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S1. Water Mass Transformation Framework 

The following section describes a general method for representing changes in potential density ( ) σ
and spice ( ) in the ocean as diapycnal and isopycnal (diaspice) transformations of water between τ
water mass classes. The method used here to compute water-mass transformation in the sigma-spice 
(σ-τ) coordinates is based on the thermohaline derivation of Evans et al. (2014) and Portela et al. 
(2020) from the equations of tracer conservation: 

​ (S1) ∂𝐶/∂𝑡 − 𝐮 · ∇𝐶 = 𝑘∇2𝐶 +  𝑓
𝑐

where u is the three-dimensional Eulerian velocity, k is the diffusion coefficient, and fC represents any 
source or sink of the given tracer C. Dividing the left-hand side of Eq. S1 by the modulus of the tracer 
gradient gives the dia-surface velocity component (uC), the component of the velocity that crosses the 
surface of constant C. If we consider the tracers  and , so that u  becomes the diapycnal velocity σ τ σ

crossing the isopycnal  and u  the dia-spice velocity crossing the iso-spice . Then, the σ τ τ
transformation across sigma and spice surfaces can respectively be expressed as: 

​and​ ​ ​ (S2.1, S2.2)  𝑈
σ
(σ, τ) = ∫

σ'=σ

Π(τ, τ')⋅𝑢
σ
⋅𝑑𝐴 𝑈

τ
(σ, τ) = ∫

τ'=τ
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τ
⋅𝑑𝐴

Where 

(S3) 

and σ′ = (σ ± Δσ/2) and τ′ = (τ ± Δτ/2). Here,  and  are the diapycnal and isopycnal (diaspice) 𝑢
σ

𝑢
τ

velocity components, respectively, and dA is the cross-sectional area of the transect occupied by water 
within the specified σ-τ class. These dia-surface transformations should be interpreted as volume 
fluxes of water and have units of m3 s-1. They cannot be practically diagnosed from velocity 
measurements and must therefore be determined indirectly from changes in the volumetric 
distribution of water projected into σ-τ coordinates. In the case of a two-dimensional ocean transect, as 
per this study, the method is identical; however, the inferred transformations are area fluxes and have 
units of m2 s-1.  

We performed a volume budget in σ-τ coordinates for the interior ocean (i.e., below the mixed layer). 
The water-mass volume change dV/dt results from the sum of water-mass transformation, ∑U(σ,τ), 



 

and the exchange flux across the domain’s geographical limits Ψ (Evans et al., 2014; Portela et al., 
2020). U is the water-mass transformation due to isopycnal and diapycnal mixing fluxes, whereas its 
convergence or divergence is represented by the sum (∑) of the interior fluxes across the geographical 
limits of a given σ-τ class (Donners et al. 2005; Walin 1982). The isopycnal and diapycnal 
transformation rates represent the net mixing of water masses along and across density surfaces, 
respectively, resulting in an irreversible property change. Ψ represents the net exchange across the 
northern boundary of the domain, defined as the northernmost bin of the glider and climatology 
transect. The southern end is shelf-constrained, and cross-section exchange there is assumed to be 
negligible. Note that an underestimation of the exchange flux Ψ could result in an apparent 
overestimation of the local transformation rate U. However, since both diapycnal and isopycnal 
transformations are estimated using the same underlying framework, there is no reason to expect a 
preferential bias toward either component. In summary, changes in volume within a given σ-τ class 
can be attributed to the convergence or divergence of interior fluxes across σ or τ boundaries, or via 
exchange fluxes across the domain boundaries within the same σ-τ class. Unlike interior mixing, 
exchange fluxes do not imply a transformation of water mass properties. The dia-surface 
transformations across each isopycnal and isospice are thus constrained by the volume changes of 
each σ-τ class. From expressions S1 and S2.1, S2.2; the volume change within a given σ-τ class can 
then be expressed as: 

​ (S4). 𝑑𝑉
𝑑𝑡 (σ', τ') =  𝑈

σ
(σ', τ') + 𝑈

τ
(σ', τ') + Ψ(σ', τ')

The volume (area) changes are determined as follows. First, a nominal grid spacing in σ-τ coordinates 
is chosen. This grid spacing must be fine enough to resolve the finer water mass transformations in the 
specified region, but coarse enough to give adequate coverage in σ-τ coordinates so that there are not 
any artificially disconnected regions separated by no data. The volume integration was made in σ-τ 
classes with density intervals of Δσ=0.05 kg m−3 between 23 and 27.5 kg m−3 and spice intervals of 
Δτ=0.1 kg m−3 between 4 and 8.5 kg m−3. This choice reflects a trade-off between adequately 
representing each water mass class and ensuring that the mode water layer is well resolved. To 
calculate the water mass volume associated with each σ-τ class, the volume (area) of each 
geographical grid cell was calculated (i.e.,  along-transect x vertical extent for an ocean section). The 
σ-τ value at the center of each geographical grid cell was determined through linear interpolation. The 
volume for a given σ-τ class is then the sum of the volume associated with each geographical grid cell 
within the range  ± Δ /2 and  ± Δ /2. σ σ τ τ

Using Eq. S4, a set of linear equations can be built to link the observed change in volume of each σ-τ 
class, as determined above, to the dia-surface transformations: 

dV/dt=Ax​  (S5) 

Where: 

-​ dV/dt  and is a vector of the observed change in volume of = 𝑑𝑉
𝑑𝑡 σ
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each σ-τ class, divided by the relevant time interval, and should be m x n long, where m is the 
number of individual σ classes and n is the number of individual τ classes.  

-​ The matrix A represents the coefficients relating each term on the right-hand side of Eq. S5 to 
the volume change. Each of the m x n rows represents the equation for the change in volume 
of a σ-τ class. The first [(m-1) x n]+[m x (n-1)] columns in A correspond to each σ or τ 



 

iso-surface, and the coefficients describe the relation of each iso-surface to the σ-τ class 
designated in each row. A coefficient of 1 is assigned to the isopycnal (or isospice) at  - Δ /2 σ σ
; and a coefficient of -1 is assigned to the isopycnal (or isospice) at  + Δ /2. The coefficient σ σ
is zero for each isopycnal and isospice that is not adjacent to the σ-τ class associated with the 
given row. The last m x n columns of A represent each σ-τ class, to which a coefficient of 1 is 
assigned if that value of σ or τ is adjacent to the boundary of the domain in geographical 
coordinates; thus allowing a flux into or out of the domain due to the terms combined into . Ψ
Further, we are assuming that only advection through the northern boundary of the 
geographical domain will affect the distribution of volume. 

-​ And the vector of unknowns x is the diapycnal and isopycnal (diaspice) transformations and 
the volume change associated with  and it is defined as x =Ψ

. The length is [(m-1) x n]+[m x (n-1)] + (m x n). 𝑈
σ
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The linear equation [5] can then be solved for x using a least squares regression, where the sum of the 
squared residuals ((dV/dt) − Ax) are minimized. The residual errors for both datasets, computed as 
|(dV/dt) − Ax|/|(dV/dt)|, were on average of order 10-5, which is on the higher end of values reported in 
previous studies (e.g., Portela et al., 2020). The derived transformations, therefore, represent the 
minimum combination of volume fluxes required to explain the volume change of each σ-τ class. To 
note, because the exchange term Ψ is obtained as part of the least-squares solution to Eq. S5 rather 
than by a simple difference of diagnosed terms, it is constrained jointly with  and . We therefore 𝑈

σ
𝑈

τ

interpret Ψ as an effective advective exchange term. The solution x was then decomposed into the 
transformation across spice and density surfaces and the exchange flux across the geographical 
domain. See also Evans et al (2014) and Portela et al (2020) for other explanations of the 
methodology. 



 

 

Figure S1. Mode water definition: Potential vorticity (PV) vs. potential density criteria. a) Ocean 
glider timeseries colored by PV smaller or larger than the median PV (2.5 x 10-10 s-2). Red contours 
are the 25 and 25.25 kg m-3 isopycnals. b) Mode water thickness using the PV criteria (black) and 
density criteria (red) for the original time series and 24 h rolling mean. The coefficient of 
determination (r2) is 0.96 between these two methods. c) Mode water density using the PV criteria 
(black) and density criteria (red) for the original time series and 24 h rolling mean. The r2 is 0.89 
between these two methods. d) Potential density layer thickness per 0.01 kg m-3 bins in potential 
density space. Red lines are the 25 and 25.25 kg m-3 isopycnals. 

 

 

 

 



 

 

Figure S2: Air-sea fluxes flag. The volume of water bound by a given tracer surface will change by 
air–sea buoyancy fluxes if the tracer surface outcrops at the ocean surface. We compute the 
transformation in T-S coordinates as per Evans et al. (2014, 2023) and retrieve the classes that 
change due to air-sea buoyancy fluxes. The T-S classes are afterwards converted to σ-τ space and are 
marked as blue crosses. The box shows the σ-τ domain of interest for this study, and the red lines show 
the mode water potential density band, which lies below the classes affected by the air-sea interface. 
Air-sea buoyancy fluxes used were derived from the ERA5 reanalysis product (Hersbach et al., 2020), 
matched to the glider's position and time for high-resolution analysis, and also retrieved as monthly 
climatological averages over the study area.  
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