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Abstract. In recent decades, the Mediterranean Sea has ex-
perienced a notable rise in the occurrence and intensity of
extreme warm temperature events, referred to as marine heat-
waves (MHWs). Hence, the ability to forecast Mediterranean
MHWs in the short term is an area of ongoing research.
Here, we introduce a novel machine learning (ML) approach
specifically tailored for short-term predictions of MHWs in
the basin using an attention U-Net convolutional neural net-
work. Trained on daily sea surface temperature anomalies
(SSTAs) and gridded fields of MHW presence and absence
between 1982–2017, our model generates a spatiotemporal
forecast of MHW occurrence up to 7 d in advance. To ensure
robust performance, we explore various configurations, in-
cluding different forecast horizons and U-Net architectures,
number of input days, features, and different subset splits
of train–test datasets. Comparative analysis against a persis-
tence benchmark reveals an improvement of 15 % in fore-
casting accuracy of MHW presence for a 7 d forecast hori-
zon. We also demonstrate an improvement of MHW predic-
tion accuracy as the forecast horizon decreases, albeit with
a smaller discrepancy between the persistence benchmark,
which also results in high accuracy for the 3 d forecasts. Our
proposed ML methodology offers a data-driven prediction
of MHWs with reduced computational requirements, which
can be applied across different regions of the global ocean,
providing relevant stakeholders and management authorities
with essential lead time for implementing effective mitiga-
tion strategies.

1 Introduction

Since the 1980s, the Mediterranean Sea has experienced
a mean sea surface temperature (SST) increase of approx-
imately 0.041 °C yr−1, which is twice the global average
(Pisano et al., 2022). As a consequence, Mediterranean
MHWs have increased in frequency, intensity, and spatial
coverage, with profound disruptions of marine ecosystems
and communities that rely on them (Smith et al., 2021);
Specifically, MHWs have caused numerous mass mortali-
ties of native and the migration of invasive species in the
Mediterranean Sea (Garrabou et al., 2022), threatening the
region’s rich marine biodiversity and commercially valuable
fish stocks (Lacoue-Labarthe et al., 2016). Consequently, the
ability to forecast MHWs has become central to the field of
extreme oceanic events in the basin as it enables the devel-
opment of proactive measures for the mitigation of subse-
quent and potentially adverse effects on marine ecosystems
and socio-economic activities.

Essential to the early prediction of MHWs are advanced
monitoring systems and forecasting models, which have
proven reliable for global (Schultz et al., 2021; Balaji, 2021)
and regional applications (Konsta et al., 2023), in addition to
sophisticated climate models that offer a comprehensive un-
derstanding of MHW drivers by simulating the complex in-
teractions between atmospheric conditions and local oceanic
circulation patterns (Darmaraki et al., 2019a). In the Mediter-
ranean Sea, MHWs have been predicted in the short term
by the regional Copernicus Mediterranean Forecasting Sys-
tem, which successfully captured phases of the summer 2022
event (McAdam et al., 2023), while climate models have pro-
jected MHW frequency and characteristics throughout the
21st century under different climate change scenarios (Dar-
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maraki et al., 2019b; Konsta et al., 2023). However, forecast-
ing systems and state-of-the-art numerical models present
significant challenges due to the inherent uncertainties and
chaotic nature of the climate system in addition to the asso-
ciated high computational costs.

Thus, there is a growing interest in the use of machine
learning (ML) techniques, particularly data-driven, deep
learning models, to produce short- and long-term forecasts
more efficiently (Schultz et al., 2021; Balaji, 2021). Deep
learning models are used as surrogate models that overcome
the computational constraints present in classical numerical
weather prediction models. By training on large observa-
tional and/or model datasets, deep learning models can gen-
erate an extensive ensemble of forecasts, enhancing and com-
plementing traditional numerical weather prediction models
(Chattopadhyay et al., 2020). Compared to traditional meth-
ods, ML models typically encounter fewer issues with bias
(Jacox et al., 2022) and are especially skilled at capturing
and representing intricate and nonlinear dynamics in data
(Hornik, 1991).

Current research predominantly focuses on the forecast of
SST (Taylor and Feng, 2022), which allows for the estab-
lishment of contextualized thresholds based on specific re-
quirements and conditions. This approach requires additional
processing and expertise to identify MHWs (Hobday et al.,
2016), which may complicate the application of these predic-
tions by end users and management operators, a challenge
that can be circumvented through data-driven spatiotempo-
ral MHW prediction algorithms (Sun et al., 2023). Globally,
the forecasting of SST using shallow ML techniques, such
as linear regression and various statistical methods, is not
new and dates back to the 1970s (Anding and Kauth, 1970;
Fdez-Riverola et al., 2002; McMillin, 1975). During the last
decade, the field has seen a significant shift towards the ap-
plication of deep learning methods. These include recurrent
neural networks, long short-term memory (LSTM) networks
(Xiao et al., 2019; Liu et al., 2018), convolutional neural
networks (CNNs) (Han et al., 2019), and hybrid methodolo-
gies that combine these techniques (Taylor and Feng, 2022).
These advancements have enhanced the accuracy and capa-
bilities of SST predictions.

In contrast, direct forecasting of MHWs has received less
attention. For instance, Giamalaki et al. (2022) employed a
random forest method and successfully forecasted spatiotem-
poral occurrences of MHWs in the North Pacific Ocean.
However, their approach exhibited limitations in accurately
predicting the intensity and duration of these events, under-
scoring the challenges in developing robust predictive mod-
els for such complex phenomena (Schultz et al., 2021). More
recently, Sun et al. (2023) advanced the field by training a
hybrid model that integrated CNNs with LSTM layers to pre-
dict the occurrence of MHWs. Their study proposed an inno-
vative approach combining CNN-LSTM architectures with a
U-Net CNN regression model to forecast both SST anoma-
lies and binary classification maps, indicative of the presence

or absence of MHWs in the future. These outputs served as
indicators of MHWs when they exceeded certain thresholds.
This hybrid method focused on predicting the spatial distri-
bution of MHWs rather than generating simple time series
forecasts and demonstrated significant potential for predict-
ing MHWs with a lead time of up to 7 d. Such predictive
capabilities can be particularly useful for the implementation
of timely and effective mitigation strategies in regions highly
vulnerable to MHW impacts, such as the Mediterranean Sea.

Nevertheless, the use of ML techniques for the early pre-
diction of Mediterranean MHWs is an emerging field of re-
search. One of the pioneering efforts has used artificial neu-
ral networks to predict the seasonal and inter-annual vari-
ability of SST in the western Mediterranean as well as the
impact of the severe summer MHW of 2003 (Garcia-Gorriz
and Garcia-Sanchez, 2007). By training on a variety of me-
teorological variables from 1960 to 2005, including 2 m air
temperature, wind, and sea level pressure, the study achieved
reliable monthly SST predictions. More recently, Bonino
et al. (2024) evaluated the effectiveness of various ML al-
gorithms, including LSTM networks, CNNs, and random
forests on the forecast of daily SST, with a weekly lead time
across 16 Mediterranean sub-basins. Their study focused on
predicting SSTs that exceeded specific thresholds, indicating
the potential occurrence of MHWs. This approach success-
fully reduced computational costs associated with the pro-
cessing of 2D temperature fields, albeit at the expense of
detailed information on the spatial variability of anomalous
SST within each sub-basin. The results of this study out-
performed outputs from the Copernicus Mediterranean Sea
Analysis and Forecasting System, a sophisticated model that
provides daily forecasts of ocean variables (Coppini et al.,
2023). Overall, the application of ML techniques has show-
cased considerable potential in advancing our comprehen-
sion and forecasting of MHWs in the Mediterranean Sea.

Here, we combine well-established methodologies and
tools to create a novel configuration of an attention U-Net
CNN specifically tailored for the forecast of MHWs in the
Mediterranean Sea. Using a minimal set of regional climate
system model (RCSM) variables, primarily the daily spatial
distribution of sea surface temperature anomalies (SSTAs)
and spatiotemporal information on the presence and absence
of MHWs in the basin produced by a MHW identification al-
gorithm, we train the attention U-Net CNN model to forecast
MHW occurrence 3 and 7 d in advance. This work is struc-
tured as follows: Sect. 2 describes the ML technique, the in-
put variables that were used to train the U-Net model, and
the error metrics used for validation. Results of MHW fore-
casting, based on various neural network configurations, are
shown in Sect. 3 followed by the discussion and conclusions
in Sect. 4.
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2 Methodology

2.1 Study area

The Mediterranean is a semi-enclosed transitional area sur-
rounded by the temperate zone to the north and the sub-
tropical zone to the south and east. Its complex topogra-
phy features sharp mountains, mild coastlines, and desert re-
gions, creating a region highly sensitive to climate change.
The Mediterranean Sea is connected to the Atlantic Ocean
through the Strait of Gibraltar to the west and to the Black
Sea via the Bosphorus Strait to the northeast, which serves
as the main freshwater inflow for the eastern basin. It has a
mean depth of 1500 m (Bethoux et al., 1999) and is divided in
several sub-basins, including the Ionian, Tyrrhenian, Aegean,
Adriatic, Alboran, Balearic, and Ligurian seas (Fig. 1). The
region is also characterized by a distinctive thermohaline cir-
culation driven by surface heat and water losses. This unique
circulation system balances the excess evaporation over the
Mediterranean, contributing to a net buoyancy flux towards
the atmosphere, which plays a crucial role in the regional cli-
mate dynamics.

2.2 Input data

To identify surface MHWs in the Mediterranean Sea and
train the ML algorithm for their short-term prediction, we
obtain daily gridded SST outputs from the fully coupled re-
gional climate system model CNRM-RCSM6 that ran on
hindcast mode between 1982 and 2017 (Sevault, 2024; Dar-
maraki et al., 2019a). The model (NEMOMED12) covers the
entire Mediterranean Sea domain, has a 6–8 km horizontal
resolution, with a varying vertical resolution, over 75 verti-
cal levels in the ocean (Beuvier et al., 2012; Waldman et al.,
2017), and its lateral boundary conditions come from ERA-
Interim (Berrisford et al., 2009).

The ML method is trained, tested, and validated on a com-
bination of two types of input variables: (1) daily gridded
SSTA relative to the 1982–2017 period and (2) gridded fields
of MHW presence/absence. The daily spatial coverage of
surface MHW is computed using the updated version of the
MHW detection algorithm by Hobday et al. (2016), available
at https://github.com/coecms/xmhw (last access: May 2025)
(Petrelli, 2022). According to this definition, a MHW occurs
when the local SST is above a 30-year climatological pe-
riod (1982–2014) and a threshold of the 90th percentile of
SST for at least 5 consecutive days. The MHW identification
method yields gridded binary classification masks of daily
MHW presence/absence (1/0) for the entire Mediterranean
Sea domain between 1982–2017. The predominant classifi-
cation of grid points as MHW-absent (0) for most days of
the year results in an imbalanced input dataset that affects
the forecasting accuracy of any data-driven model (Bonino
et al., 2024; Sun et al., 2023).

To achieve a more balanced input dataset and reduce mem-
ory requirements during training, the gridded MHW occur-
rence fields are first downsampled. This process considers a
non-overlapping 2× 2 submatrix around a point and assigns
the label 1 in the presence of at least one MHW-affected pixel
or the label 0 in its absence, leading to a decreased spatial
resolution of MHW occurrence fields. The same approach is
followed for points in the immediate proximity to the coast.
The final spatial resolution of the Mediterranean Sea resolves
to 128× 72 points, which reduces the spatial resolution of
the model to approximately 12–16 km. Despite the reduction
in the spatial resolution, this approach increases the propor-
tion of MHW presence to 14 % (from the initial 7.7 %) across
the entire domain while still preserving a significant portion
of the complicated Mediterranean Sea features and the geo-
graphical location of each MHW. To match the spatial reso-
lution of the gridded MHW occurrence fields, we also down-
sample the daily SSTA of the Mediterranean Sea by means
of spatially averaging within a non-overlapping 2×2 subma-
trix around a point. Daily SSTAs are further normalized to
the range [0,1], aligning with the scale of the gridded MHW
occurrence data, with a view to improve the prediction accu-
racy of the U-Net CNN (Xiao et al., 2019).

As an input to the CNN model for a given day, we insert
the gridded fields of MHW occurrence and SSTA from pre-
ceding days, targeting the prediction of MHW spatial cover-
age 3 and 7 d ahead (Fig. 2). The limited set of input variables
is selected as an effective approach to balance the risk of
overfitting with computational efficiency in our method. This
decision was further informed by a lagged correlation anal-
ysis, which revealed moderate correlations between SSTAs
and atmospheric variables, such as air temperature, latent
heat flux, and shortwave radiation, with SSTA displaying the
highest-lagged autocorrelation (not shown). We then perform
sensitivity tests to assess the impact of varying the number
of preceding days as input, specifically 0, 2, and 4 d for the
MHW occurrence fields and 5, 10, and 14 days for SSTA, on
the model’s predictive ability. Cosine and sine functions are
also inserted as input features, indicating the yearly seasonal
cycle, assuming a unique combination of values for each
day of the year, spanning the period from 1 January 1982
to 31 December 2017:

cost = cos
(

2πt
365

)
,∀t ∈

{
1,2, . . .,Ndays

}
,

sint = sin
(

2πt
365

)
,∀t ∈

{
1,2, . . .,Ndays

}
, (1)

where the total number of days is denoted by Ndays.

2.3 The attention U-Net CNN model

In this study, we employ a data-driven approach, which
means that the nature, quantity, and quality of our data
(e.g. number of available years; temporal discontinuities in
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Figure 1. The bathymetry, main circulation, and sub-basins of the Mediterranean Sea. Key features of the surface circulation are shown with
black arrows, with anticyclonic and cyclonic systems represented by red and blue circles, respectively. AC: Algerian Current, NTG: North
Tyrrhenian Gyre, SG: Sidra Gyre, WAC: Western Adriatic Current, SAG: Southern Adriatic Gyre, NIG: Northern Ionian Gyre, PG: Pelops
Gyre, IG: Ierapetra Gyre, RG: Rhodos Gyre, MMG: Mersa Matruh Gyre. Bathymetry (m) is given in colours based on the CNRM-RCSM6
model. The figure is reprocessed based on Menna et al. (2022), Velaoras et al. (2024), and Darmaraki et al. (2024).

Figure 2. Attention U-Net CNN model architecture to forecast MHW presence/absence maps. N and M are the number of input frames
containing spatiotemporal information on MHW presence/absence and SST anomaly, respectively. Each map corresponds to daily frequency
of input data and has a matrix size of 128× 272. The U-Net figure is adapted from Ibtehaz and Rahman (2020).

data; spatiotemporal resolution and forecasted variable char-
acteristics, including class imbalance, seasonality, and ran-
domness) dictate the methodological choices for forecast-
ing MHW occurrence across different time horizons. Us-
ing a neural network architecture, enhanced with attention
mechanisms (attention U-Net CNN mode) which emphasize
key features while suppressing noise and capturing important
spatiotemporal patterns, we focus on 3 and 7 d forecast hori-
zons. This is deemed a sufficient time for proactive decision-
making by authorities and local stakeholders before a MHW
incident (Giamalaki et al., 2022).

2.3.1 Attention U-Net architecture

Here, the prediction of MHWs is considered a supervised
classification/regression challenge, for which we employ the

specific neural network architecture illustrated in Fig. 2,
based on the U-Net CNN architecture proposed by Ron-
neberger et al. (2015). Due to the use of several intermedi-
ate (hidden) layers, the method is classified as a deep neu-
ral network category, with the architecture including both
a contracting and expanding path. The contracting path
is responsible for extracting features from the input data
and progressively reducing the size of the feature maps
through downsampling, which, in our case, consists of a
series of three max pooling layers (https://www.tensorflow.
org/api_docs/python/tf/keras/layers/MaxPooling2D, last ac-
cess: March 2024). This process effectively increases the
model’s ability to perceive broader spatial relationships. As
the contracting path progresses, the number of channels
in the feature maps is doubled to improve feature capture
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across different scales. Conversely, the expanding path uses
upsampling operations to restore the feature maps to their
original dimensions, consisting of three deconvolution lay-
ers, using a Conv2DTranspose (https://www.tensorflow.org/
api_docs/python/tf/keras/layers/Conv2DTranspose, last ac-
cess: March 2024) for the decoding path, as shown in Fig. 2.

Moreover, the model incorporates skip connections to inte-
grate both local and global features, enabling the network to
utilize information from various scales simultaneously. At-
tention gates are placed before concatenating the skip con-
nections, automatically learning to focus on target struc-
tures of varying shapes and sizes. This design is expected to
improve the model’s prediction accuracy while maintaining
minimal computational overhead (Oktay et al., 2018). The
architecture also includes 2D convolutional layers with 2×2
kernels between all layers. The number of neurons in each
layer follows an exponential pattern with a base of 2, increas-
ing in the contracting path and decreasing in the expanding
path. The sine/cosine time features from Eq. (1) are incorpo-
rated at the bottom of the encoding path after passing through
dense and reshaping layers to obtain the same spatial dimen-
sion as the layer with which are concatenated.

Due to its versatility, this method has been previously used
in studies of image segmentation, pattern identification (Ok-
tay et al., 2018; Srivastava et al., 2014), spatiotemporal fore-
casting (Jacques-Dumas et al., 2022), and downscaling at
higher resolutions with minimal computational cost (Doury
et al., 2023) and has been shown to significantly enhance the
accuracy of forecasts. The goal of this network is to deter-
mine the probability of each grid point being classified as
either MHW-present (1) or MHW-absent (0) for predictions
of 3 or 7 d ahead, thus forecasting the spatiotemporal proba-
bility of MHW occurrence.

2.3.2 U-Net CNN model training

A common practice in a neural network approach is the split-
ting of a dataset into the training, testing, and validation sub-
sets. Here, the validation dataset consists of the early years
from 1982 to mid-1986, the training dataset comprises the
years from mid-1986 to mid-2013, and the final years se-
lected for testing and validation of the model span mid-2013
to 2017. Following the split, each of the three subsets (train,
test, and validation) undergoes random internal shuffling to
reduce memorization effects and increase the robustness of
the forecasting tool. The tendency for a model to memorize
rather than learn meaningful patterns – known as overfitting –
is a critical challenge in neural network training as it leads to
excessive tuning to the training data and causes the model to
capture noise and irrelevant details, ultimately compromis-
ing its ability to generalize effectively to new, unseen data.
To further reduce overfitting effects, we employ a “dropout”
approach, which involves random deactivation of a speci-
fied number of nodes, set to 30 % here, during each train-
ing step (Srivastava et al., 2014). An early-stopping/best-

saving checkpoint mechanism is also implemented whereby
the training process halts if there is no improvement for a pre-
determined number of epochs and a selected validation met-
ric (i.e. mean squared error, accuracy, recall, and F1 score).

Throughout the training of our model, we employ the
Adaptive Moment Estimation (Adam) optimizer (Kingma
and Ba, 2014), an optimization algorithm, which is based
on two gradient descent methodologies, with a batch size
of 4 and an initial learning rate of 0.001, set up to reduce
by half on a plateau of 10 epochs, with a minimum learning
rate of 10−4 and maximum number of 100 epochs. Evalu-
ated across all the training samples, the Adam optimizer is
used here to minimize the loss function, a key parameter of
the attention U-Net CNN, which measures the discrepancy
between predicted and actual values. The model’s ability to
successfully perform a given task is determined by the choice
of the loss function and the effective reduction of prediction
errors. Given the binary form of the MHW presence (1) and
absence (0) fields, the use of a binary cross-entropy loss func-
tion is a common choice (Jacques-Dumas et al., 2022). In the
case of extreme events and imbalanced datasets, where one
of the two classes is underrepresented, the focal binary cross-
entropy is preferred (https://www.tensorflow.org/api_docs/
python/tf/keras/losses/BinaryFocalCrossentropy, last access:
March 2024) (Lin et al., 2020). This function further im-
proves the effects of the standard binary cross-entropy by in-
tegrating two additional parameters designed to reduce the
influence of correctly classified samples and emphasize the
importance of misclassified ones. We use this loss function,
which in equation form reads as

Focal(pt )=−
N ·M∑

αt (1−pt )γ log(pt ) ,

where pt =
{
p, y = 1
1−p, otherwise , (2)

where y is the ground-truth class, p ∈ [0,1] is the predicted
probability, and αt and γ are the tuning parameters, which
are selected to be 0.25 and 2, respectively, following Nguyen
and Thai (2023). This adjustment leads to elevated loss val-
ues when misclassifications occur, steering the training pro-
cess toward lower local minima of the loss function. Due
to the nonlinear nature of the patterns the neural network
is trained on and despite the attempts to minimize the loss
function, its convergence often leads to near-local minima,
impeding its performance. To improve the model’s perfor-
mance and ensure that minima values of the loss function
maintain satisfactory accuracy levels in their prediction, sev-
eral iterations with varying parametric choices are conducted
on test cases (see Results Sect. 3.2, Table 1).

An additional aspect of neural network architecture is the
selection of activation functions, which are applied to the out-
puts of each intermediate hidden layer. These functions have
a key role in determining the operations applied to the in-
put neurons and thereby the model’s ability to generate an
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output (Sharma et al., 2020). In this study, we overcome the
limitations associated with the use of a standard rectified lin-
ear unit (ReLU) activation function in handling negative in-
put values using a leaky ReLU version in all the intermediate
layers (Maas et al., 2013). The leaky ReLU function allows a
small, non-zero gradient for negative inputs, effectively miti-
gating the vanishing ReLU problem, where neurons become
inactive during training. This effect proves advantageous for
nonlinear prediction tasks, enabling the model to capture a
broader range of input variations. The output (final) layer
is equipped with a sigmoid activation function, which is ap-
propriate for binary classification tasks as it produces values
within the range of [0,1]. These values express the proba-
bility for a grid point being affected by a MHW, with the
classification threshold determined by the specific character-
istics of the physical problem in each instance. The process
by which we select the appropriate classification threshold is
further discussed in Sect. 3.1.

The U-Net CNN model described here was implemented
using the Keras API and using TensorFlow 2.9.2 in Python.
The architecture outlined in Fig. 2 required 32 million pa-
rameters to train, and it ran in parallel on eight NVIDIA
A100 GPUs with a memory of 40 GB each in one node of the
p4d.24xlarge Amazon EC2 server. Each test case required
approximately 4 h to complete the training of 100 epochs,
and the inference speed required seconds to calculate fore-
casts for each sample on the same server. We note that once
the computationally expensive training ends, the model can
be deployed to any system to generate forecasts, with min-
imal computational overhead, given the appropriate input
data. For instance, the inference time for the entire testing
dataset, consisting of 1300 daily forecasts, required approxi-
mately 60 s on the aforementioned hardware configuration.

2.4 Evaluation metrics

The model’s performance is evaluated on a testing dataset
consisting of samples that were obscured by the U-Net CNN
during its training phase. At this stage, we assess the model’s
ability to accurately predict unseen data and determine the
optimal probability threshold above which each grid point is
categorized as a MHW-affected case. Throughout the train-
ing and validation process, standard metrics such as recall,
accuracy, and selected loss function are calculated during
each epoch for the training dataset and at the end of each
epoch for the validation dataset (https://www.tensorflow.org/
api_docs/python/tf/keras/metrics, last access: March 2024).
The primary metric to evaluate the prediction skill of the at-
tention U-Net CNN regarding future MHW occurrences is
the true positive rate (TPR). This rate assesses the proportion
of accurately predicted MHW occurrences relative to the to-
tal number of actual occurrences (Sun et al., 2023). The for-
mula for calculating TPR is given by

TPR=
TP

TP+FN
, (3)

where TP represents true positive predictions and FN denotes
false negative ones. In other words, the TPR metric quanti-
fies the model’s ability to accurately detect true MHW oc-
currences during testing. At the end of each epoch during the
training process, validation recall, a metric similar to TPR,
is computed on the validation subset and serves as an early-
stopping mechanism, a technique useful for both computa-
tional efficiency and preventing overfitting. In contrast, the
true negative rate (TNR) evaluates the model’s ability to ac-
curately predict the negative class labels, specifically the ab-
sence of a MHW, relative to the total number of non-MHW
occurrences. This metric is defined as

TNR=
TN

TN+FP
, (4)

where TN represents the true negatives and FP the false pos-
itives. Combining these two rates, the forecast accuracy rate
(FAR) composite metric can be used to assess the model’s
overall forecasting ability. Unlike the TPR and TNR, which
focus on a single class, the FAR considers both the correct
and incorrect MHW predictions across all classes. In formula
form, FAR is defined as

FAR=
TN+TP

TN+FP+TP+FN
, (5)

providing a percentage-wise estimation of forecast accuracy.
To obtain an overall TPR, TNR, and FAR as single nu-

merical indicators for each sample in the testing dataset, we
separately average the metrics defined in Eqs. (3), (4), and (5)
over the Mediterranean Sea domain. This approach provides
a single spatially independent numerical value for each error
metric corresponding to each sample in the testing dataset.
The final TPR, TNR, and FAR for each forecast horizon are
determined by averaging each of these metrics across all test
samples.

2.5 Persistence benchmark

A standard approach to evaluating the predictive skill of
our ML model is to compare its output forecast with a
climatological baseline derived from a persistence bench-
mark model, which assumes that MHW presence or absence,
within the next 3 or 7 d, remains constant throughout the
forecast period. Specifically, the persistence benchmark uses
MHW presence/absence fields from 3 or 7 d prior to an event
as both the input and the forecast for the target MHW condi-
tions. By operating under the assumption that recent MHW
conditions persist into the forecast period, the persistence
model provides a baseline performance level against which
we assess whether the U-Net CNN model adds predictive
value beyond simple temporal persistence. Despite the sim-
plicity of this assumption, using the persistence benchmark
model as a reference dataset is a meaningful approach for
short-term forecasting (Parasyris et al., 2022) given the rel-
atively slow changes in SST, which lead to minimal varia-

Ocean Sci., 21, 897–912, 2025 https://doi.org/10.5194/os-21-897-2025

https://www.tensorflow.org/api_docs/python/tf/keras/metrics
https://www.tensorflow.org/api_docs/python/tf/keras/metrics


A. Parasyris et al.: Marine heatwaves in the Mediterranean Sea 903

tions in MHW presence on most consecutive days. Improve-
ments demonstrated by the output forecast of a neural net-
work model that surpasses the basic persistence model are
essential for accurately forecasting the onset and dissipation
of MHWs.

3 Results

3.1 Assessing the probability of MHW occurrence

The output probabilities of MHW occurrence are converted
into binary classification masks as an initial step to assess
the forecast ability of our ML model. In particular, the U-
Net CNN generates maps where each pixel value ranges be-
tween 0 and 1, representing the probability of each grid point
being a negative (MHW-absent) or positive (MHW-present)
class (referred to as forecast probability). A range of fore-
cast probability thresholds (hereafter threshold) is then eval-
uated from 0.05 to 0.9, in increments of 0.05, as a trial-and-
error technique, to find the one which maximizes a specific
accuracy metric (TPR, TNR, FAR). A prediction based on
each threshold is subsequently generated for the entire testing
dataset and compared with the true MHW occurrences orig-
inally identified using the climate model output. Following
the work of Sun et al. (2023), we first compute the spatially
averaged TPR and TNR separately for each threshold and
further average their sum for all samples within the test set.
The optimal thresholds for the 3 d (Fig. 3a) and 7 d (Fig. 3b)
forecast scenarios are then determined by maximizing this
combined mean (CM) of TPR and TNR, which is formulated
as

CM=
TPR+TNR

2
. (6)

In both scenarios, increasing the threshold results in a higher
TNR and lower TPR as more predictions are classified as
MHWs absences, the accuracy of which is thereby improved.
The intersection point in each forecast scenario (Fig. 3, red
star) represents an equilibrium between sensitivity and speci-
ficity in classification terms. This point maximizes the CM
(Fig. 3, green lines), optimizing predictive performance of
both the positive and negative MHW occurrences. Specifi-
cally, the optimal threshold for the 3 d forecast is identified
at 0.45, yielding a maximum CM of 0.89 (Fig. 3a), whereas
the 7 d forecast achieves a CM of 0.77 at an optimal threshold
of 0.4 (Fig. 3b). At a high threshold of 0.85, both scenarios
exhibit a TNR close to 1, indicating no false negatives, as
most predictions are classified as negative. However, at this
threshold, the respective TPR is 0.48 for the 3 d forecast and
0 for the 7 d forecast (Fig. 3, blue lines). This suggests that
for the 3 d forecast, half of the MHWs were correctly clas-
sified despite the excessively high threshold. In contrast, the
7 d forecast shows a decline in performance as TPR is ap-
proximately zero (Fig. 3b).

Figure 3. Threshold selection for the (a) 3 d and (b) 7 d forecast
scenario based on the maximization of the combined mean (green
line) of TPR (blue line) and TNR (orange line). The threshold in-
crements range from 0.05 to 0.9, and the maximal point is indicated
by a red star.

In the context of optimizing the threshold selection, TPR
(Eq. 3) and TNR (Eq. 4) are prioritized over FAR (Eq. 5)
as the primary goal is to accurately predict MHW occur-
rences (true positives) rather than minimizing false alarms
(FP, FN). Given that FAR includes all grid points in the do-
main (128× 272), it relies on a larger denominator, result-
ing in lower overall values. This causes the FAR curve to
shift toward higher threshold values, consequently reducing
the number of true positives, which is suboptimal. Neverthe-
less, FAR is useful as a cumulative metric and is later used to
assess the spatial overall performance of the optimal model
configuration.

3.2 Sensitivity analysis on input variables

To further optimize the configuration of our U-Net CNN,
we perform a sensitivity analysis on the input variables em-
ployed in training the model. Specifically, nine distinct ex-
periments are examined for both the 3 and 7 d forecast sce-
narios, in which we varied the number of SSTA days and
MHW presence/absence window preceding the target pre-
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Table 1. Sensitivity experiments on the input variables of the U-Net
CNN model and the associated prediction metrics for the 3 d fore-
cast scenario. The input variables configuration for each experiment
is indicated with the number of preceding time steps of SSTA (N )
and the number of preceding time steps (M) of MHW presence/ab-
sence maps. The highest evaluation metrics are highlighted in bold
for clarity. The TPR, TNR, CM, and FAR represent true positive
rate, true negative rate, combined mean, and forecast accuracy rate,
respectively.

Experiment M N TPR TNR CM FAR

1 5 0 0.785 0.726 0.756 0.783
2 5 2 0.844 0.898 0.871 0.918
3 5 4 0.864 0.890 0.880 0.918
4 10 0 0.758 0.759 0.758 0.786
5 10 2 0.881 0.891 0.886 0.900
6 10 4 0.858 0.905 0.882 0.902
7 14 2 0.865 0.893 0.879 0.917
8 14 4 0.867 0.850 0.859 0.914
9 Persistence 0.844 0.890 0.867 0.881

diction date. The number of experiments was primarily lim-
ited by the memory constraints of our computational setup
during training. Additionally, we prioritized simplicity to en-
sure minimal requirements during forecasting, enhancing the
tool’s practicality as a viable alternative for MHW predic-
tion. For each experiment, we evaluate the corresponding
TPR, TNR, CM, and FAR metrics and determine the best-
performing setup of our model based on the maximum CM.
The decision to prioritize CM (over FAR) reflects the greater
influence of TPR on CM, aligning with our primary objective
of accurately predicting positive MHW occurrences.

In the case of the 3 d forecast scenario, experiment 5
achieves the highest CM, incorporating M = 10 preceding
time steps of SSTA andN = 2 preceding time steps of MHW
presence/absence maps as input variables, with a total of
31 926 629 parameters trained (Table 1). Although this exper-
iment demonstrates the highest TPR (0.881) and the second-
highest TNR (0.891) among all experiments, it does not yield
the maximum FAR, which is observed in experiments 3 and
2. Overall, the TPR and TNR variations across most of the
sensitivity tests in the 3 d forecast scenario remain within a
5 % range, indicating a relative stability of the model’s per-
formance and robustness to small changes in input variables.
However, a marked deterioration in performance is observed
in experiments 1 and 4, with a TPR declining by up to 16 %
compared to other experiments. This is due to the SSTA be-
ing the sole input variable (N = 0) of this configuration.

In comparison, the 7 d forecast produces slightly reduced
metrics, indicating decreased accuracy over the extended
forecast period (Table 2). In particular, the highest CM is
identified in experiment 7, which incorporates M = 14 pre-
ceding time steps of SSTA andN = 2 preceding time steps of
MHW presence/absence maps as input variables. While this

Table 2. As in Table 1 but for the 7 d forecast scenario.

Experiment M N TPR TNR CM FAR

1 5 0 0.753 0.688 0.721 0.718
2 5 2 0.704 0.812 0.758 0.823
3 5 4 0.761 0.735 0.748 0.778
4 10 0 0.774 0.648 0.711 0.716
5 10 2 0.735 0.794 0.764 0.801
6 10 4 0.7565 0.759 0.757 0.788
7 14 2 0.757 0.792 0.775 0.802
8 14 4 0.756 0.754 0.755 0.780
9 Persistence 0.653 0.872 0.763 0.829

experiment demonstrates a balanced performance, achieving
a TPR of 0.757 and the second-highest TNR (0.792), experi-
ment 9 (the persistence benchmark) exhibits the highest TNR
(0.872) and a significantly lower TPR (0.653).

Compared to the 3 d forecast, the TPR and TNR variations
across the sensitivity tests of the 7 d forecast reach up to 14 %
(Table 2). For instance, TPR ranges from 0.653 in experiment
9 to 0.774 in experiment 4, while TNR ranges from 0.648 in
experiment 4 to 0.872 in experiment 9. When excluding cases
that lack MHW presence/absence maps as an input variable
(N = 0), the results show the same model stability (Table 1),
with TPR and TNR variations confined within a 5 % range.
Indeed, a marked deterioration in performance is observed
in experiments 1 and 4, with TPR values ranging between
0.753 and 0.774 and TNR values between 0.688 and 0.648,
respectively. This indicates that the model has limited ability
to effectively draw upon patterns from past events when in-
formation about MHW presence/absence maps is excluded.

3.3 Performance of optimized U-Net
CNN configuration

In the following, we assess the forecasting ability of our U-
Net CNN model based on the best-performing configurations
of each forecast horizon. Specifically, we assess the predic-
tive capability of experiment 5 for the 3 d forecast scenario
and experiment 7 for the 7 d forecast scenario, which were
determined to yield the highest performance metrics.

3.3.1 Forecast rates

The performance of the binary MHW classification is eval-
uated across the entire testing dataset (mid-2013 to 2017),
irrespective of temporal or spatial variations, using a confu-
sion matrix. This tool quantifies the percentage of correctly
and incorrectly classified grid points within the MHW spatial
domain throughout all the samples of each forecast scenario,
providing a comprehensive evaluation of the model’s predic-
tive accuracy and robustness. The classification metrics used
include the TPR and TNR and the false positive rate (FPR)
for negative cases misclassified as positive and the false neg-
ative rate (FNR) for positive cases misclassified as negative,
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Figure 4. Confusion plot for the (a) 3 d and (b) 7 d forecast, show-
ing the TPR (observed positive–predicted positive), TNR (observed
negative–predicted negative), FPR (observed negative–predicted
positive) and FNR (observed positive–predicted negative). Forecast
rates are denoted in percentages within the boxes, taking into ac-
count all the samples of the testing dataset spanning mid-2013 to
2017.

which are the complementary metrics to the TPR and TNR,
respectively.

The model achieves high accuracy in correctly classifying
both the MHW-affected (true positive) and the non-MHW
grid points (true negative) in the 3 d forecast scenario, with
success rates of 88.1 % and 89.1 %, respectively (Fig. 4a).
Incorrect predictions account for only up to 12 % of the sam-
ples. In comparison, relatively lower rates of TPR (75.7 %)
and TNR (79.2 %) are seen in the 7 d forecast (Fig. 4b), likely
due to the reduced autocorrelation of the 7 d lagged input
maps, compared to the 3 d case, with the proportion of mis-
classified cases increasing to 24 %.

To complement the analysis of aggregate metrics, we fur-
ther examine the predictive accuracy of our U-Net CNN on
a sample-by-sample basis within the testing dataset, span-
ning mid-2013 to 2017 (Fig. 5). Specifically, we compare the
total number of predicted positive MHW grid points to the
observed positives for each sample. By examining the align-
ment of data points with the line of parity (Y =X), we as-
sess not only overall predictive skill but also patterns of sys-
tematic overprediction or underprediction within the dataset.
This approach enables us to discern deviations from perfect
agreement and provides insights into potential biases in the
forecasts. For the 3 d forecast, a strong agreement is observed
between the predicted and observed MHW occurrences as
99.31 % of the points fall within a tolerance of 3500 grid
points from the Y =X line (Fig. 5a). This tolerance thresh-
old was empirically determined to optimize performance in
the 3 d forecast scenario, enabling meaningful comparisons
with the 7 d forecast. Given that in geospatial analysis it is
common to use a threshold based on a percentage of the
total dataset to ensure stability and scalability (Xu et al.,

Figure 5. Scatter plots of the total number of observed (x axis) vs.
predicted (y axis) points classified as MHW present (blue dots) per
sample, for the (a) 3 d and (b) 7 d forecast throughout the entire
testing dataset spanning mid-2013 to 2017. The upper and lower
thresholds of 3500 points (green lines) are introduced for compari-
son purposes (see text).

2024), we chose a tolerance that represents approximately
10 % of the total grid points in each map. In contrast, the 7 d
forecast scenario shows reduced alignment, with 86.68 % of
samples meeting the same tolerance threshold. Furthermore,
most points lie above the Y =X line, indicating a potential
overestimation of MHW presence in this scenario (Fig. 5b).

These results highlight the ML model’s diminished predic-
tive reliability at extended forecast horizons, which is consis-
tent with the inherent trade-offs in balancing sensitivity and
specificity.

3.3.2 Comparison with the persistence benchmark

The final phase of evaluating the U-Net CNN configura-
tion focuses on comparing its performance to the persistence
benchmark model, which predicts MHW presence/absence
based on lagged correlations over 3 and 7 d intervals (Fig. 6).
The persistence model predicts MHW occurrence based on
past observations, assuming that the most recent conditions
are the best predictor of future events. The “noisy” TPR fluc-
tuations observed across the test dataset can arise from rapid
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Figure 6. TPR values of each sample across the entire 3.5-year test
dataset spanning mid-2013 to 2017 for the best-performing experi-
ment and persistence benchmark of the (a) 3 d and (b) 7 d forecast.
The TPR values of each U-Net model are indicated in green lines,
whereas TPR of the persistence model is shown in black. The aver-
aged value across the entire 3.5-year test dataset is also shown with
the same colours as a bold line, indicating our U-Net method to be
better overall.

changes in the MHW presence/absence maps, which chal-
lenge the predictive stability of both models. This variabil-
ity is further compounded in the U-Net CNN by the inher-
ent stochasticity in neural network predictions. However, in
terms of the average TPR, the U-Net CNN consistently out-
performs the persistence benchmark across both forecast sce-
narios (Fig. 6). For the 3 d forecast, the persistence model
achieves an average TPR of 0.844 (Fig. 6a), which declines
to 0.653 in the 7 d forecast (Fig. 6b), reflecting stronger per-
formance in the shorter forecast horizons. In comparison, the
reduction in TPR between the 3 and 7 d forecast is less pro-
nounced for the U-Net CNN, declining from 0.881 to 0.757.
This indicates that the U-Net CNN exhibits a comparatively
higher stability in maintaining predictive performance over
longer forecast horizons. Overall, the best-performing exper-
iments of the U-Net CNN outperform the persistence bench-
mark model, achieving higher values across all evaluation
metrics in the 3 d forecast and in some select metrics for the
7 d forecast. This reflects the model’s robustness in shorter
forecast horizons and its ability to maintain competitive per-
formance despite the challenges posed by longer forecast
horizons.

3.3.3 Evaluation of spatial prediction accuracy

This section investigates the regions of the Mediterranean
Sea displaying higher and lower susceptibility to prediction
errors in our method. To this end, we examine the spatial
distribution of the averaged FAR across all samples of the
testing dataset (mid-2013 to 2017) for both forecast scenar-
ios. This metric provides a cumulative assessment of the U-
Net CNN model’s predictive performance, enhancing our un-
derstanding of regional prediction reliability, while guiding
model refinements to improve forecast precision in identified
areas of weakness.

Overall, the spatial distribution of FAR reveals signifi-
cant differences between the 3 and 7 d forecast scenarios.
In the 3 d forecast, FAR values exceed 90 % in the north-
west Mediterranean, Adriatic, and Ionian seas, as well as the
southeast Mediterranean basin, as opposed to the Balearic
Islands, Alboran, and Aegean seas, where slightly lower
FAR values (80 %–90 %) are displayed (Fig. 7a). In the
7 d forecast, FAR values are generally lower across the en-
tire Mediterranean Sea. Specifically, the FAR values in the
Aegean Sea, the coastal areas of the northern Mediterranean
basin, and the Alboran Sea range between 60 % and 70 %,
with only the Ionian and Tyrrhenian seas as well as the Lev-
antine Basin displaying FAR values approximately between
80 % and 92 % (Fig. 7b).

4 Discussion and conclusions

This study presents the application of an attention U-Net
CNN to predict the spatiotemporal evolution of MHWs in
the Mediterranean Sea. The proposed model integrates an at-
tention mechanism with a standard U-Net architecture, com-
bined with a focal binary cross-entropy loss function, among
other key parameters. The model is trained on SSTA and in-
formation on daily MHW presence/absence between 1982
and 2017 to predict future MHW occurrence within 3 and 7 d
forecast horizons. Extensive hyperparameter tuning is carried
out to ensure the model’s stability and performance within
acceptable limits alongside the implementation of a specific
threshold selection technique. The results, presented for both
forecast horizons, highlight a decline in forecasting skill as
the prediction horizon increases, with our U-Net CNN con-
sistently outperforming the persistence benchmark model.

For the optimal thresholding technique of MHW proba-
bility, we prioritize the accurate detection of true MHW in-
stances (TPR) over minimizing the number of non-MHW in-
stances (TNR). Specifically, we focus on the maximization of
the combined mean of TPR and TNR (CM) to ensure a bal-
ance between sensitivity and specificity (Sun et al., 2023).
As the threshold increases, a trade-off emerges between the
TPR and TNR (green line, Fig. 3), whose curves form a con-
cave shape with a distinct maximum point. In cases where
this maximum is not well defined, an optimal threshold can
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Figure 7. Spatial distribution of the forecast accuracy rate (FAR) in the Mediterranean Sea for the (a) 3 d and (b) 7 d forecast scenario,
averaged across all samples of the testing dataset spanning mid-2013 to 2017.

be determined either empirically (Fawcett, 2006), based on
the intersection of TPR and TNR (Fig. 3), or by maximizing
the FAR metric (Sun et al., 2023).

The optimal configuration of the U-Net CNN is then de-
termined through sensitivity analysis, assessing the impact of
various input variable combinations on model performance.
The best-performing configuration incorporatesM = 10 pre-
ceding SSTA time steps and N = 2 preceding time steps of
MHW presence/absence for the 3 d forecast (Table 1) and
M = 10 and N = 4 for the 7 d forecast (Table 2). In both
forecast scenarios, configurations relying solely on SSTA
data demonstrate the weakest performance, highlighting the
importance of integrating both temperature anomalies and
prior MHW occurrences to achieve more reliable forecast-
ing of these events. Particularly for the 7 d forecast, the vari-
ations in the CM and FAR metrics across the different ex-
periments are less pronounced when excluding experiments
with a single input variable. In line with the findings of Sun
et al. (2023), this sensitivity analysis aims to optimize the
model’s performance on unseen data while maintaining sim-
plicity for future end users and balancing model complexity
and generalization.

However, the assessment of the U-Net CNN’s forecast
ability reveals distinct differences in predictive accuracy be-
tween the short-term (3 d) and longer-term (7 d) forecast
horizon. While the 3 d forecast achieves the highest aver-
age TPR and TNR metrics overall, its discrepancy relative
to the persistence benchmark is modest, potentially due to
the high autocorrelation of the SSTA in both the bench-
mark and the 3 d forecast (Fig. 6a). In contrast, the 7 d fore-

cast exhibits lower TNR and TPR values, with the perfor-
mance gap between the benchmark and the U-Net CNN be-
ing more pronounced (Fig. 6b). Thus, our results indicate an
improved accuracy in shorter forecast horizons, in agreement
with Bonino et al. (2024). Despite demonstrating a decline in
TPR from the 3 d to the 7 d forecast scenario, the strength of
the U-Net CNN lies in maintaining a higher TPR value than
the persistence benchmark in both forecast scenarios, sug-
gesting an improved ability to predict MHWs across different
temporal scales.

Based on the FAR metric, an improved forecasting per-
formance (high FAR values) of the U-Net CNN is revealed
in the northwest Mediterranean basin, the Ionian Sea, and
the Levantine Basin as opposed to the lower FAR values
observed in the Aegean and Alboran seas, Balearic Islands,
and northern coastal areas (7 d forecast). In the case of the
Aegean Sea, the low FAR values may reflect challenges in
detecting MHWs due to rapid SST fluctuations influenced by
the Black Sea. These fluctuations can lead to swift onset and
dissipation of MHWs (Mavropoulou et al., 2016), complicat-
ing their detection by ML methods. Additionally, the down-
sampling applied to address the high computational demands
of our method (see Sect. 2.2) resulted in a reduced spatial res-
olution of the data. This reduction likely affected the model’s
performance in regions with complex topography, such as the
Aegean Sea and coastal areas. This is likely due to the re-
duction in spatial resolution (halved to 12–16 km) near the
coast, which results in the averaging of values and the loss
of high-resolution information in these regions. While we
acknowledge this limitation, we prioritize reliable forecast-
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ing of MHWs across the entire Mediterranean Sea, under-
standing that higher-resolution models, though more accu-
rate in these areas, also come with increased computational
demands. This is also observed in Bonino et al. (2024), where
the authors also report a reduced forecast ability of their neu-
ral network model around the Adriatic Sea, Balearic Islands,
and the Alboran and Aegean seas. Given that ocean circula-
tion along the coast is primarily driven by local winds and
can be influenced by offshore currents near complex topo-
graphic features, the exclusion of winds as an input dataset
may have further reduced the forecast accuracy of our ML
model in shallow coastal areas, where SST variations be-
come more complicated (Berthou et al., 2024; Liu et al.,
2025). However, Bonino et al. (2024) found a weak depen-
dence of the SST on wind speed across all the Mediterranean
sub-basins they considered by calculating the mutual infor-
mation index prior to applying the ML method. While in-
corporating atmospheric variables into the training process
could thus potentially enhance the model’s ability to capture
broader climatic influences on MHW occurrence, ultimately,
we selected a limited set of training variables in order to en-
hance the model’s simplicity and replicability across both the
training and prediction phases following Sun et al. (2023).

It is important to note that the results of this study are
based on the “straight split” methodology, where the early
years of the dataset are used for training and the final years
for testing. Given that ML models trained on recent data of-
ten achieve higher accuracy due to the influence from recent
climate patterns (recency effect; Lam et al., 2023), we have
also explored the impact of reversing the training and test-
ing dataset order. In particular, we carried out a sensitivity
test, defined as the opposite split, using the years 2013–2017
for training and 1982–1986 for testing to assess whether our
model’s predictive skill is dataset-dependent or driven by
climate-change-induced temperature (see Table S1). For the
7 d forecast horizon, we find improved TNR and TPR metrics
when more recent data are inserted in the training dataset.
This aligns with the findings of Lam et al. (2023), where
recent climate trends, including the increased frequency of
MHWs, were shown to enhance model effectiveness by mit-
igating issues of data scarcity and imbalance in the training
datasets. However, for the 3 d forecast, we find a deterioration
of both metrics, compared to the outputs of the straight split
methodology (see Table S1 in the Supplement). This may be
due to the longer duration of recent MHWs, which are less
frequent in earlier years (Oliver et al., 2018) and thus may be
poorly represented in the training dataset. In this study, we
thus used the straight split methodology as the training of a
neural network with historical data to forecast information in
the future reflects a more realistic approach.

Overall, the proposed U-Net CNN model offers a compu-
tationally efficient alternative to traditional regional forecast-
ing models for predicting MHWs in the Mediterranean Sea.
Once trained, our approach maintains high spatiotemporal
resolution while requiring minimal computational resources.

The results indicate that the model performs better in the 3 d
forecast compared to the 7 d forecast across all evaluation
metrics and relative to the persistence benchmark. This out-
come is expected given the higher autocorrelation of SSTAs
over shorter time frames, which is consistent with other stud-
ies such as Sun et al. (2023) and Taylor and Feng (2022).
Although the 7 d forecast holds greater practical value for
the early prediction of extreme events, enabling more effec-
tive mitigation strategies, it remains a challenging task for
ML methods, as reflected in the lower persistence benchmark
values over longer time horizons. In comparison, the 3 d fore-
cast achieves higher overall metrics due to the shorter fore-
casting window and the inherently higher persistence bench-
mark values. Nevertheless, the U-Net model still outperforms
the benchmark in the 3 d forecast, albeit by a smaller margin
than in the 7 d forecast. Given the model’s success in predict-
ing MHWs using a minimum input of variables in a region
with diverse thermohaline and circulation patterns, such as
the Mediterranean Sea (Benincasa et al., 2024), it is reason-
able to assume that our methodology can be generalized to
other basins and case studies. While a similar ML approach
has demonstrated comparable forecasting performance in ar-
eas with similar data availability (Sun et al., 2023), factors
such as grid size and computational resources may also in-
fluence the training process of the ML model. Notably, the
primary challenge in applying the U-Net CNN for predicting
MHWs in this study was achieving a balance between pre-
dictive accuracy and computational efficiency, which is an
important consideration for the application of all ML meth-
ods.

As global warming accelerates, the increasing frequency
and severity of MHWs pose significant challenges to ma-
rine ecosystems. Efficient and timely forecasting of MHWs
is essential for effective marine management, enabling gov-
ernments, industries, and coastal communities to take proac-
tive measures, such as imposing temporary fishing bans,
enhancing monitoring of vulnerable species, establishing
marine protected areas, and launching public awareness
campaigns to promote sustainable practices. ML-based ap-
proaches show promise for improving predictions of these
events, particularly through architectures like the attention
U-Net CNN employed in this study, which reconstruct spa-
tially distributed variables and generate high-resolution pre-
dictions within seconds to minutes, depending on available
computational resources. This rapid forecasting ability is par-
ticularly advantageous for short-term predictions as climate
models typically require days of runtime and data assimila-
tion to achieve comparable accuracy in operational settings
(Coppini et al., 2023). For instance, a significant compu-
tational benefit was demonstrated using a neural-network-
based regional climate model (RCM) emulator that was
trained to reproduce complex spatial structure and variabil-
ity in near-surface temperature simulated by an RCM (Doury
et al., 2023). By learning the relationship between the low-
resolution predictors and high-resolution surface variables
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over the RCM domain, this approach enables the low-cost
generation of high-resolution RCM simulation ensembles,
which are useful for exploring local-scale uncertainties in
present and future climate.

As computational capabilities advance, ensemble models,
such as those used in time series regression (Bertsimas and
Boussioux, 2023) could also improve CNN-based forecast-
ing of MHWs, especially for long-term model predictions
that are typically hindered by error propagation. Future re-
search should consider training ML models on observed or
remotely sensed data, despite their limitations (Abdelmajeed
and Juszczak, 2024), as well as hybrid approaches that com-
bine the physical consistency of traditional models with the
speed and adaptability of ML methods (Bonino et al., 2023).
Given that the accuracy and reliability of many ML mod-
els is compromised by their violation of fundamental phys-
ical principles (Chen et al., 2023), future efforts should also
focus on addressing this limitation by incorporating physi-
cal laws (Desai and Strachan, 2021) or analytical equations
(Zanetta et al., 2023), which are approaches that, though in
early stages, show promise.
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