the model. This is done because the satellite
altimetry values also have such value subtracted. Panel c)
of Fig. 11 represents the comparison between (IYE) and the
satellite data. (IYE) reproduces the seasonal variability and
part of the interannual variability well but it is missing the
high values during the late summer-autumn period.

Before discussing this mismatch, we would like to show
the comparison of the model simulation with in-situ temper-
ature and salinity profiles.

XBT and ARGO vertical profiles were collected over
years 2003 and 2004 within the MFSTEP framework. The
rms error between data and model have been computed at
different depths (30, 150 and 300 m) and then averaged over
each month. Panel a) of Fig. 12 shows the rms for temper-
ature from XBT. The rms has values with a high variability,
especially at the surface, and it could be due to the scarcity
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in space of the data. The rms with the ARGO (Panel b), on
the other hand, shows values lower than 0.5◦C, except in the
summer, when the error is much larger at the depth of 30 m.
This could be due to the misplacement of the seasonal ther-
mocline in the model simulation. This situation is present
also in panel c), which shows the rms for the salinity (Dobri-
cic et al., 2007). The rms at 30 m is generally about 0.08 psu
in September of both 2003 and 2004, and could reach a value
of 1.6–1.8 psu. At 150 and 300 m the rms does not have this
fluctuation. The rms at 150 m has values close to 0.08 psu
with oscillation that could reach values of 1.2 psu or decrease
down to 0.02 psu. At 300 m the rms is about 0.04 psu. Panel
d) shows the rms of the density computed from temperature
and salinity data from ARGO versus model. These values
are well consistent with the results of salinity and tempera-
ture discussed above.

We can now try to understand the differences in late
summer-autumn in Fig. 11. This is due mainly to two fac-
tors:

1. the wrong water flux during summer, which lacks the
high evaporative fluxes during late summer and autumn;

2. the upper mixed layer physics, which does not correctly
reproduce the relatively deep, hot and salty mixed layer
during the summer-autumn period.

This interpretation is supported by the results of both Fig. 11
and Fig. 12, which show that the model has large model er-
rors in the upper seasonal thermocline.

Figure 13 represents the velocity field at 30 m as averaged
over 1999–2004. The model is able to reproduce the main
circulation patterns of the Mediterranean Sea as described in
the literature (Millot et al., 2005; Pinardi et al., 2004; Robin-
son et al., 1002).

4 Conclusions

The experiments described in this study confirm that the
high-resolution free-surface model implemented in the first
phase of the MFSTEP project has a good capability in repro-
ducing the ocean dynamic of the Mediterranean Sea. This
study shows that model results are in agreement with the data
and observations, even though some parameterizations of the
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Fig. 13. Map of the circulation over the Mediterranean basin at 30 m computed as mean over the model simulation from 1999 to 2004.

model should be improved. This is the case of the water flux,
which should be more realistic, and, as pointed out in Sect. 4,
also of the model’s capability of the model to reproduce the
hot and salty mixed layer during the summer-autumn period
correctly. The computation of an SLA and the possibility
to compare it to the satellite data is an important improve-
ment with respect to the previous lower-resolution and rigid
lid models implemented over the Mediterranean sea.

Appendix A

A1 Bathymetry and coastline

The Digital Bathymetric Data Base-Variable Resolution has
been used to make the MFS1671 coastlines and bathymetry.
DBDB-1 at 1’ resolution has been used for the Mediterranean
basin, whilst for the Atlantic DBDB-2 and DBDB-5 have
been used. The bathymetry file has been manually corrected
along the Croatian coast by a comparison with detailed nau-
tical charts. The bathymetry has been interpolated on the
model horizontal and vertical grid and manually checked for
isolated grid point, islands and straits and passages.

A2 Vertical level distribution

The distribution of the unevenly distributed vertical levels
should satisfy the criteria of consistency and accuracy of the
numerical scheme (Treguier et al., 1996). The vertical dis-
tribution of the levels is computed in OPA by a function that
has a nearly uniform vertical level distribution at the ocean
top and bottom with a smooth hyperbolic tangent transition

in between. Several level distributions have been computed
in order to find the one that reproduce the vertical shape of
temperature and salinity profiles for the region best. Partic-
ular attention has been paid to the intermediate layer resolu-
tion where the water masses are characterized by only 0.5◦C
anomalies in the western Mediterranean.

A3 Temperature and salinity monthly mean climatology

MEDATLAS monthly mean climatology
(MEDAR/MEDATLAS Group, 2002) and WOA98 (Lev-
itus, 1998) gridded climatologies have been used for the
Mediterranean Sea and the Atlantic Ocean respectively. The
merging between the two climatologies has been done in a
region on the western side of the Strait of Gibraltar.

A4 Wind stress and heat flux perpetual year climatology

The wind stress monthly mean climatology has been per-
formed with two different data set, one for the Atlantic and
one for the Mediterranean. The monthly mean wind stress
for the Mediterranean Sea has been computed by Korres and
Lascaratos (2003) using the ECMWF re-analysis fields for
the period 1979–1993. The monthly mean climatology from
Hellerman and Rosenstein (1983) has been used for the At-
lantic box. A weight function depending on distance in lon-
gitude has been used to merge the two monthly data sets, and
the data have then been interpolated with a spline on the nu-
merical ocean model grid.

The perpetual year climatology for the heat flux covers
only the Mediterranean and for the Atlantic only the relax-
ation to climatological temperature is used (see text). The
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heat fluxes have been computed by Korres and Lascaratos
(2003) using the COADS cloud cover data set for the period
from 1980 to 1988 and the Reynolds SST.

Edited by: E. J. M. Delhez
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