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Abstract. The bottom mixed layer (BML) of the abyssal
ocean regulates heat exchange between the deep interior
and seafloor, driving water—mass transformation and influ-
encing global circulation. Spatial variability of the BML
was examined in the under-sampled abyssal Pacific Ocean
using surface-to-seafloor temperature and pressure observa-
tions over 4 months in 2023-2024. Given the typical decadal
repeat rate of global hydrographic sections, subdecadal vari-
ability in the abyssal ocean has remained poorly resolved.
Our observations contribute towards filling this gap for the
central and eastern abyssal Pacific Ocean. Four methods
were used to determine the BML thickness, with the thresh-
old method providing the most reliable estimates. The mean
BML thickness was (226 & 172 m) with added repeat hydro-
graphic sections providing context and additional data points.
At each BML data point we determined the slope, the ter-
rain roughness and the extracted predicted internal tide en-
ergy dissipation (over five different low-mode processes and
high-mode local processes) at 50 km scales from publicly
available datasets. These factors were input into a Random
Forest Regressor (RF) model, the first time machine learning
techniques have been applied to investigate BML thickness.
The RF feature importance scores identified bottom depth,
total internal tide energy dissipation, followed by slope, as
the strongest predictors of BML thickness, revealing the im-

portance of low-mode internal wave energy losses in this
abyssal setting. Targeted and sustained observations near the
seafloor at gateway regions of abyssal pathways are vital for
understanding energy exchange that influences meridional
overturning circulation. Our results highlight a regime where
sustained low-mode internal tide energy loss, modulated by
topographic slope and depth, governs the BML thickness in
the abyssal Pacific. However, the rate at which BML thick-
ness changes over time and the processes that cause these
changes remain key unresolved factors.

1 Introduction

Nearly half the Pacific Ocean comprises abyssal zones that
have experienced persistent warming in the past 30 years
(Johnson and Purkey, 2024). The bottom mixed layer (BML),
a well-mixed region directly above the seafloor in the abyssal
ocean (Armi and Millard, 1976; Lentz and Trowbridge,
1991) is a critical interface where turbulent mixing facil-
itates exchange between the deep ocean interior and the
seafloor, influencing water—mass transformation and global
circulation. Dynamics within the BML are affected by in-
ternal wave activity (Zulberti et al., 2022; Holmes et al.,

Published by Copernicus Publications on behalf of the European Geosciences Union.



258

2016), and near-boundary turbulence (Lentz and Trowbridge,
1991; van Haren et al., 2024), impacting diapycnal mixing,
deep-sea food web connectivity, and heat transport (Jayne
et al., 2004). Additionally, the BML region may contribute
to abyssal mixing, as the interplay of turbulent processes
through internal tides and stratification here facilitates diapy-
cnal mixing (Kunze et al., 2012), thereby helping to drive
the meridional overturning circulation (MOC) (Wunsch and
Ferrari, 2004; de Lavergne et al., 2017; Ferrari et al., 2016).
MOC is sustained by the abyssal flow of North Atlantic
Deep Water (NADW) and Antarctic Bottom Water (AABW),
which transport dense water masses equatorward and pole-
ward from their formation regions through the deep ocean.
The pathways involved in the MOC have been broadly iden-
tified, with general consensus on their origins, particularly
in the ventilation regions adjacent to Antarctica (AABW)
and the Labrador Sea (NADW) (Ferrari et al., 2016; Tal-
ley, 2013). While the broad pathways of these abyssal wa-
ters are accepted, the detailed mechanisms by which they
return to the surface through diapycnal mixing and up-
welling remain active areas of research (Marshall and Speer,
2012; van Haren et al., 2024; Wynne-Cattanach et al., 2024;
de Lavergne et al., 2017; Drake et al., 2022). Regions of in-
tense abyssal mixing over mid-ocean ridges and narrow inter-
basin channels are key sites where stratification governs re-
gional variability in the BML, current pathways and inter-
nal tide generation, connecting closely to abyssal pathways,
while seafloor topography remains the primary control on
BML thickness at the global scale (Gula et al., 2016). How-
ever, the relative importance between topography, its spatial
scales, and the dynamic processes within ocean basins dictat-
ing the BML thickness remains unclear (Weatherly and Mar-
tin, 1978; de Lavergne et al., 2017).

The strength of deep MOC in the Pacific Ocean has been
historically underestimated due to a lack of data and its
complex topographies, making simulations more challenging
(Kawabe and Fujio, 2010; Oka and Niwa, 2013). Broadly,
AABW enters the Pacific Ocean along the eastern side of
the Tonga—Kermadec Ridge (Chandler et al., 2024), then nar-
rows through the Samoan Passage (Alford et al., 2013) before
bifurcating to the west and north towards the Japan Trench
(Kawabe and Fujio, 2010) (Fig. 1). North of the Samoan Pas-
sage, there is also bottom water transport to the east and south
of the Hawaiian Ridge. Around the Hawaiian Ridge, ener-
getic baroclinic tides are generated over the rough seafloor,
contributing to distinct differences in the eastern and western
regions of the Pacific Ocean, with larger dissipation in the
western Pacific (Hautala, 2018; Alford et al., 2007). AABW
transforms into North Pacific Deep Water (NPDW) while
reaching the North Pacific. It is then further transformed
through deep ocean mixing while traveling south and rein-
forcing subsurface stratification and linking to deep convec-
tion in the Southern Ocean (Tatebe et al., 2018).

While rough and variable topography can modulate the
BML thickness (e.g. fracture zones (Thurnherr et al., 2020)
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and seamounts (Mashayek et al., 2024)) regions of the
seafloor with broadly similar depths or geomorphology can
nevertheless exhibit vastly different BML thicknesses due to
differences in ocean dynamics such as boundary currents or
abyssal transformations (Drake et al., 2022; Holmes et al.,
2018). Along continental shelf regions, it is on the order of
40-70 m in the South China Sea (Liu et al., 2023) and 5-15m
along the Northern California Shelf (Lentz and Trowbridge,
1991). The mean BML thickness over different latitudes in
the North Atlantic Basin has been reported as 30-60 m (Lo-
zovatsky and Shapovalov, 2012). Across the Drake Passage,
it was found to be over 100 m, similar to Gulf Stream regions
(Todd, 2017). These differences may also be due to method-
ology. For example, the region immediately north of the
Puerto Rico Trench in the North Atlantic (21° N, 66° W) has
a BML thickness reportedly ranging from 80-800 m (Fig. 9
in Banyte et al., 2018), 60—100 m (Fig. 2b in Lozovatsky and
Shapovalov, 2012) and 80 m (Fig. 1 in Huang et al., 2019)
with the variation likely attributed to different methodology
and spatial interpolation.

The transfer of mass and momentum between the ocean
interior and the seafloor occurs via the BML. Yet in most
large-scale ocean circulation models, it is generally unrep-
resented. As a result, robust parameterizations of bottom
boundary processes are essential (Legg et al., 2006; Fox-
Kemper et al., 2019). Munk (1966) initially proposed a ver-
tically integrated, one-dimensional framework to estimate
diapycnal mixing rates averaged across the ocean interior.
However, it has been subsequently found that mixing in
the bottom boundary is inherently three-dimensional, shaped
by turbulent processes influenced by topography and inter-
nal wave dynamics (Kunze et al., 2012; Polzin et al., 2014;
Wunsch, 2023). Simple bottom boundary layer parameteri-
zations assume local, steady-state velocity shear and strati-
fication relationships to simulate turbulent mixing and mo-
mentum transfer vertically, potentially neglecting variability
in the BML thickness (Large et al., 1994). Recent improve-
ments have incorporated wave-driven turbulence and terrain-
following schemes (Arbic et al., 2009), some of which in-
clude profiles of diffusivity and viscosity in their parameter-
ization (Fox-Kemper et al., 2019). Nevertheless, additional
observations along the ocean’s bottom boundary remain cru-
cial, not only for validating models, but for resolving the spa-
tial and temporal variability in the BML structure that un-
derpins interior-seafloor exchange (de Lavergne et al., 2017;
Ferrari et al., 2016; van Haren et al., 2024; Wynne-Cattanach
et al., 2024).

The BML thickness is most commonly defined as the
thickness above the seabed at which a variable (typically con-
servative temperature or density) deviates from the seafloor
value by a specified threshold (also known as the “thresh-
old method”). While we use a hydrographic definition of the
mixed layer, it is important to note that this does not nec-
essarily coincide with the dynamically active mixing layer
defined by turbulence; distinguishing these layers is increas-

https://doi.org/10.5194/0s-22-257-2026



J. Kolbusz et al.: BML Pacific Ocean

Pacific Ocean

40°S v ) .
60° 5 L3
135° E 175° W 125° W 75° W

259
[ L se%" 2 "{ Mex‘icAo
eg5 "% %ss
¢ s i
o5 N T e crncture 207 :
- \
- B\ Leg 4
. Hawaiian 9
20° N Islands, 4 Tz
¥ ture Zone
Crarion Fra¢
B g 2
18N gl 1 \\j;
Bl N 3
10° N e
N oo \ acture ZON®
s cipperon FF
°N % &14
INT%R, e N T
%, | Leg 2
0°F N 6 E
3W A TPT site
508 [ \ Z | ® GO-SHIP site
] t o ‘ I TPT Bathymetry
R/ Y e Depth (m) 0
10° S [ _ b e e oM
.(b) R Q | ! ! (km) P 500 1,000
160° W 150° W 140° W 130° W 120° W

Figure 1. (a) Bottom water circulation pathways through the Pacific Ocean based on existing research (Kawabe and Fujio, 2010; Oka and
Niwa, 2013; Hautala, 2018) with (b) insert as the extent of the study region. AABW = Antarctic Bottom Water, NPDW = North Pacific
Deep Water (b) Study region boundary, locations, and features, including a regional bathymetric grid. Orange triangles are the Trans-
Pacific Transit Expedition deployment locations, with numbers as the site number within the associated leg. The R/V Dagon multibeam
echosounder coverage is displayed in green. Note that Leg 1 is not used in this analysis. The GO-SHIP repeat hydrographic lines and
deployment locations are marked with red circles (P16 and P02). Blue arrows are bottom water circulation pathways adapted from previous
studies. Background regional bathymetry is from the Global Multi-Resolution Topography (GMRT) Synthesis (Ryan et al., 2009). Released
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ingly recognized as essential when inferring mixing intensity
and water—mass transformation. While we refer to this as the
bottom mixed layer, its thickness may reflect varied bottom
boundary processes, not exclusively active mixing. It is in-
homogeneous throughout the world’s oceans, not only be-
cause of the varying depth and roughness of the seafloor but
also because of the influence of differing oceanographic pro-
cesses in each region. Different oceanographic conditions re-
quire varying thresholds to calculate the BML thickness. For
instance, weakly stratified abyssal regions necessitate small
density thresholds (1 x 1073 kgm™~3), while highly turbulent
areas are better suited to larger threshold values (Fig. 1 in
Banyte et al., 2018), or sensitivity in the threshold value
may be directly related to instrument noise (Lentz and Trow-
bridge, 1991). To overcome sensitivity and subjectivity in
threshold (or gradient) selections, approaches like the rela-
tive variance (Huang et al., 2018b) and integrated methods
(Huang et al., 2018a) have been developed to provide more
robust, non-arbitrary BML thickness estimates. The BML
thickness serves as a useful proxy for characterizing diapy-
cnal upwelling (de Lavergne et al., 2017; Thurnherr et al.,
2020), nutrient transfer (Hull et al., 2020), sediment transport
(Edge et al., 2021) and the development of bottom boundary
conditions and parameterizations in ocean models; therefore,
the methods and outputs require diligent evaluation of their
physical validity across spatial and temporal scales.

Our first objective is to evaluate BML thickness method-
ological approaches suitable for data-poor regions of the
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ocean. We focus on four methods: the threshold method, the
threshold-gradient method, a relative variance method, and a
split-and-merge algorithm to derive the BML thickness and
critique their use and relevance in an abyssal basin setting.
The second objective is to understand the BML variability
across the central and eastern Pacific abyssal ocean, includ-
ing assessment of the connection to internal tidal energy dis-
sipation and bottom water pathways. To achieve these objec-
tives, we collected surface-to-seafloor temperature-pressure
profiles across the central and eastern Pacific Ocean and
complemented them with publicly available repeat hydro-
graphic datasets. As we show in the sections that follow,
these data reveal new insights into the dynamics of the BML
and its connection to broader abyssal processes.

2 Methods

The Trans-Pacific Transit (TPT) Expedition occurred over
six individual legs, with the duration of each leg approxi-
mately 21d, between June 2023 and January 2024 on Re-
search Vessel (R/V) Dagon (Jamieson et al., 2024). The ves-
sel covered 20° longitude and 30° latitude over the central
and eastern abyssal Pacific Ocean, including the Molokai
and Clarion Clipperton fracture zones (Fig. 1). Bathymetry
and backscatter intensity data were acquired throughout the
expedition using a hull-mounted Kongsberg EM124 multi-
beam echosounder. At each site, three autonomous landers
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were deployed in a roughly 2km equilateral triangle, ac-
quiring a total of 73 surface-to-seafloor profiles of temper-
ature and pressure (at a frequency of 2Hz secured to the
landers). These data are referred to here as “TPT profiles”.
Conductivity, temperature and depth (CTD) sensor profiles
from repeat Global Ocean Ship-Based Hydrographic Investi-
gations Program (GO-SHIP) hydrographic sections, P16 and
P02, provided observations within the study regions along
meridional and zonal transects, respectively (see locations
in Fig. 1). The GO-SHIP sections were used in two ways:
first, they were used to complete Gaussian mixture modelling
(GMM), which was applied to the TPT profiles to generate
modelled practical salinity (SP) profiles (see Methods sec-
tion on GMM); second, they provided additional locations to
derive the bottom mixed layer (BML) thickness. The BML
derivation, followed by a random forest regressor, was ap-
plied to the GMM-derived TPT profiles and GO-SHIP pro-
files as one dataset and is detailed in the following sections.

2.1 Data collection

Three autonomous landers, Magna, Omma and Cranch in-
cluded a baited camera system, Niskin bottles and a CTD
sensor measuring at 1 or 0.1 Hz (SBE49 FastCAT, SeaBird
Electronics, Bellevue, WA). The landers descended at an av-
erage speed of 0.8ms~!, spent up to 8h on the seafloor,
and then returned to the surface by releasing their ballast
weights via an acoustic modem. On legs two to six, there
was the addition of a temperature (¢) and pressure (p) log-
ger (RBRduet|deep) mounted to the lander frame measur-
ing at 2 Hz with an accuracy of £0.002 °C and 0.05 % full-
scale respectively (RBR, 2024). Due to the consistent high-
frequency measurements of the —p sensors, and the incon-
sistent data collection of the CTDs, we have used the t—p
logger data and applied GMM to the profiles (see the fol-
lowing section). The Niskin bottles collected a water sample
on the seafloor, which was analyzed with an 8400B Autosal
Salinometer providing a bottom water practical salinity (SP)
value. Leg one data was omitted from this study due to no
t—p loggers, and a total of 69 profiles were suitable for this
study. The exact locations of deployments are in Table Al.
GO-SHIP profiles were obtained through the CLIVAR
and Carbon Hydrographic Data Office (CCHDO, https://
cchdo.ucsd.edu/, last access: 24 November 2024) for re-
peat hydrographic Sects. P02 and P16 which form part of
the GO-SHIP program. These were voyage numbers: 3/ W1~
TUNES_3, 325020060213 and 33R0150410 for P16 and
49K6K9401_1, 318M200406 and 318M20130321 for PO2.
Only profiles that exceeded 2000 m and reached within 40 m
of the metadata bottom depth were used to calculate the BML
thickness. Only one occupation along line P16 went north of
23° N, therefore north of this latitude was excluded for line
P16. A gridded version of GO-SHIP dataset, GO-SHIP Easy
Ocean provided by Katsumata et al. (2022), and available
from https://doi.org/10.5281/zenodo.13315689 (Katsumata
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et al., 2024) was used to produce the background neutral den-
sity, ¥n, and conservative temperature, 8, for Figs. 5 and 6.

2.2 Gaussian mixture modeling in ®-p-SA space

Gaussian mixture modeling applications (GMM) can achieve
unsupervised classification of the water column, identifying
coherent patterns in the associated domains (Maze, 2017).

In three-dimensional space (®-p-SA), the abyssopelagic
zone occupies a relatively small volume (Hjelmervik and
Hjelmervik, 2014; McDougall and Jackett, 2007). For hydro-
graphic profiles close in proximity, this space is even tighter
(McDougall and Jackett, 2007). Considering this, gaussian
mixture modeling applications (GMM) can be applied to au-
tomatically group variables of the water column into a dis-
tinct number of components, like clusters, revealing consis-
tent patterns in the data (Maze, 2017). GO-SHIP profiles in
the study region (detailed in Sect. 2.1) were used to predict
practical salinity (SP) from 2500 m to the seafloor. Only pro-
files collected within the last 5 years and within 10° latitude
and 10° longitude that exceeded 2000 m were used for each
site (Pedregosa et al., 2011; Maze, 2017). To predict SP for
each TPT temperature and pressure profile. Model selection
used information-theory criteria, focusing on the covariance
type and number of components in the model using the Gaus-
sian Mixture scikit-learn Python package (Pedregosa et al.,
2011). The maximum number of components was limited
to 21. The covariance types were limited to each compo-
nent having its own general covariance matrix or all compo-
nents sharing the same general covariance matrix. The elbow
method was used to determine the number of components
in the model with a brief examination of the BIC value (Ta-
ble Al). If the modeled SP output was physically unstable,
the next best option was chosen. The modeled SP was com-
pared with the measured SP from a seafloor water sample an-
alyzed on the vessel using an 8400B Autosal Lab Salinome-
ter (Table A1) with negligible differences found. A further
detailed explanation and model details for each TPT profile
are provided in Table A1l.

2.3 BML thickness derivation

Several methods exist for determining the BML thickness, as
with the surface mixed layer thickness. The threshold method
(TH) uses the depth at which the difference to the seafloor in
either ® or o4, potential density referenced to 4000 dbar in
this case, is less than a defined threshold value. These values
range from 0.02 °C (Lentz and Trowbridge, 1991), 0.001 °C
(Hogg et al., 1982), 0.005 °C (Lozovatsky and Shapovalov,
2012) to 6 x 10~* kgm’3 (Perlin et al., 2005). We used a
threshold value of 0.003 °C for the region. This value was
chosen as it provided the highest mean quality index (QI) for
the BML thickness (1) for all the TPT profiles when com-
paring threshold values of 0.001, 0.002, 0.003, 0.004, and
0.005 (Appendix B). A quality index was initially defined by
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Lorbacher et al. (2006) as a value between 0 and 1 captur-
ing the conservative temperature variability in 1.5 times the
BML thickness compared to the variability over the BML
thickness. In equation form:

Al

o (0, —(0))]
(hML)
Ipnvg =1 — — =1—

QlpmL e (@, —
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where o () is the standard deviation from the vertical mean
() conservative temperature from Agmr. ApmL is the BML
thickness (Lorbacher et al., 2006; Huang et al., 2018a).

The threshold-gradient method (GR) is also used (Banyte
et al., 2018; Weatherly and Martin, 1978). We defined this
method as the thickness at which do4/8z over 20 m inter-
vals is less than a criterion of 1 x 107> kgm~> (Banyte et al.,
2018), making the minimum BML thickness 10 m.

Several techniques have been put forward over the last
decade, including a relative variance (RV) method (Huang
et al., 2018b), split-and-merge algorithms (Thomson and
Fine, 2003) and an integrated method (Huang et al., 2018a)
that combines several methods together. We included the RV
method and the Douglas—Peucker (DP) algorithm method.
The RV method relies on calculating the ratio between the
standard deviation and the greatest variation of ® or o above
the seabed. The location where the least relative variance oc-
curs is identified as the upper boundary of the BML. The
RV method is available through the original research (Huang
et al., 2018b). The DP method is a split-and-merge tech-
nique that has been previously adopted to calculate the sur-
face mixed layer (Thomson and Fine, 2003). The DP algo-
rithm estimates a given profile by using a series of simplified
line segments that represent large changes in slope or any
abrupt changes in the profile. Therefore, the lowest part of the
segment belongs to the BML. The DP algorithm is available
within MATLAB and requires a € value between 0 and 1 to
determine the number of line segments (Ahmadzadeh, 2017).
We included 0.002 and 0.008 as two possible DP methods
(DP2 and DPB8, respectively) (Appendix B).

The integrated method put forward by Huang et al. (2018a)
focuses on the use of multiple methods (TH, the curvature
method, Lorbacher et al., 2006; the maximum angle method,
Chu and Fan, 2011, and RV, Huang et al., 2018b), calculating
the QI for each method, and then choosing the BML thick-
ness with the highest QI (Huang et al., 2019). Relying on
QI-based selection of BML thickness from multiple meth-
ods produced highly variable results, even across nearby lo-
cations (within 3 km). That is not to say this variation may
not be real, but visual inspection was still needed to assess
accuracy, and the variation was not consistent with global
maps from either Banyte et al. (2018) or Huang et al. (2019).
Therefore, unlike Huang’s global integrated approach, the
single threshold method that produced consistent results was
more appropriate for our regional study, avoiding unneces-
sary and possibly unreal variability that ultimately required
manual validation.
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The suitability of the threshold value, despite sometimes
having a lower QI, is shown in Fig. 2 at different locations
with additional annotation in Fig. 2c. At times, the QI did
capture the BML thickness values that were unusable (e.g.
small RV QI values in Fig. 2f). However, on the upper scale,
the highest QI value could provide an unlikely, significantly
larger BML thickness than where the density gradient ap-
proached zero and appeared visually correct. For example, in
Fig. 2c for the profile on the left side, the highest QI was 0.78
and far from the visual BML thickness height. Considering
all TPT and GO-SHIP profiles, consistency in the average
values of each method (Fig. 4) and their performance when
assessed visually (Fig. 2), using the threshold method consis-
tently over the whole dataset, provided the most reasonable
result.

2.4 Random Forest Regression

We considered bathymetric parameters (terrain roughness in-
dex (TRI) and slope) and dynamic parameters (internal tide
energy dissipation and depth) within a Random Forest Re-
gressor (RF) to disentangle patterns in the BML thickness.
Machine learning techniques have been used to estimate the
surface mixed layer depth, however this the first time it
has been applied to the BML (Imchen et al., 2025; Foster
et al., 2021). The RF machine learning technique, included
as the RandomForestRegressor scikit package in Python (Pe-
dregosa et al., 2011) is a ensemble machine learning esti-
mator that combines the outputs of multiple decision trees
to increase predictive accuracy and control overfitting. Each
decision tree is trained on the dataset using a bootstrap aggre-
gation technique, and the final prediction is obtained by av-
eraging the outputs for regression (Carvalho et al., 2019; Im-
chen et al., 2025). We randomly selected 80 % of the dataset
to build each tree and the remaining 20 % of the dataset to
test the model using train_test_split within scikit (Pedregosa
et al., 2011). We modified the number of trees from 100 (de-
fault value) to 500 and 1000 for sensitivity testing (Table 1)
with the random state of the train_test_split at 42, 0 or 1.
The number of trees did not add significant computing time
or signficantly alter the results, therefore we maximised the
number of trees at n = 1000 to further test different random
subsets of the data with train_test_split then changed be-
tween 42, and 0 to 7. The random state was kept at 42 for
the RF for all itterations.

As discussed in the Data Collection section, internal tide
energy dissipation (Wm™2) for all (M2, S2 and K1) tidal
constituents broken down into dissipation processes; low-
mode wave-wave interactions, low-mode scattering by small-
scale topography, low-mode interaction with critical slopes,
low-mode shoaling and local dissipation of high modes was
accessed through the paper by de Lavergne et al. (2019).
These variables, alongside slope and TRI were chosen based
on their accessibility and relevance to BML thickness (Ruan
et al., 2017; Gula et al., 2016; Liu et al., 2023). Depth is a
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Figure 2. Example profiles of o4 and BML thickness outputs from (a)—(h). Color and size of the marker correspond to the method and the
quality index (QI) of the BML (a). The map and inserts in (i)—(l) detail the locations of the profiles shown in the respective subplot. Grey
map shows the study region with GEBCO bathymetry and sites (key in i; see Fig. 1 for more detail), the red region the extent of the figure
and black points indicating all profiles used. Blue circles are GO-SHIP, with light blue indicating profiles used but not displayed, and black
triangles are TPT locations. (a) P16 GO-SHIP profiles in 2002 between 0 and 0.5° N and (b) in 2015 between 12 and 13° N, (¢) P02 GO-SHIP
profiles in 2022 between 135 and 136° W and (d) in 2022 between 124 and 123° W. (e) TPT voyage Leg 3 Site 4, (f) Leg 2 Site 3, (g) Leg 4
Site 5, and (h) Leg 5 Site 1. Panel (c¢) includes a line of visual interpretation and the exact values of the quality index, as also indicated by
the marker size at the BML thickness for each method.
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Table 1. Random Forest performance for different numbers of estimators (n), comparing models trained on all features vs. the top five

features.
All \ Top 5

Number of estimators (1) 1000 500 100 ‘ 1000 500 100
(a) Train_test random state = 42 ‘

r2 0.65 0.65 0.65 0.67 0.67 0.67
RMSE 97.1 97.4 95.7 93.9 93.7 93.5
MAE 71.4 72.0 71.4 70.0 69.7 69.7
(b) Train_test random state = 0

r? 0.62 0.62 0.60 0.63 0.63 0.64
RMSE 127.0 1279 129.7 | 1253 1254 1245
MAE 86.3 87.0 86.7 85.2 85.4 85.1
(c) Train_test random state = 1

r? 054 054 054 ] 056 056 0.54
RMSE 108.1 108.2 109.0 | 106.4 106.4 108.0
MAE 72.3 73.6 734 71.3 70.9 72.8

known contributor to the BML thickness (Huang et al., 2019;
Lozovatsky and Shapovalov, 2012) as are bathymetric vari-
ables of slope and TRI (Armi and Millard, 1976; Wunsch,
1970; Polzin and McDougall, 2022). The relative contribu-
tion of tidal dissipation mechanisms near the seafloor, there-
fore influencing the BML thickness has been discussed in
literature (de Lavergne et al., 2019). When internal waves
hit the seafloor, they lose energy through either scattering off
small rough spots and losing energy, or reflecting or shoal-
ing off topographic features, depending on their shape and
height (St. Laurent et al., 2001; Miiller and Xu, 1992). These
processes, along with others that are not as well understood,
like wave capture and scattering by mesoscale eddies Biih-
ler and Mclntyre (2005), Polzin (2008), Mathur et al. (2014),
can speed up the dissipation of tides and change the thick-
ness of the bottom mixed layer. A grid point from each of
the dissipation parameters was assigned to each GO-SHIP
and TPT point using cKDTree in scipy for nearest-neighbor
lookup (Virtanen et al., 2020). This method constructs a
binary space-partitioning tree applying axis-aligned hyper-
rectangles via the sliding midpoint rule (Maneewongvatana
and Mount, 1999). This provides efficient nearest-neighbor
queries by recursively improving the search space across co-
ordinate axes to determine the nearest latitude and longitude
grid point to the GO-SHIP and TPT observations.
Bathymetric variables (TRI, and slope) were compiled
from the latest GEBCO 2024 Grid, including the standard de-
viation (GEBCO Compilation Group, 2024). TRI and slope
were calculated using the ArcGIS Geomorphometry & Gra-
dient Metrics toolbox with a neighbourhood of 9 x 9 cells
(Evans et al., 2019). TRI is a useful derivative of bathymet-
ric and topographic datasets in order to enable quantification
of the spatial heterogeneity of the surface under investiga-
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tion (Riley et al., 1999). The TRI metric can be a valuable
analytical tool for understanding the effect of landscape on
processes, geomorphological evolution, and for habitat map-
ping and modeling regimes. For the extent of the study region
(Fig. 1) the slope and TRI were calculated at buffer zones of
25,50, 100 and 200 km (Fig. B3). Ateach GO-SHIP and TPT
data point, the TRI was extracted to assess the variation for
different buffer zones. The RF was completed with the 50 km
buffer, as the resolution for the dissipation values was 50 km.
The depth for the GO-SHIP sites was taken as the “bottom
depth” variable available in the datasets.

The GO-SHIP observations included multiple occupations
as detailed in the Data collection section above. In some loca-
tions the exact latitude and longitude was covered in multi-
ple years, although this is not spatially consistent through-
out the observations. The profiles over the different occu-
pations provide different BML thicknesses, however it is
impossible to deduce the reasoning behind the differences
at these yearly timescales as we know the BML thickness
may change within a matter of hours (Weatherly and Mar-
tin, 1978; Chen et al., 2023). For this reason, we clustered
the GO-SHIP observations within the RF using dbscan in
scikit (Pedregosa et al., 2011). Geographic clustering was
performed by converting the GO-SHIP latitude and longitude
coordinates to radians and applying dbscan with a haversine
metric and a 3 km neighborhood radius to group nearby data
points. For consistency between the TPT and GO-SHIP sites,
TPT sites within a 3 km radius of one another (each leg and
site) were averaged and GO-SHIP sites were averaged based
on the 3 km neighborhood radius from dbscan. Because the
TPT SP values were corrected using nearby GO-SHIP pro-
files, the combined dataset may inherit some spatial imbal-
ance towards the more regularly sampled GO-SHIP sections;
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Figure 3. Bottom mixed layer (BML) thickness (m) derived from
the threshold method (TH). It is calculated using the TPT Expedi-
tion profiles (triangles) and GO-SHIP profiles (circles). The TPT
profiles are within 3 km of each other and therefore a standard de-
viation is included.

however, both datasets occupy the same hydrographic regime
and spatial scale, making them appropriate for joint analysis
while acknowledging that this imbalance could introduce mi-
nor bias in the RF feature relationships.

3 Results
3.1 BML thickness

The average and median thickness of the BML using the TH
method for all data points in the abyssal study region was
240 and 176 m respectively, and the standard deviation was
200 m (Fig. 3). The BML was inhomogeneous over the re-
gion, its thickness decreasing around continental slope re-
gions approaching Mexico and the southern part of Hawaii.
Between 15°S and 2°N the BML was below 200 m. There
was a distinct change between 2 and 15° N where the BML
approximately doubled and reached a maximum of 799 m
crossing the Clarion Fracture Zone before decreasing to be-
low 90 m south of Hawaii. Along the zonal section of P02,
the BML exhibited an approximately 50 % increase between
135 to 130° W and decreased to approximately 100 m on ap-
proaching the continental slope. The TPT expedition data in-
dicated generally similar patterns as the repeat hydrographic
sections. These patterns excluded Leg 4 Site 7, where the
BML was the largest of the TPT sites (Fig. 3).

To provide insight into the efficacy of the derivation meth-
ods, we calculated a QI (Lorbacher et al., 2006) for each pro-
file and its five possible BML thickness values (Fig. 4). Vi-
sual inspection of the BML thickness estimates and their as-
sociated QI indicated that a higher QI and lower standard de-
viation do not always provide confidence in the BML value.
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Figure 4. Average bottom mixed layer (BML) thickness (m) for
the threshold method (TH), gradient method (GR), Douglas—Peuker
method using an € of 0.002 (DP2), Douglas—Peuker method using
an € of 0.080 (DP8) and the relative variance method (RV). The
BML thickness is calculated using the TPT Expedition profiles (or-
ange) and GO-SHIP profiles (blue) with the length of the line indi-
cating the range of the thickness. Bold values above the bars are the
mean quality index (QI) and the italicised values are the standard
deviation of the QI.

TPT profiles within 3 km of each other in Fig. 2e had a higher
QI for the GR and DP8 methods; however, the methods esti-
mated very different BML thicknesses for very similar pro-
files. In contrast, the TH method, with lower QI values, was
consistent among the profiles and appeared to capture the po-
sition of profile change under contrasting abyssal conditions
sufficiently. For example, across all Fig. 2e—h the TH BML
thicknesses were in close proximity to one another. Addition-
ally, the TH thickness corresponded with the visually identi-
fiable thickness, despite the GR values being close in value to
each other and of a high QI (Fig. 2c). We therefore chose the
TH method for all BML thickness values going forward due
to its dependable performance when applied to both TPT and
GO-SHIP profiles over different regions in the study area.

3.2 Spatial variability

On meridional transect P16 between 4 and 16° N, depths are
over 5000 m, and the BML thickness was at its greatest along
the transect (Fig. 5). The transition regions at 4 and 16°N
appear to have the widest variation in BML over the differ-
ent occupations. The TRI was low over the majority of this
region, with increases near the Hawaiian Islands, over the
Boudeuse Ridge (10°S) and other prominent seafloor fea-
tures visible in the bathymetric data (Fig. 7b and c). Simi-
larly, the TRI reached a maximum across transect P02 when
it crossed the Murray Fracture Zone and the Moonless Moun-
tains before increasing towards the North American conti-
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nental slope (see Fig. 1 for locations). TPT sites close to the
major fracture zones and seamount chains had higher TRI
and slope values over the 50 km buffer range and exhibited
patterns connecting them to the P16 and P02 lines spatially.
The P02 transect had a higher BML thickness (298 + 170 m)
compared to P16 (175 & 157m) (Figs. 5 and 6). Similar
to P16, the sections of changes in BML thickness along
P02 (> 500 m from 136 to 129° W) broadly intersected with
larger differences in BML thicknesses over the different oc-
cupations (Fig. 6).

3.3 Random Forest Regression

The TPT and GO-SHIP profiles were analysed together as
part of a RF. As described in the Methods section, GO-SHIP
data points within 3km of one another were averaged to-
gether as a mean value to remove instances of temporal vari-
ability at unknown time scales. After the averaging, the num-
ber of GO-SHIP data points reduced from 335 to 301. The
number of TPT data points was 29; therefore, a total of 330
points were used for the analysis. For each point, we ex-
tracted values of bottom depth (m), slope, TRI, and internal
tide energy dissipation values of low-mode wave-wave inter-
actions, low-mode critical slope, low-mode scattering, low-
mode shoaling, high-mode (> 6) local dissipation and total
internal energy dissipation which is a sum of all the losses
from the five processes (in Wm™2) (Fig. 7). The dissipation
parameters are defined in depth by de Lavergne et al. (2019).

The feature with the highest importance score (~ 0.4)
across all iterations of the RF was the bottom depth. For each
variation of train test split sample data (i.e. random_state =
42, 0 or 1) chosen to train the RF, the same features with the
highest importance were in the top 3. In order, these were
the bottom depth, total dissipation and slope. The number of
iterations (n = 1000, 500 or 100) and the three most com-
monly used frain test split values (random_state =42, 0 or
1) were sensitivity tested due to the relatively small number
of data points. Reducing the predictor variables to include
only the top 5 features, ranked by importance, increased the
correlation coefficient, r2, by ~ 0.02, regardless of the num-
ber of iterations or the random_state value (Table 1). Simi-
larly, the root mean squared error (RMSE) and mean average
error (MAE) reduced an insignificant amount (~ 2 m) when
including only the top 5 features (Table 1). The results from
n = 1000, 500 or 100 had comparable feature importance
scores; therefore, only the results from n» = 1000, all features
and additional train test split values of random_state = 42,
0-7 were run and are shown in Figs. 8 and 9. If we were to
keep the random_state value as empty, which is the default,
the sensitivity in altering the number of iterations would not
be effectively tested. Train test values of random_state = 42
and 0—7 were completed for n = 1000 with the > and RMSE
displayed in Fig. 9. The nine sets of the RF residual model
outputs are shown in Fig. 9. The 2 was between a minimum
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of 0.53 and a maximum of 0.77 and the RMSE had a mini-
mum of 87.1 and a maximum of 127.

The different random_state values changed the ranking or-
der of the feature importance scores, however the same fea-
tures were within the top five, with the bottom depth always
the highest. The slope and TRI are intrinsically linked due
to their calculation from the same bathymetric dataset, with
slope quantifying the local gradient over a 50 km radius and
TRI capturing the variability within a neighborhood, aver-
aged over a 50 km radius aligning with the spatial resolu-
tion the dissipation values, a 0.5° grid size. A surface may
be steep but smooth, or flat yet jagged, drawing not always
a strong correlation between the two. For example, there are
sharp changes latitudinally, however, both TRI and slope are
high and more gradual along the P02 line as part of the broad
sloping region from the continental slope of Mexico to the
center of the Pacific Ocean (Fig. 7b and c). The western end
of the PO2 line has higher internal tidal dissipation compared
to the more eastern half due to the presence of the Hawai-
ian Islands (Kelly et al., 2010). The full spatial extent of the
dissipation parameters, not just at our data points, at 0.5°
resolution are displayed and explained in de Lavergne et al.
(2019). Overall, the internal tidal dissipation for each low-
mode process (Fig. 7e-h), and the total dissipation (Fig. 7d),
is highest between Hawaii and just north of the equator, in-
tersecting with the region of higher BML along P16 aside
from 15-20° N next to the Hawaiian Islands, where the BML
decreases. This decrease overlaps with a slight decrease in
bottom depth (Fig. 7a).

4 Discussion

Density profiles over the central and eastern Pacific Ocean
provide an inhomogeneous outlook of BML thickness vari-
ations at abyssal depths across plains and topographic fea-
tures. Basin-scale expeditions such as the TPT voyages are
frequently multidisciplinary in scope, with competing de-
mands on vessel time. Incorporation of these profiles with
the repeat GO-SHIP profiles provides increased understand-
ing of the BML. Using RF methods, we found that bottom
depth, total internal tide dissipation and slope are the highest-
performing features to predict the BML thickness in this re-
gion. Because several predictors share spatial structure (e.g.,
bottom depth and total dissipation), the RF highlights asso-
ciations rather than uniquely isolating independent physical
drivers, and this limitation should be considered when inter-
preting the feature importance results (Strobl et al., 2008).
In the central and eastern Pacific abyssal ocean, the thick-
ness of the BML was inhomogeneous with an average value
of 226 £+ 172 m. The BML was calculated using the (®) pro-
files through the threshold method (0.003 °C) for the study
region. There is no accepted standard methodology for cal-
culating the BML thickness. It often depends on user-defined
numerical values within those methods and depends on the
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region of interest. The integrated method proposed by Huang
et al. (2018a), was used to calculate the BML depth globally,
providing an average Pacific Ocean BML thickness of 64 m
(Huang et al., 2019). We found that for our abyssal ocean
context, using an integrated approach that combines multi-
ple methods and calculates a QI to get the highest “qual-
ity” BML thickness generated spurious results for profiles
within three kilometres of one another, making it difficult to
compare BMLs estimated with different methods. Although
the QI was calculated, visual interpretation was necessary
to confirm the results, mirroring the approach taken within
the integrated method where visual identification was still
needed (Huang et al., 2019). The variability in BML thick-
ness is not unexpected given the variation in topographic fea-
tures across the region, likely changes in friction velocity,
and a wide longitudinal and latitudinal range (Weatherly and
Martin, 1978; Kunze et al., 2012). Profiles from the TPT Ex-
pedition broadly followed the same spatial patterns as those
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from the hydrographic sections and show similar spatial vari-
ations in BML thickness as Banyte et al. (2018).

In all instances, the RF identified the bottom depth, slope,
total internal wave energy dissipation, TRI and low-mode
wave-wave interactions as the most important predictors of
the BML thickness in this Pacific Ocean abyssal setting.
These results are physically intuitive, with the bottom depth
constraining the maximum possible BML thickness, back-
ground stratification and the vertical extent available for tur-
bulent mixing, which is consistent with past research (Lau-
rent and Garrett, 2002; Liu et al., 2023; Lozovatsky and
Shapovalov, 2012). Importantly, dissipation patterns in the
de Lavergne et al. (2019) dataset are not set by depth, but
by the distribution of internal tide energy sources, scatter-
ing pathways, and nonlinear wave—wave losses. Deep basins
may accumulate low-mode energy and therefore show ele-
vated dissipation, but this reflects remote energy propaga-
tion and decay rather than a mechanistic link to depth it-
self. Therefore, even where depth and dissipation appear spa-
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Figure 7. All GO-SHIP (circle) and TPT (triangle) site variables used for the Random Forest Regressor (RF). The top BML thickness figure
is the same as Fig. 3 for reference. (a) Bottom depth (m), (b) slope over a 50 km radius (°), (c) terrain roughness index (TRI) over a 50 km
buffer, (d) Td =total internal tide energy dissipation (W m_z), (e) SH=1low-mode dissipation from shoaling (W m_z), ) Ww =low-
mode dissipation from wave-wave interaction (W m_z), (g) Cs =low-mode dissipation from critical slopes (W m_z), (h) Sc =low-mode
dissipation from scattering (W m_z) and (i) Hm = high-mode dissipation from local processes (W m_z). Panels (d)—(i) are from de Lavergne
et al. (2019). The background regional bathymetry is from the Global Multi-Resolution Topography (GMRT) Synthesis (Ryan et al., 2009)
Released CC BY 4.0 Deep | Attribution 4.0 International | Creative Commons. Note the colour scale is different in (d) compared with (e)—(i).

tially aligned in our RF model, this similarity arises from
shared basin-scale structure rather than depth acting as a di-
rect driver of turbulent energy loss.

The total internal wave energy dissipation value aggre-
gates all internal tide dissipation mechanisms that drive tur-
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bulence (de Lavergne et al., 2019). On abyssal plains, where
local topographic features are sparse, a substantial amount
of this energy would likely originate remotely and dissipate
gradually through sustained mixing events (Nikurashin and
Legg, 2011). Therefore, the inclusion of low-mode wave-
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dissipation from local processes.

wave interactions as a predictor is especially significant. This
variable refers to nonlinear energy transfers among long-
wavelength internal tides. In regions with high low-mode
wave-wave dissipation, this could lead to persistent near-
bottom mixing that expands the BML thickness. This sug-
gests that the BML thickness on the abyssal plain is of remote
and sustained forcing origin, rather than high-mode break-
ing events (de Lavergne et al., 2019; Melet et al., 2013). Al-
though the study region lies predominantly within the abyssal
plain, the terrain is not uniform. As shown by Harris et al.
(2014) and Fig. 7b and c, the region is interspersed with mul-
tiple features of abyssal plains, abyssal hills, and seamounts,
creating heterogeneity in the TRI and slope. The observations
north of Hawaii highlight where higher TRI and slope inter-
sect with the smallest values of total internal tide dissipation
and low-mode wave-wave interactions.
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The TRI captures local bathymetric complexity at 50 km
scales, which enhances bottom drag and internal tide scat-
tering, even where mean slopes may be weak, supporting
thicker BMLs by maintaining sustained and patchy mixing
close to the boundary layer (Nikurashin and Ferrari, 2011;
Nash et al., 2007). The slope of the topography within our
study region is primarily of a subcritical regime; therefore,
internal tides will refract and reflect weakly, allowing for
persistent low-mode energy to mix over broader regions,
rather than localized mixing. Between 4 and 15° N there is
a small region where the low-mode critical slope dissipation
increases (Fig. 7g), and the BML thickness is large, suggest-
ing the critical slope may be more important here. Nested
within the same region is the highest total dissipation of the
study region (4-7°N) where there is high local high-mode
dissipation, low-mode wave-wave interactions and low-mode
critical slope dissipation. The TRI and slope are small over
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and calculated with the TEOS-10 toolbox (McDougall and Barker, 2011).
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this region, culminating in the BML thickness being slightly
above the average. Similar connections to the slope and the
TRI have been identified in the North Atlantic Ocean and
the South China Sea (Lozovatsky and Shapovalov, 2012; Liu
et al., 2023).

Our results have highlighted differences in what factors
drive the BML. Despite limited and sparsely located data
points, it is clear that the BML thickness is a culmination of
processes, both local and remote. The limited and spatially
inconsistent data points meant we were unable to further the
model to predict the BML without the RMSE at times equat-
ing to the predicted BML thickness. This correspondence
between dissipation and hydrographic BML thickness fur-
ther suggests that, in this region, the threshold-defined BML
is not merely a passive hydrographic feature but may effec-
tively capture the vertical extent over which mixing is dy-
namically active. Such alignment between hydrography and
turbulence is rarely shown explicitly for the abyssal ocean
and may point to an underappreciated sensitivity of BML
structure to the local dissipation field. Despite the three high-
est importance features remaining consistent, the nine itera-
tions of random_state values do not visually provide a clear
picture of regions that are consistently lower or higher per-
forming than others. This variability, combined with shared
spatial patterns among some predictors, further underscores
that the RF approach here is more diagnostic than predictive
and should not be interpreted as uniquely isolating mecha-
nistic controls. In addition, the reasonably high variation in
2 and RMSE values suggests that more observations are re-
quired for there to be less sensitivity in the results to which
random selection of the data is chosen to train the model.
The RF herein should be used to understand drivers but can-
not be used predictively, which would require additional data
points. However, in regions where there is a more dense and
equal spread of CTD profiles, the publicly available datasets
from de Lavergne et al. (2019) and GMRT bathymetry (Ryan
et al., 2009) should be considered for usable predictive rela-
tionships. Prediction of the BML thickness was not in the
scope of this study; however, we have shown the usefulness
of publicly available datasets. Predictive relationships of the
BML thickness would be useful for identifying regions of in-
terest for internal wave-driven mixing at the ocean’s bottom
boundary, hydrodynamic model parameterisations and disen-
tangling spatiotemporal variability in BML thickness within
a given region.

At around 18°N, bottom water passes through the Hori-
zon Passage (170° W) and flows around Hawaii (Lukas et al.,
2001; Fuhr et al., 2021; Kato and Kawabe, 2009), intersect-
ing where the BML was small and there was increased strat-
ification in the water column above. This can be demon-
strated by ®-SA profiles with increased fractions of North
Pacific Intermediate Water (NPIW) from 16-19° N (Fig. 10a)
and more saline and cooler water at the seafloor within the
BML, aligning with Antarctic Bottom Water (AABW) prop-
erties (Fig. 10b). While the complete profiles between 0-2
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and 10-15°N displayed visually similar water mass charac-
teristics, the properties of the BML were distinct (X marks
in Fig. 10) with the equatorial seafloor BML fresher and
warmer, indicating NPDW, compared to 10-15°N closer to
the properties of AABW, and 16—19° N the most saline and
coolest (Fuhr et al., 2021). This region of water mass and
inter-basin exchange highlights the difference between strat-
ified regions of bottom water pathways (Fig. 1) compared to
low ocean interior stratification south of this region (curved
®-SA in Fig. 10b, red and blue) and less variation in ©-
SA space (Fig. 10a) (McDougall and Jackett, 2007; Hautala,
2018; Kawabe and Fujio, 2010). In essence, a more strongly
stratified ocean interior likely suppresses mixing by reduc-
ing the turbulent diffusivity, even in regions where the tur-
bulent kinetic energy dissipation may be high. Therefore, the
buoyancy gradient remains difficult to overcome, resulting
in a thinner BML in AABW regions compared to regions of
NPDW at the equator (Weatherly and Martin, 1978).

Consistent with previous analyses (Liu et al., 2023; Lozo-
vatsky and Shapovalov, 2012; Chen et al., 2023), there are
multiple processes influencing the BML thickness at abyssal
basin scales. While the RF provides a quantitative approach
to dissect the variations in BML thickness based on the fea-
tures, the profiles are a single snapshot of the water column
at that point in time. As exemplified by Chen et al. (2023)
in the Clarion—Clipperton Fracture Zone, they were unable
to define the diffusion processes of the suspended sediment
within the BML, as additional short-term processes such as
internal gravity waves were highlighted as likely influencing
the results. In our case, the TRI and slope are single values
over a 50 km buffer region, not including proximity and di-
rection from features such as the Hawaiian Ridge, which may
influence the formation of the BML and the water column in
different ways; hence the inclusion of internal tidal dissipa-
tion from de Lavergne (Zaron, 2019; Finnigan et al., 2002).
Considering the broader consequences of BML dynamics
for deep ocean mixing and overturning circulation, temporal
variability in the BML over abyssal depths should be consid-
ered in future studies. For example, a mooring configuration
both within the BML thickness and above, in a region of in-
creased internal tide energy dissipation south of Hawaii and
then at a similar depth to the north-east of Hawaii where the
BML thickness is higher and dissipation is lower, while in-
tersecting with a region of water mass transport. These lo-
cations transition from flat abyssal plains to the Hawaiian
Islands, each with distinct BML patterns and drivers across
~ 6° of latitude. Increased observations of both direct mix-
ing and far-field or wave-wave energy dynamics are required
in this relatively dynamic, yet undersampled region of the
abyssal Pacific Ocean.
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5 Conclusions

The BML is crucial for understanding diapycnal transport,
which causes significant upward movement of deep-sea wa-
ters (McDougall and Ferrari, 2017; Ferrari et al., 2016) in
the undersampled abyssal ocean. This research highlights the
importance of abyssal seafloor regions, which are not typ-
ically categorized as dynamic, shifting in space and time.
Through the application of four BML detection methods, we
find that the commonly used threshold method provides the
most consistent and interpretable estimates of BML thick-
ness across large spatial scales. However, we have high-
lighted the necessity to test each method-specific parameter.
We also show that GMM offers a useful approach for pre-
dicting essential ocean variables, such as salinity here, us-
ing publicly available data. The RF revealed BML thickness
variation related primarily to bottom depth, followed by total
internal tide energy dissipation and topographic slope.

Global studies of the BML using multiple methods sel-
dom focus on the potential of variability over time (Huang
et al., 2019), while others aim to use a small range in time to
comprehend processes such as sediment dispersal within the
BML (Liu et al., 2023) reaching the conclusion of significant
temporal variability long noted in literature (Greenewalt and
Gordon, 1978). The relative contributions of the mechanisms
that control the BML thickness across the abyssal ocean and
basin boundaries requires further investigation through in-
creased continuous observations and modelling efforts with
reduced interpolation. The role of abyssal circulation path-
ways and internal tide driven mixing is at the forefront of cur-
rent research (e.g. Wynne-Cattanach et al., 2024; van Haren
et al., 2024), within which the formation of the BML forms a
key component of the processes. Therefore, the present study
highlights and encourages sustained observations of abyssal
regions over the bottom boundary and ocean interior above.
Such observations are particularly important around rough
topography, specifically in the central and eastern Pacific,
where the abyssal ocean is frequently overlooked. At present,
the temporal scales of BML variability remain poorly under-
stood. Determining these scales is essential for characterising
how the BML is mediated by abyssal water—mass transfor-
mation and circulation.

Appendix A: Gaussian mixture modelling of TPT
salinity profiles

We applied Gaussian mixture modelling to achieve a mod-
elled representation of the practical salinity (SP) from
2500m to the seafloor at each voyage deployment loca-
tion (Table A1). Such unsupervised classifications have been
completed for CTD profiles and Argo floats (Ye and Zhou,
2025; Zhang et al., 2023). All GO-SHIP profiles deeper than
5000 m and within 10° latitude and 10° longitude from the
voyage site were used in scikit-learn package GaussianMix-
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Figure A1. Profiles over 2000 m of TP4_MA3_5400 and GO-SHIP
datasets for (a) modelled salinity (blue) compared to the measured
GO-SHIP profiles (red) within the bounds and used for this GMM
and (b) associated measured temperature (blue) and measured GO-
SHIP profiles (red).

ture (GMM) (Pedregosa et al., 2011). If there were 2 or less
GO-SHIP profiles within the bounding box, it was expanded
to 15° latitude and 15° longitude, otherwise the site was ex-
cluded. Mixture models can be viewed as an extension of
k-means clustering that integrates information regarding the
covariance structure of the data alongside the centres of the
latent Gaussian distributions. They are a probabilistic frame-
work that assumes all data points are derived from a combi-
nation of a finite set of Gaussian distributions with unspeci-
fied parameters. Options within the package that were altered
to get the optimal GMM model of SP were:

— covariance_type: tied or full, default is full.
— N_components: 1-21, number of mixture components.

— random_state: 42, controls the generation of random
samples.

The rest of the parameters were kept as default values. Each
set of GO-SHIP data for the associated TPT voyage site was
iterated through each covariance type for each number of
components. The elbow method was then used to choose the
number of components, whereby the increase in the num-
ber of components does not equate to an increase in the
model performance (AIC/BIC). An example modelled SP
profile over depth and associated ¢, in-situ temperature pro-
files are shown for TP4_MA3_5400 in Fig. Al. The mod-
elled seafloor salinity was then compared with a seafloor
Niskin bottle salinity measurement at each site to provide a
second validation of the profile. The water sample was anal-
ysed on the vessel using an 8400B Autosal Salinometer.
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Table A1. Station metadata and gaussian mixture model details for each location.

Station Depth (m) Lat (°) Lon (°) GO-SHIP files Components Covariance  Difference
TP2_CR1_5200 5202 17.424 —151.997 73 11 full —0.0047
TP2_CR2_5400 5384 14.808 —148.371 83 14 full —0.0027
TP2_CR3_5400 5310 10.635 —144.672 84 15 full —0.0019
TP2_CR4_5000 4988 5.181 —144.780 62 15 full —0.0033
TP2_CR5_4950 4944 4470 —145.870 62 15 full —0.0075
TP2_CR7_4500 4588 —3.926 —144.014 36 11 tied 0.0014
TP2_MA3_5400 5140 10.630  —144.689 84 15 full —0.0030
TP2_MA4_5000 4992 5.194  —144.793 62 15 full —0.0024
TP2_MAS5_4950 4992 4482 —145.883 62 16  tied —0.0089
TP2_MA7_4500 4563 —3.913 —144.028 36 13 tied —0.0030
TP2_OM1_5200 5219 17.437  —151.994 73 13 full —0.0030
TP2_OM2_5400 5385 14791 —148.376 33 13 full —0.0030
TP2_OM3_5400 5197 10.648  —144.685 84 15 full —0.0030
TP2_OMS5_4950 4944 4487 —145.866 62 16  tied 0.0036
TP2_OM7_4500 4573 —3.931 —144.032 36 11 tied 0.0056
TP3_CR1_4800 4875 —10.832 —146.345 18 11 tied —0.0009
TP3_CR2_5100 5209 —6.487 —147.826 22 18  tied —0.0036
TP3_CR3_4800 4760 —1.630 —150.330 46 13 tied —0.0029
TP3_CR4_4800 4881 3.178 —153.505 60 9 full —0.0010
TP3_CRS5_4700 4816 6.649 —156.946 68 6 full 0.0089
TP3_CR7_5200 5208 16.602 —158.528 75 18  tied 0.0100
TP3_MAI1_5100 5083 —10.831 —146.325 18 11 tied 0.0063
TP3_MA2_5200 5226 —6.502 —147.818 22 18  tied 0.0029
TP3_MA3_4800 4835 —1.647 —150.336 46 14 tied 0.0011
TP3_MA4_4800 4916 3.189 —153.521 60 9 full 0.0011
TP3_MAS5_4600 4814 6.632 —156.950 68 6 full 0.0020
TP3_OMI1_5100 5101 —10.817 —146.337 18 11 tied 0.0012
TP3_OM4_4800 4873 3.169 —153.521 60 9 full 0.0024
TP3_OMS5_4600 4816 6.644 —156.932 68 6 full 0.0011
TP4_CR2_5400 5437 20.688 —146.253 103 17 tied —0.0001
TP4_CR3_5400 5445 21.163 —141.568 24 11 full 0.0029
TP4_CR4_5300 5319 21.563 —136.898 14 10 full 0.0009
TP4_CR6_4700 4792 24.123  —128.540 4 17 tied 0.0009
TP4_CR7_4800 4873 26.825 —124.635 4 17 tied 0.0010
TP4_MA1_5200 5229 20.315 —151.210 120 11 full 0.0004
TP4_MA2_5400 5476 20.688 —146.264 103 11 full 0.0003
TP4_MA3_5400 5491 21.173  —141.551 24 11 full 0.0003
TP4_MA4_5300 5335 21.560 —136.917 14 10 full —0.0017
TP4_MAS5_5000 5105 23.647 —133.339 5 18 tied —0.0019
TP4_MAG6_4700 4786 24.138  —128.551 4 17 tied —0.0019
TP4_MA7_4800 4906 26.841 —124.623 4 17 tied —0.0019
TP4_OMI1_5200 5232 20.297 —151.208 120 11 full —0.0015
TP4_OM2_5400 5445 20.704 —146.272 103 17 tied —0.0014
TP4_OM3_5400 5438 21.181 —141.568 24 11 full —0.0010
TP4_OM4_5300 5367 21.577  —136.909 14 10 full —0.0005
TP4_OMS5_5000 5148 23.647 —133.358 5 11 tied 0.0003
TP4_OM6_4700 4793 24.071 —128.560 4 17  tied 0.0003
TP4_OM7_4800 4934 26.824 —124.615 4 17  tied —0.0008
TP5_CR1_4300 4306 31.843  —124.368 4 18  tied —0.0010
TP5_CR2_4600 4645 28.687 —129.032 4 11 tied —0.0014
TP5_CR5_5200 5257 25795 —145.973 77 10 full 0.0037
TP5_MA1_4300 4310 31.837 —124.347 4 18  tied —0.0009
TP5_MA2_4600 4647 28.690 —129.013 4 11 tied —0.0002
TP5_MA3_4800 4846 26.577 —139.637 24 11 full 0.0007
TP5_MA5_5200 5262 25810 —145.982 77 10 full —0.0009
TP5_OM1_4300 4289 31.824 —124.364 4 18 tied 0.0001
TP5_OM2_4600 4636 28.704  —129.026 4 11 tied 0.0024
TP5_OMS5_5200 5232 25795 —145.994 77 10 full —0.0012
TP6_CR4_4700 4662 —3.335  —146.653 38 13 tied —0.0001
TP6_CR5_4500 4465 —4.616 —146.773 31 12 full —0.0021
TP6_CR6_5200 5140 —7.822  —146.141 18 11 full 0.0018
TP6_CR7_4900 4937  —10.953 —143.991 18 11 tied 0.0017
TP6_MA4_4700 4713 —3.335  —146.671 38 13 tied 0.0028
TP6_MA5_4500 4579 —4.632  —146.782 31 12 full 0.0012
TP6_MAG6_5200 5172 —7.822  —146.159 18 11 full 0.0018
TP6_OM4_4700 4651 —3.319  —146.662 38 13 tied 0.0011
TP6_OMS5_4500 4465 —4.632 —146.814 31 12 full —0.0008
TP6_OM6_5200 5182 —7.807 —146.150 18 11 full 0.0034
TP6_OM7_4900 4921 —10.969 —143.982 18 11 tied 0.0044
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Appendix B: Sensitivity analysis for threshold value
(TH method) and & value (DP method)

We used the collected profiles of temperature and pressure to
test the optimal threshold value to use for the BML thickness
derivation. We used the Quality Index methodology (Eq. 1
in the main text) to choose the appropriate threshold value
based on Lorbacher et al. (2006) as it was being applied to the
same method. The conservative temperature of 0.003 °C pro-
vided the highest mean QI for both the TPT voyage dataset
and the GO-SHIP repeat hydrographic sections of P02 and
P16 (Fig. B1).

The Douglas—Peucker split-and-merge algorithm (Ah-
madzadeh, 2017) reduces the number of points in a curve, ap-
proximating it by a series of points. An ¢ value between 0 and
1 is required to specify the similarity between the curve and
the points, i.e. the smaller the epsilon, the more similar the
curve. We tested three TPT Expedition profiles with ¢ values
between 0.001 and 0.01 (Fig. B2 for site TP2_OM3_5400).
We chose ¢ =0.002 and ¢ = 0.008 as the two options with
the most variability in results to calculate the BML height.
This gave us methods DP02 and DPO0S8 respectively.
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Figure B1. Histogram plots of the quality index values from the threshold BML height based on different threshold values of conservative
temperature (®) for TPT profiles as (a) 0.001 °C, (b) 0.002 °C, (¢) 0.003 °C, (d) 0.004 °C and (e) 0.005 °C and for the GO-SHIP profiles as
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Commons Ryan et al. (2009).
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Data availability. GO-SHIP profiles were obtained through the
CLIVAR and Carbon Hydrographic Data Office (CCHDO,
https://cchdo.ucsd.edu/, last access: 29 November 2024) for
cruise numbers: 3IWTTUNES_3, 325020060213, 33R0150410,
49K6K9401_1, 318M200406 and 318M20130321. The grid-
ded GO-SHIP product from Katsumata et al. (2022) was also
accessed, used within figures and available on Zenodo at
https://doi.org/10.5281/zenodo.13315689 (Katsumata et al., 2024).
The temperature-pressure sensor observations collected over the
Trans-Pacific Transit Expedition on board R/V Dagon are currently
available on Zenodo at https://doi.org/10.5281/zenodo.15536316
(Kolbusz and Jamieson, 2025). The global maps of internal tide
generation and dissipation as outputs from de Lavergne et al. (2019)
are available from SEANOE at https://doi.org/10.17882/58105 (de
Lavergne et al., 2018).
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