
Ocean Sci., 22, 49–74, 2026
https://doi.org/10.5194/os-22-49-2026
© Author(s) 2026. This work is distributed under
the Creative Commons Attribution 4.0 License.

Using surface drifters to characterise near-surface ocean dynamics
in the southern North Sea: a data-driven approach
Jimena Medina-Rubio1, Madlene Nussbaum2, Ton S. van den Bremer3, and Erik van Sebille1

1Department of Physics, Institute for Marine and Atmospheric Research (IMAU), Utrecht University, Utrecht, the Netherlands
2Faculty of Geosciences, Physical Geography, Utrecht University, Utrecht, the Netherlands
3Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, the Netherlands

Correspondence: Jimena Medina-Rubio (j.medinarubio@uu.nl)

Received: 9 July 2025 – Discussion started: 22 July 2025
Revised: 3 November 2025 – Accepted: 10 December 2025 – Published: 7 January 2026

Abstract. The large size of traditional drifters limits their
ability to mimic the transport of buoyant objects at the ocean
surface, which are subject to complex interactions among
direct wind drag, fast-moving surface currents, and wave-
induced transport. To better capture these dynamics, we track
the trajectories of 12 novel, ultra-thin surface drifters de-
ployed in the southern North Sea over 68 d. We adopt a
data-driven approach to model drifter velocity using hydro-
dynamic and atmospheric data, applying both a linear lee-
way parameterisation and two machine learning models: ran-
dom forest and support vector regression. Machine learn-
ing model-agnostic interpretation techniques reveal that tidal
forcing predominantly drives zonal motion, whereas wind
is the main driver in the meridional direction in this re-
gion. Notably, the wind exhibits a saturation effect, and its
contribution to explaining the variance of the drifter veloc-
ity decreases at higher speeds. In trajectory prediction ex-
periments, we find that machine learning models, particu-
larly random forest, outperform linear models, with the latter
achieving comparable accuracy only at short time scales. Us-
ing a hybrid approach and deriving a non-linear function of
the wind from machine learning interpretable methods to in-
clude in the leeway parameterisation significantly improves
the model prediction of the drifter trajectory. Finally, we test
the generalisability of the North Sea-trained models using an
independent drifter dataset from the Tyrrhenian Sea. Despite
the differences in ocean dynamics between the regions, the
machine learning models reproduce the observed trajectories
with comparable accuracy to state-of-the-art studies, demon-
strating robust explanatory skill and a low degree of overfit-
ting in this instance.

1 Introduction

Accurate predictions of the pathways and the fate of buoy-
ant objects in the ocean rely on our understanding of surface
ocean dynamics (Röhrs et al., 2021). For example, search-
and-rescue missions require a model that predicts how far a
missing person has drifted at the ocean surface to define the
search area (Breivik et al., 2013). These models also bene-
fit biological studies, where the degree of connectivity be-
tween different oceanic regions affects the population dy-
namics of species such as phytoplankton, larvae, and tur-
tles (Nooteboom et al., 2019; Lindo-Atichati et al., 2020;
Grimaldi et al., 2022; Manral et al., 2024). Similarly, oil spill
detection and modelling depend on our knowledge of geo-
physical fluid dynamics to mitigate environmental damage
(Pisano et al., 2016; Jones et al., 2016; Calzada et al., 2021).
Another pressing concern is plastic pollution, which threat-
ens marine fauna through ingestion and entanglement (Kühn
and van Franeker, 2020), and disrupts ecosystems via chem-
ical contamination (Mato et al., 2001) and the facilitation of
biological invasions (Haram et al., 2023). Marine debris has
increased by 4 % on average each year since 1980, indicating
that the current plastic standing stock of 3200 kt (kilotons) in
the ocean will double within 2 decades, exacerbating the is-
sue (Kaandorp et al., 2023). To further advance these areas of
operational oceanography and improve our fundamental un-
derstanding of near-surface ocean dynamics, modelling the
physical mechanisms driving the transport of buoyant objects
in the ocean is key.

The transport of buoyant objects at the ocean surface is
governed by a complex interplay of winds, waves, and ocean
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currents at different spatio-temporal scales. Wind stress cre-
ates a friction force on floating objects and generates near-
surface currents, resulting in a strong vertical velocity shear,
following the well-known steady-state Ekman solution (Ek-
man, 1905). Surface gravity waves contribute to transport in
the direction of wave propagation through Stokes drift, which
arises from deviations in orbital motion (Stokes, 1847). The
interaction between Stokes drift and the Coriolis force gen-
erates the Coriolis–Stokes force, which accelerates a cur-
rent perpendicular to the Stokes drift (see van den Bre-
mer and Breivik, 2018). In addition, buoyant objects are
transported by low-frequency currents, including geostrophic
flows that drive large-scale ocean circulation, topographic
steering, mesoscale eddies, and high-frequency periodic cur-
rents such as tides and inertial oscillations (Röhrs et al.,
2021).

Buoyant drifters can be used to monitor how these differ-
ent physical mechanisms combine to drive the transport at
the ocean near-surface (Lumpkin et al., 2016). Currently, the
most commonly deployed drifters are transported with a cur-
rent that is effectively integrated over part of the water col-
umn (over the vertical extent of the drifter) and do not di-
rectly capture the complex surface ocean dynamics (Davis
et al., 1982; Sybrandy and Niiler, 1992; Novelli et al., 2017;
MetOcean, 2017). Alternatively, the surface drifters used in
this study (see MetOcean, 2020) have a thin disc shape with
a height of 4.1 cm that enables them to follow the orbital ve-
locities of the waves and drift with the uppermost centime-
tres of the ocean surface currents (Morey et al., 2018; Calvert
et al., 2024; Pawlowicz et al., 2024), which are characterised
by higher speeds. Yet, the relevance of the Stokes drift, wind
drag, or surface currents on these specific drifters is currently
unclear.

Through the analysis of the trajectories of our disc-shaped
surface drifters and their comparison with model simula-
tions, we can estimate how each forcing mechanism con-
tributes to the near-surface ocean transport. A prevalent data-
driven methodology for quantifying these contributions in-
volves regression models, which seek to establish a relation-
ship between drifter velocity observations and the hydrody-
namic and atmospheric conditions. As described by Breiman
(2001), these regression models that aim to describe natu-
ral processes fall into two broad categories: traditional sta-
tistical models, also known as linear models (Bishop, 2006),
or algorithmic models, also known as supervised Machine
Learning (ML). Linear models require manually defining the
model structure to approximate non-linearities and interde-
pendencies of the near-surface ocean dynamics. This poses
a challenge, as there are high-dimensional processes in the
ocean with spatiotemporal scales spanning several orders of
magnitude and involving many degrees of freedom (van Se-
bille et al., 2020). In contrast, machine learning regression
methods do not require explicit knowledge of the underlying
transport mechanisms as they establish relationships driven
by the algorithms, making them particularly useful for com-

plex systems with multiscale variability and non-linear inter-
dependence (Bracco et al., 2025). For instance, Callies et al.
(2017) demonstrated a consistent relationship between the
leeway (i.e., wind contribution to surface friction) and Stokes
drift over time in the same region, illustrating these inter-
dependencies of the system. Furthermore, previous studies
have highlighted the advantages in the prediction of the fate
of buoyant objects at the ocean surface using different ma-
chine learning methods, such as tree-based models (Kaan-
dorp et al., 2022; O’Malley et al., 2023) and neural networks
(Aksamit et al., 2020; Fajardo-Urbina et al., 2024; Grossi
et al., 2025).

In this study, we analyse the trajectories of twelve disc-
shaped surface drifters deployed in the southern North Sea
to evaluate how different forcing mechanisms drive changes
in their velocity, using data on the surface ocean currents,
wave conditions, and wind patterns. We apply a widely used
linear parametrisation and two machine learning regression
algorithms (random forest and support vector regression) to
model the velocity of the drifters. Using this data-driven ap-
proach, we aim to (i) identify the dominant forces driving
drifter velocity changes and (ii) improve the prediction of
drifter trajectories using only physical variables describing
near-surface ocean dynamics.

2 Data

2.1 Surface drifters

2.1.1 Design and deployment

The drifters are thin disc-shaped buoys manufactured by
MetOcean (MetOcean, 2020). Each drifter has a diameter
of 24 cm, a height of 4.1 cm, and a weight of 900 g. These
drifters are designed to track the uppermost centimetres of
the ocean surface. They are equipped with Global Naviga-
tion Satellite System (GNSS) positioning (8 m positional ac-
curacy), a sea surface temperature (SST) sensor, and Iridium
satellite telemetry. Details on spatial coordinate error estima-
tion are provided in Appendix A. To facilitate the retrieval of
beached drifters after battery depletion, we attached AirTags
(Apple Inc., 2021), increasing the total mass by 1 %. Ad-
ditionally, the drifters report which of their two antennas is
transmitting, distinguishing between the upward-facing and
submerged positions. This allows us to monitor their orienta-
tion and thus their flipping behaviour.

We released the drifters off the coast of the town of
Moddergat, the Netherlands, in the Eastern Wadden Sea on
25 April 2024 (Fig. 1). We placed the drifters in three clus-
ters spaced 250 m apart on mudflats at low tide, awaiting the
incoming tide to transport them. Within each cluster, we ar-
ranged four drifters in a square formation with 50 m spacing
between them. All drifters remained operational for at least
68 d, drifting across the German Bight region in the south-
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Figure 1. Trajectories over 68 d of 12 colour-coded surface drifters in the southern North Sea. Drifters were deployed on 25 April 2024 in the
Dutch Eastern Wadden Sea in three different clusters spaced 250 m apart. Starting and ending positions are marked with stars and triangles,
respectively. Background colourmap shows the bathymetry of the southern North Sea from the NWS Ocean Physics Analysis and Forecast
model with a horizontal resolution of 1.5 km (Tonani et al., 2019). The study site location in the southern North Sea is highlighted by a red
rectangle on the orthogonal projection of the Northern Hemisphere in the bottom right corner.

ern North Sea and reaching the North Frisian Islands. Ini-
tially, we set the drifters’ sampling frequency to 5 min, but
we lengthened the interval to 30 min after 6 d to extend bat-
tery life. After 26 d, we further lengthened it to 3 h.

2.1.2 Drifter data processing

To ensure the quality of the GNSS data, data points for which
the time difference between measurements 1t is less than
2.5 min are eliminated. This threshold removes redundant
measurements, which typically result from minor time syn-
chronisation errors between the drifter’s internal time and
the satellite time stamp or re-transmissions occurring within
the intended sampling interval. Furthermore, the atmospheric
and ocean datasets to be used for comparison (Sect. 2.2) are
only available on a much coarser time resolution. We com-
pute the (total) drifter velocity vd at position xn and time tn,
corresponding to the nth observation, using the central dif-
ference scheme, which averages the arriving and departing
instantaneous velocities (Elipot et al., 2016). This vector is
calculated as

vd (xn, tn)=
1
2

(
xn+1− xn

tn+1− tn
+
xn− xn−1

tn− tn−1

)
. (1)

This method yields average speeds for the entire data set of
0.27±0.19 m s−1 in the zonal direction and 0.13±0.10 m s−1

in the meridional direction. Measurements with speeds ex-
ceeding 3 m s−1 are flagged as spatial coordinate errors, as
sustained speeds above this threshold are considered physi-
cally unrealistic given the typical fluid motion timescales in
the region (Otto et al., 1990). While such high velocities may
occur during wave breaking, these events would last less than
a fraction of1t . In total, 0.6 % of the original data points are

identified as signal recording errors and removed from the
time series. We also omit the first 24 h to reduce the impor-
tance of coastal and intertidal effects, focusing the analysis
on mesoscale surface dynamics in the open basin.

The German Bight is characterised by strong tidal dynam-
ics due to its shallowness (Otto et al., 1990), so to isolate
the residual kinematics from these dominant tidal effects, we
estimate the net drifter velocity vd over the dominant tidal
cycle T . This residual (Lagrangian) velocity is defined by
Zimmerman (1979) as:

ṽd(x, t)=
1
T

t+ T2∫
t− T2

vd(x,τ
′)dτ ′. (2)

We identify the dominant tidal harmonic in the drifters’ ve-
locity data using Fast Fourier Transform (FFT) and Morlet
wavelet analysis (Meyers et al., 1993). Both methods show
that the semi-diurnal M2 and S2 tidal constituents are the
most significant, with no signal detected at the inertial period.
These findings are consistent with prior Lagrangian observa-
tions in the region (Meyerjürgens et al., 2019; Deyle et al.,
2024). Hence, drifter velocities are time-averaged over the
period T = 24.83 h to smooth out the influence of both tidal
signals, resulting in residual speeds that reach a maximum of
0.63 m s−1. Further details on the spectral analysis methodol-
ogy and a visualisation of the frequency spectra can be found
in Appendix B.

2.2 Atmospheric and hydrodynamic datasets

We use an atmospheric model and coupled ocean–wave mod-
els to quantify the effects of the different forcing mechanisms
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on drifter transport. We use data of the wind velocity field
at 10 m above the ocean surface (uw) from the EMCWF re-
analysis model ERA5, which assimilates satellite and in-situ
measurements (Hersbach et al., 2023). The surface ocean
currents velocity field (uo) is provided by the North West-
ern Shelf Ocean Physics Analysis and Forecast model, which
is forced by the EMCWF wind field and assimilates SST,
sea level anomalies from satellites, as well as in situ tem-
perature and salinity profiles (Copernicus Marine Service,
2024a). The model uses a hybrid z∗− σ terrain-following
vertical coordinate system consisting of 51 levels, with the
thickness of the surface cell set to≤ 1 m (Tonani et al., 2019).
Due to the strong tidal ocean dynamics in the region, we iso-
late tidal contributions from the ocean surface velocity field
using a low-pass filter with a time window T = 24.83 h. The
resulting low-pass ocean currents velocity vector is denoted
as uLP

o , while the remaining high-pass filtered ocean cur-
rents velocity will be referred to as uHP

o . To characterise the
wave conditions at the southern North Sea, we use the NWS
Ocean-Wave Forecasting System (Copernicus Marine Ser-
vice, 2024b), which is coupled to the mentioned ocean cur-
rents model and includes the effect of wave-induced fluxes
in momentum and energy, and the Coriolis–Stokes force on
the Eulerian current. Several studies have emphasised the im-
portance of using coupled models (compared to non-coupled
models) in the simulation of wave-induced surface transport
of buoyant objects (Röhrs et al., 2012; Cunningham et al.,
2022; Rühs et al., 2025). Three key parameters used to de-
scribe the effect of ocean waves on the transport of buoyant
objects are significant wave height, mean propagation direc-
tion, and mean frequency or period. These parameters are
derived from the wave spectrum model output, which parti-
tions the spectral significant wave height (Hs) and the mean
wave direction (θ ) into wind waves, and first and second
swell components. The mean wave direction represents the
energy-weighted average propagation direction within each
spectral partition. In contrast, the bulk wave direction (θbulk)
is computed from the full, unpartitioned directional spectrum
and represents the overall propagation direction of the to-
tal wave field. Additionally, we consider the period at the
spectral peak (Tp), and the Stokes drift velocity field at the
surface (us). As in Bruciaferri et al. (2021), we calculate
the Stokes drift at 0.5 m below the still–water level to align
with the depth mid-point of the upper ocean model layer,
and apply the parametrisation of Breivik et al. (2016) based
on the Phillips wind-wave spectrum. While this approxima-
tion may underestimate the Stokes drift experienced by the
drifters (Lenain and Pizzo, 2020), defining the Stokes drift at
this depth ensures consistency, allowing a coherent analysis
of the effects derived from the coupled ocean–wave model.
Further details on the models’ spatio-temporal resolution are
presented in Table 1.

Where needed, we interpolate the atmospheric and hydro-
dynamic model data to the drifter measurements of location
and timestamp to assess their instantaneous effect on their

velocity using the bilinear interpolation scheme from Parcels
(Delandmeter and van Sebille, 2019). To align with the mod-
els’ 1 h temporal resolution while reducing high-frequency
noise, drifter coordinates during the period with 1t = 5 min
are resampled to a coarser resolution of 30 min via linear in-
terpolation.

3 Methodology

We manipulate the interpolated hydrodynamic and atmo-
spheric model data to define physically relevant indepen-
dent variables to model velocity changes along the trajec-
tories of the drifters. We include the zonal (U ) and merid-
ional (V ) components of all velocity vectors, including the
surface ocean currents, wind, and Stokes drift. To account for
wave directionality, we project the properties derived from
the wave spectrum onto the zonal and meridional axes us-
ing wave direction data. Let A be one such property; we for-
mulate its vector form by A= (Asinθ,Acosθ), where θ is
the deviation angle from true north of the wave direction.
We define the peak spectral period vector T p = (T

x
p ,T

y
p )=

(Tp sinθbulk, Tp cosθbulk) using the bulk wave direction θbulk

and, in doing so, assign a scalar to the two directions in an ad
hoc fashion. Similarly, we compute three different significant
wave height vectors, each associated with a specific wave
partition (wind sea, first swell, and second swell). These
are expressed as H i

s = (H
i,x
s ,H

i,y
s )= (H i

s sinθ i,H i
s cosθ i),

where i denotes the wave partition, and each vector is calcu-
lated using the corresponding wave direction for that parti-
tion. This ensures that the models incorporate wave effects on
drifter motion in both directions, resulting in a feature matrix
comprised of 16 variables measured over 18 696 time points.
We do not include previous history of hydrodynamic and at-
mospheric conditions (i.e., we do not include variables with
time lags or averages over a spatial radius of influence) be-
cause these variables would physically represent an inertial
effect on the drifters, which has been found to be very small
(Olascoaga et al., 2020).

To infer the predominant forcing mechanisms and model
the trajectory of the drifters, we analyse the outcome us-
ing the baseline linear regression model of the total drifter
velocity components and compare it to two non-linear ma-
chine learning algorithms: random forest and support vec-
tor regression. Given the study region’s stronger zonal than
meridional tidal component (Kopte et al., 2022), we model
the zonal (Ud) and meridional (Vd) drifter velocity compo-
nents separately in both the linear and machine learning mod-
els and assume that the interdependence between these two
variables is negligible.

3.1 Linear regression

Unlike more complex non-linear models, linear regression
offers a direct model interpretation by quantifying each fea-
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Table 1. Specifications of the hydrodynamic and atmospheric model data at the drifters’ spatiotemporal coordinates. Variables included
are the wind velocity vector (uw), high-pass and low-pass ocean currents velocity using a 24.83 h filter (uHP

o , uLP
o ), Stokes drift velocity

in the ocean upper-layer (us), and properties derived from the wave spectrum, including significant wave height from the wind, first and
second swell partitions (Hwind

s , H 1p swell
s , H 2p swell

s ), wave direction from the wind, and first and second swell partitions (θwind, θ1p swell,
θ2p swell), bulk wave direction (θbulk), and wave period at the spectral peak (Tp).

Variables Dataset Spatial res. Temporal res. Ref.

uw ERA5 global reanalysis 0.25°× 0.25° 1 h Hersbach et al. (2023)

uHP
o , uLP

o NWS Ocean Physics 0.013°× 0.027° 15 min Tonani et al. (2019)
Analysis and Forecast instantaneous

Hwind
s , H 1p swell

s , H 2p swell
s , θwind, NWS Ocean-Wave 0.013°× 0.027° 1 h Bruciaferri et al. (2021)

θ1p swell, θ2p swell, θbulk, Tp, us Forecasting System

ture’s (i.e., independent variables) influence through inter-
pretable coefficients or weights in the prediction equation of
the target (i.e., dependent variable). The total drifter veloc-
ity ud is typically parameterised using a physics-based linear
model as

ud = uo+us+ γ �uw+ ε, (3)

where γ is a vector of model coefficients that scales each
component of the wind velocity uw, ε is a disturbance term
to be minimised by the linear regression algorithm, uo is the
surface currents total velocity (i.e., the addition of the low-
pass and high-pass surface ocean currents), us is the Stokes
drift velocity, and � is the Hadamard or element-wise prod-
uct. Note that this vector equation represents two indepen-
dent scalar equations, one for the zonal and one for the merid-
ional components.

Physically, the wind term weight represents the drag co-
efficient ratio above and below water, since our drifters are
radially and axially symmetric (Dominicis et al., 2016). Yet,
downwind and crosswind components of the drifter velocity
vector have been found to have distinct dependences on the
wind speed (Allen, 2005). Several studies have hence divided
the wind contribution into two perpendicular components,
known in the literature as the “leeway method” (Breivik
et al., 2011), and quantified the wind slip vector represented
by γ in Eq. (3). This approach yields values of γ rang-
ing from 1 %–3 %, depending on the type of surface drifters
and choice of hydrodynamic model (Sutherland et al., 2020;
Staneva et al., 2021). Hence, we treat wind slip γ = (γ x,γ y)
as a vector with zonal and meridional components to find
the best-fit values for this new drifter design using the or-
dinary least squares method (Faraway, 2025). The accuracy
of the linear model is evaluated based on its goodness-of-fit.
Although this method is an empirical parametrisation of the
wind contribution to the drifter velocity, its functional form
aligns with theoretically derived models of the drift of spher-
ical buoyant objects at the ocean surface (Beron-Vera et al.,
2019).

We also consider a linear regression model in terms of the
relative wind, given that the friction velocity (i.e., the actual
velocity acting at the ocean surface) is a function of the wind
speed with a slope equal to the drag coefficient and a non-
zero constant (Foreman and Emeis, 2010). Upon fitting the
boundary conditions at the ocean surface, the drifter velocity
is hence expressed as

ud = uo+us+ γ � (uw−uo)+ ε. (4)

Making assumptions on the magnitude and spatio-temporal
scales of the wind and ocean current forcing simplifies this
formulation back to Eq. (3) as shown by Duhaut and Straub
(2006).

Nevertheless, despite the high interpretability of linear
models, they may still oversimplify near-surface ocean dy-
namics by omitting non-linear behaviour in the parameteri-
sation of drifter velocity components. For the case of highly
correlated features, linear models also struggle to determine
their contributions, leading to instability in coefficient esti-
mation and reduced model reliability (Molnar, 2022). From
a physical perspective, another limitation is that the sur-
face current velocities used here are depth averaged over the
model’s upper layer (Tonani et al., 2019). This means that
wind-driven vertical shear in the upper centimetres may be
underestimated and part of the shear effect effectively ab-
sorbed by the windage coefficient, potentially influencing the
interpretation of the modelled surface currents (Callies et al.,
2017; Laxague et al., 2018).

3.2 Machine learning regression

Machine learning algorithms offer an alternative regression
approach particularly suited to climate variables, capturing
non-linear interactions and multicollinearity without requir-
ing prior structural knowledge (Breiman, 2001). We use a
random forest model, as it has been found to perform well
for spatio-temporal predictions due to its capacity to han-
dle highly correlated features (Hengl et al., 2018; Nussbaum
et al., 2018). To contrast these results, we also employ a sup-
port vector regression model and take advantage of its ability
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to handle high-dimensional feature spaces and its intrinsic al-
gorithmic differences with the decision-tree structure of the
random forest model. Both models are implemented using
the scikit-learn Python package (Pedregosa et al., 2011, ver-
sion 1.6.1).

3.2.1 Random forest

Random forest is a machine learning method that predicts
the values of the target variable from the average of the pre-
dictions from a collection of decision trees (Breiman, 2001).
Each regression tree recursively partitions the data through
binary splits based on feature thresholds. In this algorithm,
each tree is fitted to a randomly drawn subset of the data
and uses a randomly drawn subset of features to consider at
each split. Single decision trees struggle with linear relation-
ships, which must be approximated by step functions, and are
sensitive to small input changes, sometimes producing non-
smooth predictions (Molnar, 2022). By averaging over many
trees, random forests reduce these limitations, exhibiting low
sensitivity to hyperparameter choices including the number
of trees ntree, the minimal number of observations at terminal
nodes nmin (i.e., the last branch of each tree), and the num-
ber of randomly selected features to test at each split mtry
(Probst and Boulesteix, 2017). Hence, we build a random
forest model to fit the drifter velocity zonal and meridional
components with scikit-learn defaults ntree = 100, nmin = 2,
mtry = np (Geurts et al., 2006) where np is the total number
of variables in the feature matrix (sometimes called predic-
tors) and np = 16.

3.2.2 Support vector regression

Support vector regression is a model that applies principles
of the support vector machine (Cortes and Vapnik, 1995) to
regression tasks (Drucker et al., 1996). In classification, sup-
port vector machines find the optimal hyperplane that sepa-
rates data and maximises its distance to the closest data point
(Vapnik, 1999). Instead, support vector regression identifies
an optimal hyperplane with a margin (defined by support vec-
tors) where prediction errors are tolerated. This model ap-
plies a transformation using non-linear kernel functions to
project the data into a higher-dimensional space where a lin-
ear hyperplane can better approximate the non-linear rela-
tionships within the data (Smola and Schölkopf, 2004). How-
ever, the support vector regression model is sensitive to the
choice of kernel and hyperparameters, which can strongly
affect model performance. To address this, we use a radial
basis function (RBF) and optimise the hyperparameters via
grid search using cross-validation (see Appendix D for the
exact values).

3.2.3 Evaluation of predictive performance

We evaluate the predictive performance of the machine learn-
ing models through cross-validation, where we calculate the
expected extra-sample error (Hastie et al., 2009). Validating
the predictive performance of these models for drifter veloc-
ities is challenging due to the strong temporal autocorrela-
tion present in trajectory data and the limited spatial disper-
sion in our dataset (Wadoux and Heuvelink, 2023). These
factors could potentially lead to overly optimistic model per-
formance estimates if training and testing sets are not suf-
ficiently independent. To address this, we designed a spatio-
temporal block cross-validation strategy to organise data into
independent time blocks, regardless of the drifter, and then
applied a k-fold cross-validation (k = 5) by selecting a ran-
dom set of blocks to be left out in each fold. Doing so en-
sures that the model is validated on data that is both tempo-
rally and spatially independent of the training set. The dura-
tion of the blocks corresponds to the autocorrelation time of
the target variables, ensuring that any two points separated
by more than this time range can be considered statistically
independent and thus suitable for validation. This approach
substantially reduces the risk of overfitting, as it prevents in-
formation leakage between training and validation sets and
ensures that model performance is assessed on truly unseen,
time-independent samples. For a detailed explanation of the
block-cross validation strategy and the exact autocorrelation
times, see Appendix C.

The zonal and meridional drifter velocity models’ predic-
tive accuracy are evaluated independently using the coeffi-
cient of determination R2 (Wilks, 2011), which quantifies
the variance explained by the model, the root-mean-square
error (RMSE), which measures the average prediction error
magnitude, and the mean absolute error (MAE), which as-
sesses the bias of the model. These metrics are defined as

R2
= 1−

N∑
i=1

(
yi − ŷi

)2
N∑
i=1

(
yi − yi

)2 , RMSE=

√√√√ 1
N

N∑
i=1

(
yi − ŷi

)2
,

MAE=
1
N

N∑
i=1
| yi − ŷi |, (5)

where yi are the observed target values, ŷi are the model pre-
dictions, yi is the mean of the observed values, and N is the
number of observations. All metrics are applied for each fold
using the observed and predicted data points from the test set
and averaged across folds to assess the models’ predictive ca-
pacities. Cross-validation plots of predicted against observed
data points within each testing fold are included in Sect. S1
in the Supplement.
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3.2.4 Model interpretation

A key limitation of machine learning models is their re-
duced interpretability compared to linear models, the so-
called “black-box” abstractness (Lipton, 2017). As these
models do not use a functional form to calculate the output,
it becomes hard to understand the effects of individual fea-
tures on the final prediction of the target variable (Molnar,
2022). To mitigate this, model-agnostic methods have been
developed to characterise the overall behaviour of machine
learning models.

One such method is permutation feature importance,
which is used for identifying the variables that have the great-
est impact on the target. This approach quantifies the in-
crease in model prediction error, chosen to be the RMSE,
when the values of a feature are randomly shuffled 10 times
along the time dimension (i.e., the value for observation tn is
reassigned to tk , where k 6= n is a random index within the
dataset). This assumes that features causing large prediction
error increases when shuffled are more important in explain-
ing the variance in the target data (Ewald et al., 2024).

Another powerful tool for interpreting machine learning
models post hoc are Accumulated Local Effects (ALE) plots.
These ALE plots are model-agnostic methods for explaining
individual predictions (Apley and Zhu, 2020). As described
by Molnar (2022), ALE plots show how a model’s predic-
tions change with respect to a feature, considering only the
data points within a local range (window) of that feature.
To improve visualisation, the accumulated changes are com-
puted across all such intervals covering the feature’s range.
An advantage of this method is its ability to visually reveal
the functional relationship between the target variable and in-
dividual features. Unlike predecessors such as Partial Depen-
dence Plots (PDPs) (Friedman, 2001), which estimate global
average effects across the entire dataset and can be biased
by correlated features, ALE plots capture local effects by fo-
cusing on small, localised changes in prediction within each
interval. We estimate the ALE uncertainty by calculating the
results from each feature using 100 bootstrapped resamples
of the feature matrix and target variable. For each feature,
we calculate the 95 % CI (Confidence Interval) based on the
distribution of ALE estimates across these bootstrapped sam-
ples. These ALE plots are generated using the PyAle Python
package (Jomar, 2020, version 1.2.0), a Python implemen-
tation of the R package ALEPlot (Apley and Zhu, 2020).
After plotting the ALE, feature transformations are derived
by visual inspection to approximate the functional form of
the ALE curve to be able to obtain an interpretable model,
i.e. making the linear model non-linear but retaining its high
interpretability.

3.3 Modelling drifter trajectories

To assess model predictive accuracy, we reconstruct the
change in location of the drifters over time using the mod-

els’ predictions of their total velocity and employing a leave-
one-drifter-out cross-validation strategy. We train each of
the three models on data from 11 drifters, constituting the
training feature matrix X, and obtain the mapping func-
tions fu(X) and fv(X) which relate the hydrodynamic and
atmospheric ocean conditions to the total drifter velocity
components. The predicted drifter velocity vector ûd is ex-
pressed as:

ûd =

(
Ûd

V̂d

)
=

(
fu(X)

fv(X)

)
, (6)

where Ûd and V̂d are the zonal and meridional predicted
drifter velocity components, respectively.

We simulate the trajectory of the test case, i.e., the ex-
cluded drifter, by integrating the velocity predictions over
time. Let X′(x, t) contain interpolated hydrodynamic and at-
mospheric variables at position xd and time t . The predicted
drifter position x̂d(t), based on a given model, is defined as:

x̂d(t + δt)= x̂d(t)+

t+δt∫
t

ûd
(
X′
(
x̂d,τ

))
dτ, (7)

where δt is the integration time-step, set to δt = 60 s. We use
a forward Euler method to solve this integral and calculate
the time advection of the drifter trajectories.

3.3.1 Trajectory prediction skill metrics

The accuracy of the modelled trajectories is measured using
the mean cumulative separation distanceD, which quantifies
the difference between observed and modelled spatial coor-
dinates at each time-step (Haza et al., 2019; van der Mheen
et al., 2020; Moerman et al., 2024). This metric is calculated
as

D =
1
M

M∑
i=0
‖x̂d (ti)− xd (ti)‖, (8)

where M is the total number of timesteps along the drifter
trajectory, and x̂d(ti) is the position vector of the drifter at the
ith timestep. As reference, observed drifters travel on average
a total of 1795 km over their measuring period.

We also evaluate the predicted trajectories using the Liu–
Weisberg skill score (Liu and Weisberg, 2011), which is
widely used in drifter studies (Liu et al., 2014; van Sebille
et al., 2021; Pärn et al., 2023). This metric is the average of
the separation distance (i.e., the distance between the model
prediction and the observed position) weighted by the length
of the observed trajectory. The skill score “ss” is given by

ss=
{

1− s
n
, s ≤ n

0, s > n
for s =

M∑
i=0
‖x̂d (ti)− xd (ti)‖

M∑
i=0

i∑
j=0
‖xd

(
tj+1

)
− xd

(
tj
)
‖

, (9)
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where n is a non-dimensional number that defines the thresh-
old of no skill. Liu and Weisberg (2011) use a threshold of
n= 1 to calculate the accuracy of 3 d predictions. However,
due to the long prediction period in our trajectory analysis
(up to 60 d), a smaller threshold value n is needed. Other-
wise, minor differences in separation distance between mod-
els would have little influence on the final Liu–Weisberg skill
score, which would instead be dominated by the large cu-
mulative trajectory length. We therefore set the threshold to
n= 0.05, preserving a consistent ratio between prediction
period and threshold to ensure meaningful model compar-
isons.

3.3.2 Impact of non-dynamical variables on trajectory
prediction

To draw physically meaningful conclusions about the dom-
inant forces governing the transport of buoyant objects, our
machine learning models are initially trained using only dy-
namic physical variables that change along the drifter tra-
jectory and contrasted with the linear model. Nonetheless,
prior studies in other fields have shown that including spa-
tiotemporal features such as latitude, longitude, distance to
reference points, time since release, or seasonal indicators
can significantly enhance machine learning models’ perfor-
mance (Behrens et al., 2018; Hengl et al., 2018; O’Malley
et al., 2023). To assess this in our data, we train an additional
random forest model to predict total drifter velocity, incorpo-
rating non-dynamic features and contrast the results with the
original random forest model. These random forest models
with an expanded dataset include features related to position
(latitude and longitude) and local water depth, along with the
original input variables. We also test whether explicitly ac-
counting for the additional transport of these surface drifters
due to possible wave surfing (Pizzo et al., 2019) improves the
random forest model predictive skill by introducing another
feature: Flipping Index. This feature parameterises drifter
flipping behaviour, a process used by Haza et al. (2018) for
the identification of drogue loss and associated with storm
conditions with strong winds and high wave steepness that
induce wave-breaking. The Flipping Index quantifies the pro-
portion of orientation changes (i.e., flips) based on successive
antenna measurements (see Appendix E for full details). In
order to obtain a Flipping Index along the drifters’ trajecto-
ries, we first train a random forest model to predict it every-
where. Since only about 28 % of the dataset exhibits non-zero
Flipping Index values (Fig. E2), we apply a hurdle modelling
approach: first, a random forest classifier predicts the likeli-
hood of flipping, and second, a random forest regressor esti-
mates the flipping magnitude conditional on a positive event
(Wadoux and Heuvelink, 2023).

4 Results and discussion

4.1 Inference of predominant forcing mechanisms

The linear regression, random forest, and support vector re-
gression models collectively provide insight into the physical
forcing mechanisms governing the transport of buoyant ob-
jects at the ocean surface. By analysing both the total and
residual drifter velocities, we can infer the relative impor-
tance of wind, waves, and ocean currents in shaping mea-
sured trajectories of our surface drifters at subtidal and su-
pertidal scales.

4.1.1 Total drifter velocity

Fitting the weights of the ordinary least-square linear regres-
sion given by Eq. (3) of the drifter total zonal and merid-
ional velocity components yields γ x = 1.34 % (R2

= 0.26,
RMSE= 0.11 m s−1, MAE= 0.12 m s−1) and γ y = 1.63 %
(R2
= 0.40, RMSE= 0.08 m s−1, MAE= 0.10 m s−1) in the

zonal and meridional directions, respectively. Both values
fall within the theoretically predicted range of 1 %–2 % for
objects with a density of approximately 0.7ρ, where ρ is the
seawater density (Wagner et al., 2022).

Focusing on the scale of each of the resulting terms in
this linear regression, we observe a contrast between the
predominant dynamics in the zonal and meridional direc-
tion. The mean zonal surface ocean current speed, 〈| Uo |

〉 = 0.3 m s−1, is higher than the resulting mean wind con-
tribution 〈γ x | Uw |〉 = 0.07 m s−1, and at least one order of
magnitude larger than the mean zonal Stokes drift speed
(〈| Us |〉 = 0.04 m s−1). In the meridional direction, however,
mean surface ocean currents speed, 〈| Vo |〉 = 0.08 m s−1,
and wind effects 〈γ y | Vw |〉 = 0.06 m s−1 are comparable,
while the mean Stokes drift speed (〈| Vs |〉 = 0.03 m s−1) is
still smaller.

The random forest and support vector regression models
of the total drifter velocity exhibit similar R2, RMSE, and
MAE from cross-validation, performing a better fit of the
zonal drifter velocity than the meridional velocity (see the
legend in Figs. 2, S1 and S2 in the Supplement). Model-
agnostic interpretation methods consistently identify ocean
currents and wind as the main drivers of the drifter’s motion,
approximating its total velocity as a linear combination of
these forces. The permutation feature importance plots of the
machine learning models (Fig. 2) show there is a prominent
signature of the tidal current in the zonal direction for the
prediction of the drifter zonal velocity Ud, represented by the
high RMSE increase of UHP

o (0.37 m s−1 in random forest
model, 0.93 m s−1 in support vector regression), followed by
a smaller contribution from the zonal wind U10 (0.14 m s−1,
0.23 m s−1 respectively). The roles of these two variables
are reversed for the prediction of the meridional drifter ve-
locity V10 (0.15 m s−1, 0.43 m s−1) compared to the contri-
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Figure 2. Permutation feature importance (RMSE increase) for a random forest and support vector regression models predicting zonal (Ud,
blue) and meridional (Vd, red) total drifter velocity components calculated using central difference scheme. Bars represent the mean RMSE
increase over 10 random permutations of each feature, which are ordered by decreasing importance. Error bars are omitted, as they account
for less than 1 % of the RMSE increase. A larger RMSE increase indicates greater feature importance, as shuffling a feature significantly
worsens the model’s prediction. Note the differences in the scale of the y axis across the models. Features are shaded by type: ocean currents
(blue), wind (beige), and waves (light green). Cross-validated metrics (coefficient of determination R2, RMSE, and MAE) are shown in the
legend.

bution from the meridional high-pass ocean currents V HP
o

(0.05 m s−1, 0.13 m s−1).
ALE plots of the random forest model reveal the depen-

dence between the drifter velocity components and the most
influential features from the permutation feature importance
plots: high-pass ocean currents and wind. We observe a lin-
ear relationship between the high-pass ocean currents and the
parallel total drifter velocity component (Fig. 3). Yet, we also
observe small nonlinearities in the ALE plot of the merid-
ional high-pass ocean currents V HP

o around zero and at the
extremes of the feature distribution, where uncertainty in-
creases due to sparse data.

The ALE plots for the zonal wind velocity U10 show that
the effect on the zonal total drifter velocity Ud becomes con-
stant at extremes of the distribution, resembling a sigmoid
function (Fig. 3). This indicates that higher values of the
zonal wind might not contribute to the same extent to the
variance of the zonal total drifter velocity. The meridional
wind V10 exhibits a similar but weaker saturation effect on Vd
for strong westward winds (<−7 m s−1), though data den-
sity is low in this regime. This could be related to the fact that
the friction velocity does not scale linearly with wind speed
at high values due to increasing surface roughness (Foreman
and Emeis, 2010). However, experiments indicate that this

nonlinearity typically occurs at wind speeds above the max-
imum observed in our data, which is 13.3 m s−1. Another
possible explanation for the decoupling between winds and
drifter velocity could be the transfer of kinetic energy from
wind to the ocean, generating wind-driven currents. Yet this
would require a high positive correlation between high wind
speeds and surface currents, absent in our data (Fig. S7). A
further consideration is the difference in spatial resolution
between the atmospheric and hydrodynamic models. While
this discrepancy might seem relevant, the Rossby radius of
the ocean remains much smaller than the synoptic scale,
meaning the resolution difference likely has little effect on
drifter velocity parameterisation.

4.1.2 Residual drifter velocity

By calculating the drifter residual velocity using Eq. (2), we
effectively filter out dominant high-frequency ocean surface
currents (i.e., those shorter than the M2 and S2 tidal frequen-
cies), allowing for a more focused analysis of the underly-
ing net transport mechanisms. As seen in Fig. 4, the random
forest and support vector regression models in that case as-
sign the highest importance to the parallel components of the
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Figure 3. Accumulated Local Effect (ALE) plots for the zonal (blue, left y axis) and meridional (red, right y axis) total drifter velocity,
calculated using central difference scheme, as a function of the corresponding parallel components of (a) the high-pass ocean currents
and (b) the wind modelled by a random forest model. The shaded area represents the 95 % CI across 100 bootstrapped samples. The top
histograms show feature distributions of the data. Negative velocity values for the zonal component represent westward motion, while
negative meridional velocities represent southward motion.

wind, Stokes drift velocity, and low-pass filtered ocean sur-
face currents.

In the meridional direction, the wind V10 (RMSE increase
of 0.10 m s−1 in random forest, 0.45 m s−1 in support vec-
tor regression) and the low-pass current V LP

o (0.07 m s−1,
0.30 m s−1 respectively) are the most important features in
both models for the drifter residual meridional velocity Ṽd.
Yet, the contribution from the meridional Stokes drift Vs is
only significant in the random forest model compared to the
support vector regression (0.05, 0.01 m s−1). This disagree-
ment could stem from the definition of the permutation fea-
ture importance. A feature can only imply a meaningful im-
portance if it is not strongly correlated with other features
that also influence the target (Ewald et al., 2024). We find
that meridional Stokes drift Vs and meridional wind V10 are
highly correlated (Spearman correlation coefficient ρ = 0.92
(Spearman, 1904); see Fig. S7). The reason this is only cap-
tured by the random forest model and not the support vector
regression is that in random forest models, correlated fea-
tures can also replace each other if randomly left out by mtry
for splitting. Instead, support vector regression performs a
general transformation of feature space, where correlated
features go into the same dimension and hence are less sensi-
tive to data points further away from the general distribution.

In the zonal direction, the wind U10 (RMSE increase of
0.11 m s−1, 0.53 m s−1) and the Stokes drift Us (0.06 m s−1,
0.18 m s−1) are the most important features for the zonal
drifter residual velocity Ũd models. The contribution of the
low-pass ocean currents ULP

o is also comparable (0.06 m s−1,
0.11 m s−1).

From both the residual zonal and meridional drifter ve-
locity models, we also find high permutation feature impor-
tance of variables that are not aligned with the velocity com-
ponent, such as V10 for Ũd (RMSE increase of 0.02 m s−1,
0.09 m s−1) and H 1st swell,x

s for Ṽd (0.09 m s−1 in the support
vector regression model).

Residual drifter velocity ALE plots (Fig. 5) show analo-
gous dependence to the wind speed as the total drifter veloc-
ity: a linear regime for low speeds but plateauing at higher
speeds (Fig. S6). Low-pass currents likewise show a linear
relationship with the parallel residual velocity components
where data density is high for speeds < 0.10 m s−1 and satu-
ration effects at the extremes of the distribution. Furthermore,
we find that Stokes drift influences residual velocity notice-
ably above 0.05 m s−1. Below this velocity threshold, the
residual velocity remains largely unaffected, and the Stokes
drift contribution to surface drifter transport is minimal. This
suggests that in such a regime, the otherwise small influence
of swell-induced Stokes drift may become relatively more
significant and should not be neglected. At higher Stokes
drift values, the drifter residual velocity increases approxi-
mately linearly in the zonal direction. A similar trend is ob-
served in the meridional component, although with greater
uncertainty due to the limited number of observations at high
Stokes drift speed.

4.2 Prediction of drifter trajectories

To evaluate the predictive skill of each model, we apply a
leave-one-drifter-out strategy (see Sect. 3.3). The models are
evaluated over a fixed prediction period of 60 d, after which
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Figure 4. As in Fig. 2 but for the random forest and support vector regression models predicting the zonal (Ũd, blue) and meridional (Ṽd,
red) residual drifter velocity components.

Figure 5. Accumulated Local Effect (ALE) plots for the zonal (blue, left y axis) and meridional (red, right y axis) residual drifter velocity
as a function of the corresponding parallel components of the (a) low-pass ocean currents and (b) Stokes drift modelled by a random forest
model. The shaded area represents the 95 % CI across 100 bootstrapped samples. The top histograms show feature distributions of the data.
Negative velocity values for the zonal component represent westward motion, while negative meridional velocities represent southward
motion.

the linear regression model typically predicts beaching. Re-
peating this process for each drifter yields 12 simulated tra-
jectories per model. All the resulting trajectories succeed in
reproducing tidal oscillations along the trajectory and large-
scale patterns (e.g. the loop near 4° E longitude in Fig. 6).

Comparing the mean cumulative distance of reconstructed
trajectories from drifter velocity predictions in Fig. 7 demon-
strates the advantages of using machine learning algorithms
for prediction over linear regression for long-term predic-
tions. Random forest achieves the lowest deviation from ob-
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Figure 6. Example of a reconstructed drifter trajectory of over 60 d using linear regression (yellow), random forest (green) and support vector
regression (blue) models using an integration timestep of dt = 60 s. The true measured drifter trajectory is shown in black. The wind slip
coefficients used for this linear regression model are γ x = 1.34 % and γ y = 1.64 % in the zonal and meridional direction, respectively.

Figure 7. Mean cumulative separation distances using linear regression (yellow), random forest (green), and support vector regression (blue).
Each model is trained on 11 trajectories and tested on the remaining one, with the process iterated so that each drifter is used once as the test
set (leave-one-drifter-out cross-validation). Individual results for each drifter are shown as scatter points along with a median indicator.

servations withD = 10.8 km and an interquartile range of all
distances (IQR) of 3.2 km, indicating superior accuracy and
consistency across the test data. The support vector regres-
sion model shows a lower performance, with a median cumu-
lative separation distance of D = 14.1 km (IQR= 2.3 km),
potentially due to the fact that this model does not model
high-order interactions by sub-partitioning the dataset into
small sections like the random forest does. However, there is
a risk of over-adaptation of the random forest model to the
current training data; hence, the advantage of comparing the
results from both models. Meanwhile, the linear regression
model has the poorest performance with a median of D =
27.2 km and a higher IQR of 5.6 km, indicating it is highly
sensitive to the training data. The comparison of model per-
formances using the Liu–Weisberg skill score also captures
the superior performance of the machine learning models
compared to the linear regression model, assigning a skill
score of 0.64±0.10 to the random forest model, 0.55±0.09 to
the support vector regression model, and 0.10± 0.16 to the
linear regression (Fig. S8). Deviations between the predicted
and observed trajectories likely arise from biases in the train-
ing data caused by strong spatial correlations. As a result,

(minor) velocity prediction errors can accumulate during in-
tegration, causing the simulated trajectories to diverge into
regions not adequately represented in the training set.

The time evolution analysis of the differences between the
observed and modelled trajectories from each of the models
reveals that linear regression outperforms machine learning
models for time scales smaller than 4 d (Fig. 8). After that
onset time, the cumulative separation distance with respect
to the observations increases over time for the linear regres-
sion predictions, while the error from the machine learning
models remains constant, yielding a lower cumulative sepa-
ration distance considering the entire trajectory. In the recon-
structed trajectories of the drifters (e.g. Fig. 6), we observe
that the linear regression model overestimates the zonal dis-
placement, which could be caused by the fact that this model
does not account for the decrease in the zonal wind contribu-
tion for higher wind speeds seen in the random forest ALE
plots (Fig. 3).

Additionally, we apply the drifter trajectory model and
evaluation procedure described in Sect. 3.3 to assess the ef-
fect of incorporating non-dynamical variables. Among the
tested features, only the inclusion of the depth of the wa-
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Figure 8. Time series of the cumulative separation distances using linear regression (yellow), random forest (green), and support vector
regression (blue). Each model is trained on 11 trajectories and tested on the remaining one, with the process iterated so that each drifter is
used once as the test set (leave-one-drifter-out cross-validation). Individual results for each drifter are shown as shaded lines, along with the
median time series across drifters shown as solid lines. The small panel shows a close-up view of the first week since release.

Figure 9. Mean cumulative separation distance metric applied to modelled trajectories from random forest models of the total drifter velocity
with different sets of features: original model (green), including Flipping Index (grey), including latitude and longitude (magenta), and
including bathymetry (dark purple). Each model is trained on 11 trajectories and tested on the remaining one, with the process iterated so
that each drifter is used once as the test set (leave-one-drifter-out cross-validation). Individual results for each drifter are shown as scatter
points along with a median indicator.

ter column yields an improvement in velocity prediction
(Fig. 9). As expected, adding spatial coordinates such as lat-
itude and longitude does not enhance model performance
because the absolute location is not a relevant property, as
it does not carry any physical meaning in a non-stationary
flow. The parameterisation of wave-surfing transport via the
Flipping Index results in a model with the same median pre-
dictive skill across drifter samples as the original random
forest, but with somewhat reduced variance in prediction
error. The random forest model trained to predict this in-
dex from hydrodynamic and atmospheric variables reveals
a high permutation importance for wind speed and Stokes
drift (Figs. E3 and E4), highlighting their dominant role in
the mechanisms associated with flipping events and, by ex-
tension, wave-driven transport.

4.2.1 Linear models with alternative structure

Furthermore, we explore how to improve the predictive per-
formance of the linear regression of the total drifter velocity
using insights from the machine learning models. From the
results of the ALE plots, the zonal and meridional drifter ve-
locity in our data shows a sigmoid-like shape as a function of
the zonal wind. Hence, we test a total drifter velocity linear
regression model where the contribution of each wind com-
ponent is modelled by a sigmoid function of its velocity, so
that

ud = uo+us+ g (uw)+ ε for g(ζ )=
a

1+ e−b(ζ−ζ0)
, (10)

yielding a = 0.27 m s−1, b = 0.31 m s−1, and
ζ0 = 1.79 m s−1 (R2

= 0.28, RMSE= 0.11 m s−1,
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MAE= 0.07 m s−1) as best-fit parameters in the
zonal direction and a = 1.82 m s−1, b = 0.04 m s−1,
and ζ0 = 12.2 m s−1 (R2

= 0.40, RMSE= 0.08 m s−1,
MAE= 0.07 m s−1) in the meridional. These fits improve
upon the original linear model by reducing its bias, nearly
halving the MAE.

The alternative approach using the relative wind
yields best-fit coefficients of γ x = 1.39 % (R2

= 0.28,
RMSE= 0.11 m s−1, MAE= 0.11 m s−1), and γ y = 1.66 %
(R2
= 0.41, RMSE= 0.08 m s−1, MAE= 0.10 m s−1), also

showing a small improvement in the fix with respect to the
original linear model.

Following the method previously described for recon-
structing the trajectories of the drifters from different mod-
els, we compare the predictive accuracy of the three linear
regression models. From the resulting mean cumulative sep-
aration distance across drifter samples, we find that the sig-
moid function parametrisation improves the linear regression
predictions withD = 15.8 km (IQR= 3.7 km) (Fig. 10). The
relative wind parametrisation also shows an improvement in
the predictions with D = 25.8 km (IQR= 3.3 km). However,
the analysis of the cumulative separation distance over time
reveals that these differences between sigmoid and linear
functions of the wind only emerge beyond 24 h after release
(Fig. S10).

These findings suggest that the linear parameterisation of
the wind contribution to drifter velocities, while effective at
shorter timescales, may oversimplify the underlying physics.
Indeed, this linear form resembles the functional form de-
rived by theoretical studies using the Maxey-Riley frame-
work for buoyant spherical (Beron-Vera et al., 2019) and
non-spherical (Wagner et al., 2022) particles. However, as
noted by Bos et al. (2025), the particle Reynolds numbers for
the surface drifters used in this study in the southern North
Sea are above the Stokes drag regime. Therefore, it is impor-
tant to consider that air and water have different viscosities
when determining the functional form of the wind contribu-
tion to drifter velocity, which may no longer be linear.

4.2.2 Generalisability of the prediction results

We confirmed above, using a leave-one-drifter-out valida-
tion strategy, that machine learning models outperform linear
equations in predicting drifters in the North Sea. To test the
transferability of those models into other regions, we use an
additional data set from a drifter campaign in the Tyrrhenian
Sea that started on 26 June 2025. Six surface drifters from
MetOcean (2020) were deployed off the coast of Napoli.
One stopped transmitting after 1 d, while the remaining five
drifted for at least 40 d. Full trajectories of these drifters are
provided in Appendix F. We apply the North-Sea-trained
models to predict the Tyrrhenian Sea drifter trajectories us-
ing the method and evaluation metrics described in Sect. 3.3.
As predictor data, we use data from a coupled ocean–waves
model of the Mediterranean Sea (Clementi et al., 2023) and

the same atmospheric model described in Sect. 2.2. We also
test the generalisability of the leeway method by applying the
same windage coefficients derived from the North Sea data.

Trajectories were reconstructed over 48 h, with predictions
iteratively repeated along the full drifter trajectory to ob-
tain 20 predictions per drifter. The choice of a 48 h predic-
tion window is motivated by the aim of comparing its per-
formance with that reported in other studies with different
methodologies: Dagestad and Röhrs (2019) reported CODE
and iSphere drifter trajectories in the Norwegian coast using
a physics-based linear model with different hydrodynamic
models and Stokes drift configurations, while Grossi et al.
(2025) builds an artificial neural network for CODE drifter
trajectory predictions in the Gulf of Mexico based solely on
previous latitude and longitude data.

Table 2 presents a comparison of the evaluation metrics
reported in the literature with those obtained in the current
study. Among the models tested, the random forest achieves
the highest predictive performance, followed closely by the
support vector regression, while the linear regression per-
forms slightly less well. Overall, all models demonstrate a
predictive skill after 48 h consistent with previous studies.
Figure G1 shows the predicted trajectory of a single drifter
in the Tyrrhenian Sea to illustrate the results.

These findings indicate that the machine learning models
trained on the North Sea data can largely reproduce the dy-
namics in the Tyrrhenian Sea despite the differences in the
ocean dynamics between the two regions. This suggests a low
degree of overfitting and over-adaptation to the specific con-
ditions of the data of the campaign from the North Sea. The
North Sea is a tidally dominated region, while the Tyrrhenian
Sea is part of the Mediterranean Sea, a semi-enclosed basin
with a thermohaline and wind-driven circulation with eddies
as regular features (Rinaldi et al., 2010; Buffett et al., 2017).

5 Conclusions

This study analyses the effect of near-surface ocean currents,
wave-induced motions, and wind drag on the trajectories of
ultra-thin surface drifters to gain insight into the transport of
buoyant objects at the ocean surface. We follow a data-driven
approach and regress drifter velocity against instantaneous
hydrodynamic and atmospheric conditions, and compare the
established linear leeway model with two fundamentally dif-
ferent machine learning algorithms in terms of both inference
of predominant forcing mechanisms and trajectory predic-
tion performance.

At first order, machine learning models indicate that wind
and ocean currents are linearly related to drifter velocity
and are the most important features explaining the variabil-
ity in velocity. These findings align with previous observa-
tional studies using leeway formulations (Breivik et al., 2011;
Dominicis et al., 2016) and theoretical predictions from the
Maxey–Riley framework (Beron-Vera et al., 2019). Stokes
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Figure 10. Mean cumulative separation distance metric applied to modelled trajectories using linear regression models with the original
wind formulation (yellow) as per Eq. (3), the relative wind parametrisation (fuchsia) using Eq. (4), and the alternative sigmoid function of
the wind (teal) from Eq. (10). Each model is trained on 11 trajectories and tested on the remaining one, with the process iterated so that each
drifter is used once as the test set (leave-one-drifter-out cross-validation). Individual results for each drifter are shown as scatter points along
with a median indicator.

Table 2. Evaluation metrics of the predictive performance of different models reproducing 5 surface drifter trajectories in the Tyrrhenian Sea:
mean cumulative separation distance (D), RMSE error between observations and predictions, separation distance between observation and
prediction after 48 h, and skill score. Machine learning models from this work are trained on the North Sea drifter dataset, and the windage
coefficient for the linear regression is tuned for this data. The reported errors are the interquartile range (IQR).

Studies Models Metrics

D [km] RMSE Separation Skill score
error distance
[km] [km]

This work
Linear regression 10.5± 0.3 12.0± 0.8 19.1± 0.8 0.60± 0.02
Random forest 9.6± 0.1 11.0± 0.1 17.4± 0.1 0.66± 0.01
Support vector regression 9.7± 0.3 11.2± 0.9 18.9± 0.9 0.65± 0.01

Dagestad and Röhrs (2019)
CODE – – 22–28 0.05–0.40
iSphere – – 20–27 0.45–0.58

Grossi et al. (2025) – 15–40 – –

drift also contributes notably for low values of the residual
(non-tidal) drifter velocity.

Non-linear behaviour emerges under strong wind, as re-
vealed by the ALE plots of the drifter velocity (Fig. 3). In-
corporating this insight, we improve trajectory predictions
by using a quasi-linear model with a non-linear wind term.
While linear approaches remain advantageous in operational
oceanography due to their simplicity and computational ef-
ficiency, we propose a hybrid framework that utilises inter-
pretable machine learning methods to reveal functional rela-
tionships between drifter velocity and environmental forcing.
These insights can guide the formulation of more accurate
linear parameterisations.

When evaluating trajectory predictions from integrated
modelled zonal and meridional velocities, the linear model
performs reasonably well for predictions of less than 4 d but
accumulates bias over longer periods. In contrast, machine
learning models, especially the random forest, consistently
outperform the linear baseline (Fig. 8). This suggests that
more complex models might be needed to extend the fore-
casting horizon.

Feature engineering analysis shows that incorporating ad-
ditional physically relevant information, such as water depth
or a parameterisation of wave-surfing effects, further im-
proves random forest performance. Meanwhile, adding non-
physical features, such as longitude and latitude, degrades
predictions. Finally, we test the generalisability of the mod-
els to a region with markedly different ocean dynamics, the
Tyrrhenian Sea. Performing 48h-reconstructions of surface
drifter trajectories demonstrates a predictive skill compara-
ble to other state-of-the-art studies, indicating low overfitting
to the North Sea training data and reinforcing the physical
conclusions of the near-surface ocean dynamics of this study.

Appendix A: Estimation of spatial coordinate errors

We estimate the uncertainty in the spatial coordinates re-
ported by the GPS system in the drifters from the errors in
the distribution of measurements during an experiment. We
position Stokes drifters, identical to the ones used in this
study, over a flat surface on land. A total of 84 coordinate
data points were measured from each drifter, derived from
two distinct measurement rounds. The first round comprised

https://doi.org/10.5194/os-22-49-2026 Ocean Sci., 22, 49–74, 2026



64 J. Medina-Rubio et al.: Using surface drifters to characterise near-surface ocean dynamics

a 24 h cycle with a 30 min transmission frequency, and the
second was a 3 h cycle utilising a 5 min frequency (Schneiter
and van Sebille, 2023). For each drifter, we compute the
deviation of the longitude and latitude measurements with
respect to their mean during the combined measuring pe-
riods and approximate their density distribution to contin-
uous using the Kernel Density Estimation method. The re-
sulting curves can be observed in Fig. A1, which highlights
the mean standard deviation of the measurement distribution
across drifters: 8.4 m in the latitudinal direction, and 6.5 m in
the longitudinal direction.

Figure A1. Distribution of the deviation of (a) longitude and (b) latitude measurements with respect to their mean from 24 colour-coded
stationary surface drifters. Data were collected during a 24 h cycle (30 min frequency) and a 3 h cycle (5 min frequency). The distributions
are estimated using Kernel Density Estimation (KDE). The mean standard error σ across all drifter distributions is included in the legend.

Appendix B: Power spectral analysis of the drifters’
velocity

We use power spectral analysis to identify the dominant tidal
harmonic using two complementary techniques: Fast Fourier
Transform (FFT) and Morlet Wavelet analysis. For FFT anal-
ysis, uniform time spacing of the measurements is required,
so we perform the analysis to two different periods of time
independently: from day 6–26, when the sampling period is
30 min, and from day 26 onwards, when the sampling period
is 3 h. We also performed a Morlet Wavelet spectral analy-
sis to investigate temporal variations in the frequency spec-
trum, as the time series spans more than one spring-neap tidal
cycle (Meyers et al., 1993). Unlike FFT, this approach does
not require time resampling, allowing the detection of higher-
frequency harmonics without compromising the integrity of
the original temporal resolution. The analysis of the 5 min
period (from the beginning of the time series to day 6) has
not been included as the time interval between samples is
more irregular (not exactly 300 s, with an average standard
deviation of ±22 s). This irregular sampling complicates the
alignment and averaging of results across drifters.

Apart from the predominant signals of the M2 and S2 tidal
constituents, we also observe a weaker contribution from
the high-frequency lunar tidal constituent M4 in the Mor-
let Wavelet graph when the sampling period satisfies 1t ≤
30 min (Fig. B1). This is due to the fact that for a sam-
pling period of 3 h, the Nyquist period is 6 h, which closely
matches the period of the M4 signal (6.2 h). Hence, during
the period when the sampling frequency is coarsest, the time
resolution of the observations is barely enough to detect this
signal.
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Figure B1. Average power spectrum across all drifters’ speed using Fast Fourier Transform (left panel) and Morlet Wavelet (right panel).
The FFT shows two spectra corresponding to the analysis over a time period with sampling frequency of 30 min (blue) and 3 h (red) with
their respective x axis. The Morlet Wavelet graph is a concatenation of the results for both periods, separated by a discontinued line The
frequencies of the main tidal harmonics found in the German Bight region (M2, S2, M4) are highlighted in colours (yellow, purple, and light
blue respectively) as well as the inertial frequency at 54° latitude (orange).

Appendix C: Spatiotemporal block cross-validation
strategy

We use a spatiotemporal block cross-validation strategy to
mitigate the impact of temporal autocorrelation and spatial
correlation in the dataset (Wadoux and Heuvelink, 2023).
Data is first aligned in time and then segmented into blocks.
Subsequently, a standard k-fold cross-validation approach is
applied by splitting the shuffled blocks into five folds. Dur-
ing each iteration, four folds are used for training, and the
remaining fold is used for validation, ensuring all blocks are
eventually tested.

The duration of each block corresponds to the average au-
tocorrelation time of the target variable across all drifters
using the e-folding scheme. The autocorrelation functions
are found by calculating the Pearson correlation at time
lags ranging from 1–100 h using statsmodels Python package
(Seabold and Perktold, 2010, version 0.14.2). The resulting
correlograms are shown in Fig. C1, and the resulting auto-
correlation times are summarised in Table C1.

Table C1. Autocorrelation times for different drifter velocity com-
ponents as a result of using e-folding scheme.

Velocity component Autocorrelation time

Ud 12 h
Vd 62 h
Ũd 101 h
Ṽd 117 h
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Figure C1. Correlogram of the (a) total and (b) residual drifter velocity components across all drifters (zonal is shown in blue and meridional
in red). The shaded region represents the standard deviation from the autocorrelation functions of each drifter velocity component.

Appendix D: Support vector regression
hyperparameters

Support vector regression models use kernel functions to
transform the data into a higher-dimensional space. In this
higher-dimensional space, the support vector regression al-
gorithm attempts to find a hyperplane that best fits the data,
while allowing for some deviations from the actual obser-
vations, controlled by the parameter ε, called the margin of
tolerance (Hastie et al., 2009). We choose the Radial Basis
Function (RBF) kernel to build our models, which is com-
monly used for its ability to capture non-linear relationships
between data points. The RBF kernel is defined as:

K(x,x′)= e−γ ‖x−x
′
‖

2

where ‖x− x′‖2 is the squared Euclidean distance between
two feature vectors x and x′, and γ is a parameter that con-
trols how much influence a single training point has (Pe-
dregosa et al., 2011). Additionally, the parameter C alters
the decision surface’s smoothness that fits the target data in
the hyperplane. The best fit from the SVR models of the to-
tal and residual velocity components, and Flipping Index, is
found for the hyperparameters included in Table D1 using
GridSearchCV functionality (Pedregosa et al., 2011).

Table D1. Value of the hyperparameters C, γ , ε used in the Support
Vector Regression models using a Radial Basis Function kernel to
fit the total drifter zonal and meridional velocity (Ud, Vd), residual
drifter zonal and meridional velocity (Ũd, Ṽd).

Target variable C γ ε

Ud 0.30 2.0× 10−3 0.10
Vd 0.30 1.0× 10−3 9.5× 10−2

Ũd 0.30 2.5× 10−3 9.0× 10−2

Ṽd 0.70 3.5× 10−3 0.15

Appendix E: Flipping Index model

We define a new metric named Flipping Index (F ) to quan-
tify the proportion of changes in the drifters’ orientation or
flips observed in subsequent measurements. To derive this in-
dex for each trajectory, the flips of the drifters are identified
over time as the changes in the orientation signal, resulting
in a binary variable f (t) that equals 1 if a flip is observed
at time t and 0 otherwise. Then, these flips’ time series are
convolved with a sliding window of size n(t) that increases
with the sampling frequency of the measurements. Hence,
the Flipping Index is defined as:

F(t,n(t))=

n(t)
2∑

i=−
n(t)

2

f (t + i), n(t)=
L

1t(t)
(E1)

where L is the fixed length of the temporal window, and
1t(t) is the sampling frequency at time t , which increases
along the drifters’ trajectory. The Flipping Index is computed
using a window size with L= 3 h, which corresponds to the
highest sampling frequency of the drifter dataset. This choice
was based on an analysis of window sizes ranging from 1–
8 h, which revealed only minor variations in the magnitude
of the Flipping Index peaks (Fig. E1).

To ensure a continuous representation of the Flipping In-
dex and reduce sensitivity to the non-uniform timestep, we
apply a Gaussian smoothing filter. The standard deviation of
the filter is set to σ = 〈δt〉/2, where 〈δt〉 represents the mean
time interval between consecutive flips. The index is sub-
sequently normalised by the maximum number of flips ob-
served across all drifters, resulting in a dimensionless mea-
sure ranging from 0 to 1. In this framework, a Flipping In-
dex of 1 corresponds to 10 flips occurring within a win-
dow size with L= 3 h. The Flipping Index is evaluated only
for time periods with sampling frequency 1t ≤ 30 min. At
lower sampling frequencies, the number of detected flips is
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likely strongly underestimated, and the temporal resolution
becomes insufficient to capture submesoscale variability (Es-
sink et al., 2022). Figure E2 presents the resulting time series
of the mean Flipping Index across all drifters. The relatively
small standard deviation indicates that drifters tend to flip si-
multaneously, which can be attributed to their spatial proxim-
ity and shared exposure to similar hydrodynamic conditions
throughout most of their trajectories.

Figure E1. Time series of the Flipping Index of a single example surface drifter using different choices of temporal window size ranging
from 1–8 h. Close-up view between day 5, 12 h after release and day 8 shows small variations at the peak depending on the choice of the
window size.

Figure E2. Time series of the Flipping Index from the 12 surface drifters (orange lines), along with the average across them (black line). The
index is computed based on changes in drifter orientation relative to the ocean surface (i.e. flips) over a 26 d trajectory in the southern North
Sea. Peaks indicate periods of increased flipping, likely caused by intense wave activity during storm conditions.

https://doi.org/10.5194/os-22-49-2026 Ocean Sci., 22, 49–74, 2026



68 J. Medina-Rubio et al.: Using surface drifters to characterise near-surface ocean dynamics

To assess whether including non-physical variables im-
proves the random forest model’s predictive skill, we create
an additional model that fits the Flipping Index for a given
hydrodynamic and atmospheric conditions, and then include
this index as a feature in the prediction of the total drifter ve-
locity, which parametrises stormy conditions. However, only
28 % of the data points yield a non-zero Flipping index (i.e.,
it is a zero-inflated variable), so the standard random for-
est algorithm would have difficulties predicting these zeroes
(Fig. S4). In order to solve this issue, we use a hurdle or two-
step model that first creates a binary variable of the Flipping
Index using a threshold, which we establish at F = 0.05, and
trains a random forest classifier to predict instances when the
Flipping Index is non-zero (Prasad et al., 2006). Then, we
train a random forest regressor with the predicted non-zero
Flipping Index data points to learn the relationship between
the climate variables and the magnitude of the Flipping In-
dex. The resulting permutation feature importance analysis
reveals that most of the variance of the binary Flipping Index
variable is explained by a combination of zonal wind, low-
pass currents, and various wind-related variables (Fig. E3),
while the highest importance for the model predicting the
magnitude of this Flipping Index is assigned to the Stokes
drift and the wind (Fig. E4).

Figure E3. Permutation feature importance (RMSE increase) for a random forest classifier predicting the binary Flipping Index of the
drifters in a hurdle model. Grey bars represent the mean RMSE increase over 10 random permutations of each feature, which are ordered by
decreasing importance. Features are colour-coded by a shadow: blue indicates ocean current-related variables, beige corresponds to wind, and
teal to wave parameters. Cross-validated model performance metrics (coefficient of determination R2, RMSE, and MAE) for each velocity
component are shown in the legend.

Figure E4. As in Fig. E3 for a random forest regressor predicting the magnitude of the Flipping Index of the drifters in a hurdle model for
non-zero predictions from the classifier.

This variable is then used in the test case as a feature
to train a random forest model to predict the trajectories
of the drifters. For a new location of the predicted drifter,
this trained Flipping Index model takes as input the inter-
polated hydrodynamic and atmospheric features and predicts
the amount of flipping at that location. Then, this information
is also included as input for the total drifter velocity model
that predicts the velocity of the drifter used in the advection
scheme.
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Appendix F: Drifter trajectories in the Tyrrhenian Sea

Figure F1. Trajectories over 49 d of 5 colour-coded surface drifters in the Tyrrhenian Sea. Drifters were deployed on 26 June 2025 in the
Gulf of Naples in three different clusters spaced 1 km apart. Starting and ending positions are marked with stars and triangles, respectively.
Background colourmap shows the bathymetry of the Tyrrhenian Sea from the Mediterranean Ocean Physics Analysis and Forecast model
with a horizontal resolution of 0.042° (Clementi et al., 2023). The study site location in the Tyrrhenian Sea is highlighted by a red rectangle
on the orthogonal projection of the Northern Hemisphere in the bottom right corner.
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Appendix G: Prediction results of trajectories in the
Tyrrhenian Sea

Figure G1. Example of an iterated reconstructed surface drifter trajectory with a forecasting window of 48 h using linear regression (yellow),
random forest (green) and support vector regression (blue) models using an integration timestep of dt = 60 s. The true measured drifter
trajectory is shown in a black solid line. The wind slip coefficients used for this linear regression model are γ x = 1.34 % and γ y = 1.64 %
in the zonal and meridional direction, respectively. The beginning of each new prediction period is marked by a solid black dot.

Code and data availability. Code used to conduct the experi-
ment is available at https://doi.org/10.5281/zenodo.17975392
(Medina Rubio, 2025a). Larger-sized machine learning mod-
els are stored in https://doi.org/10.5281/zenodo.17901303
(Medina Rubio, 2025b) (random forest models) and
https://doi.org/10.5281/zenodo.17901907 (Medina Rubio, 2025c)
(support vector regression models). Drifter data in the North
Sea is available at https://doi.org/10.5281/zenodo.14198921 (van
Sebille, 2024). Drifter data in the Tyrrhenian Sea is available at
https://doi.org/10.5281/zenodo.17293098 (van Sebille, 2025).
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