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Abstract. The transport of fine-grained sediments in the ma-
rine environment entails risks of pollutant intrusions from
substances absorbed onto the cohesive flocks’ surface, grad-
ually released to the aquatic field. These substances include
nutrients such as nitrate, phosphate and silicate compounds
from drainage from fertilization of adjacent cultivated areas
that enter the coastal areas through rivers and streams, or
trace metals as remainders from urban and industrial activ-
ities. As a consequence, knowledge on the motion and dis-
tribution of sediment particles coming from a given pollu-
tant source is expected to provide the ’bulk’ information on
pollutant distribution, necessary for determining the region
of influence of the source and to estimate probable trophic
levels of the seawater and potential environmental risks. In
that aim a numerical model has been developed to predict the
fate of the sediments introduced to the marine environment
from different pollution sources, such as river outflows, ero-
sion of the seabed, aeolian transported material and drainage
systems.

The proposed three-dimensional mathematical model is
based on the particle tracking method, according to which
matter concentration is expressed by particles, each repre-
senting a particular amount of sedimentary mass, passively
advected and dispersed by the currents. The processes af-
fecting characteristics and propagation of sedimentary mate-
rial in the marine environment, incorporated in the parame-
terization, apart from advection and dispersion, include co-
hesive sediment and near-bed processes. The movement of
the particles along with variations in sedimentary character-
istics and state, carried by each particle as personal informa-
tion, are traced with time. Specifically, concerning transport
processes, the local seawater velocity and the particle’s set-
tling control advection, whereas the random Brownian mo-
tion due to turbulence simulates turbulent diffusion. The
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vertical stratification of the water-column is taken into con-
sideration by appropriate damping of the vertical diffusion
term. Variations in cohesive sediment properties during the
abidance in the aquatic environment include coagulation and
flock break-up processes, quantification of the effects of am-
bient density to the density of the cohesive aggregate and the
associated alterations to the falling speed of the particle. In
the vicinity of the seabed, particles may deposit and gradu-
ally consolidate with time, the particles remain settled onto
the bed, re-enter the flow at a later temporal point or may en-
ter the water column for the first time, originating from the
erosion of the bed. The occurrence of each of the aforemen-
tioned near-bed processes is defined according to the prevail-
ing benthic shear stress conditions.

The mathematical model has been applied to the Ther-
maikos Gulf, an area of high environmental and socioeco-
nomic importance but also a region of significant pollutant
forcing from various anthropogenic activities taking place
in the adjoining land. Various kinds of outputs can be ex-
tracted, such as trajectories of the overall movement of spe-
cific particles and related alterations of their characteristics
with time, snapshots of the domain with respect to suspended
or deposited matter and natural concentrations of sediments
at every required temporal and spatial point. Indicative re-
sults from yearly and monthly simulations, using input baro-
clinic circulation data from the North Aegean Sea model and
river discharges are presented and discussed, including out-
puts from a Typical One-Year Simulation (TOYS), the sim-
ulation of the period from 3 September 2001 to 31 August
2002 (S1A2) and the January 2003 experiment (J03).

The description of the processes that have been incorpo-
rated in the parameterization covers the most significant fac-
tors controlling transport and mixing of fine grained sedi-
ments in the marine environment, thus validating the accu-
racy and completeness of the model. One of the major advan-
tages, apart from the observation of the phenomena in scales
smaller than the grid size, describing the natural processes
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more accurately, is the flexibility in accepting various pol-
lutant sources and the applicability to different domains with
minor modifications. The model has been incorporated in the
MFSTEP project, as part of the developed operational fore-
casting system for the Mediterranean Sea. The application
can be used for the prognosis of the seawater quality for cur-
rent and for future conditions, enabling employment as part
of a near-real time observation system or to formulate deci-
sions for the protection of the seawater environment.

1 Introduction

Freshwater input is, in general, a major provider of nutrients
and heavy metals in coastal systems. Four rivers together
with a complex system of irrigation channels contribute to
the transport of water, nutrient pollutants and sediments from
the adjacent land area to the Thermaikos gulf (location and
morphology of the Gulf are discussed in Sect. 3). Ele-
vated concentrations of nutrients and trace metals have been
recorded in the riverine water of the gulf (Karamanos et al.,
2000) due to utilization of the water for irrigation, urban and
industrial purposes. Investigation of riverine plumes propa-
gation in Thermaikos can lead to estimation of potential im-
pacts of anthropogenic activities to the coastal system. Under
this reasoning a three-dimensional sediment transport model
was developed, describing mathematically the processes af-
fecting the movement of fine particulate matter, which are
highly associated with biochemical substances absorbed onto
the flocks surface (Wang and Pinardi, 2002). Thus informa-
tion on the motion of riverine cohesive sediments can result
in prognosis of pollutant distribution in the aquatic domain.

Mathematical models describing the transport and disper-
sion of sediments in the coastal environment that have been
developed and applied are Eulerian (e.g. Estournel, 2000),
solving the well-known three-dimensional differential equa-
tions of transport and diffusion of matter concentration, par-
ticle tracking methods (e.g. Savvidis et al., 2001; Kourafalou
et al., 2004), where advection and diffusion of a specific
amount of mass is trailed with time, or combined Eulerian-
Lagrangian methods (e.g. Barros and Baptista, 1990), in
which advection is expressed by particles whereas the dis-
persion is defined applying the finite differences scheme.

Selection of the particle tracking method for the simula-
tion of the transport of the sediments in the marine environ-
ment was made due to major advantages of this approach
over models with more “classical” methods. The random
walk simulation model enables the observation of the phe-
nomena in scales much smaller than the grid size, as well as
the tracing of the movement of individual particles, thereby
describing the natural processes more accurately. Concen-
trations of particles are easily calculated from the spatial
positions of the particles and, more importantly, when and
where required. Furthermore, errors due to numerical diffu-

sion observed in methods such as finite differences or finite
elements, are avoided and there is considerable reduction in
computational time since the calculating load is restricted to
the domain parts where the majority of the parcels are gath-
ered.

In a random walk model the displacement of an arbitrary
particle, at each time step consists of an advective, determin-
istic component and an independent, stochastic component.
In a simplified one-dimensional transport model the Brow-
nian motion of a particle can be described by a Langevin
equation (Rodean, 1996):

dx

dt
= a (x, t) + b (x, t) ξ (t) (1)

whereα andb are the deterministic and stochastic parts re-
spectively andξ is a random number. The equation of one-
dimensional diffusion of a conservative substance is:

∂C

∂t
= D

∂2C

∂x2
(2)

Solution of Eq. (2) for initial concentrationCo is:

C (x, t) =
Co

√
4πDt

exp

(
−x2

4Dt

)
, x ∈ (−∞, +∞) , t>0 (3)

The initial condition for the equation is
Co=C(x, 0)=M · δ(x), whereM is the mass introduced to
the flow at timet=0 andδ(x) is the Dirac delta function
(Ganoulis, 1994). Posingσ 2

=2Dt the concentration is
described by a Gaussian distribution with a mean value
µ=0 and varianceσ 2. Considering that a particle oscillates
randomly from pointx=0 with amplitude of±1x and a
probability functionp(x), varying uniformly between the
maximal displacements, it follows that:

p(x) = 1/
21x, x ∈ (−1x, +1x)

µ =
∫

+1x

−1x
xp(x) = 0

σ 2
=
∫

+1x

−1x
x2p(x) =

1x2

3

(4)

Thus, by the aforementioned equations it can be deduced that
that the amplitude of the random Brownian particle motion
1x is:

1x = ±
√

6Dt (5)

2 The three-dimensional model

The formulated Lagrangian-based model describes the pro-
cesses of sediment mass advection and dispersion processes
along with aggregation, settling, deposition, erosion and con-
solidation of the cohesive particles. A large number of parti-
cles representing a particular amount of mass are introduced
to the flow domain through a source, or sources. Their trans-
port and fate is traced with time, as they are advected, dis-
persed and alter their properties due to physical phenomena
affecting cohesive sediments in the marine environment.
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The movement of a particle is controlled by the local fluid
velocity, the particle settling velocity and turbulent diffusion.
Applying the aforementioned random walk parameterisation
(Eqs. 1 to 5), the position for the ith particle introduced to the
flow, in each time step, can be calculated by the equation:

dxi

dt
= 〈ui〉 +u′

i,
dyi

dt
= 〈vi〉 +v′

i,
dzi

dt
= 〈wi〉 +ws,i+w′

i (6)

In the above set of equations〈ui〉, 〈vi〉 and〈wi〉 are the ve-
locities of the particle in x, y and z directions respectively,
defined by interpolation of the local ambient velocity com-
ponents andws,i the settling velocity of the ith particle, and
account for the deterministic displacement. The fluctuating
componentsu′

i , v′

i andw′

i in Eq. (6) are the stochastic ve-
locities that describe the Brownian motion of the particles
calculated as:

u′

i = v′

i =

√
6 · KH

dt
· rnd [−1, 1] ,

w′

i =

√
6 · KV

dt
· rnd [−1, 1] (7)

wherernd[−1, 1] is a random number distributed between
−1 and +1 andKH andKV are the horizontal and vertical
diffusion coefficients respectively. The horizontal diffusion
coefficient is determined by Smagorinski formula (Mellor,
1996), in whichc is a parameter ranging, proportionally to
the discretization step, from 0.01 to 0.2:

KH =c·dx·dy

√(
∂ui

∂x

)2

+
1

2

(
∂vi

∂x
+

∂ui

∂y

)2

+

(
∂vi
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)2

(8)

The value for the vertical diffusion coefficient is deduced
from the horizontal, in relation to the proportionality between
vertical and horizontal discretization (O’ Brien, 1985), taking
into account the effects of buoyancy and vertical stratification
of the water column (Rodi, 1993):

KV =
dz2

(dx · dy)
· KH · (1 + 3.33 · Ri)−1.5 (9)

Ri in Eq. (9) is the gradient Richardson number:

Ri = −
g

ρw

·

∂ρw

∂z(
∂U
∂z

)2
(10)

In the above equation,g is the gravity acceleration,U the
horizontal velocity andρw the seawater density. The sim-
plified Lagrangean flocculation model (Winterwerp, 1998,
1999) has been employed for the determination of particle
characteristic diameterDag, assuming small volumetric sed-
iment concentration and fractal dimensionnf equal to the
average value for mud flocks (nf =2):

dDag

dt
=kA · C · G · D2

ag − kB · G3/2
· D2

ag ·
(
Dag−Dp

)
(11)

The first term of the right hand side in Eq. (11) expresses
the aggregate growth, while the second one the diameter re-
duction. In the previously cited equation,G is the energy
dissipation parameter,C the suspended sediment concentra-
tion by mass andDp the diameter of the primary particles.
It is noted that the initial particles bearing the characteristics
as first introduced to the flow are considered as primary. The
dimensional aggregation and flock breakup parameters, de-
notedkA [m2/kg] andkB [s1/2/ m2] respectively, are defined
as:

kA =
0.75ecπed

fsρsDp

, kB =
0.5αeb

Dp

(
µ

Fy

) 1
2

(12)

in which, ec anded are efficiency coefficients for coagula-
tion and diffusion respectively,fs a shape factor (for spher-
ical particlesfs is aroundπ /6), ρs the density of primary
particles,aeb the flock breakup efficiency parameter,µ the
dynamic viscosity andFy the yield strength of the flocks.

The evolution of the density of the flock is calculated in
relation to the porosity of the cohesive aggregate (e), density
of the solid phase (ρo) and that of the seawater:

ρag = (1 − e) · ρo + e · ρw (13)

The sediment settling velocity is then computed using
Stoke’s law for cohesive flocks (Burd and Jackson, 1997):

ws =

(
ρag − ρw

)
g

ρw · 18ν
D2

ag (14)

A modified law-of-the-wall has been employed for the esti-
mation of the shear stress velocity, taking into consideration
potential density gradients at the bed. The velocity gradient
is calculated by the velocity profile and not by the log-law
approximation using damping functionFt (Toorman et al.,
2000):

u∗ = Ftκz
∂U

∂z
, andFt = (1 + 100Ri)−

1
3 (15)

whereU is the horizontal velocity,κ the Von Karman con-
stant andRi the Richardson number. The corresponding ve-
locity gradient at the marginal grid of the bed (km) is calcu-
lated as (Krestenitis, 1987):(

∂U

∂z

)
km

=
3Ukm − 4Ukm−1 + Ukm−2

2dz
(16)

The bottom shear stress (τb), defined by the shear stress ve-
locity u∗ asτb=ρwu2

∗, is compared to the critical values of
the shear stress for particle deposition, resuspension or en-
trainment of eroded particles from the seabed. Thus, a par-
ticle reaching the bed can deposit provided the shear stress
is less than the critical shear stress for sediment deposition
τcr,dep, calculated by the corresponding critical shear ve-
locity with reference to the settling velocity of the particle

www.ocean-sci.net/3/91/2007/ Ocean Sci., 3, 91–104, 2007



94 Y. N. Krestenitis et al.: Modelling cohesive sediment transport in Thermaikos Gulf

Fig. 1. Evolution of the exponential term in Eq. (20) (left axis)
and the critical shear stress for resuspension of deposited sediments
(right axis) with depositional time.

(Pohlmann and Puls, 1994):

ucr,dep∗ =
0.008 forws≤5·10−5m/s

0.008+0.02 · (log(ws)+4.3) for 5·10−5<ws≤5·10−4m/s

0.028 forws>5·10−4m/s

(17)

Determination of the erosion rate is made by a first order
approximation, assuming a uniform, fully consolidated bed
(Mehta, 1993):

ε = εM ·
τb − τcr,er

τcr,er

(18)

εM in Eq. (18) is an erosion rate constant andτcr,er is the
critical shear stress for erosion of the seabed. In general,
values of the critical shear stress threshold and the erosion
rate constant vary significantly with values ofεM from 10−5

to 10−3 kg/m2s andτcr,er from nearly zero for organic rich to
10 Pa for hard consolidated beds. Table A1 presents values
of the aforementioned parameters experimentally determined
for various cases.

The erosion rateε [kg/m2s] is multiplied by the horizontal
spacing, which is the area of the grid cell (m2) and by the
time step (s), thus providing the mass of eroded sediment
(kg). The total mass set to motion due to erosion at each grid
cell is divided by the typical particle mass and the closest
integer of the division gives the number of eroded particles at
each cell. The injection point of these particles is calculated
by an algorithm that distributes the particles evenly to the
grid area. Specifically the grid cell is divided to a smaller
grid the dimensions of which (b1×b2) are the integer of the
square root of the number of the eroded particles (b1) and the
integer of the division of the number of the eroded particles
to b1 (b2). If NP is the number of the eroded particles, then:

b1 = int
(√

NP

)
, b2 = int

(
NP

b1

)
, NP1 = b1 × b2 (19)

Thus, from the total number of the eroded particles,NP1 par-
ticles are evenly distributed at the center points of the new

nested grid and the remainingNP −NP1, if any, are injected
at the center of the grid cell.

Newly deposited sediments undergo self-weight consoli-
dation during the period of abidance on the seabed. At a
simplified approach, consolidation can be considered as a
process during which the excess pore-water pressure is trans-
ferred to the effective pressure. Evolution of the void ratio,
and consequently porosity, with effective pressure follows a
logarithmic law. As the consolidation rate decreases with
time, porosity (e) can be described an exponential decrease
function:

e = emin + (eo − emin) · e−n·t (20)

whereemin is the minimum aggregate porosity, obtained af-
ter full consolidation,eo is the initial value at the time of de-
position,t is time the particle has been under consolidation
andn is a coefficient dependant on the time considered for
full consolidation of the particles. Since porosity and criti-
cal shear stress for resuspension (τcr,res) vary inversely with
each other and supposing that the properties of the seabed
are uniform with depth, it can be assumed that resuspension
threshold values evolve with depositional time, following an
equation of the form:

τcr,res = τcr,dep +
(
τcr,er − τcr,dep

) (
1 − e−n·t

)
(21)

Accepting that the process is completed in a period of 38
days (Winterwerp, 1999) and that critical shear stress val-
ues for deposition and erosion are 0.1 Pa and 0.2 Pa respec-
tively, porosity and critical stress for resuspension as defined
in Eqs. (20) and (21), evolve with consolidation time as pre-
sented in Fig. 1 (forn=1, 5·10−5s−1).

The calculation process in the mathematical code includes
an external time-dependant loop, for which all of the physical
and hydrodynamic parameters are defined for the aquatic do-
main, and an internal particle-dependant loop, executed for
the overall number of particles that are “active” in the con-
sidered temporal step. Specifically in the external step, all
input data values (velocities, temperature and salinity) are
updated and necessary parameters, such as seawater density
and shear stress velocity are being calculated. Following,
the code proceeds to the internal iterative process, in which
3-dimensional transport and alterations to sediment charac-
teristics are being defined by the corresponding values of the
previous time step. Particles that are in suspension, those
that have deposited but not yet fully consolidated and sedi-
ments that are for the first time introduced to the flow from
the rivers or the seabed are defined as “active” for the time
interval. After the completion of the particle loop, the cal-
culated parameters handled by the program as personal in-
formation of each particle, including position, characteristics
and state (in suspension, deposited, fully consolidated), are
treated as past-information in the next temporal loop.
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Fig. 2. Location of the computational domain in Greece (left panel)
and enlargement of the area with notation of the parts comprising
Thermaikos Gulf (right panel). The satellite image is the property
of NASA.

3 Description of the study area

The model has been applied to the Thermaikos Gulf, sit-
uated in the north-western Aegean Sea (Eastern Mediter-
ranean) (Fig. 2). Various socioeconomic activities take place
in the vicinity of the gulf, forcing the marine system with
agricultural, aquacultural and industrial residues. The city
of Thessaloniki is a highly populated area located at the
northern part, posing large amounts of biochemical pollu-
tants and heavy metals and generally remains from urban,
industrial and recreational uses to the environment. The pres-
ence of the intensely cultivated central Macedonia and Thes-
salia plains along the north and west coasts of the gulf entail
that drainage from irrigation and fertilisation of the fields,
and thus for organic-rich waters, find their way through a
complex system of streams to the rivers of the area and fi-
nally to the sea. Two major rivers, Axios and Pinios along
with two minor, Aliakmonas and Loudias affect the aquatic
domain discharging fine sediments and nutrients.

Suspended sediments at the river mouths affecting Ther-
maikos have been characterised as very fine silt and clay
(Karamanos and Polyzonis, 1998). Thus, in accordance to
the grain size classification (McLane, 1995), the diameter of
the primary particles is taken to be 3µm, which is the mean
value between very fine silt (3.9µm) and clay (∼2µm).

The bathymetry of the computational domain (Fig. 3), ex-
tracted from the North Aegean Sea model (Kourafalou et al.,
2002), extends from the shallow parts of the northern Ther-
maikos to the deep southern parts of approximately 600 m
where the gulf abuts the Sporades basin. The numerical grid
applied is curvilinear in the horizontal direction with a step
of dx=dy=1/60◦ and fixed vertical discretization ofdz=2 m.
Relatively small time step was selected for the simulations
(dt=720 s), so as to avoid the possibility of a particle to over-
lap a grid at its movement in the time interval.

Fig. 3. Bathymetry of the computational domain with location of
cross-sectionsα−α andβ−β.

The surface sediment layer of the sea bed in the gulf
of Thermaikos mainly comprises of mixtures with gener-
ally low sand content that can be characterized as fine-
grained in the northern part and clayey in the deeper southern
parts (Karageorgis and Anagnostou, 2001). Table A1 (Ap-
pendix A) contains values for the constants involved in the
determination of eroded cohesive material (Eq. 18) from var-
ious laboratory or in situ experiments. It can be deduced that
the mean value of the critical shear stress for erosion onset is
of the order of 0.2 Pa for absence of a fluff layer and the cor-
responding erosion rate constant around 10−5 kg/m2s. Due
to lack of related research for the study area, these values
have been considered appropriate for application, along with
a critical shear for resuspension of newly deposited matter in
Eq. (20) of the order of 0.1 Pa.

Hydrodynamic and physical parameters of the aquatic en-
vironment are input for the mathematical code. These in-
clude seawater velocities, expressed at the sides of each grid
shell along the horizontal and vertical directions, that are
in fact the deterministic displacement, and temperature and
salinity, expressed at the centre of the grid box, and deter-
mine seawater density by the equation of state. Their values
are obtained by the Princeton Ocean Model (POM), imple-
mented in the Northern Aegean Sea model, hereafter NAS
(Kourafalou et al., 2002).

Each particle represents a particular amount of mass with
the same sedimentary properties (aggregate characteristic di-
ameter, density and porosity) that are being traced with sim-
ulation time as “personal information”, which may however
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Fig. 4. Time-series of particle discharges in the gulf from the four
rivers affecting the area.

be non-uniform between individual particles. The time series
of the particles entering the gulf from the source-rivers for a
typical annual simulation is given in Fig. 4 with the time-
axis’ starting point at 1 January (Karamanos and Polyzonis,
1998). The particle mass was selected to be 4320 kg.

4 Results

Outcomes from three implementations of the model are given
for two yearly and one monthly simulation. They are the
Typical One-Year Simulation (TOYS), the simulation of the
period from 3 September 2001 to 31 August 2002 (S1A2)
and finally the January 2003 experiment (J03) (Kourafalou
and Tsiaras, 2007) concerning a run with half-daily mean
input values (from the 3 to the 31 January at 00:00 and
12:00 UTC) and particle mass set to 1440 kg. Input velocity
and oceanographic parameters fields for TOYS are outputs
of the NAS model with perpetual year forcing (Kourafallou
and Barbopoulos, 2003; Korres and Lascaratos, 2003), de-
scribing seasonal circulation patterns. The hydrodynamic
and physical parameters input data of the S1A2 run were
obtained by implementation of POM with forcing from the
POSEIDON forecasting System (Papadopoulos et al., 2002;
Soukissian et al., 2002) of the Hellenic Centre for Marine
Research.

Particle movement and associated alterations to the char-
acteristic properties, as aforementioned, are being traced
with time, allowing the visualisation of such results. Hor-
izontal trajectories of randomly selected particles from the
S1A2 run are presented in Fig. 5. In general, particles fol-
low stochastic trajectories as they are being passively dis-
persed by the currents. A particle originating from Aliak-
monas River (green line in Fig. 5) introduced to the flow at
24 November 2001 has crossed the gulf to escape to the open
sea from the southern boundary of the domain at 6 December
2001, staying in suspension for 12 days. Correspondingly
a particle discharged from Pinios estuary at 22 September

Fig. 5. Horizontal trajectories of randomly selected particles by the
S1A2 simulation.

2001 (magenta line in Fig. 5) after performing an arbitrary
movement for approximately 24 days, deposited on the shal-
low areas of the eastern coastline. The vertical propagation
in the water column and the associated changes to sedimen-
tary properties for the aforementioned particles are depicted
in Figs. 6 and 7 respectively in which the horizontal propaga-
tion of each particle is given individually for clarity purposes.

Specifically Fig. 6 shows the vertical position of the par-
ticle discharged from Pinios (Fig. 6c) and the correspond-
ing depth of the seabed in relation to the horizontal travelled
distance (Fig. 6a) along with alterations to its characteris-
tics with time (Fig. 6b). The only property that undergoes
changes with time is the particle density, while characteris-
tic diameter and settling velocity are stable throughout the
movement of this particle. This can be attributed mainly to
the shear stress of the flow that inhibited aggregate growth
and forced characteristic diameter and settling rates to remain
at low values. The density initially drops to increase again
after a very short period. This coincides with the original
southerly movement of the particle (Fig. 6c) during which
dense waters enhanced the values of the aggregate density
and forced the particle to an anticyclonic northerly move-
ment (movement following A′ in Fig. 6c) in depths greater
than 20 m (Fig. 6a). The settling rate remains constant, im-
plying that seawater density and particle density fluctuate in
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Fig. 6. Propagation and properties of the particle effluent from Pinios (magenta line in Fig. 5);(a) vertical pathway (blue line) and cor-
responding depth of the seabed (grey line) in relation to horizontal traveled distance;(b) variation of sediment characteristics with time
(blue line indicates particle density, magenta line denotes settling velocity and green line represents sediment characteristic diameter);(c)
horizontal trajectory of particle.

the same manner. By the characteristic points marked in the
figure (A′ to E′) it can be noted that since the settling ve-
locity remains at a constant value throughout the movement,
the vertical movement of the particle is controlled by the lo-
cal vertical fluid velocity, namely by advection and diffusion
processes.

Figure 7 presents the case of the particle from Aliakmonas
that escaped the field to the Sporades basin. The particle
stays in suspension at low depths for the greater part of the
movement (Fig. 7a) despite the fact that coagulation pro-
ceeds rapidly causing related increase to the settling veloc-
ity (Fig. 7b). This is attributed to the local fluid velocity and
stratification of the water column, which is corroborated by
the abrupt deterioration of the density, entailing the presence
of low density waters, which lasted for a period of 6 days
from entrainment (point A′), after which density remained

relatively stable. Specifically the shear of the flow forces the
particle to initially surface (point A′) and shortly after relaxes
and the particle starts to sink (A′ to B′). After 28 November
2001 the local fluid velocities increase and cause the upward
movement of the particle, with enhanced bottom shear stress
that inhibited deposition of the particle at the eastern coast of
the gulf (Fig. 7c). At point C′ the particle rises once more to
remain at low depths for a period of 3 days (point D′) bearing
stabilized particle characteristics (Fig. 7b) with maximal di-
ameter and settling velocity and minimal density after which
slowly moves to higher depths and finally exits the plateau
towards Sporades basin.

Snapshots of the aquatic domain with respect to sediments
can be extracted at every time step revealing variation in
properties, origin and state. Figure 8 presents particles in the
gulf that remain in suspension at the end of TOYS (Fig. 8a),
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Fig. 7. Propagation and properties of the particle effluent from Aliakmonas (green line in Fig. 5);(a) vertical pathway (blue line) and
corresponding depth of the seabed (grey line) in relation to horizontal traveled distance;(b) variation of sediment characteristics with time
(blue line indicates particle density, magenta line denotes settling velocity and green line represents sediment characteristic diameter);(c)
horizontal trajectory of particle.

S1A2 (Fig. 8b) and J03 (Fig. 8c) experiments. The chro-
matic encoding shown in the legend denotes the riverine ori-
gin of each sedimentary parcel. The high suspended masses
from Axios River in Fig. 8a and c are due to the increased
discharges recorded at the end of December and January
(Fig. 4). In order to avoid visual misjudgment regarding the
suspended masses in the gulf by inter-comparison of snap-
shots from the various experiments presented, it is noted that
the particle mass for the J03 run was set to be at the 1/3 of
the equivalent for the TOYS and S1A2 runs. Correspond-
ingly, the low amount of matter in Fig. 8b is due to the lower
summer outflows, since the results presented refer to 30 Au-
gust 2002. The contribution of sedimentary particles in sum-
mer is considered of special interest given that irrigation and
related nutrient effluence, introduced from the drainage sys-
tem, are enhanced during this period. The surface waters of

the outer Thermaikos as simulated by the NAS model with
perpetual year forcing (Kourafalou and Barbopoulos, 2003)
form an anticyclonic eddy in the winter period. This clock-
wise movement of the surface waters at the west coast of the
outer gulf (Kontoyiannis and Papadopoulos, 1998; Anagnos-
tou et al., 1998) is apparent in the movement of the sedi-
mentary particles, forcing particles to follow corresponding
pathways in the outer Thermaikos (Fig. 8a). The inner gulf
and the Thessaloniki bay are dominated by sediments origi-
nating from Axios and secondarily Loudias, due to the con-
tiguity of the outflows to the inlet and to circulation that con-
sists of southerly movement of surface waters combined with
anti-cyclonic gyres in the deeper layers (Poulos et al., 2000).
Generally the areas of the inner gulf and bay present high lev-
els of sediment accumulation because of the proximity to the
northerly river estuaries (Axios, Loudias and Aliakmonas)
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Fig. 8. Spatial variation of suspended sediments in the domain at the end of TOYS(a), S1A2(b) and J03(c) simulations (the horizontal and
vertical axes specify the coordinate system of the domain [m]).

Fig. 9. Spatial variation of deposited sediments in the domain at the end of TOYS(a), S1A2(b) and J03(c) simulations. (the horizontal and
vertical axes specify the coordinate system of the domain [m]).

and their lower depths. This is considered to be highly as-
sociated to the spring bloom of diatoms that appears in the
gulf, usually in the period from February to May (Moustaka,
1997). Regarding the J03 run the northern riverine plume
extends to the greater part of the inner gulf and the particles
from Pinios spread at a significant distance from the west
coast showing a southward tendency. This naturally is in

accordance with the hydrodynamics of the simulation that
reveal a southward buoyancy-driven coastal current that is
strengthened by strong northerly winds during the last 5 days
of the experiment (Kourafalou and Tsiaras, 2007).

Similar spatial variation of deposited sediments is pre-
sented in Fig. 9 enabling estimates for the sedimentation pat-
terns existent in the Thermaikos. Matter from Aliakmonas
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Fig. 10. Concentrations of suspended sediments, in mg/l, in cross-sectionsα−α (a) andβ−β (b) for winter conditions from the S1A2 run.
The vertical axis is the water depth (m) and the horizontal denotes the horizontal position in number of discretization steps (dx=dy=1/60◦).

mainly deposit along the western coast near the outflow,
while Axios is the major sediment supplier for the Thessa-
loniki bay, along with small contribution from Loudias. Sed-
iments from the system of the northernly rivers settle along
the coastlines of inner Thermaikos with small input from Pin-
ios and expand in smaller extent at the shallow parts of the
outer gulf. Particles originating from Pinios settle at the shal-
low areas primarily of the western coastline and secondarily
of the eastern. These observations are in accordance to the
ones made by Lykousis et al. (1981). Pinios sedimentation
pattern as revealed by TOYS (Fig. 9a) forms mainly to the
north of the outflows. Circulation of the surface waters in the
outer Thermaikos (Kourafalou and Barbopoulos, 2003), as
simulated with perpetual year forcing, is anti-cyclonic in the
winter and autumn seasons and turns cyclonic during spring
and summer with southward freshwater flow along the west-
ern coast. Thus, Pinios plume in TOYS was confined by the
anti-cyclonic gyre of the upper layer and stratification of the
water column during the periods of high river-runoff, driv-
ing the particles to the north. Regarding the S1A2 period
there are no published data from the NAS model. However
during 2002 a pilot program to study the circulation in the

Aegean Sea using global positioning surface drifters was un-
derway during which 30 drifters were launched in the north-
ern Aegean (Olson et al., 2007), some of which reached and
entered the Thermaikos gulf. The results have shown the
presence of a coastal jet along the western side of the Aegean
in 2002, which is in accordance with the tendency of parti-
cles from Pinios to move to the south of the gulf in the S1A2
experiment (Fig. 9b). At the end of J03 the bulk deposited
particles from Pinios are located to the south of the estuary
and mainly close to the coast. This movement is attributed to
the aforementioned buoyancy driven current along the west-
ern coast that was enhanced after 25 January 2003 by strong
northern winds (Kourafalou and Tsiaras, 2007) and enabled
eastward spreading of the plume and sedimentation at greater
depths along the west coast.

Concentrations of suspended matter can be calculated by
the spatial distribution of particles and particle mass for ev-
ery required temporal point. Figures 10 and 11 indicatively
present the concentration of suspended sediments at cross-
sectionsα−α andβ−β (see Fig. 3 for the location of the sec-
tions) in winter (8 January 2002) and early summer (22 May
2002) respectively, as estimated by the S1A2 run. Indexes
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Fig. 11. Concentrations of suspended sediments, in mg/l, in cross-sectionsα−α (a) andβ−β (b) for early summer conditions from the
S1A2 run. The vertical axis is the water depth (m) and the horizontal denotes the horizontal position in number of discretization steps
(dx=dy=1/60◦).

a and b in the figures in question denote sectionsα−α and
β−β correspondingly. Maximum concentrations appear in
the vicinity of the river outflows and the surface layers, due
to stratification of the water-column by freshwater inflow.
Surface nepheloid layers (SNL) and bottom nepheloid layers
(BNL) are present in both seasons, as often reported in Ther-
maikos by various researchers (Poulos et al., 2000; Karageor-
gis and Anagnostou, 2001). Considering winter conditions
for the Pinios estuary concentrations of the SNL are in the
order 0.5 to 1 mg/l in the vicinity of the river mouth and for
Axios the corresponding concentration is elevated ranging
from 1 to locally 2 mg/l. In general suspended matter appears
significantly lessened in the summer (Fig. 11) due to de-
creased riverine discharges, with SNL concentrations vary-
ing from 0.5 to 1 mg/l very close to the deltas and mean con-
centration in the order of 0.05 mg/l forα−α and 0.1 mg/l for
β−β cross-sections. Related BNL concentrations in the gulf,
mainly caused by resuspension events (Karageorgis et al.,
2000) are quite low, of the order of 0.2 to 0.5 mg/l, whereas
the mean suspended matter for the greater part of the gulf

is in the order of 0.1 to 0.2 mg/l. The BNL presents local
maxima that reach corresponding concentrations of the win-
ter values.

5 Conclusions

The three-dimensional sediment transport model presented
is based on the particle tracking method describing the pro-
cesses of advection and dispersion of particulate matter and
the processes of flocculation-deflocculation, settling, depo-
sition, resuspension and consolidation of cohesive sediment
flocks. The model has been applied for the case of the Gulf
of Thermaikos with four rivers as input sources of particu-
late matter. Indicative results from three different simula-
tions were presented, including representations of horizontal
and vertical particle trajectories along with the evolution of
the characteristic properties of suspended particles with time.
The model facilitates the visualisation of the spatial variation
of particles with relation to personal information, the most
interesting of which is the origin of the material, allowing
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investigation of patterns of sedimentary plume propagation
existent in the coastal system. Concentrations of particulate
matter can be deduced by particle mass and location and were
presented for two cross-sections located at the estuaries of
the two major rivers discharging in Thermaikos.

In general the movement of sediments in the Gulf, as ex-
pected, appears to be highly influenced by the seasonal cir-
culation of the water masses. The inner gulf and bay are
dominated by sediments originating from the northerly river
system in terms of suspended and deposited masses with the
contribution of Pinios to be at a small extent. The outer
Thermaikos follows a general cyclonic pattern in both sedi-
mentary plume propagation and sedimentation patterns. The
presence of surface and bottom nepheloid layers, often re-
ported occurrences in the gulf are reproduced by the model,
as depicted in the results presented.

The parameterisation of the processes affecting the trans-
port and mixing of sediments in the marine environment ap-
plied in the mathematical model is considered complete, cov-
ering the most important factors controlling the phenomena.
The model is fully functional and able to accept various kinds
of input pollutant sources and to produce different outputs,
according to the property required for investigation. In gen-
eral, location of sedimentary particles accumulation indicates
positions of pollution risk. The observation of such locations
is especially important in periods of elevating temperature
that favours the emergence of eutrophic events, as a com-
bined effect of algal-growth favourable ambient conditions
and elevated trophic levers due to particle enrichment with
nutrients from extensive irrigation of the adjacent land area
during dry seasons. The regions of inner Thermaikos and
Thessaloniki bay are highly affected by these processes ow-
ing to high suspended masses observed and to the relatively
low water depths. This application can be used for the prog-
nosis of seawater quality, as part of a near real-time obser-
vational system, and to formulate decisions for the protec-
tion of the seawater environment from pollution incidents,
after their detection from the monitoring stations in the Ther-
maikos Gulf, as part of a pollution incidents management
system.

Appendix A

Table A1. Values of critical shear stress for erosionτcr,er and ero-
sion rate constantεM from published in-situ and laboratory experi-
ments.

Author Area τcr,er [Pa] εM [kgm−2s−1]

Amos et al. (1992, 1997)
Shallow tidal area
Clay exposed to air 0.11–0.5 1–7.5×10−4

Black (1997)
Shallow tidal area
Benthic diatoms 0.13 1.1×10−4

After H2SO4 treatment 0.03 7.8×10−4

Ganaoui et al. (2004)
Deltaic area
Overlying fluff layer 0.025–0.05 2–6×10−6

D50=15–50µm 0.2–0.22 6–15×10−5

Gust and Morris (1989)
Coastal area
Consolidated 0.21 –
Overlying fluff layer 0.02–0.08 –

Houwing (1999)
Shallow tidal area
4–35% clay with sand 0.1–0.18 5×10−5–3×10−3

Krishnappan and Marsalek (2002)
Artificial lagoon
Laboratory flume 0.09–0.12 –

Maa et al. (1993)
Coastal area
Sandy 0.22 –
Clayey 0.10–0.19 –

Maa et al. (1998)
Inner portal area
Overlying fluff layer 0.05 –
Consolidated 0.1 –

Mitchener and Torfs (1996)
Homogenous bed
Mixtures 0–60% sand 0.1–0.2 2–6×10−4

Scḧunemann and Kuhl (1993)
Shallow tidal area
Clay exposed to air 0.20–0.74 –

Schweimet al. (1998)
D50=15µm
Consolidation time 3–21d 0.1–0.175 1–5×10−5

Tolhurst et al. (2000)

Estuarine clayey area
Laboratory flume 1.65–17.25 –
In situ measurements 0.11–0.58 –
Shallow tidal area
Relaxation time∼1 h 0.15–2.3 –
Relaxation time∼4 h 0.2–2.0 –
Relaxation time∼18 h 0.21–2.0 –
Tidal basin
Laboratory measurements 0.20–1.95 –
Lab. meas., correction 0.20–1.50 –
In situ measurements 0.19–3.3 –
Core measurements 0.19–0.93 –

Watts et al. (2003)
Shallow tidal area
In situ measurements 1.5–6 –

Widdows et al. (1998)
Shallow tidal area
Clay exposed to air 0.70–0.50 6.2×10−5

With overlying water 0.18 1.9×10−3
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