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Abstract. Rogue waves pose substantial risks to maritime
operations and offshore infrastructure, yet their formation
mechanisms and predictability remain poorly understood.
This study analyses real rogue wave occurrences using in situ
observations from CDIP wave buoys from the Free Ocean
Wave Data (FOWD) dataset and model-based estimates from
ERAS reanalysis and the ECMWF CY47R1 high-resolution
hindcast. Seasonal distributions, wave height comparisons,
and spectral analyses reveal that models systematically un-
derestimate extreme wave events due to spectral smoothing
and spatial averaging. A key finding is that rogue waves are
usually preceded by a sharp decrease in crest-trough corre-
lation below 0.5, followed by a rapid increase usually above
0.6, indicating a transition to a more structured wave field.
This pattern, accompanied by spectral bandwidth narrow-
ing and increased relative energy in the 0.25-1.5 Hz range,
suggests energy focusing mechanisms play a critical role.
Analysis of rogue wave events at four CDIP buoy stations
show that the crest-trough correlation parameter alone is not
a good rogue wave indicator, but its temporal variability is.
These results highlight the need for improved modelling by
integrating dynamic wave field specific parameters and high-
resolution numerical models to enhance rogue wave risk as-
sessments on a global scale.

1 Introduction

Rogue waves, also known as freak waves, represent one of
the most enigmatic and dangerous phenomena in oceanogra-
phy. These waves, characterized by their exceptional height
relative to the surrounding sea state, pose significant threats
to maritime safety, including risks to vessels, offshore infras-

tructure, and coastal regions (Bitner-Gregersen et al., 2015;;
Kharif et al., 2009; Didenkulova, 2020; Didenkulova et al.,
2023). Tradionally defined as waves with a maximum height
(Hmax) exceeding twice the significant wave height (Hy),
rogue waves have been documented across diverse oceanic
environments, from deep waters to nearshore zones (Dysthe
et al., 2008; Toffoli et al., 2005). In this study the common
criterion Hpyax/Hs > 2.0 is adopted; some studies may use
~2.2 x Hg or a crest threshold. The global significance of
rogue waves was underscored by the observation of the New
Year’s Wave at the Draupner oil rig in 1995, which triggered
a renaissance in their scientific study (Haver, 2003; Adcock
etal., 2011).

Over the past two decades, various physical mechanisms
have been proposed to explain the occurrence of rogue
waves. These include nonlinear processes such as modu-
lation instability (Benjamin-Feir instability), wave focusing
through dispersion, and interactions with bathymetric fea-
tures (Cattrell et al., 2018; Fedele et al., 2016; Gramstad et
al., 2018a). Analytical models, numerical simulations, and
laboratory experiments have provided significant insights
into these mechanisms (Onorato et al., 2005; Onorato et al.,
2003; Toffoli et al., 2011). However, the real-world appli-
cation of these theories remains limited due to the rarity of
rogue wave events and the sparse availability of in-situ ob-
servations (Azevedo et al., 2022; Baschek and Imai, 2011;
Barbariol et al., 2019b). This scarcity of high-quality obser-
vational data, particularly from buoys, has constrained the
development of robust predictive models (Orzech and Wang,
2020). From a scientific perspective, rogue waves challenge
conventional understanding of ocean dynamics.

Recent advancements in reanalysis datasets and wave
modeling offer a promising avenue for addressing these
limitations. Reanalysis products such as ERAS5 and higher-
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resolution models like ECMWF’s CY47R1 provide global
coverage of wave parameters, integrating observational and
modeled data to simulate historical ocean conditions. While
ERAS assimilates observational data and is designed to re-
flect real-world conditions, its spatial resolution (approx-
imately 40km) can result in the smoothing of extremes
(ECMWE, 2021; Hersbach et al., 2020; Barbariol et al.,
2019a). In contrast, the CY47R1 wave model, with its higher
resolution (18 km) and enhanced spectral fidelity, is poten-
tially more sensitive to localized, transient events such as
rogue waves, albeit without assimilating observational wave
data (Cavaleri et al., 2022; ECMWE, 1979-1989, 1990-
1999, 2000-2009, 2010-2020; Lobeto et al., 2024). In phase-
averaged models, higher resolution does not resolve individ-
ual crests; but it improves representation of envelope statis-
tics and gradients (e.g., distributions of Hg and envelope-
based (Hmax)). It is important to stress that phase-averaged
spectral wave models cannot explicitly capture rogue waves,
meaning that they do not simulate individual wave realiza-
tions or isolated extreme crests in time and space; rather, they
describe the wave field statistically via spectral moments and
probabilistic envelope-based estimates that characterize the
likelihood of extremes within a given window.

While traditional theories of formation have emphasized
nonlinear modulational instability (Teutsch and Weisse,
2023; Onorato et al., 2009), recent studies highlight the role
of spectral energy distribution, wave group dynamics, and
crest-trough correlation in governing rogue wave emergence
(Hafner et al., 2021b; Gemmrich and Cicon, 2022; Gemm-
rich and Thomson, 2017; Cicon et al., 2024). Given the se-
vere implications of these waves for navigation, offshore
energy production, and climate-driven wave climate shifts,
there is a growing need for improved methodologies that de-
tect and predict rogue wave conditions using this new knowl-
edge.

Numerous studies have investigated the mechanisms un-
derlying rogue wave formation (Babanin and Rogers, 2014;
Bennett et al., 2012; Onorato et al., 2009; Gemmrich and
Cicon, 2022). Early research primarily focused on the role
of modulational instability, which predicts that under spe-
cific conditions, wave groups can undergo nonlinear focus-
ing, leading to extreme wave growth (Adcock et al., 2015;
Janssen, 2003; Horikawa and Maruo, 1988; Donelan and
Magnusson, 2005). However, observational evidence sug-
gests that rogue waves also frequently occur in environ-
ments where modulational instability is weak or absent, par-
ticularly in wind-sea dominated conditions (Fedele et al.,
2016; Hafner et al., 2021b). Beyond modulational instability,
wave—current interactions (refraction by mesoscale/jet cur-
rents), bathymetric refraction/focusing, and depth transitions
can modulate extremes, particularly outside deep water. (Li
et al.,, 2021; Li and Chabchoub, 2023, 2024). Recent ad-
vancements in spectral wave analysis have pointed toward
wave group dynamics, spectral bandwidth narrowing, and
crest-trough correlation as dominant factors contributing to
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rogue wave development. Studies utilizing high-resolution
buoy measurements, such as those by Gemmrich and Ci-
con (2022) and Hiéfner et al. (2021b), have shown that nar-
rower spectral bandwidths and increased energy concentra-
tion in specific frequency ranges lead to increased wave fo-
cusing (higher crest-trough correlation), thereby enhancing
the probability of rogue wave formation.

Despite these advances, a major limitation in rogue wave
research is the reliance on localized in situ measurements,
which are sparsely distributed and primarily concentrated
in coastal waters (Barbariol et al., 2019b; Baschek and
Imai, 2011). Global wave modelling and reanalysis datasets,
such as ERAS reanalysis and the ECMWF CY47R1 high-
resolution hindcast, remain the most used tools for vessel
design criteria, routing configuration, and operational wave
forecasting. These models integrate spectral wave dynam-
ics and physics-based simulations to reconstruct past wave
climates and provide probabilistic wave hazard assessments
(ECMWE, 1979-1989, 1990-1999, 2000-2009, 2010-2020,
2020, 2021). However, evidence suggests that these mod-
els systematically underestimate extreme wave occurrences,
particularly rogue waves, due to their reliance on smoothed
spectral representations and linear parameterizations (Cam-
pos et al., 2018; Barbariol et al., 2019a; Janssen, 2015).
This discrepancy presents significant challenges for maritime
safety and operational oceanography, as rogue waves con-
tinue to be an unpredictable and underrepresented threat in
global wave forecasts.

Building on these developments, this study aims to
bridge the gap between observational and modelled per-
spectives of rogue wave events. By comparing FOWD-
derived buoy data (Hafner et al., 2021a) with the ERAS re-
analysis (ECMWF, 2021) and ECMWF CY47R1 hindcast
wave model (ECMWE, 1979-1989, 1990-1999, 2000-2009,
2010-2020, 2022), we seek to identify patterns or indicators
in the modelled data that correspond to rogue wave occur-
rences observed in situ. The overarching goal is to develop
methodologies for mapping rogue wave probabilities on a
global scale, leveraging the extensive spatial and temporal
coverage of reanalysis and high-resolution wave models.

A key component of this study is the assessment of sea-
sonal rogue wave distributions, highlighting the climatolog-
ical dependence of rogue wave occurrences (Cattrell et al.,
2019; Jonathan and Ewans, 2008). Statistical comparisons
of Hmax and Hj distributions, coupled with density scat-
ter plots and spectral analyses, provide insight into the dis-
crepancies between FOWD observations and modelled out-
puts. Additionally, spectral parameters such as wave skew-
ness, kurtosis, and the Benjamin-Feir Index (BFI), which
are available in these datasets, are investigated as indica-
tors of nonlinear wave interactions, wave group coherence,
and instability mechanisms (Azevedo et al., 2022). While
these spectral metrics have been widely employed to describe
rogue wave likelihood, their ability to capture real-world ex-
treme wave events remains unproved when applied to large-
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scale numerical models (Lobeto et al., 2024). We treat skew-
ness, (excess) kurtosis, and BFI as descriptive diagnostics of
non-Gaussianity, not as stand-alone predictors for real-world
rogues in global phase-averaged models. In global phase-
averaged models, several traditional predictors show limited
skill for real-world rogue events; our contribution is finding a
specific temporal crest-tough correlation signal behavior re-
lated to rogue wave events.

We advance to evaluate the effectiveness of crest-trough
correlation (r) as a more promising indicator of rogue wave
formation (Hafner et al., 2021b; Gemmrich and Cicon, 2022;
Cicon et al., 2024; Teutsch and Weisse, 2023). Recent re-
search suggests that the higher the crest-trough correlation,
the higher the probability of rouge wave formation (Cicon
et al., 2024), yet we hypothesize that this parameter alone
should not be used as a reliable predictor, because it is
very usual for waves to reach a certain crest-trough corre-
lation value. Instead, this present study hypothesizes that
the dynamic evolution of crest-trough correlation — specif-
ically, a sharp decrease, usually reaching below 0.5, fol-
lowed by a rapid increase usually reaching above 0.6 — pre-
cedes rogue wave events and may serve as an early warn-
ing sign of extreme wave amplification. To validate this hy-
pothesis, detailed case studies of rogue wave occurrences at
four strategically located CDIP buoy stations — Station 098
(Mokapu Point, HI), Station 154 (Block Island, RI), Sta-
tion 162 (Clatsop Spit, OR), and Station 166 (Ocean Sta-
tion Papa) — are conducted. These analyses assess the tem-
poral evolution of crest-trough correlation alongside spectral
bandwidth narrowing and relative energy concentration in
the 0.25-1.5 Hz range, new possible significant parameters
that influence rogue wave development through energy re-
distribution and wave group dynamics (Saulnier et al., 2011;
Gemmrich and Thomson, 2017). We differ from Cicon et
al. (2024) by (i) introducing a dynamic r inverted-peak pre-
dictor (dip—rebound), (ii) leveraging CY47R1 outputs, and
(iii) initially validating across 81 observed events at four
CDIP stations with seasonal context (more are done in fu-
ture studies).

The significance of this research extends beyond theoret-
ical advancements in rogue wave physics. Given the sparse
global coverage of in situ wave measurements, primarily
concentrated along the coastlines of North America and Eu-
rope, there is an urgent need to extrapolate rogue wave
risk assessments beyond these regions. The underrepresen-
tation of rogue waves in global wave models poses a sub-
stantial risk to shipping operations, offshore platforms, and
coastal infrastructure, where extreme waves can cause struc-
tural damage and human casualties (Gramstad et al., 2018b;
Bitner-Gregersen et al., 2018; Bitner-Gregersen and Gram-
stad, 2015; Bitner-Gregersen and Toffoli, 2013). By address-
ing these challenges, this study aims to contribute to the ad-
vancement of operational oceanography and the development
of predictive tools for extreme wave events. Ultimately, the
findings presented here provide a foundation for more accu-
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rate rogue wave risk assessments and support the implemen-
tation of enhanced forecasting methodologies for extreme
sea states worldwide using models (Orzech, 2019; Cicon et
al., 2023; Cicon et al., 2024). This study is limited to deep-
water sea states and phase-averaged spectral models (ERAS,
ECMWF CY47R1). Shallow/coastal processes (e.g., depth-
induced breaking, strong tide/surge currents, bathymetric fo-
cusing nearshore) and phase-resolved modelling lie outside
the present scope.

2 Methodology

The methodology employed integrates three different data
sources to examine the measurement and perception of rogue
waves, utilizing in situ observations from CDIP buoys —
from the FOWD dataset, ERAS reanalysis data, and high-
resolution hindcast data from ECMWF’s CY47R1 wave
model.

The buoy data used were obtained from the FOWD (Free
Ocean Wave Data) dataset curated by Dion Hifner, which
mainly filters wave with spectral significant wave height
(Hpy =+/4 x mo, where mg is the zeroth spectral moment
of the wave energy spectrum) above 1 m. The FOWD dataset
is built from the Coastal Data Information Program (CDIP)
buoy network, primarily consisting of Datawell Directional
Waverider buoys deployed across various regions around the
United States territories coasts, with data spanning several
decades (Hafner et al., 2021a). FOWD processes raw buoy
observations through a running time window approach that
accounts for the non-stationary nature of the ocean. It applies
extensive quality control measures, including spectral den-
sity estimation using Welch’s method, crest-trough correla-
tion analysis, and spectral partitioning. The dataset includes
over 4 billion wave observations, providing a high-resolution
view of wave dynamics (Hafner et al., 2021a). Key param-
eters extracted from the buoy data include maximum indi-
vidual wave height, significant wave height, Benjamin-Feir
Index, wave spectral peakedness, spectral kurtosis, spectral
skewness, spectral bandwidth narrowness, dominant wave
period, dominant directional spread, relative energy in the
frequency range of 0.25 to 1.5 Hz, and crest-trough correla-
tion. These parameters were selected based on their relevance
to wave dynamics and their ability to characterize extreme
events (Hafner et al., 2021b).

To complement the in-situ observations, reanalysis data
from ERA5 were employed. ERAS, produced by the
European Centre for Medium-Range Weather Forecasts
(ECMWE), provides hourly estimates of atmospheric, land,
and oceanic climate variables, including wave properties
(ECMWE, 2021; Hersbach et al., 2020). The wave compo-
nent of ERAS is based on the third-generation WAM model,
which simulates wave generation, growth, and dissipation
(Liu et al., 2022). ERAS assimilates observational data from
buoys, satellites, and ships to produce a globally consistent
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dataset with a spatial resolution of approximately 40 km and
a temporal resolution of one hour (ECMWF, 2021). The
wave spectra in ERAS are discretized into 30 frequency
bands and 24 directional bins, which may affect the repre-
sentation of high-energy, short-lived wave events (Barbariol
et al., 2019a; Janssen, 2015).

To address the limitations of ERAS, we included the
ECMWF high-resolution hindcast dataset based on the
CY47R1 wave model. The CY47R1 dataset features a higher
spatial resolution of approximately 18 km and a finer spec-
tral resolution with 36 frequency bands and 36 directional
bins (ECMWF, 1979-1989, 1990-1999, 2000-2009, 2010-
2020, 2022). Unlike ERAS, CY47R1 does not assimilate ob-
servational wave data, relying solely on numerical simula-
tions forced by ERAS wind fields. Its higher resolution, how-
ever, tends to resolve extreme wave events more effectively,
capturing transient rogue waves that might be smoothed out
in ERAS (Barbariol et al., 2019a; Lobeto et al., 2024). The
CY47R1 hindcast from 2015 to 2021 was specially selected
for this study because it is the only global wave hindcast that
was re-ran to include calculations of the wave parameters
Dion Hafner found to be important for rogue wave identifi-
cation, such as: crest-trough correlation, spectral bandwidth
narrowness and relative energy in the frequency range of 0.25
to 1.5 Hz, which are the parameters this study means to ana-
lyze and test.

For all datasets, careful preprocessing was conducted to
ensure consistency and comparability. The reanalysis and
hindcast data were chosen to the locations of the selected
buoys using the nearest grid point method. Spatial and tem-
poral matching were used to align model estimates with buoy
observations. Additionally, wave parameters corresponding
to those calculated from the buoys’ records (maximum wave
height, spectral skewness, spectral kurtosis, Benjamin-Feir
Index) were extracted from the ERA5 and ECMWF hind-
cast datasets. Quality control measures were implemented
to remove data gaps, filter outliers — making sure we were
not filtering any rogue wave and ensure coherence across
datasets (Hafner et al., 2021a). All model analyses use phase-
averaged spectral outputs; results should not be generalized
to phase-resolved solvers.

In the buoy records, Hpmax is obtained from the time-
domain elevation series using the zero-crossing method over
a 30 min window (yielding the sample maximum trough-to-
crest height among the individual waves in that record). In
phase-averaged models, the wave field is represented sta-
tistically by the envelope of a stochastic sea; the model
outputs (ERAS, CY47R1) provide an expected maximum
single-wave height (Hpax) (or a related extreme statistic)
for the same window, computed from the significant wave
height and spectral shape together with the effective num-
ber of waves in the interval (extreme-value theory applied
to the wave-height distribution; Rayleigh/Forristall-type with
second-order/statistical corrections). Thus, buoy Hpyax (a re-
alized sample maximum) and model (Hpax) (an envelope-
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based expectation) are not identical by construction, but
they are directly comparable at the level of distributions and
event windows when the window length and collocation are
matched, and with the caveat that grid-scale/spectral smooth-
ing in models can compress the upper tail and Hyax/H; vari-
ability, while buoy mechanics (or quality control) can under-
record some extreme crests (Janssen, 2003, 2015; ECMWF
IFS Part VII CY47; Barbariol et al., 2019b; Hifner et al.,
2021a; Forristall, 2000; Mori and Janssen, 2006).

Rogue waves were identified using established criteria,
primarily based on the threshold condition Hp,x is larger
than 2 times Hg, where Hp,x is the maximum wave height
and Hj is the significant wave height (Garrett and Gemm-
rich, 2008; Dysthe et al., 2008; Fedele, 2016; Muller et al.,
2005). This definition is commonly used in the literature al-
though it does not capture the dangerousness of these waves
since there is no wave height threshold, meaning a one-
meter wave can be considered a rogue wave if the signifi-
cant wave height (average sea conditions) is lower than 0.5 m
(Fedele et al., 2016; Heller, 2006; Stansell, 2004; Wolfram
et al., 2000). The smaller rogue wave present in the FOWD
dataset had 2 m of height since it filtered out waves with sig-
nificant wave height below 1 m. The identification and classi-
fication of rogue waves were conducted systematically across
all datasets, ensuring consistency in comparisons.

The first phase of the analysis focused on comparing Hpax
(maximum wave height) and H, (significant wave height)
distributions from FOWD, ERAS, and ECMWF CY47R1,
identifying discrepancies in how rogue waves are represented
across these datasets. Seasonal variability was investigated
using whisker plots and maps, assessing how wave height
extremes fluctuate throughout the year and whether numer-
ical models effectively capture rogue wave probability un-
der different oceanic conditions. Additionally, probability
density functions including information on skewness, kurto-
sis, and the Benjamin-Feir Index (BFI) are examined to as-
sess the presence of non-Gaussian statistical behaviors and
modulational instability signatures in the datasets (Bitner-
Gregersen and Toffoli, 2012; Orzech and Wang, 2020; Mori
and Janssen, 2006; Nederkoorn and Seyffert, 2022).

The second phase of the analysis focused on investigat-
ing specific rogue wave events and looking at the parameters
which lately have been consider more significant for rogue
wave identification: narrowness, relative energy in the 0.25-
1.5Hz frequency range and crest-trough correlation. The
spectral bandwidth narrowness parameter describes the con-
centration of wave energy within a specific frequency range,
where a lower bandwidth implies a more focused wave spec-
trum with less energy dispersion across multiple frequen-
cies. Narrower bandwidths facilitate the focusing of wave
energy and increase the probability of constructive interfer-
ence (Saulnier et al., 2011). This phenomenon is particularly
important in conditions that favor rogue wave generation, as
a more concentrated spectrum enhances wave coherence and
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promotes nonlinear wave interactions (Gemmrich and Thom-
son, 2017).

The relative energy within the 0.25-1.5Hz frequency
range serves as an indicator of the dominance of short-period
wave wind-sea components in the wave spectrum. When a
significant portion of wave energy is contained within this
high-frequency band, it reflects the active presence of local
wind forcing and a narrowing of the spectrum around shorter
wave periods. Elevated energy levels in this range have been
linked to conditions that favor nonlinear interactions and the
development of wave groups through constructive interfer-
ence (Gramstad and Trulsen, 2010; Zheng et al., 2016). In
bandwidth-limited seas, such spectral focusing can enhance
modulational instability and increase the probability of ex-
treme wave events (Stgle-Hentschel et al., 2020; Wang et al.,
2020). These conditions promote the formation of persistent,
coherent wave groups — key precursors to rogue wave devel-
opment.

The crest-trough correlation parameter (r) has emerged
as a key indicator for rogue wave occurrences in real-world
ocean conditions, as demonstrated in multiple recent stud-
ies, including the works of Héfner et al. (2021b) and Gemm-
rich and Cicon (2022). Its strong correlation with rogue wave
probability makes it a practical alternative to traditional pa-
rameters related to rogue wave occurrence, enabling more
accurate risk assessments for maritime safety. This parameter
quantifies the degree of correlation between the crest heights
and successive trough depths in a wave field and has been
identified as the dominant control factor for rogue wave con-
ditions.

The crest-trough correlation r is computed using the auto-
correlation function of the sea surface elevation at a lag time
of half the mean spectral wave period (Hafner et al., 2021a).
Mathematically, it can be derived from the Wiener-Khinchin
theorem, which links the spectral density of the wave field
S(f) to the correlation function:

1
r=—yp>+Q2 (1)
mo
where my is the zeroth spectral moment, p> and Q? are com-
puted as:

[e0]

o= /S(f)cos(anr)df,

0
00

Q:/S(f)sin(2nfr)df (2

0

where 7 (= T~ /2) is the lag time at half the mean period T,
which is estimated as mq/m1 (where m is the first spectral
moment).

This formulation effectively captures the coherence be-
tween successive wave crests and troughs, making it highly
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relevant for rogue wave prediction. Unlike traditional rogue
wave predictors, such as the Benjamin-Feir Index (BFI) and
wave steepness, which are primarily based on modulational
instability theories, crest-trough correlation provides a robust
empirical link to rogue wave formation in natural ocean con-
ditions (Hafner et al., 2021b; Gemmrich and Cicon, 2022).
High crest-trough correlation is indicative of strongly cor-
related wave groups, which enhance the likelihood of large
amplitude waves forming through constructive interference
(Gemmrich and Thomson, 2017; Gramstad and Trulsen,
2007; Saulnier et al., 2011). In contrast to nonlinearity-based
metrics (such as BFI), crest-trough correlation seems to re-
main a statistically significant rogue wave predictor across
all sea states and environments, including deep and shallow
water (Hafner et al., 2021b). In this study, we interpret r as
a group-coherence metric derived from the auto-correlation
of surface elevation at a lag of 77~ /2; it quantifies spectral
organization rather than a direct “linear focusing” diagnostic
for a fixed S (f).

A key aspect of this study is the evaluation of crest-trough
correlation as an early warning indicator for rogue wave de-
velopment (Cicon et al., 2024; Gemmrich and Cicon, 2022;
Hafner et al., 2021b). Since this metric quantifies the degree
of coherence between wave crests and troughs, it serves as
a proxy for wave group organization and energy focusing
mechanisms (Hafner et al., 2021a).

This research suggests that rogue waves tend to occur in
conditions where crest-trough correlation initially decreases
below 0.5 before recovering to above 0.6, indicating a re-
structuring of the wave field from a more chaotic to a more
clustered state. To validate this hypothesis, four different
rogue wave events were chosen from four strategically po-
sitioned CDIP buoy stations: Station 098 (Mokapu Point,
HI), Station 154 (Block Island, RI), Station 162 (Clatsop
Spit, OR), and Station 166 (Ocean Station Papa). These loca-
tions provide diverse oceanic environments for investigating
rogue wave formation under varying swell and wind-sea con-
ditions.

The analysis examined how crest-trough correlation
evolves alongside spectral bandwidth narrowing and rela-
tive energy shifts within the 0.25-1.5 Hz frequency range.
Spectral bandwidth narrowing is an essential indicator of en-
ergy concentration within fewer dominant frequency modes,
enhancing wave coherence and constructive interference
(Hafner et al., 2021a). The relative energy distribution in the
0.25-1.5Hz band highlights the interaction between long-
period swell waves and shorter wind-driven waves, influ-
encing rogue wave growth (Hafner et al., 2021a). By si-
multaneously analyzing these parameters, we examined how
wave field transformations precede extreme wave events.
This methodology integrates traditional wave height analysis
with advanced spectral diagnostics and crest-trough correla-
tion assessments.
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3 Results and Discussion
3.1 Entire Dataset Analysis for Common Period Time

Our first investigation aimed to identify the seasonal distribu-
tion of real-world rogue wave occurrences based on FOWD
buoy data (Fig. 1). Rogue waves in this dataset have at least
2 m height, since FOWD is filtered to only contain wave data
with spectral significant wave height above 1 m. This anal-
ysis highlights clear spatial and seasonal patterns in rogue
wave frequency across different regions. The rogue waves
here are identified solely from the FOWD buoy observations
using time-domain criteria. Phase-averaged spectral models
are then sampled at the same locations and times to evaluate
envelope-based and statistical diagnostics of the modeled sea
state, allowing assessment of how well these models repre-
sent and can, to a certain extent, predict the conditions asso-
ciated with observed rogue wave events.

The highest rogue wave occurrences are observed along
the U.S. West Coast, particularly offshore California, Ore-
gon, and Washington, where the number of rogue wave de-
tections averages between 80 to 120 events per season in
some locations, with peak values exceeding 150 events per
season in winter (Baschek and Imai, 2011; Cattrell et al.,
2019). The North Atlantic coast, particularly off New Eng-
land and the Mid-Atlantic, shows moderate rogue wave ac-
tivity, averaging 40 to 80 events per season at some buoys.
In contrast, the Gulf of Mexico and the southeastern U.S.
coastal waters exhibit significantly lower rogue wave activ-
ity, with values typically below 20 events per season, and
in many locations, rogue waves are rarely detected at all
(Jonathan and Ewans, 2008). The Hawaiian region displays
moderate occurrences, with values ranging from 30 to 70
events per season, depending on the season. Rogue wave ac-
tivity near Alaska is less consistent but can reach 50 to 90
events per season during the most active months.

The seasonal distribution of rogue waves seems to follow
a trend influenced by large-scale meteorological and oceano-
graphic processes (Wang and Swail, 2001). Counts range
from tens to over one hundred per season regionally, with
a winter maximum on the U.S. West Coast and a summer
minimum basin-wide. Rogue waves are most frequent in the
Winter season, with the West Coast experiencing peak values
of 100 to 150 events per season in certain locations (Cattrell
et al., 2019). The Northeast U.S. and Mid-Atlantic also show
increased occurrences, with 50 to 100 events per season at
some buoys. This is consistent with the dominance of extrat-
ropical storm activity in the North Pacific and North Atlantic,
which generates high-energy wave fields conducive to non-
linear wave interactions that form rogue waves. A moderate
decline in rogue wave occurrences is observed in the spring.
Along the West Coast, values drop to 60—100 events per sea-
son, while the East Coast sees a reduction to around 40-70
events per season. This seasonal shift is likely related to the
weakening of winter storms and the transition into calmer
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springtime wave conditions. During summer, rogue wave oc-
currence along the U.S. West Coast remains elevated in the
northern sectors (Oregon and Washington), with many buoy
locations recording approximately 60—120 events per sea-
son, while central and southern California exhibit substan-
tially lower values, typically below 40—60 events per season.
This pronounced north—south gradient contrasts with winter,
when high rogue wave counts (60-140 events per season)
extend more uniformly along much of the West Coast. This
spatial pattern reflects the persistence of energetic swell and
storm-generated wave fields in the Pacific Northwest during
summer, whereas southern California experiences more shel-
tered and swell-filtered conditions. The Hawaiian region still
exhibits moderate occurrences, around 30-60 events per sea-
son, possibly due to long-period swells generated by distant
storms. And in the fall, there is a resurgence in rogue wave
occurrences, particularly along the West Coast, where values
climb back to 80—120 events per season. The East Coast also
sees an increase, with values reaching 40-80 events per sea-
son. This seasonal uptick aligns with the intensification of
storm activity as the transition to winter begins.

The strong winter peak in rogue wave occurrences, es-
pecially along the West Coast and North Atlantic, corre-
sponds to the seasonal intensification of extratropical cy-
clones, which generate unstable sea conditions, large wave
fields and steep wave conditions favorable for rogue wave
formation. We attribute winter dominance to high-energy,
steep, multi-modal seas and group dynamics, without assert-
ing a specific nonlinear mechanism. The summer minimum
is expected, as storm activity diminishes, leading to a calmer
sea state in general. The fall and spring transitional peri-
ods show moderate rogue wave activity, reflecting seasonal
shifts in storm intensity and frequency. In this study “un-
stable sea conditions” denotes high steepness, rapidly evolv-
ing or multi-modal spectra, and shifting directionality under
strong synoptic forcing.

Whisker plots were created (Fig. 2) to present the monthly
distribution of significant wave height (H;) and maxi-
mum individual wave height (Hpyax) our three distinct data
sources: CDIP-FOWD (buoy observations), ERA5 (reanal-
ysis), and ECMWF CY47R1 (high-resolution hindcast).
Whiskers quantify distribution spread; we assess rogue oc-
currence where Hp,x/Hs and explicit event counts are ana-
lyzed. FOWD buoy records use 30 min time windows; model
fields are hourly. We collocate by nearest grid point and com-
pare each hourly model output to the closest-center buoy
record. Event composites use 72 h windows (£36 h) around
the rogue timestamp. The ERAS and the ECMWF datasets
have been filtered to match exactly the FOWD dataset, mean-
ing there was no data considered when spectral significant
wave height H,,, < 1 m. This provided not only insights into
the seasonal variations, but also aimed to show the discrepan-
cies between datasets, and implications for rogue wave iden-
tification. The central box represents the interquartile range
(IQR), which contains the middle 50 % of the data points
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Figure 1. Average number of rogue waves per season based on CDIP buoy data from the FOWD dataset from 2015 to 2021. Color gradients
represent the average number of rogue waves detected per season at each buoy location. Seasons are defined as: Winter from December to
February, Spring from March to May, Summer from June to August and Fall from September to November.

(from the 25th to the 75th percentile). The horizontal line
inside the box represents the median value of the dataset for
each month. The whiskers extend to 1.5 times the IQR or
the minimum and maximum non-outlier values. The small
hollow black circles represent outliers, which are values that
exceed the whisker range and indicate extreme wave events.

The presence of numerous outliers, particularly in Hpax,
suggests that extreme wave occurrences are common, espe-
cially in winter months. These outliers are particularly rele-
vant because rogue waves are extreme events, and their de-
tection relies on capturing these deviations from the general
wave height distribution. The smaller number of extreme out-
liers (isolated black circles) in ERAS and ECMWF CY47R1
suggests they do not fully capture rogue waves, supporting
previous studies that indicate reanalysis datasets smooth out
extremes.

The highest values of Hmax and Hg occur in January,
February, and December, with numerous Hpax outliers ex-
ceeding 20-25 m and extreme values surpassing 30 m, and
several Hg outliers exceeding 10 m. The median Hpax dur-
ing winter months is about 4 m across the datasets (with long
tails), while H; values are typically between 2.5 and 3.5 m.
These months also exhibit the widest interquartile ranges and
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the greatest number of high-end outliers, reflecting more en-
ergetic and variable sea states associated with winter storm
systems. Summer months show a notable decrease in wave
energy, with Hp,x medians between 3.5 and 4.5 m and Hg
between 1.5 and 2.5m across all sources. During summer,
fewer outliers are present and the whisker spread is narrower,
indicating calmer and more stable sea states. In transitional
seasons such as fall and spring, from September to Novem-
ber and April to May, there is a gradual broadening in the
spread of both Hyax and Hg values, illustrating a progressive
return to more dynamic and energetic conditions.
Comparing Hpgax across the datasets, all three — FOWD
(yellow), ERAS (blue), and ECMWF CY47R1 (red) — show
similar medians, with FOWD generally capturing more high-
end outliers, indicating a potential underestimation of ex-
treme wave events from models. ERAS and ECMWF show
strong agreement in median Hp,ax values throughout the year,
although ERAS occasionally reports slightly lower medians.
The FOWD dataset however presents a lower value through-
out the distribution, on the box values and medians, which
may reflect limitations in mooring response causing underes-
timation of the highest wave crests in some conditions. The
reason why the model and reanalysis systematically show
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Figure 2. Whisker plots representing statistics of maximum wave heights (in meters) and significant wave height (in meters) per month for
the buoy data (all locations combined from the FOWD dataset), the ERAS dataset and the ECMWF dataset for the same period, from 2015 to
2021. All datasets have been filtered so there is no data when Hy;, < 1 m. Buoy Hmax from zero-crossings; model (Hmax) is envelope-based.

higher Hpax values is likely due to the different methods
how to calculate Hpax. The maximum height based on in-
dividual waves is lower than the maximum envelope height
(see Fig. 1 in Cicon et al., 2024). In addition, buoys often
record lower wave heights because they can be pushed un-
derwater by the crest or drift sideways, missing the very top
of the wave (Forristall, 2000). Another reason is that buoys
tend to move forward with the wave when theyre on the crest
and backward in the trough, which means they spend more
time on the crests. This movement slightly raises the aver-
age sea level they record, but at the same time causes them
to underestimate how tall the highest wave crests really are
(Forristall, 2000).

It must be noted that the models compute Hpy,x from the
statistical properties of the wave envelope rather than by
tracking each wave crest directly. Both ERAS and ECMWF
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calculate Hp.x as an expectation from the envelope-based
statistical distribution of wave heights (Hpax), adjusted for
number of waves and spectral shape (Janssen, 2003, 2005,
2015). Though this yields reasonable agreement with aggre-
gate buoy statistics, it is inherently limited in capturing in-
dividual extreme crests — especially rogue waves — because
it smooths over actual variability and rests on Gaussian as-
sumptions. Consequently, peak wave events can be underrep-
resented relative to in situ measurements. In addition, overes-
timation may occur because ( Hpnax) is @ mean of the extreme-
value distribution rather than a single observed crest.

For Hj, the agreement across all datasets is more consis-
tent. Median and interquartile values for Hy are nearly iden-
tical during most months, particularly in summer, suggest-
ing strong convergence of model and observational estimates
once the data have been consistently filtered to exclude low-
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energy sea states. FOWD displays slightly lower Hg values,
especially in summer months, but otherwise aligns closely
with ERAS and ECMWE. All three datasets reproduce the
expected seasonal modulation of significant wave height with
strong fidelity.

The monthly whisker plots infer that extreme wave occur-
rences are more frequent when overall wave energy is higher.
The direct correlation between high Hy and extreme Hpmax
values supports the conclusion that the probability of ex-
treme waves increases during high-energy sea states. Winter
and fall periods show the highest wave heights, aligning with
the most frequent rogue wave occurrences in the seasonal-
ity map. Summer shows the lowest wave heights, with min-
imal rogue wave occurrences, consistent across both graphs.
Spring acts as a transitional phase, with moderate values in
both wave height and rogue wave frequency. The west coast
domination in rogue wave events suggests that high wave
height alone is not the only factor for rogue wave formation;
local bathymetry, wave-current interactions, and linear and
nonlinear effects also likely play a role (Cattrell et al., 2018).

Scatter density plots are also a powerful tool for visualiz-
ing the relationship between two different datasets (Fig. 3)
(Cicon et al., 2024). Each point in the scatter plots below
represents a pair of values, with FOWD buoy measurements
on the x-axis and the corresponding values from ERAS5 or
ECMWF CY47R1 on the y-axis. The correlation coefficient
(r-value) in each plot quantifies how well the model data
aligns with the buoy measurements, with values closer to 1.0
indicating a stronger agreement.

Analyzing the Maximum Individual Wave Height (Hpax)
graphs, the ERA5 vs. FOWD plot in the upper left panel
shows a Pearson correlation coefficient of r = 0.90, indi-
cating a strong agreement between model and observational
data in estimating Hpax. Most of the data points cluster along
the 1:1 line, particularly for wave heights between 2 and
10m, suggesting that ERAS captures the general behavior
of sea states within this range. Beyond 10 m, however, a
tendency for underestimation becomes more apparent, with
ERAS values falling below the FOWD observations. In the
upper right panel, ECMWEF also achieves a Pearson correla-
tion of r = 0.90 with FOWD for Hpax, and displays a simi-
lar distribution to ERAS, including the same systematic un-
derrepresentation of extreme wave heights greater than 12 m.
The red regression lines lying slightly below the 1:1 line
at high Hp,x values, confirm that the models underestimate
peak extremes.

For the Significant Wave Height (H;) scatter plots, both
ERAS5 and ECMWEF show slightly stronger correlation with
FOWD, with r =0.92 in both cases, highlighting better
model fidelity in representing bulk sea state energy. These
panels show an even tighter clustering along the 1 : 1 line,
suggesting excellent agreement in Hg values across the range
of 1.5 to 6m. A few deviations can be observed above 7 m,
where the models show a slight negative bias. The high den-
sity around H values of 2.5 to 4 m reflects the prevalence
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of energetic but not extreme wave conditions. Overall, both
ERAS5 and ECMWF reproduce H, behavior well in storm and
swell-dominated regimes, capturing the bulk statistical struc-
ture of significant wave height with minimal error. These
scatter plots use the FOWD H; time-domain parameter rather
than spectral H,,, allowing lower-bound values to be in-
cluded near the 1 m filter threshold.

In contrast, the bottom row of the figure, representing
the Hmax/Hs ratio (the rogue wave index) reveals a near-
total lack of correlation between the models and the FOWD
dataset. For ERAS, Hpax/Hs values are tightly clustered be-
tween 1.6 and 2.0, suggesting that the model suppresses vari-
ability in this ratio and rarely reflects the presence of rogue
waves. FOWD data, on the other hand, span a wider range
from approximately 0.2 to 3.2, capturing extreme wave am-
plification events more effectively. ECMWF shows slightly
improved variability, with values concentrated between 1.7
and 2.2, and more frequent occurrences of Hpax/Hs > 2.0
than ERAS. However, both models exhibit evident bias and
range compression, confirming their limited capacity to re-
solve extreme and rogue wave events. This bias on the
Hpnax/ Hs model values may occur due to the nature of the
models’ Hpax calculation, which is intrinsically connected
to H.

While both ERA5 and ECMWEF exhibit strong correlations
for independent parameters like Hpyax and Hj, their inabil-
ity to represent the ratio Hp,x/Hs reflects their failure to
account for transient, localized wave amplification phenom-
ena. This finding corroborates earlier studies suggesting that
coarse model resolutions and temporal averaging suppress
extreme features such as rogue waves (Campos et al., 2018;
Lobeto et al., 2024; Hersbach et al., 2020). Both ERA5 and
ECMWEF aggregate wave statistics over spatial grid cells of
approximately 40 and 18 km, respectively, which inherently
dampens localized peaks observed by high-frequency buoy
measurements.

Probability density function (PDF) graphs were addition-
ally created to represent the likelihood of different values oc-
curring within a dataset (Fig. 4) (Nederkoorn and Seyffert,
2022).

Although all three datasets exhibit a similar shape of
PDF distributions for Maximum Individual Wave Height
(Hmax), the FOWD dataset reveals a slightly broader spread
and a longer tail toward extreme values. FOWD shows a
higher standard deviation (1.69m) and a maximum Hpgx
of 30.49 m, compared to 19.75m in ERAS and 19.71 m in
ECMWE. This difference illustrates that FOWD buoys cap-
ture extreme wave events more frequently, possibly due to
their high temporal resolution and ability to resolve short-
lived energy peaks in real time. In contrast, the spectral mod-
els tend to smooth out such extremes, leading to a truncation
of the right tail in the model distributions.

The same trend is reflected in the Significant Wave Height
(Hs) PDF, where FOWD shows slightly elevated variabil-
ity, with a standard deviation of 0.935m and a maximum
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Figure 3. Density Scatter Plots of ERAS reanalysis vs. FOWD buoy data and ECMWF CY47R1 hindcast vs. FOWD buoy data for maximum
wave height (Hmax), significant wave height (Hs) and rogue wave index (Hmax/Hs) for all buoy locations for the years of 2015 to 2021
(inclusive). The color gradient represents the density of points, where warmer colors (red/yellow) indicate a higher concentration of data
points and cooler colors (blue) represent lower densities. All datasets are filtered so there is no data when Hy,, < 1 m. Buoy Hpmax from
zero-crossings; model ( Hpgx) is envelope-based.
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Hg of 12.22m. While ERA5 and ECMWF follow similar
central tendencies, both exhibit slightly narrower distribu-
tions and reduced peak values (ERAS Hgmax =10.39 m;
ECMWF H; max = 10.23 m). The broader distributions and
higher extremes in FOWD are consistent with a heavy-tailed
probability structure — potentially resembling a Fréchet-type
distribution — characteristic of rogue wave—prone sea states.
The slow decay of probability towards very high (extreme)
values, which is common for ocean extremes and suggests
that events significantly greater than the mean occur more
frequently than would be predicted by normal or exponential
distributions.

In the rogue wave index (Hmax/Hs) PDF, the FOWD
dataset shows a broader distribution with a strong peak be-
tween 1.6—1.8, which depicts the relationship we usually see
in real life, with a wider range of wave amplification sce-
narios, where extreme waves are less common (Nederkoorn
and Seyffert, 2022). FOWD also shows a much longer tail
with a broader distribution and with more points exceeding 2,
meaning it captures more rogue wave events than ERAS and
ECMWE. In contrast, ERAS5 and ECMWF data cluster more
narrowly. ERAS centers around 1.87 with a standard devia-
tion of 0.043, while ECMWEF clusters slightly higher, around
1.97 with a standard deviation of 0.046. This artificial nar-
rowing suggests a systematic model bias which is not always
seen in real life (Janssen, 2015). While ECMWF slightly im-
proves upon ERAS in mean values, neither captures the full
spread of the observational data.

Wave spectral skewness (3rd standardized moment of sur-
face elevation) measures the asymmetry of the wave spec-
trum, characterizing how energy is distributed across wave
frequencies (Stansell, 2004). High skewness values are of-
ten linked to wave focusing mechanisms, which amplify ex-
treme events. Previous research (Mori and Janssen, 2006) at-
tests that skewness is a good predictor of rogue wave for-
mation, particularly in shallow water. The FOWD data show
a broader and more variable distribution of skewness values
(ranging from —0.47 to 0.95), with a mean of 0.048 and a no-
tably higher standard deviation compared to both ERAS and
ECMWE. In contrast, the models are tightly centered near
zero with very low variability, reflecting an inability to rep-
resent asymmetrical and steep wave structures. This has im-
plications for rogue wave detection, as wave asymmetry has
been shown to precede extreme crest formation.

Wave spectral excess kurtosis (4th moment of surface el-
evation minus three), which reflects the “peakedness” or
spectral concentration of wave energy (Goda, 1970), where
higher kurtosis values have been linked to increased rogue
wave probabilities, as they indicate wave focusing mecha-
nisms (Mori and Janssen, 2006; Mori et al., 2011). Theoreti-
cal work (Fedele et al., 2016) suggests that spectral peaked-
ness (high kurtosis) is a necessary condition for rogue waves
to form. The FOWD dataset records kurtosis values extend-
ing above 5.7 with a standard deviation of 0.109, while ERA5
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and ECMWEF are constrained to low values near 0, suggest-
ing Gaussian-like behavior.

FOWD data demonstrates both more positive skewness
and elevated kurtosis values, indicating frequent departures
from Gaussian behavior in the wave field. These are signa-
tures of asymmetric, steep, and strongly peaked wave groups,
conditions known to precede rogue wave events. In contrast,
both ERAS5 and ECMWEF exhibit distributions that are cen-
tered near zero with low variability, highlighting their lack
of sensitivity to wave shape irregularities and spectral sharp-
ness.

The Benjamin-Feir Index (BFI) is a dimensionless pa-
rameter associated with modulational instability. High BFI
values (> 1) are typically associated with increased likeli-
hood of rogue wave generation in deep water (Onorato et al.,
2005; Janssen, 2003). In the BFI PDF, the FOWD dataset
again exhibits a broader distribution with a mean of 0.084
and broader overall distribution, indicating its sensitivity to
modulational instability. ERAS and ECMWF present mini-
mal spread, again indicating their lack of ability to resolve
the nonlinear physics critical for rogue wave development
(Janssen, 2015). Both ECMWF and ERAS present very high
outliers as maximum values, this appears as a rare artifact
and does not reflect reality.

Collectively, these findings confirm that buoy measure-
ments provide a more robust representation of real-world
wave variability, including the physical and spectral condi-
tions conducive to rogue wave formation. The inability of
ERAS and ECMWEF to replicate the variability in all parame-
ters indicates fundamental limitations in their spatial resolu-
tion, data assimilation strategies, and reliance on linear spec-
tral parameterizations. These constraints lead to the system-
atic underestimation of extreme wave phenomena and reduce
the utility of model-based datasets for rogue wave forecast-
ing.

3.2 Specific Rogue Wave Events Analysis

Recent advances in ocean wave dynamics, particularly the
work of Dion Hifner et al. (2021a, b), emphasize the impor-
tance of additional spectral parameters in improving rogue
wave prediction and classification (Hafner et al., 2021b).
These include spectral bandwidth narrowness, the relative
energy contained within the 0.25-1.5Hz range, and crest-
trough correlation. By incorporating these parameters into
the analysis, it is possible to gain a more refined understand-
ing of wave evolution and the mechanisms leading to rogue
wave amplification.

In this study, we looked at four rogue wave occurrences in
four different CDIP buoy stations to more deeply investigate
the sea state evolution before, during and after a rogue wave
event. The buoys’ FOWD data parameters of interest were
mainly compared to the ECMWF CY47R1 wave hindcast
data from 2015 to 2021, which also included the global val-
ues for crest-trough correlation, relative energy on the 0.25
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Figure 4. Probability Density Functions of different wave parameters comparing data from buoys (FOWD dataset), depicted in blue, the
ERAS reanalysis depicted in red and the ECMWF CY47R1 hindcast depicted in yellow for the same period, from 2015 to 2021. The zoom
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when Hy,; < 1 m. Buoy Hpax from zero-crossings; model (Hmax) is envelope-based.
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to 1.5 Hz frequency and the narrowness spectral bandwidth
based on Hafner’s formulas. For the more usual parameters
maximum wave height, significant wave height and the rogue
wave index, which is just one divided by the other (Hmax
divided by Hs), we also compared with the ERAS5 reanaly-
sis data and the non-filtered CDIP data, directly from cal-
culations from the heave (surface elevation) raw data from
the CDIP archives. The selected buoys — Mokapu Point, HI
(098), Block Island, RI (154), Clatsop Spit, OR (162), and
Ocean Station Papa (166) — are positioned in distinct oceanic
regions, providing datasets for understanding the conditions
that contribute to rogue wave events in different environ-
ments (Fig. 5).

The North Pacific, represented by Ocean Station Papa
(166), is characterized by persistent long-period swells and
high-energy wave climates, a good location for studying non-
linear wave interactions. Block Island (154) can be influ-
enced by extratropical storm activity, providing an opportu-
nity to examine how synoptic-scale weather systems impact
rogue wave generation. Clatsop Spit (162), positioned along
the Pacific Northwest, is subject to both local wind-driven
waves and open ocean swells, offering a complex wave cli-
mate for spectral analysis. The Mokapu Point buoy (098)
in Hawaii captures wave data in a region where energy is
frequently influenced by trans-Pacific swell propagation and
episodic storm activity.

We re-audited IDs, timestamps, units, and quality con-
trol (QC). Residual differences occur where FOWD QC ex-
cludes short segments around spikes. We flag such windows
in Fig. 5 and harmonize the 72h windowing. We first note
that in the four locations graphs the calculations based on the
raw, non-filtered, CDIP surface elevation data (in red) usu-
ally does not match 100 % with the filtered CDIP data cal-
culation from the FOWD dataset (in black). When using the
raw, non-filtered, data, we sometimes see rogue waves peaks
(when data goes above 2 on the Hpy,x/Hs graphs) that were
not present on the filtered data. For future studies, it is im-
portant to check if perhaps the filter CDIP and others are us-
ing are not unintentionally removing real rogue waves events,
which could be perceived as non-real outliers, from the data.
The usual modelled data (ERAS5 or ECMWF) smoothing can
also be clearly noticed in all the graphs from Fig. 5.

Observational data from the selected rogue wave events
at stations 098, 154, 162, and 166 consistently demonstrated
that a decrease in crest-trough correlation was accompanied
by a simultaneous narrowing of spectral bandwidth and an
increase in relative energy within 0.25—1.5 Hz. This suggests
that these spectral changes occur in tandem with the restruc-
turing of the wave field, marking a transition phase where
rogue waves are more likely to emerge. The spectral focusing
effect, driven by spectral narrowing with elevated relative en-
ergy in 0.25-1.5 Hz, leads to an increase in wave amplitude
variability and supports the formation of extreme, isolated
waves.
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4 Discussion

The crest-trough correlation parameter is strongly linked to
spectral bandwidth, with narrower bandwidths leading to
more correlated wave structures (Cicon et al., 2024). This
relationship is crucial because wave groups in bandwidth-
limited conditions favor rogue wave development. Studies
using buoy observations from the FOWD dataset and wave
modeling with WAVEWATCH III (WW3) show that high
crest-trough correlation values (> 0.6) are associated with
rogue wave probabilities that are an order of magnitude
higher than in uncorrelated wave fields (Cicon et al., 2023).
Hiéfner et al. (2021b) showed that rogue wave probability of
occurrence varies by a factor of 10 based on crest-trough cor-
relation alone, far exceeding the indicator capability of pa-
rameters like kurtosis, skewness, or steepness. And unlike
kurtosis, which is only useful within single wave groups,
crest-trough correlation remains a reliable predictor across
extended time periods and different oceanic regions. Since
crest-trough correlation can be calculated from wave spec-
tra moments, it can be directly implemented into operational
wave forecast models like those run by ECMWF and NOAA.

The link between spectral bandwidth narrowness, rela-
tive energy and the crest-trough correlation parameter can be
understood through their combined impact on wave evolu-
tion. As spectral bandwidth narrows, wave energy is confined
to fewer dominant modes, reducing spectral dispersion and
increasing the likelihood of constructive interference. This
effect is further amplified when energy in the 0.25-1.5Hz
range increases, signifying a shift toward wave fields where
co-existing swell adds a quasi-stationary low-frequency par-
tition; and the transient group beating between partitions
modulates short-term envelope statistics. Swell components
reinforce the background wave spectrum rather than dissi-
pating across a broader range of frequencies. This process
results in enhanced wave group formation, where wave trains
become more phase-aligned over time, increasing the crest-
trough correlation values and consequently the probability of
extreme wave occurrences.

Hiafner’s FOWD introduction article (Hafner et al., 2021a)
contains a probability density function (PDF) graph for crest-
trough correlation parameter » for all FOWD waves. It shows
a distinction in correlation values between all waves, waves
with Hpax/Hs > 2 (moderate rogue waves), and waves with
Hmax/Hs > 2.4 (extreme rogue waves). For all waves, the
crest-trough correlation (r) values are broadly, almost nor-
mally, distributed across a range spanning approximately 0.2
to 0.9, with a peak around 0.6 to 0.7. For waves that have
a height that is more than twice the significant wave heigh,
the crest-trough correlation distribution shifts a bit toward
higher values, with most cases occurring above 0.5, and the
peak moving toward 0.7 to 0.8. And for extreme rogue waves
(rogue wave index > 2.4), the crest-trough correlation range
is even more constrained, with most values falling between
0.6 and 0.9, and a pronounced peak around 0.75 to 0.85. This
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Figure 5. Specific rogue wave event analysis at four different buoy stations (098, 154, 162, and 166) during a period of 72h. ERAS data
is depicted in blue, ECMWF CY47R1 data depicted in orange, FOWD data depicted in in black and raw CDIP data depicted in red. Buoy
Hmax from zero-crossings; model (Hmax) is envelope-based.
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strong shift toward higher correlation values confirms that
rogue waves tend to form in conditions where wave crests
and troughs are highly correlated, reinforcing the role of lin-
ear superposition in rogue wave generation. On the other
hand, this PDF clearly shows that it is not possible to con-
sider a 0.6 or 0.7 crest-trough correlation parameter thresh-
old alone to identify rogue waves since in general seas the
values go up to 0.9 with most values around 0.6.

While it is well established that rogue waves are better
sustained in sea states where the crest-trough correlation re-
mains above 0.6 due to wave groupness and focusing, this
alone does not serve as an effective predictor. Instead, it is
the preceding conditions — a temporary drop in crest-trough
correlation followed by a rapid increase — that provide a more
reliable early warning indicator. This finding suggests that
rogue waves tend to emerge in dynamically evolving sea
states rather than in purely steady conditions. For a rogue
wave warning system, the focus should not be solely on iden-
tifying when crest-trough correlation exceeds 0.6, but rather
on recognizing the transition phase that precedes it. By mon-
itoring the evolution of crest-trough correlation in combi-
nation with spectral bandwidth changes and relative energy
shifts, it may be possible to establish a probabilistic frame-
work for forecasting rogue wave risk.

Across all four locations on Fig. 5, the evolution of this pa-
rameter follows a distinct sequence where an initial decrease
in crest-trough correlation below 0.5 is observed, followed
by a rapid increase exceeding 0.6 just prior to or during the
rogue wave event. This pattern strongly suggests that rogue
wave conditions are preceded by a transitional phase in the
wave field, where wave coherence temporarily weakens be-
fore re-emerging in a more clustered and structured state, fa-
voring the onset of extreme wave amplification.

At Station 154 (Block Island, RI), a pronounced rogue
wave event occurs on 16 November 2018, with a sudden
spike in Hpax exceeding 20 m. Prior to this event, crest-
trough correlation drops below 0.5, followed by a rapid
recovery above 0.6. Concurrently, spectral bandwidth nar-
rowness increases, indicating that wave energy is being re-
distributed into fewer dominant frequencies, a process that
aligns with constructive interference mechanisms. The rogue
wave event is marked by an increased crest-trough cor-
relation, reinforcing the idea that high correlation values
(>~ 0.6) sustain rogue waves, but the transition from a lower
correlation state is what signals their imminent formation.

A similar pattern was evident at Station 162 (Clatsop Spit,
OR) during the rogue wave occurrence on 8 April 2018. The
crest-trough correlation parameter initially dropped sharply,
reaching a minimum near 0.45, before rising to values ex-
ceeding 0.65 just as the rogue wave event occurred. This se-
quence was accompanied by an increase in relative energy
within the 0.25-1.5 Hz range, indicating a strengthening of
the short-wave wind sea component. The simultaneous rise
in crest-trough correlation and dominance of wind-sea en-
ergy suggests that the wave field became increasingly or-
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ganized and energetically focused, creating favorable condi-
tions for nonlinear wave amplification. This relationship be-
tween evolving spectral energy and coherence supports the
notion that rogue waves emerge during transient dynamical
transitions.

At Station 166 (Ocean Station Papa), the rogue wave event
on 30 December 2015, follows the same pattern, with crest-
trough correlation first dropping below 0.5, signaling a re-
duction in wave coherence, and then recovering above 0.6
immediately before the rogue wave appears. This behavior is
accompanied by increasing spectral bandwidth narrowness
and rising relative energy levels, reinforcing the finding that
the restructuring of wave groups precedes rogue wave forma-
tion.

These observations confirm that while rogue waves are
better sustained in seas where crest-trough correlation re-
mains above 0.6, which means this is a robust rogue wave
identifying condition, however this parameter alone is not a
sufficient predictor. Instead, the transition phase, where crest-
trough correlation temporarily decreases before increasing
again, appears to be a more reliable precursor to rogue wave
formation.

To statistically verify the accuracy of this inverted peak,
or drop on the crest-trough correlation, hypothesis in rela-
tion to rogue wave identification, we performed an analysis
using the data from the FOWD quality-controlled dataset.
Data available for stations 154, 162, 166 and 098 between
2015 and 2021 were gathered, and the total number of rogue
waves was found simply checking the relative height param-
eter being larger than 2. This parameter is the calculated
Hpax divided by the spectral significant wave height every
30min. There were 81 rogue waves found. Note that the
FOWD dataset is filtered to contain only waves with sig-
nificant heights above 1 m, which translates to rogue waves
with a 2m height minimum. Then we downloaded the date
related crest-trough correlation parameter from 1.5 d before
and 1.5d after the located rogue wave event. During this
time, we looked for the inverted peak that had a minimum
0.1 difference in the crest-trough correlation values and that
reached a correlation of 0.5 or below. We found 61 instances
that agreed with our hypothesis, which means that 75 % of
the rogue waves followed our criteria. This suggests that a
real-time rogue wave warning system should focus on de-
tecting this sharp drop and recovery in crest-trough corre-
lation, rather than merely identifying when values exceed a
threshold. Approximately 25 % of rogue events did not meet
the inverted-r criterion. Typical scenarios include: (i) persis-
tent swell with high r but no preceding dip; (ii) mixed/tran-
sitioning seas where r is noisy and dips are < 0.10; (iii) re-
moval of short segments by QC near the event; or (iv) #min
slightly > 0.50 before rebound. We have not quantified false
positives (inverted-r without a subsequent rogue) but we will
do so in future, longer studies with more data.

Cicon et al. (2024) proposed an empirical formula which
initially expressed rogue wave occurrence probability as a
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function of certain parameters, including wave steepness,
relative depth, directional spread, and spectral bandwidth,
alongside with the crest-trough correlation (r) parameter.
However, after evaluating the performance of this formula
using buoy observations and ECMWF hindcast data, they
found that the inclusion of these additional variables offered
only limited improvement in predictive skill, since the coarse
resolution of global models usually fail to accurately cap-
ture nonlinear effects, particularly in shallow water environ-
ments, where these parameters are expected to play a more
significant role. So, Cicon et al. (2024) computed a simpli-
fied version of the empirical formula in which steepness, rel-
ative depth, directional spread, and spectral bandwidth are
replaced with their mean values, reducing the equation to a
function of only r and two empirical constants (Cicon et al.,
2024).

While Cicon et al. equation showed an improved fit to in-
situ data only using the crest-trough correlation parameter,
like our study, we do not numerically compare our results
to hers because the studies targets and definitions differ. We
propose that predictive power can be improved if, instead of
considering only the absolute value of r at a given moment
in time, the models also account for its temporal evolution.
Our goal is to work on the implementation of this model for
our future work.

5 Conclusions

This study provides an initial assessment of wave models and
rogue wave occurrences by comparing in situ observations
from FOWD (Free Ocean Wave Data) buoys with model-
based estimates from ERAS reanalysis and the ECMWF
CY47R1 high-resolution hindcast. By integrating multiple
analyses, including seasonal rogue wave distributions, sta-
tistical comparisons of maximum wave heights (Hpax) and
significant wave heights (Hy), and density scatter plots with
additional spectral parameters (skewness, kurtosis, and BFI),
we identified critical differences in how rogue waves are
represented across these datasets. Furthermore, this research
aims to validate the effectiveness of crest-trough correlation
as a leading indicator of rogue wave risk while evaluating the
role of spectral bandwidth and energy distribution in wave
amplification processesin deep-water.

A map analysis of rogue wave occurrences from the
FOWD dataset revealed a strong seasonal dependence, with
peak rogue wave activity occurring in winter and fall and the
highest concentrations of rogue waves found along the West
Coast and then the North Atlantic. This corresponds to the
seasonal intensification of extratropical cyclones in these ar-
eas. The Gulf of Mexico and the southeastern U.S. coastline
exhibit significantly lower rogue wave occurrences, likely
due to a calmer wave climate.

The monthly whisker plots of Hpyax and Hg strongly sup-
ports these seasonal findings. Maximum wave heights and
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significant wave heights peak in winter, with median H val-
ues of combined wind waves and swells reaching 2-3 m and
extreme Hpax values exceeding 20 m. The presence of nu-
merous outliers in winter months suggests a greater probabil-
ity of rogue wave formation during storm-driven high-energy
sea states. Summer, on the other hand, shows the lowest wave
activity, with median Hj values of 1.5-1.8 m and Hp,x me-
dian values between 2.5—4 m and the extremes reaching 13 m
maximum, corresponding to a minimum in rogue wave oc-
currences. Further studies pursuing the analysis of the re-
gionalization of this data are recommended.

The model data from ERAS reanalysis and ECMWF
CY47R1 hindcast systematically underestimated extreme
wave events, particularly for higher maximum individual
wave heights (Hpax). While both models exhibit strong
correlations with FOWD measurements (r &2 0.90-0.92 for
H.x and Hy), their distributions show a consistent bias to-
ward lower values. The density scatter plots confirm that
ERAS and ECMWEF align well with FOWD for moderate
sea states (Hmax < 10 m) but significantly underestimate ex-
treme values (> 15m). This suggests that model smooth-
ing and spatial averaging limit their ability to resolve tran-
sient, high-energy wave events, which are critical for rogue
wave detection. Phase-averaged global models reproduce
bulk statistics (Hs, moderate Hpax) but under-represent the
tails (Hmax/Hs), consistent with envelope expectations and
grid-scale averaging.

The buoys FOWD data frequently records a lot more rogue
wave occurrences if compared to ERAS and ECMWF model
data. The scatter plots of Hpax/Hs reveal that both mod-
els cluster tightly around values near 2.0, whereas FOWD
displays a broader distribution with a higher incidence of
Hpax/Hs > 2.5, demonstrating that rogue waves are signifi-
cantly underrepresented in reanalysis and hindcast datasets.
This underestimation may be linked to the method the mod-
els use to calculate Hpyyx, to the smoothing of extreme values
and limited representation of nonlinear wave interactions in
model parameterizations (Campos et al., 2018; Lobeto et al.,
2024).

A few spectral parameters recognized to influence rogue
wave formation were also analyzed on probability density
functions: wave spectral skewness, spectral kurtosis, and the
Benjamin-Feir Index (BFI). The buoys FOWD data exhib-
ited a broader skewness, kurtosis and BFI distribution, cap-
turing more variability in wave shapes compared to ERAS
and ECMWE, which cluster tightly around zero, indicating
a lack of asymmetry, peakedness and instability in modeled
wave spectra. These findings align with previous studies that
suggest spectral wave models often rely on linear approxima-
tions, limiting their ability to resolve extreme wave dynamics
(Janssen, 2015).

The underestimation of Hpax, rogue wave occurrences,
and nonlinear wave properties in ERAS and ECMWF sug-
gests that reliance on reanalysis and hindcast data alone may
lead to underpredictions of extreme wave hazards. This is
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particularly concerning for the shipping industry, offshore
energy platforms, and coastal infrastructure, where rogue
waves pose serious risks (Bitner-Gregersen et al., 2015). The
strong seasonal patterns identified in the FOWD dataset em-
phasize the need for seasonally adjusted forecasting models,
particularly for high-risk regions such as the West Coast of
the U.S. and the North Atlantic.

Lastly, specific rogue wave occurrences across four dis-
tinct locations were analyzed — Station 098 (Mokapu Point,
HI), Station 154 (Block Island, RI), Station 162 (Clatsop
Spit, OR), and Station 166 (Ocean Station Papa) from CDIP
buoys. Across all stations, rogue waves were consistently
preceded by a sharp drop in crest-trough correlation below
0.5, followed by a rapid recovery exceeding 0.6, indicating
a transition from a less organized wave field to a more clus-
tered and structured state. This pattern was accompanied by
an increase in spectral bandwidth narrowness and relative
energy in the 0.25-1.5 Hz range, suggesting that energy re-
distribution and constructive interference mechanisms play
a significant role in rogue wave formation (Hafner et al.,
2021b; Gemmrich and Thomson, 2017; Gemmrich and Ci-
con, 2022).

A statistical evaluation of this novel crest-trough correla-
tion inverted peak hypothesis to identify rogue waves using
FOWD buoy data showed a 75 % agreement. These findings
reinforce previous studies that have highlighted crest-trough
correlation as a dominant indicator of rogue wave probabil-
ity, yet they also extend this understanding by demonstrat-
ing that the absolute value of the crest-trough correlation pa-
rameter should not be used as warning sign, but rather its
dynamic evolution over time. While rogue waves are more
likely to be sustained in environments where crest-trough
correlation remains above 0.6, it is the transition from low to
high correlation that signals their imminent formation. This
provides a new perspective on how rogue wave forecasting
could be approached, moving beyond static threshold-based
indicators to a more dynamic assessment of wave evolution.

This study also highlights the need for more studies and
forecasts to incorporate crest-trough correlation, narrowness
spectral bandwidth and relative energy distributions as key
parameters in rogue wave forecasting models. By integrat-
ing these parameters into the analysis, it is possible to re-
fine forecasting methodologies and improve the understand-
ing of rogue wave behavior across multiple oceanic environ-
ments. Additionally, by mapping these variables on a global
scale using high-resolution wave models, it may be possi-
ble to identify regions where wave conditions are primed for
rogue wave formation. These results from this study con-
tribute to enhanced maritime safety, optimized offshore op-
erational planning, and improved predictive models for ex-
treme wave events.

Future studies should explore the operational integra-
tion of the crest-trough correlation parameter (r) to high-
resolution wave models such as WAVEWATCH III and
ECMWF operational forecasts. This would help identify
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rogue wave-prone areas based on spectral signatures and
crest-trough correlation trends. Additionally, machine learn-
ing techniques can enhance predictive capabilities by as-
similating large-scale model outputs with observed rogue
wave occurrences, enabling the development of a probabilis-
tic rogue wave forecasting system.

Data availability. The ERAS reanalysis dataset can be found
at: https://doi.org/10.24381/cds.adbb2d47 (Copernicus Climate
Change Service, Climate Data Store, 2023)

The ECMWF CY47R1 hindcast dataset can be found at:

https://doi.org/10.21957/y03s-tz09 (ECMWF, 1979-1989);
https://doi.org/10.21957/strn-cs36 (ECMWE, 1990-1999);
https://doi.org/10.21957/dgkx-1485  (ECMWE,  2000-2009);

https://doi.org/10.21957/t3vj-b111 (ECMWF, 2010-2020).

The CDIP Buoys FOWD dataset can be found at: https:/sid.
erda.dk/public/archives/969a4d819822c8f0325cb22a18f64eb8/
published-archive.html (last access: 22 March 2025).
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