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Abstract. Recent advancements in remote sensing systems,
combined with new machine-learning model-fitting algo-
rithms, have enabled the estimation of seawater carbon diox-
ide partial pressure (pCO2,sw) and pH (pHT,is) in the waters
around the Canary Islands (13–19° W; 27–30° N). Continu-
ous time-series data collected from moored buoys and Vol-
untary Observing Ships (VOS) between 2019 and 2024 were
used to train and validate the models, providing a robust ob-
servational basis for satellite-derived estimates.

Among all models tested, bootstrap aggregation (bagging)
performed best, achieving an RMSE of 2.0 µatm (R2 > 0.99)
for pCO2,sw and 0.002 for pHT,is. Multilinear regression
(MLR), neural networks (NN) and categorical boosting (Cat-
Boost) also showed good predictive skill, with RMSE val-
ues between 5.4 and 10 µatm for pCO2,sw (360–481 µatm)
and 0.004–0.008 for pHT,is (7.97–8.07). Using the most re-
liable model, we identified an increasing trend in pCO2,sw
of 3.51± 0.31 µatmyr−1, exceeding the atmospheric CO2
growth rate (2.3 µatmyr−1), alongside an acidification trend
of −0.003± 0.001 yr−1.

Over the 2019–2024 period, rising atmospheric CO2
and increasing sea surface temperatures (reaching up to
0.2 °C yr−1 during the unprecedented 2023 marine heatwave)
likely contributed to these trends. The Canary Islands region
shifted from a weak CO2 source (0.90 Tg CO2 yr−1) in 2019
to 4.5 Tg CO2 yr−1 in 2024. After 2022, eastern sites that pre-
viously acted as annual CO2 sinks became net sources.

1 Introduction

Anthropogenic emissions of carbon dioxide (CO2) from fos-
sil fuel combustion, cement production and land-use change
(Doney et al., 2009; Le Quéré et al., 2009; Siegenthaler and
Sarmiento, 1993; Zeebe, 2012) since the First Industrial Rev-
olution have sharply increased atmospheric concentrations of
this trace gas. This rise is partly mitigated by uptake from
terrestrial vegetation and the oceans (Friedlingstein et al.,
2025). The North Atlantic Ocean is reported as one of the
major oceanic CO2 sinks in the Northern Hemisphere, ab-
sorbing 2.6± 0.4 Pg CO2 yr−1. This is equivalent to ∼ 25 %
of the oceanic anthropogenic CO2 sink, based on 18 years of
observations (Gruber et al., 2002).

Recent research has placed increasing emphasis on quan-
tifying oceanic CO2 uptake and its impact (e.g., Bange et
al., 2024; Gregor et al., 2024). A common approach involves
using regression models to estimate surface ocean CO2 par-
tial pressure (pCO2,sw) from environmental variables. How-
ever, these models often fall short in capturing the complex-
ity of dynamic regions such as coastal zones and continental
shelves (Sun et al., 2021). These areas exhibit intense phys-
ical and biogeochemical activity, driven by high rates of pri-
mary production, carbon burial, organic matter recycling, and
calcium carbonate deposition (Boehme et al., 1998; Borges
et al., 2005; Gattuso et al., 1998). Despite their importance,
these regions remain poorly constrained in global carbon
budgets and air-sea CO2 flux estimates (Dai et al., 2022).

Pioneering studies by Borges et al. (2005) and Cai et
al. (2006) provided the first global assessments of coastal
CO2 fluxes, emphasizing strong spatial heterogeneity and
functional diversity of coastal ecosystems in the global car-
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bon cycle. More recent studies indicate that coastal regions
act as significant CO2 sinks, with global ingassing estimates
of 0.54–1.47 Pg CO2 yr−1 (Cao et al., 2020; Laruelle et al.,
2014), though updated assessments suggest lower rates (Dai
et al., 2022; Regnier et al., 2022; Resplandy et al., 2024;
Roobaert et al., 2019).

At large latitudinal scale, sea surface temperature (SST)
is a primary driver of surface ocean pCO2,sw, often ex-
pressed as CO2 fugacity (fCO2,sw), which accounts for non-
ideal gas behaviour due to molecular interactions and is typi-
cally slightly lower than pCO2 (Wanninkhof et al., 2022). At
smaller spatial scales (within latitudinal bands), additional
drivers such as upwelling-driven CO2 supply and biological
uptake of dissolved inorganic carbon (CT) become relevant
(e.g., Laruelle et al., 2014).

The pCO2,sw is governed by four interconnected pro-
cesses: thermodynamic forcing, biological activity, physical
mixing, and air-sea CO2 exchange (Fennel et al., 2008; Ikawa
et al., 2013). One or two of these processes typically domi-
nating in any given region (Bai et al., 2015). The thermo-
dynamic component is primarily influenced by the SST and
sea surface salinity (SSS), which determine CO2 solubility
(Weiss, 1970) and carbonic acid dissociation constants (e.g.,
Lueker et al., 2000). Biological effects can be approximated
using satellite-derived chlorophyll a (Chl a) and the diffuse
attenuation coefficient of downwelling irradiance at 490 nm
(Kd490) (Bai et al., 2015; Chen et al., 2019; Lohrenz et al.,
2018). Vertical mixing processes, particularly those enrich-
ing surface waters with CO2 from deeper layers, are com-
monly parameterised using mixed-layer depth (MLD) (Chen
et al., 2019). Additionally, the continuous rise in pCO2,atm,
which drives the air-sea CO2 gradient, must be considered in
long-term assessments.

Satellite remote sensing provides broad spatiotemporal
coverage for surface pCO2,sw estimation (Chen et al., 2019).
In the open settings with relatively variability, satellite-based
estimates achieve RMSE< 17 µatm. Errors exceed 90 µatm
in coastal waters due to increased complexity in physical
and biogeochemical processes (Lohrenz et al., 2018; Sun et
al., 2021). Traditional empirical approaches include multi-
linear (MLR) and nonlinear regression (MNR). Shadwick et
al. (2010) applied MLR to the Scotian Shelf (R2

= 0.81;
SE= 13 µatm). Signorini et al. (2013) reported RMSE of
22.4–36.9 µatm along the U.S. East Coast. Chen et al. (2016)
developed a satellite-based model for the West Florida Shelf
with RMSE< 12 µatm.

Machine learning (ML) approaches, such as neural net-
works (NN), random forests and CatBoost, have improved
prediction skills. Lefèvre and Taylor (2002) reported NN
residuals of 3–11 µatm in the subpolar gyre. Telszewski et
al. (2009) obtained RMSE of 11.6 µatm in the North Atlantic.
Sun et al. (2021) used CatBoost to reach RMSE of 8.25 µatm
(R2
= 0.946). Gregor et al. (2024) applied ML with target

transformation at the global scale (1982–2022), resolving

15 % more CO2 flux (FCO2) variance than traditional meth-
ods.

In coastal studies, Jo et al. (2012) used NN with SST and
Chl a in the South China Sea (RMSE = 6.9 µatm; r = 0.98).
Duke et al. (2024) showed that nearshore outgassing reduces
net flux in the Northeast Pacific. Roobaert et al. (2024) high-
lighted strong seasonal FCO2 variability driven by open-
ocean and intracoastal exchanges. Wu et al. (2024) applied
ML in the Gulf of Mexico, estimating 1.5 TgC yr−1 of CO2
uptake, though long-term trends remained uncertain.

The present study focuses on the coastal Canary Islands
basin (27.0–30° N; 13.0–19° W) (Fig. 1), located in olig-
otrophic waters of the eastern subtropical North Atlantic gyre
(Pelegrí et al., 1996). The region is influenced by the Canary
Current and trade winds, which generate mesoscale eddies.
Despite low surface Chl a concentrations, primary productiv-
ity may increase due to upwelling filaments from NW Africa,
eddies, and dust fertilization (Davenport et al., 1999). Marine
heatwaves (MHWs) are intensifying under climate change
(Frölicher and Laufkötter, 2018; Hobday et al., 2016; Hol-
brook et al., 2019). Varela et al. (2024) reported that 2023
was the warmest year in the Canary Upwelling System since
1982, with widespread record SST, likely affecting CO2 dy-
namics.

Long-term observations reveal a consistent rise in surface
pCO2,sw in this region. Takahashi et al. (2009) estimated an
increase of 1.8± 0.4 µatm yr−1 for the North Atlantic (1972–
2006). Bates et al. (2014) reported 1.92± 0.92 µatm yr−1

(1996–2012) at the ESTOC (European Station for Time-
series in the Ocean Canary Islands) site, with pHT,is
(pH in total scale and at in situ temperature) decreas-
ing by −0.0018± 0.0002 yr−1. More recently, González-
Dávila and Santana-Casiano (2023) reported pCO2,sw in-
creasing by 2.1± 0.1 µatm yr−1 and pHT,21 decreasing by
−0.002± 0.0001 yr−1 in the upper 100 m (1995–2023),
around 20 % faster than rates for 1995–2010.

The aim of this study was to develop and validate a
machine-learning algorithm to estimate pCO2,sw, pHT,is and
FCO2 in the Canary Basin (NE Atlantic) using satellite-
derived environmental variables and a high-resolution time
series of pCO2,sw observations from voluntary observing
ships (VOS) and moored oceanographic buoys.

2 Material and methods

2.1 Data

2.1.1 In situ observations

The observational dataset was compiled using measurements
from Surface Ocean Observation Platforms (SOOPs) in-
stalled on Volunteer Observing Ships (VOS) and moored
oceanographic buoys (Fig. 1; Table S1 in the Supplement).
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Figure 1. Map of the Canary Islands showing the CanOA-VOS tracks (CanOA-VOS-1 Jona Sophie, in red; and CanOA-VOS-2 Benchijigua
Express, in blue), the locations of the moored oceanographic buoys (MORGAN-1, cyan triangle; ULA-2, purple square), the ESTOC site
(green star), and green circles indicate discrete sampling locations. The positions of sites A–F are also indicated, with site E corresponding
to the ULA-2 buoy, site E to the MORGAN-1 buoy, and site G to the ESTOC site. The island acronyms are included (EH: El Hierro, LP:
La Palma, GOM: La Gomera, TF: Tenerife, GC: Gran Canaria, FTV: Fuerteventura, LZ: Lanzarote). The figure was created with Matlab
(version 2023b) software using the geoplot function with a satellite basemap. Basemap: Esri World Imagery (satellite imagery), © Esri and
its data providers.

Two VOS collect continuous underway data along their rou-
tine shipping routes:

1. The CanOA-VOS-1 on board the Jona Sophie (formerly
Renate P.) operated in Spain by Nisa Marítima and
owned by Reederei Stefan Patjens GmbH & Co. KG.
This cargo vessel services the eastern Canary Islands
between Tenerife (TF; 28.4867° N, 16.2284° W), Gran
Canaria (GC; 28.1319° N, 15.4185° W) and Lanzarote
(LZ; 28.9682° N, 13.5294° W) and continues northeast
of Lanzarote in route to Barcelona (Spain). Seawater
is sampled from a depth of 7 m. CanOA-VOS-1 con-
tributes to the Spanish component of Integrated Carbon
Observation System (ES-SOOP-CanOA, ICOS-ERIC;
https://www.icos-cp.eu/, last access: 22 January 2026)
since 2021 and has been classified as an ICOS Class 1
Ocean Station.

2. The CanOA-VOS-2 on board Benchijigua Express,
operated and owned by Fred Olsen Express, cover-
ing the western islands between a second port in
Tenerife (TF; 28.0486° N, 16.7163° W), La Gomera
(GOM; 28.0859° N, 17.1090° W) and La Palma (LP;

28.6751° N, 17.7666° W). The seawater intake is lo-
cated at 5 m depth.

In addition, two coastal oceanographic buoys record surface
data at 1 m depth:

1. MORGAN-1 (Gando, Gran Canaria, 27.9296° N,
15.3646° W; González et al., 2024).

2. ULA-2 (El Hierro, 27.6350° N, 17.9964° W).

All autonomous underway monitoring and data acquisi-
tion follows the quality-control procedures recommended by
Pierrot et al. (2009). A detailed description of equipment can
be found in Curbelo-Hernández et al. (2021, 2022) and in
the Supplement. The number of used observations is listed in
Table S1 in the Supplement.

Discrete samples of total alkalinity (AT) and total in-
organic carbon (CT) were collected on board by a scien-
tist on a transect every three months on the same seawa-
ter intake line used by the underway system, ensuring cov-
erage across seasons and sampling sites (Fig. 1). Analyses
were performed using a VINDTA 3C (Marianda™) follow-
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ing Mintrop et al. (2000). Calibration was carried out us-
ing Certified Reference Material (CRMs; provided by An-
drew Dickson, Scripps Institution of Oceanography), with
an accuracy of± 1.5 µmol kg−1 for AT and± 1.0 µmol kg−1

for CT. Differences between pCO2,sw (converted from
measured xCO2,sw; for method see below) and discrete
pCO2(AT,CT) (CO2sys.V2.1.xls, set of carbonic acid con-
stants from Lueker et al., 2000, n= 66) were 4± 4 µatm for
the GO8050 and 7± 5 µatm for the ProCV system. A correc-
tion factor was applied to account for these offsets.

For regional comparison, seven locations were defined
across the archipelago (Fig. 1): Site A, along the LP-GOM
route (17.5± 0.05° W); Site B, along the GOM-TF route
(16.95± 0.05° W). Site C, at the intersection of multiple
ship routes (14.65± 0.05° W); Site D, near the NW African
coast along the LZ-Iberian Peninsula route (13.2± 0.05° W);
Site E, at the ULA-2 buoy near El Hierro; Site F at the
MORGAN-1 buoy at Gando bay (GC); and Site G at the ES-
TOC site.

2.1.2 Satellite data

Satellite-derived SST, Chl a, Kd490, MLD data were used
to develop the pCO2,sw and pHT,is forecast models, while
wind speed was incorporated for FCO2 calculation. All satel-
lite products were obtained from the Copernicus Marine En-
vironmental Monitoring Service (CMEMS; https://marine.
copernicus.eu/access-data, last access: 27 May 2025). Wind
speed data were retrieved from the Agencia Estatal de Me-
teorología (AEMET; AEMET Open Data, https://opendata.
aemet.es/centrodedescargas/productosAEMET, last access:
8 October 2025). Wind measurements were taken La Palma
Airport (33 m), La Gomera Airport (15 m), Fuerteventura
Airport (25 m), Lanzarote Airport (14 m), Gran Canaria Air-
port (24 m), and El Hierro Airport (32 m), corresponding to
sites A–F of the study area. Wind speeds were standardised to
10 m height following Allen et al. (1998). All variables were
processed and matched in time and space to the observational
records, and daily means were used for model calibration and
validation. The full daily dataset was then applied to generate
the surface marine carbonate system variables in the Canary
Islands.

Satellite-derived products carry inherent uncertainties
associated with remote sensing retrievals. For the used
CMEMS products, mean uncertainties were 0.62 °C for SST
and 0.485 mg m−3 for Chl a. Their contribution to prediction
error was assessed during model validation through compar-
ison with coincident in situ measurements.

2.2 Variable determination and computational
methods

The raw data were processed using MATLABr R2019b and
Python 3.13.6 (2023). For the VOS dataset, xCO2,sw mea-
surement from the GO8050 system were calibrated using a

four-standard procedure, after filtering data points collected
near ports where seawater CO2 concentrations may be in-
fluenced by local activities. Quality control included apply-
ing minimum flow thresholds of 2.5 L min−1 for the seawater
line and 50 mL min−1 for the LICOR© gas flow.

The partial pressure of CO2 in seawater (pCO2,eq) was
calculated from corrected dry xCO2 (Dickson et al., 2007).
Values from both VOS routes were subsequently adjusted
to intake temperature to account for differences between the
thermosalinograph/equilibrator temperature and SST (Taka-
hashi et al., 1993). Fugacity (fCO2,sw) was then computed
from pCO2,sw for both VOS and buoy datasets (Dickson
et al., 2007). Discrete samples analysed for AT using the
VINDTA 3C were used to determine an AT-SSS relation-
ship for the study region (n= 66), consistent with that pre-
viously reported for the ESTOC site (González Dávila et
al., 2010). The normalised AT (NAT = AT/SSS× 35) was
2290± 3 µmol kg−1, significant at the 99 % confidence level
(p-value< 0.01; r2

= 0.96), with no evidence of seasonal
variability, in agreement with long-term ESTOC observation
(González Dávila et al., 2010). This relationship was applied
to compute total scale pHT,is(AT(SSS), fCO2,sw) for the Ca-
nary Region (González Dávila et al., 2010). All process vari-
ables were averaged to a daily resolution.

Daily mean atmospheric xCO2,atm was obtained from on-
board atmospheric measurements and compared with records
from the World Meteorological Organisation (WMO) Izaña
Atmospheric Observatory (AEMET, 2024) in Tenerife
(28°18′ N, 16°29′W), due to potential contamination by ship
operations. Winter maxima were similar between datasets
(±1.5 µatm), while late summer minima at Izaña were on av-
erage 3 µatm higher than values measured at the ship’s 10 m
inlet. As in situ coverage was limited and the Izaña record
provided a longer continuous series, the Izaña xCO2,atm
dataset was adopted for this study. Atmospheric xCO2,atm
was converted to pCO2,atm (Dickson et al., 2007).

The flux of CO2, FCO2, was determined using Eq. (1):

FCO2 = 0.24k S1pCO2 (1)

where 0.24 is the conversion factor to express the flux in
mmol m−2 d−1, S is the solubility of CO2 in seawater (Weiss,
1970),1pCO2 is pCO2,sw−pCO2,atm and k is the gas trans-
fer rate determined using the Wanninkhof (2014) parameter-
ization (Eq. 2):

kWan = 0.251u2 (Sc/650)−0.5 (2)

where u is the wind speed (m s−1) and Sc is the Schmidt
number.

Equation (1) was applied to the daily modelled data.
Daily fluxes were averaged to provide monthly fluxes,
which are reported as daily average value for each month
(mmol m−2 d−1).

Each physicochemical variable y (including pCO2,atm and
fCO2,atm) was fitted to a harmonic function (Eq. 3, where t
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is the year fraction for each observation). Seasonal anomalies
were obtained by adding the residuals between observed val-
ues and those predicted by Eq. (3) to the constant term a in
Eq. (3), representing the mean value of y for the study period.
Interannual trends were then estimated using Eq. (4) applied
to the deseasonalised time series. Although the length of the
dataset is relatively short (5–6 years), the use of detrended
seasonal anomalies minimizes end-effects and improves the
robustness of the trend estimation.

y = a+ c · sin(2πt)+ d · cos(2πt)+ e · sin(4πt)

+ cos(4πt) (3)

y = a+ b · (t − 2019)+ c · sin(2πt)+ d · cos(2πt)

+ e · sin(4πt)+ cos(4πt) (4)

2.3 Model fitting and statistical treatment

Statistical analyses were conducted using R (R Core Team,
2019). Machine-learning methods were used to fit the differ-
ent models. The dataset was initially partitioned into train-
ing (80 %) and validation (20 %) subsets, with allocation per-
formed randomly at the cruise level to avoid temporal bias.
This random split was repeated for each model run to ensure
representative sampling. Once model performance had been
evaluated, the complete dataset was used to provide the opti-
mal model parameters.

The simplest fitted model was a multiple linear regression
(MLR), defined analytically in Eq. (5):

pCO2,sw = p0+ α̂ pCO2,atm(µatm)+ β̂ SST(°C)

+ γ̂ Chl
(

mgm−3
)
+ δ̂ Kd,490

(
m−1

)
+ ε̂MLD(m)+ ϑ (5)

where α̂,β̂, γ̂ , δ̂ and ε̂ are the estimated coefficients for each
predictor and ϑ the residuals. The same equation (without
the α̂ term) was used to model pHT,is dependence.

Three machine-learning techniques were used: neural net-
work (NN; Wang, 2003), categorical boosting (CatBoost;
Dorogush et al., 2018; Prokhorenkova et al., 2018; Qian
et al., 2023) and bootstrap aggregation (bagging; Breiman,
1996).

These approaches are widely employed in environmental
modelling and provide complementary approaches for im-
proving predictive accuracy by reducing variance and cap-
turing nonlinear relationships.

CatBoost is a gradient-boosting algorithm that constructs
decision trees sequentially and efficiently handles categorical
features, minimising information loss. Its ordered-boosting
framework reduces prediction shift associated with gradient
bias (Dorogush et al., 2018; Prokhorenkova et al., 2018; Qian
et al., 2023; Sun et al., 2021).

Neural Networks (NN) are flexible nonlinear models in-
spired by the human brain, capable of capturing complex re-
lationships between inputs and outputs (Wang, 2003). These

methods are composed of interconnected neurons arranged
in layers: an input layer representing predictors, one or more
hidden layers, and an output layer producing the final predic-
tion.

Bootstrap aggregation (bagging) is an ensemble technique
that improves predictive robustness by generating multiple
versions of a model trained on different bootstrap samples of
the dataset (Breiman, 1996). Predictions are then averaged to
reduce variance and prevent overfitting, making the overall
model more stable and reliable.

Model performance was assessed using the validation
dataset through the coefficient of determination (R2), root
mean square error (RMSE; Eq. 6), mean absolute error
(MAE; Eq. 7), and daily sum of squared errors (SSE; Eq. 8).

RMSE=

√√√√∑N
i=1

(
pCO2,i − p̂CO2,i

)2

N
(6)

MAE=
∑N

i=1

∣∣∣pCO2,I − p̂CO2,i

∣∣∣/d (7)

SSE=
∑N

i=1

(
pCO2,I − p̂CO2,i

)2
/d (8)

where pCO2,i and p̂CO2,i are the observed and modelled
pCO2, N is the number of observations and d is the number
of days in the dataset.

The Akaike information criterion corrected for a finite
dataset (AICc) was determined using Eq. (9). It evaluates the
balance between goodness-of-fit and model complexity (i.e.,
number of predictors). Among competing models, the one
with the lowest AICc is considered the most appropriate.

AICc = 2k− 2ln(L)+
2k2
+ 2k

n− k− 1
(9)

where k is the number of parameters involved in the model,
ln(L) is the log-likelihood for the predicted model and n is
the number of observations.

To estimate the coefficients of each seasonal model and de-
termine confidence intervals, two assumptions were tested:
(1) normality of residuals, assessed using the two-Welch
Shapiro-Wilk test (α = 0.05) and quantile-quantile plots, and
(2) homogeneity of residual variance (homoscedasticity), as-
sessed graphically. When the normality assumption was not
met, bootstrapping was used to determine confidence inter-
vals. Model comparisons were performed using analysis of
covariance (ANCOVA) and analysis of variance (ANOVA)
to detect significant differences at α = 0.05.

3 Results

The observational data enabled the construction of a database
for modelling the behaviour of pCO2,sw and pHT,is in the
Canary Basin. To characterise the measured and satellite-
derived parameters used in this study, Table 1 summarises
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their seasonal mean and standard deviations for each ob-
servation system. In situ SST (Fig. 2) showed a clear sea-
sonal cycle, with maximum temperatures in summer (July–
September) and minima in winter (January–March). The
highest SST occurred in the westernmost sector of the
archipelago (between La Palma and Tenerife), averaging
∼ 1 °C warmer than the eastern sector (between Gran Canaria
and Lanzarote). A similar seasonal and longitudinal pattern
was observed for pCO2,sw and pHT,is (Table 1). Seasonal and
annual SST means derived from in situ and satellite observa-
tions differed by ∼ 0.15 °C on average.

3.1 Variability of the SST data

Figure 2 shows the monthly mean SST derived from ob-
servations and satellite products at sites A–F. A clear sea-
sonal cycle is evident across sites, with maximum SST
in September (24.20± 0.76 °C in the western sites at A–
B and 23.70± 0.68 °C in the eastern sites C–D) and min-
ima in March (19.47± 0.24 and 18.97± 0.31 °C, respec-
tively). Anomalous high SST were recorded during summer
2023, exceeding 25 °C at sites A–C and 24 °C at site D. The
seasonal amplitude was 4.2± 0.4 °C along CanOA-VOS-
1 and 4.5± 0.5 °C along the CanOA-VOS-2. Although no
significant differences were found between sections within
the same region (A vs B and C vs D), the mean SST at
site D (20.59± 0.09 °C) was slightly lower than at site C
(21.00± 0.09 °C). The covariance analysis between obser-
vational and satellite SST shows no significant differences
between datasets (p < 0.05). The mean daily residuals were
0.16 °C (SE= 0.12 °C) in the western region and 0.12 °C (SE
= 0.10 °C) in the eastern region.

A seasonal SST cycle was evident at site E, despite the
scarcity and temporal gaps of the ULA-2 buoy (Fig. 2E). Us-
ing the year with the most continuous data (2021), the sea-
sonal amplitude was 5.10± 0.18 °C, with maximum SST in
September (24.70± 0.26 °C) and minimum values in March
(19.60± 0.40 °C). A comparable pattern was observed at
site F from the MORGAN-1 buoy record (Fig. 2F), with
SST peaking in September (23.71± 0.47 °C) and reaching its
lowest in March (19.46± 0.52 °C), corresponding to a sea-
sonal amplitude of 4.22± 0.51 °C.

Longitudinal variability in SST from both CanOA-VOS
and satellite records is shown in Figs. 2 and S1 in the
Supplement. In the western region, observed SST ranged
from 20.59± 0.09 °C in winter to 24.04± 0.13 °C in sum-
mer, with an annual mean of 22.45± 0.11 °C. Seasonal av-
erages matched those calculated from the satellite-derived
data (0.1–0.2 °C), with the largest differences occurring in
summer (0.26 °C). Although SST in the eastern region were
lower throughout the year (annual mean 21.02± 0.27 °C), in-
fluenced by the Northwest African upwelling, similar sea-
sonal variations were found (from 19.19± 0.24 °C in win-
ter to 22.82± 0.25 °C in summer). Differences between in
situ and satellite SST were smaller than those in the western

region (0.05–0.2 °C). The west-east SST decrease persisted
consistently along the longitudinally monitored span of the
Canary archipelago, except for a slight warming associated
with the island wake effect south of Tenerife captured along
the CanOA-VOS-2 route (Fig. S1).

3.2 Predictive models of pCO2,sw

Daily averaged pCO2,sw and SST from all observational
platforms, together with coincident satellite-derived chloro-
phyll a and MLD data at the same location, were used to train
the four predictive models.

3.2.1 Multiple linear regression (MLR)

The first set of models used traditional multiple linear re-
gression (MLR) to provide an initial, simple approxima-
tion of pCO2,sw prediction. Five model configurations were
tested, using different combinations of the available predic-
tors: pCO2,atm, SST, Chl a, Kd490 and MLD, following the
analytical form in Eq. (5). Considering the strong correlation
between Chl a and Kd490 (R2

= 0.96), Kd490 was deemed
non-significant and excluded from further analysis. The coef-
ficients obtained for each configuration are listed in Table 2.

Model selection based on the Akaike Information Cri-
terion (AICc < 2) together with performance statistics (Ta-
ble 3) suggest that the best-performing MLR included the
atmospheric CO2, thermal, physical and biological drivers
(pCO2,atm+ SST + MLD + Chl a). However, a two-
variable model (SST and pCO2,atm) produced comparable
accuracy. Figure S2 shows measured versus predicted values
for the training and validation datasets using four variables,
pCO2,atm+ SST+MLD+ Chl a. Although many measured
and predicted pCO2,sw showed small differences, consider-
able scatter was observed, reflected in the performance met-
rics (Table 3). Validation results (Table S2) were consistent
with training performance.

3.2.2 Machine learning techniques

Table 3 compares the performance of the machine-learning
approaches trained using observational pCO2,sw data. All
models were developed using the same dataset and input
variables.

Neural Network (NN)

The first machine-learning method applied to predict
pCO2,sw was a neural network (NN). The performance met-
rics are presented in Table 3.

No analytical expression is provided, as the learned rela-
tionships are embedded within the synoptic weights of its
neurons. Statistics indicate similar performances between
the three-variable models (SST + MLD + Chl a) and
the four-variable model, including pCO2,atm, where two-
variable models performed only slightly less effectively.
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Table 1. Seasonal mean and standard deviations of observational data (pCO2,sw and SST) and satellite-derived data (SST, Chl a, Kd490
and MLD) used in this study. The locations listed in the first column correspond to the two ship routes (CanOA-VOS-1 Jona Sophie and
CanOA-VOS-2 Benchijigua Express) and the two moored buoys (MORGAN-1 and ULA-2).

SST SST Satellite Chl a Satellite Kd490 Satellite MLD Satellite pCO2,sw
(°C) (°C) (mg m−3) (m−1) (m) (µatm)

CanOA-VOS-2
(Bechinjigua
Express
LP-TNF)

Winter 20.05± 0.34 20.03± 0.25 0.172± 0.041 0.041± 0.003 43.6± 17.6 402.0± 6.6
Spring 21.39± 0.47 21.08± 0.37 0.115± 0.0217 0.035± 0.002 18.4± 6.5 419.8± 8.3
Summer 23.40± 0.51 23.31± 0.56 0.12± 0.0214 0.036± 0.003 18.5± 6.3 440.3± 8.1
Autumn 22.80± 0.38 22.61± 0.33 0.115± 0.0124 0.037± 0.002 39.4± 11.4 428.8± 7.3
Annual 21.91± 0.43 21.76± 0.38 0.131± 0.024 0.037± 0.003 29.9± 10.4 422.7± 7.6

CanOA-VOS-1
(Jona Sophie;
GC-LNZ)

Winter 19.39± 0.53 19.41± 0.36 0.172± 0.029 0.034± 0.002 52.4± 13.7 395.1± 5.9
Spring 20.64± 0.46 20.44± 0.35 0.146± 0.024 0.034± 0.002 40.8± 12.0 408.2± 8.6
Summer 22.87± 0.43 22.73± 0.39 0.122± 0.018 0.036± 0.002 41.3± 8.9 432.8± 6.8
Autumn 22.09± 0.45 21.98± 0.37 0.106± 0.022 0.034± 0.002 32.2± 5.6 415.3± 5.8
Annual 21.25± 0.47 21.32± 0.37 0.136± 0.023 0.034± 0.002 41.7± 10.0 412.8± 4.3

MORGAN-1
(GC)

Winter 21.07± 0.30 20.99± 0.23 0.193± 0.045 0.043± 0.004 57.0± 11.3 393.4± 1.9
Spring 21.49± 0.31 20.66± 0.25 0.129± 0.021 0.039± 0.004 25.3± 9.4 405.1± 2.0
Summer 21.50± 0.34 22.97± 0.24 0.11± 0.016 0.04± 0.004 23.1± 5.9 431.7± 2.8
Autumn 21.53± 0.66 22.48± 0.25 0.126± 0.019 0.042± 0.004 41.2± 10.3 423.4± 5.9
Annual 21.39± 0.40 21.78± 0.24 0.139± 0.025 0.041± 0.004 36.7± 9.2 413.9± 3.2

ULA-2
(EH)

Winter 19.76± 0.38 19.73± 0.39 0.193± 0.033 0.042± 0.003 47.7± 19.0 385.6± 3.3
Spring 20.52± 0.56 20.48± 0.52 0.155± 0.037 0.037± 0.003 24.5± 7.9 397.9± 5.0
Summer 21.92± 0.38 21.83± 0.33 0.159± 0.039 0.041± 0.006 25.2± 8.0 429.3± 4.6
Autumn 23.29± 0.33 23.20± 0.30 0.171± 0.035 0.042± 0.004 24.0± 6.9 409.4± 5.9
Annual 21.65± 0.36 21.59± 0.34 0.174± 0.035 0.041± 0.004 32.3± 11.3 405.6± 4.7

Table 2. Regression coefficients obtained from the multiple linear regression models for pCO2,sw (top) and pHT,is (bottom), applied to the
different predictor combinations according to Eq. (5), using the full dataset.

Variables po (µatm) α̂ β̂ (µatm ° C−1) δ̂ (µatm mg−1 m3) ε̂ (µatm m−1)

SST 198.5 – 10.40 – –
SST + Chl a 257.0 – 9.54 −10.89 –
SST +MLD 262.3 – 7.72 – −0.17
SST + Chl a +MLD 313.3 – 7.99 −0.31 −0.15
pCO2,atm + SST + Chl a +MLD 141.3 0.19 9.08 −1.79 −0.003

Variables pHo α̂ β̂ (°C−1) δ̂ (mg−1 m3) ε̂ (m−1)

SST 8.225 – −0.009 – –
SST + Chl a 8.201 – −0.008 0.069 –
SST +MLD 8.193 – −0.008 – 0.0002
SST + Chl a +MLD 8.185 – −0.007 0.001 0.008

Scatter plots of measured versus predicted pCO2,sw for both
training and validation datasets using the best NN model are
shown in Fig. S2. Overall agreement was good, although pre-
diction dispersion increased at higher pCO2,sw, suggesting
slightly poorer fitness in this range. For the training dataset,
RMSE, MAE, SSE, and R2 were 7.1 µatm, 5.0 µatm d−1,
16.2 µatm2 d−1, and 0.891, respectively.

Categorical boosting (CatBoost) regression

The second machine-learning method applied to predict the
pCO2,sw in the Canary Archipelago was CatBoost. A total
of 500 iterations were used to generate the prediction model.
The performance statistics for all model configurations are
summarised in Table 3. The pCO2,atm+ SST + Chl a +
MLD configuration yielded the best results, achieving the
lowest RMSE, MAE and SSE, and the highest R2. The per-
formance of this model (Fig. S2), applied to both the training
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Figure 2. Monthly mean in situ SST (black) obtained from ship-based observations and moored buoys, and satellite-based SST (red) at
locations (A)–(F). Harmonic fittings (Eq. 4) of the data are shown together with the linear fitting for the seasonally detrended data. Error bars
represent the standard deviation of the measurements.

and validation datasets, yielded an R2 greater than 0.95 with
an RSME of only 3.6 µatm. The training dataset provided the
most accurate results, with an MAE of 2.4 µatm d−1 and an
SSE of 3.0 µatm2 d−1. The validation statistics were consis-
tent with those obtained during the training phase (Table S2).

Bootstrap aggregating (bagging) regression

A bagging algorithm was applied to predict pCO2,sw us-
ing 200 bootstrap replicates. The computed statistics for the

training set, combining the different parameters controlling
the pCO2,sw are summarised in Table 3.

Based on the statistical analysis, the models with the best
predictive capacity were those that considered three or four
parameters, as they yielded lower RMSE, MAE, and SSE.
As observed in the previously fitted models, those including
SST + MLD or SST +pCO2,atm also performed well (Ta-
ble 3). The bagging algorithm provided the highest R2, low-
est RMSE, MAE and SSE (0.991, 2.0, 1.6, 0.8, respectively)
for any combination of variables, even when only SST was
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Table 3. Performance metrics for the comparison between predicted and measured pCO2,sw (µatm) for each model using the training dataset.

Algorithm Variables R2 RMSE (µatm) MAE (µatm d−1) SSE (µatm d−1)

MLR SST 0.651 11.6 9.1 23.5
SST + Chl a 0.689 11.1 8.5 21.6
SST +MLD 0.710 10.6 8.2 19.9
SST + Chl a +MLD 0.738 10.6 8.0 18.5
SST +pCO2,atm 0.865 6.7 5.0 15.3
pCO2,atm + SST + Chl a +MLD 0.904 4.9 3.5 10.3

Neural Network (NN) SST 0.740 10.4 7.7 25.6
SST + Chl a 0.778 9.4 6.7 19.5
SST +MLD 0.842 8.1 5.7 18.2
SST + Chl a +MLD 0.881 7.2 5.0 17.2
SST + pCO2,atm 0.877 7.8 5.1 17.8
pCO2,atm+SST+Chl a +MLD 0.896 7.1 5.0 16.2

CatBoost SST 0.737 10.1 7.4 16.2
SST + Chl a 0.848 7.7 5.5 9.3
SST +MLD 0.877 6.9 5.0 7.5
SST + Chl a +MLD 0.935 5.4 3.9 4.7
SST +pCO2,atm 0.933 4.2 4.0 5.4
pCO2,atm+ SST + Chl a +MLD 0.956 3.6 2.4 3.0

Bagging SST 0.946 4.7 3.4 3.5
SST + Chl a 0.972 3.4 2.3 1.9
SST +MLD 0.975 3.0 2.1 1.5
SST + Chl a +MLD 0.991 2.5 1.6 0.9
SST + pCO2,atm 0.982 2.6 2.085 1.1
pCO2,atm+ SST + Chl a +MLD 0.991 2.0 1.6 0.8

considered. The plot of measured versus predicted pCO2,sw
for both the training and validation sets using a four-variable
model is shown in Fig. S2. This model presented low RMSE,
MAE, and SSE (2.0 µatm, 1.6 µatm d−1, and 0.8 µatm2 d−1,
respectively). In this scenario, the application of the model
to the validation set showed greater data dispersion than
the training set (Table S2), due to the smaller sample size
(Fig. S2).

3.3 Predictive models for pHT,is

pHT,is predictions were generated from the computed
pHT(AT(SSS), fCO2), using observations and satellite data
(interpolated to the time and location of each observation)
as input variables. In this case, pCO2,atm was excluded
from the predictive variables to avoid redundancy. Table 4
shows a comparison of the models employed in the machine-
learning-based approaches. It is important to note that all
models were developed using the same dataset and input
variable.

3.3.1 Multiple linear regression (MLR)

The coefficients obtained for each of the four combination
models are shown in Table 2. The statistical performance
of these models is presented in Table 4. As observed for

the pCO2,sw fitting, the model including SST + Chl a +
MLD provided the best performance for pHT,is, with an R2

of 0.745 and an RMSE of 0.006. The plot of measured versus
predicted pHT,is for model training (Fig. S3) shows a distri-
bution similar to that of the validation dataset. This indicates
that the number of data points used for validation was not a
limiting factor for the model.

3.3.2 Machine learning techniques

All three techniques yielded higher correlation coefficients
than those obtained using MLR (Table 4). The performance
of the NN was lower than that of CatBoost, while bagging
showed the best performance across all models. The model
including three variables (SST + Chl a + MLD) was the
most accurate for predicting pHT,is in all cases (Table 4),
with an R2 of up to 0.99 and an RMSE as low as 0.002 when
applying the bagging technique. Every combination of satel-
lite data, even when considering only the SST, resulted in an
R2 greater than 0.95 with bagging. For CatBoost, the three-
variable model was required to achieve an R2 above 0.93.

We compared the accuracy indicators for the training and
validation datasets for the three-variable models (Tables 4
and S3, Fig. S3) within the pHT,is range of this study (7.97–
8.07). When applying machine learning techniques, bagging
consistently provided the best fit, ad increasing the data vol-
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Table 4. Performance metrics for the comparison between predicted and measured pHT,is for each model using the training dataset.

Algorithm Variables R2 RMSE (µatm) MAE (µatm d−1) SSE (µatm d−1)

MLR SST 0.678 0.009 0.008 0.056
SST + Chl a 0.713 0.009 0.007 0.040
SST +MLD 0.733 0.009 0.007 0.028
SST + Chl a +MLD 0.745 0.006 0.005 0.013

Neural Network (NN) SST 0.751 0.009 0.007 0.050
SST + Chl a 0.805 0.009 0.006 0.027
SST +MLD 0.819 0.008 0.005 0.013
SST + Chl a +MLD 0.853 0.008 0.009 0.009

CatBoost SST 0.756 0.008 0.008 0.041
SST + Chl a 0.866 0.006 0.004 0.006
SST +MLD 0.898 0.005 0.004 0.009
SST + Chl a +MLD 0.934 0.004 0.003 0.002

Bagging SST 0.954 0.004 0.002 0.015
SST + Chl a 0.982 0.003 0.002 0.002
SST +MLD 0.983 0.002 0.002 0.005
SST + Chl a +MLD 0.991 0.002 0.001 0.001

ume improved determination. RMSE, MAE, and SSE for
both training and validation datasets remained below 0.01
in pH, reaching 0.002 and 0.003, respectively, when using
bagging.

3.4 Validation of the results

The best prediction models for each class, based on the eval-
uated statistical parameters, were used to reconstruct the
monthly mean pCO2,sw and pHT,is at sites A–D, and the re-
sults were compared. The temporal variability of observed
and predicted values is presented in Fig. 3. All models suc-
cessfully reproduced the seasonal cycle: pCO2,sw reached its
maximum in March and its minimum in August-September,
while pHT,is exhibited the opposite pattern. The predictions
showed minor but statistically non-significant differences rel-
ative to the observations (p > 0.05). No significant differ-
ences were detected among the linear, NN, CatBoost mod-
els (p < 0.05). When comparing bagging predictions with
observational data, no significant differences were found,
confirming that boostrap aggregation yielded the most accu-
rate representation of the measured values. Overall, observed
pCO2,sw were slightly higher than predicted ones, with mean
differences of 1.7± 1.8 µatm for pCO2,sw and 0.002± 0.001
for pHT,is.

Statistical differences (p > 0.05) were detected when
comparing the western and eastern sectors by ANCOVA.
At sites A and B (Fig. 3), pCO2,sw (and pHT,is) var-
ied seasonally between 404± 18 µatm (8.045± 0.012) and
449± 19 µatm (8.004± 0.010), with seasonal amplitudes of
47± 8 µatm (0.049± 0.005). At sites C and D (Fig. 3), sea-
sonal values ranged between 390± 15 µatm (8.069± 0.008)

and 440± 16 µatm (8.028± 0.012), with amplitudes of
52± 7 µatm (0.038± 0.006).

4 Discussion

Three oceanographic variables (SST, Chl a and MLD)
with high-resolution satellite coverage for oceanic surface
seawater, together with atmospheric CO2 partial pressure,
were used to model pCO2,sw and pHT,is in the Canary
Archipelago. Salinity was excluded from the fitted mod-
els due to its negligible influence on pCO2,sw variability
(Sarmiento et al., 2007; Shadwick et al., 2010). Furthermore,
satellite-derived salinity has been shown to differ consider-
ably from in situ measurements, exhibiting elevated variabil-
ity and uncertainty (Yu, 2020). Although Kd490 was included
in the initial model tests, its lack of statistical significance is
likely due to its strong correlation with Chl a (R2

= 0.96),
making it redundant and therefore not retained as a predictor.

4.1 The Canary Region during 2019–2024:
Observational and modelling data

In the Canary Islands, the highest temperatures (Fig. 2) were
recorded in late summer (September), driven by enhanced
stratification of the water column and increased solar ra-
diation. The lowest temperatures were measured in winter
(February–March) due to convective mixing induced by sur-
face cooling of the water column. This seasonal behaviour is
consistent with the hydrographic conditions described at the
ESTOC site, where surface waters exhibit a seasonal tem-
perature amplitude of 4–6 °C, with minimum and maximum
temperatures of 18 and 24 °C, respectively, recorded before
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Figure 3. Monthly means of observational-based and model-predicted pCO2,sw(pCO2,atm, SST, Chl a, MLD) and pHT(SST, Chl a, MLD)
at the locations A–D (Fig. 1). MLR (red) means multilinear regression, NN (green) means neural network, CBo (blue) means CatBoost and
Bag (purple) means bagging. Linear fittings for the seasonally detrended data are plotted.
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2023 (González-Dávila and Santana-Casiano, 2023). This
range is also comparable to the SST observed in the east-
ernmost region covered by the CanOA VOS-1 during 2019–
2020 (Curbelo-Hernández et al., 2021).

The statistically significant differences (p < 0.05) ob-
served between the western and eastern sections are related
to their distance from the African continent. The eastern-
most part of the archipelago is more exposed to upwelling
filaments (Davenport et al., 1999), whereas the westernmost
part is partially sheltered by the islands themselves. This spa-
tial pattern, clearly visible in Figs. 2 and S1 as a progressive
decrease in SST towards the African coast, is well captured
by satellite observations. Their validation showed no signifi-
cant differences (p < 0.05), even near the islands. Therefore,
satellite data were deemed suitable for model fitting and sub-
sequent parameter estimation.

MORGAN-1 data (site F) show anomalously high SST
during the summer of 2023, consistent with the occurrence
of extreme SST conditions in the Canary Upwelling Sys-
tem in 2023 (Varela et al., 2024). Satellite data at the coastal
buoy locations also showed anomalously high summer val-
ues, although these were on average 0.3 °C lower than those
measured by the buoy sensors. In situ temperatures from
June to October 2023 were more than 1 °C higher than those
recorded in previous years. These elevated temperatures were
not observed in 2024, indicating that 2023 should be consid-
ered an anomalous year in this region.

It is noteworthy that SST during February–March 2024 re-
mained high. Winter SST (JFM) increased in 2024 and was,
on average, 1 °C warmer than in the previous years (aver-
age for 2020–2022 was 19.09± 0.20 °C; average for 2023–
2024 was 20.01± 0.25 °C). These anomalies strongly influ-
ence the trends observed in both satellite and observational
datasets.

Harmonic fitting of temperature (Eq. 4) for the period
March 2020 to March 2023, despite the limitation of only
three years of data, indicates a warming trend of 0.03 °C yr−1

in the seasonally detrended Gando Bay dataset (González et
al., 2024). This rate is comparable to warming rates trends
reported at the ESTOC site for the period October 1995 to
March 2023 (González-Dávila and Santana-Casiano, 2023)
and for the full Canary Upwelling System over 1982–2023
(Varela et al., 2024).

When considering the full five-year seasonally detrended
in situ dataset from Gando Bay (March 2020 to October
2024), the warming rate increases to 0.19± 0.06 °C yr−1

(0.14± 0.06 °C yr−1 when derived from monthly mean satel-
lite data). This SST increase was also observed at sites A–D
(Fig. 2), where warming rates over the six years from Febru-
ary 2019 to October 2024 ranged from 0.29± 0.03 °C yr−1

at sites A–C to 0.21 °C r−1 at site D. The mean temper-
ature at the western station (ULA-2) was ∼ 1 °C higher
(22.12± 0.16 °C) than at the eastern station F (MORGAN-
1; 21.13± 0.12 °C), reflecting the influence of Northwest
African upwelling and island coastal upwelling. ANCOVA

applied to both buoy datasets showed no significant differ-
ences between in situ and the satellite-derived SST, with
mean differences below 0.19 °C, comparable to the regional
mean difference of 0.15 °C for the full Canary dataset.

Satellite-derived data were used to predict pCO2,sw and
pHT,is. The neural network model exhibited the highest pre-
diction error (RMSE = 7.1 µatm, R2

= 0.896), whereas the
MLR model performed slightly better (RMSE = 4.9 µatm,
R2
= 0.904 for pCO2,sw). Previous studies applying MLR

along the US coasts reported RMSE values ranging from
22.4 to 36.9 µatm (Signorini et al., 2013), while NN-based
approaches in the North and South Atlantic Ocean yielded
RMSE values exceeding 19 µatm (Ford et al., 2022) and
21.68 µatm (Friedrich and Oschlies, 2009), respectively. In
comparison, both MLR and NN models applied in the present
study perform favourably, likely due to the limited spatial do-
main and the extensive observational dataset. For pHT,is es-
timation, RMSE as low as 0.006 and 0.008 were obtained
for MLR and NN, respectively, which fall within the typical
analytical uncertainty.

The CatBoost empirical algorithm estimated pCO2,sw and
pHT,is with uncertainties below 4 µatm and 0.004 pH, re-
spectively, and R2 > 0.93 for both variables. This demon-
strates robustness to uncertainty in satellite-derived variables
influenced by different processes and coastal proximity, sup-
porting its applicability in the region. However, the bagging
approach exhibited exceptional performance, yielding uncer-
tainties of 2.0 µatm for pCO2,sw and 0.002 pH for pHT,is over
the period 2019–2024.

These particularly favourable results, and the compar-
atively low errors relative to ocean-scale models, likely
arise because variability in pCO2,sw and pHT,is in the Ca-
nary Island waters is largely dominated by thermal effects
(González-Dávila and Santana-Casiano, 2023; Takahashi et
al., 2002). In this region, thermal control of surface car-
bonate chemistry is effectively captured by satellite-derived
SST. In all cases, models using SST alone showed high cor-
relation coefficients (0.65<R2 < 0.94). Although not the
best-performing configurations, these single-variable mod-
els provide a reasonable representation of observed variabil-
ity. The coefficient estimated from annual linear regression
(10.40 µatm °C−1, Table 2) deviates from the theoretical re-
gional rate for 2019–2024 (16 µatm °C−1; Takahashi et al.,
2002), likely reflecting the influence of biological and phys-
ical processes (i.e., primary production, remineralisation and
water mass mixing). Nevertheless, this rate remains consis-
tent with those reported for ESTOC (Santana-Casiano et al.,
2007).

Across all four sites and in Gando Bay, both observational
data and model predictions indicate that pCO2,sw increased
between 2019 and 2024 at a rate of 3.8± 0.6 µatm yr−1.
The pHT,is decreased at a rate of −0.004± 0.001 yr−1 over
the same period. Previous analyses at ESTOC for 1995–
2023 (González-Dávila and Santana-Casiano, 2023) and at
Gando Bay (site F) for 2020–2023 (González et al., 2024)
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reported a pCO2,sw increase of 2.1± 0.1 µatm yr−1 and a
pHT,is decrease of −0.002± 0.001 yr−1. Comparable rates
are observed across all selected sites when restricting anal-
ysis to March 2019–March 2023, excluding the anomalous
conditions observed in late 2023, consistent with González
et al. (2024).

4.2 Monthly pCO2,sw and pHT,is gridded maps

The bagging technique was used to construct gridded
monthly maps of pCO2,sw and pHT,is for the Canary re-
gion (13–19° W, 27–30° N) over the study period. Results
for the year 2023 are presented in Fig. 4. Monthly experi-
mental averages are shown alongside the model predictions
to illustrate the accuracy of the estimates. The expected
seasonal pattern was reproduced, with higher pCO2,sw in
September and lower in March, and the opposite behaviour
for pHT,is. A clear longitudinal gradient was observed, with
higher pCO2,sw and lower pHT,is toward the eastern sector,
primarily driven by the thermal effect. Cooler seawater in the
east, together with the influence of nutrient-rich, lower-pH
Northeast African upwelled seawater (Pelegrí et al., 2005),
counteract each other, increasing mean values while reduc-
ing seasonal amplitude.

Several oceanographic features are apparent. Upwelling
filaments, characterised by lower temperatures, locally re-
duce pCO2,sw. In contrast, leeward island wake zones exhibit
warmer waters, leading to increased pCO2,sw and decreased
pHT,is. The African coastal upwelling signal is particularly
evident in June and September, when lower pCO2,sw and
higher pHT,is are observed as a result of enhanced biological
activity that partially offsets the CO2-rich upwelled waters.

Monthly mean pCO2,sw and pHT,is for the Canary Basin,
predicted using the bagging approach for the period 2019–
2024, are shown in Fig. 5. Monthly means were computed
by applying the bagging model to daily satellite-derived
SST, Chl a, and MLD, together with pCO2,atm, and subse-
quently averaging the results spatially and temporally. Over
these six years, mean pCO2,sw was 419.7± 16 µatm, with
a seasonal amplitude of 55 µatm. Harmonic fitting (Eq. 4)
of the predicted time series indicates an increasing trend
of 3.51± 0.31 µatm yr−1 for 2019–2024, exceeding the con-
temporaneous increase in pCO2,atm (2.3 µatm yr−1).

Predicted pHT,is (Fig. 5) ranged from 8.015± 0.049 in
February–March to 7.980± 0.058 in September–October, re-
flecting a seasonal decrease of ∼ 0.04 pH from winter to
summer. Elevated winter values reflect lower temperatures
and enhanced convective mixing, whereas lower summer val-
ues are attributed to biological activity and water-column
stratification (Santana-Casiano et al., 2001, 2007). This sea-
sonal pH decrease is partially offset by the thermal effect,
which compensates for approximately 33 % of the total de-
cline. The thermal contribution corresponds to a pH decrease
of 0.06 associated with a temperature increase of 4.1 °C. This
compensating effect is evident near the African coast (Fig. 5),

where upwelling of deep, cold, CO2-rich waters reduces both
SST and pH, generating a pronounced longitudinal gradient
across the Canary region.

Figure 5 further shows that pHT,is declined throughout
the study period due to increasing ocean acidity, with a rate
of −0.003± 0.001 yr−1 derived from seasonally detrended
data. The strong influence of MHW events, particularly dur-
ing summer 2023 and winter 2023–2024, on the interannual
trends of both variables is evident. The rise in pCO2,atm is
accompanied by an increase in SST of 0.2 °C yr−1 over the
six years, equivalent to a cumulative warming of 1.2 °C be-
tween 2019 and 2024. This increase is largely driven by the
anomalously warm conditions in 2023, higher SST in winter
2020 compared to 2019, and elevated winter SST in 2023 and
2024 relative to 2022, when winter temperatures dropped be-
low 18 °C and have since remained near 19 °C. These condi-
tions have contributed to higher recent trends in pCO2,sw and
ocean acidification relative to long-term estimates at ESTOC,
which were 2.1 µatm yr−1 and −0.002 yr−1, respectively, for
the period 1995 to early 2023 (González-Dávila and Santana-
Casiano, 2023). The limited six-year time series may also
contribute to the magnitude of the observed rates. Notably,
winters with SST exceeding 19 °C and summers with SST
above 25 °C had not been recorded at the ESTOC site before
2023.

4.3 Long-term model prediction at ESTOC site

The bagging predictive model developed using data from the
period 2019–2024 was applied to the ESTOC site for the pe-
riod 2004–2024. Earlier years were not considered because
the monthly satellite data before this period had lower spa-
tial resolution. Satellite-derived SST, Chl a, and MLD, to-
gether with atmospheric pCO2 computed from xCO2 mea-
surements at the Izaña (IZO) station, were used as model
inputs (https://gml.noaa.gov/aftp/data/trace_gases/co2/flask/
surface/txt/co2_izo_surface-flask_1_ccgg_event.txt, last ac-
cess: 26 May 2025). Estimated values at 29°10′ N and
15°30′W were compared with in situ observations from ES-
TOC (González-Dávila and Santana Casiano, 2023), updated
to 2024, and are shown in Fig. 6. The model reproduced the
ESTOC observations with mean residuals of 1.3± 3.1 µatm
and yielded consistent trends of 1.9± 0.1 µatm yr−1 over the
study period, as determined from both model output and the
seasonally detrended observational data.

When models excluding pCO2,atm were applied, residu-
als increased to values exceeding 2 µatm, particularly dur-
ing the early part of the record (2004–2010), when residu-
als approached 4 µatm. This behaviour reflects the increased
weighting assigned to SST in the absence of atmospheric
forcing, especially during periods characterised by strong
thermal anomalies such as the 2023 marine heatwave in the
Canary Upwelling System. Analysis of satellite-derived SST
at the ESTOC site for 2004–2024 shows minimal tempera-
ture variability during 2004–2019 (0.0012± 0.002 °C yr−1),
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Figure 4. Gridded maps for pCO2,sw (left) and pHT,sw (right) predicted with bagging for the full March (Mar), June (Jun), September (Sep)
and December (Dec) 2023 using pCO2,atm and satellite conditions of SST, Chl a, and MLD together with observational data available for
that month (the same colour code was used). Figure produced with Ocean Data View (Schlitzer, 2021; https://odv.awi.de, last access: 10 July
2025).

followed by a marked warming trend during 2019–2024
(0.21± 0.01 °C yr−1), consistent with the behaviour ob-
served at sites A–F (Fig. 1). Consequently, when models
based solely on SST, Chl a and MLD were applied to earlier
periods, lower pCO2,sw trends were predicted. In contrast,
inclusion of pCO2,atm in the model allows both thermal and
atmospheric contributions to pCO2,sw to be accounted for,
ensuring that periods with weak SST trends still reflect the
concurrent rise in atmospheric CO2 and its influence on sur-
face seawater pCO2.

4.4 Air-sea CO2 exchange in the Canary Archipelago

The predicted pCO2,sw is highly useful for estimating FCO2
with improved spatial and temporal resolution. Figure 7
shows FCO2 calculated using the parametrisation proposed
by Wanninkhof (2014) under monthly mean conditions for
the period 2019–2024. The seasonal cycle of FCO2 is primar-
ily controlled by the large seasonal variability in pCO2,sw,
which governs1pCO2, as pCO2,atm exhibits a much smaller
seasonal amplitude. In contrast, the effect of wind speed and

Ocean Sci., 22, 609–628, 2026 https://doi.org/10.5194/os-22-609-2026
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Figure 5. Monthly means of pCO2,sw (µatm) and pHT,sw predicted
with bagging for 2019–2024 for the entire Canary region (27–30° N,
13–19° W). Linear fittings for the seasonally detrended data are also
plotted.

Figure 6. Monthly means of pCO2,sw (µatm) predicted with bag-
ging considering pCO2,atm, SST, Chl a, MLD for the period 2004–
2024 at the location of the ESTOC site (G in Fig. 1) and measured
ESTOC pCO2,sw.

gas solubility exhibits a smaller seasonal amplitude (Land-
schützer et al., 2014).

The region acts as a strong CO2 sink during winter and
spring, whereas during the warm season it behaves as a
source. During the warm period from late May to early
September (González-Dávila et al., 2003), when the dom-
inant trade winds impact the Canary Islands, pCO2,sw ex-
ceeds pCO2,atm. This leads to higher wind speeds and rein-
forces the role of CO2 supersaturation in the total flux esti-
mation, favouring the region’s role as a CO2 source.

Sites located closer to the African continent (C and D) and
the coastal waters (F in the Gando Bay, also in the eastern
part of the Canary Islands) are more likely to act as a CO2
sink than the westernmost region (Curbelo-Hernández et al.,

Figure 7. (A) Monthly means of FCO2 (mmol m−2 d−1) in the Ca-
nary archipelagic waters predicted with bagging from 2019 to 2024
and (B) net annual FCO2 (mol m−2 yr−1). In both plots, FCO2 was
represented at locations A–F and for the entire Canary Region (CR).
Linear fittings for the seasonally detrended data are also plotted.

2021). This behaviour is primarily associated with the ther-
mal gradient, with temperatures more than 1 °C lower than
in the western sector, as well as with higher biological pro-
ductivity. However, Fig. 7B shows that, due to the increase
in SST across the Canary Islands during the study period, all
locations that previously acted as an annual CO2 sink shifted
to behaving as a source after 2022.

For the period 2019–2024, the Canary region
acted as a weak CO2 source, with a mean flux
of 0.39± 0.17 mol m−2 yr−1. Increasing flux trends
were observed across all sub-regions, ranging from
0.18 to 0.37 mmol m−2 d−1, with an average rate of
0.25± 0.02 mmol m−2 d−1. When considering the entire
Canary region (13–19° W, 27–30° N), covering an area of
185 000 km2 after excluding the island land masses, the
system transitioned from a weak source of 0.9 Tg CO2 in
2019 to a source of 4.5 Tg CO2 in 2024, with a maximum of
4.8 Tg CO2 in 2023. This peak coincided with the highest
SST recorded during the study period (Fig. 2), favouring the
largest increase in pCO2,sw.
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These estimates are primarily based on surface water mea-
surements, particularly those derived from satellite data. Al-
though such datasets provide high spatial resolution and ro-
bust representation of surface trends, they do not capture sub-
surface processes or vertical gradients in CO2 and tempera-
ture.

5 Conclusions

This study presents the first predictive modelling framework
for surface seawater pCO2,sw and pHT,is in the Canary Is-
lands basin. The results demonstrate the value of satellite
observations as a complement to in situ platforms such as
voluntary observing ships and moored buoys. By combining
satellite products from the Copernicus Marine Environmen-
tal Monitoring Service with in situ observations, it was pos-
sible to characterise the variability of pCO2,sw and pHT,is in
the waters surrounding the Canary Islands and to quantify the
regional air-sea CO2 flux.

Four modelling approaches, ranging from classical mul-
tivariate statistics to more sophisticated machine-learning
techniques, were applied using atmospheric pCO2, SST,
Chl a, and MLD as controlling variables. Multiple linear re-
gression, neural network, and categorical boosting models
yielded comparable results, with RMSE, MAE, and R2 val-
ues similar to those reported for oceanic-scale applications.
Among all approaches, the bagging model provided the best
performance, with RMSE values below 2.5 µatm (< 0.7 %)
for pCO2,sw and 0.002 for pHT,is, R2 exceeding 0.99, and
no significant differences relative to monthly mean observa-
tions.

Application of the bagging approach enabled a detailed
description of the seasonal and longitudinal variability of
pCO2,sw and pHT,is across the Canary region. After con-
firming agreement between in situ and satellite-derived SST
within ±0.15 °C, the model was trained using measured
xCO2,sw (converted to pCO2,sw) together with satellite SST,
chlorophyll a and MLD, providing high-resolution spatial
and temporal coverage. A persistent longitudinal SST gra-
dient of ∼ 1 °C, driven by African coastal upwelling and off-
shore transport of upwelling filaments, resulted in systemati-
cally higher pCO2,sw and lower pHT,is values in the western
sector (between El Hierro and Tenerife) compared with the
eastern sector (between Tenerife and Lanzarote). In terms of
air-sea CO2 exchange, the western region acted as a source
throughout the study period, whereas the eastern region tran-
sitioned from a weak sink to a source after 2022. The increas-
ing trend in SST across the Canary region, particularly during
the anomalous warm year 2023 and during warmer winters
in 2020, 2023 and 2024, is identified as the main driver of en-
hanced CO2 outgassing. Overall, the Canary region acted as
a net CO2 source of 0.39± 0.17 mol m−2 yr−1 between 2019
and 2024, increasing from 0.9 Tg CO2 in 2019 to 4.5 Tg CO2
in 2024, with a maximum of 4.8 Tg CO2 in 2023.

These results highlight the complexity of modelling
pCO2,sw and pHT,is in coastal and island-influenced environ-
ments, where physical and biological is greater than in the
open ocean. The pronounced influence of the 2023 marine
heatwave, which persisted for more than one year, under-
scores the sensitivity of short time series to extreme events
and reinforces the need for long-term observations when as-
sessing interannual trends. Although model performance is
robust, longer time series are required to better constrain
long-term changes in pCO2,sw and pHT,is in the Canary
Islands waters. Nevertheless, this study demonstrates that
the integration of sustained observations, satellite data and
machine-learning techniques provides a powerful framework
for characterising regional air-sea CO2 exchange.

Code and data availability. Underway observations from the
SOOP CanOA-VOS programme in the Canary region, in-
cluding buoys data for the period February 2019 to De-
cember 2024, used in this study, are openly available via
Zenodo (https://doi.org/10.5281/zenodo.16780085, Gonzalez-
Davila and Santana-Casiano, 2025) and have been acces-
sible since September 2023 through the ICOS Data Portal
(https://www.icos-cp.eu/data-products/ocean-release, last ac-
cess: 22 January 2026) under the CanOA-VOS-1 product.
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