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Abstract. To integrate wave and sediment transport mod-
eling, a computationally extensive wave-resolving Voronoi-
mesh-based simulation has been developed to improve upon
heretofore separate sediment and spectral wave modeling.
Sediment entrainment by wave motion and fine scales of the
dynamic Rouse number distribution across the seabed were
brought into focus. The entirely parallelized wave-resolving
hydrodynamic model is demonstrated for nearshore beach
waters adjacent to artificial islands in Doha Bay. The nested
model was validated with tidal time series for three locations
and two seasons.

1 Introduction

Wave-resolving hydrodynamics, similar to direct numerical
simulations (DNSs) of turbulent eddy mixing, requires reso-
lutions that are usually impossible or impracticable to com-
pute within even logarithmic orders in the teraflops (floating-
point operations per second) range. Therefore, waves and
sediment transport have heretofore been simulated sepa-
rately (Hsu et al., 2005; Anastasiou and Sylaios, 2013;
Yu et al., 2018), entailing a principle limit in rigor. This
work advances the integration of both wave and sedi-
ment transport modeling into a single direct wave simu-
lation by exploiting the filtering of shallow orbital wave
motion. That is, wave motion not in contact with the
seabed does not need to be resolved to depict entrainment.
Waves modeled here thus do not encompass the entire wave-
length spectrum, which would also include short waves that
barely perturb shear forcing on the seabed. Therefore, with
respect to bottom shear, wave-resolving computation as an
alternative to spectral models (La Forgia et al., 2023) can be

achieved well before full-coastal DNSs. This approach might
only be valid for certain wave regimes and climates and may
be less suited for others that exhibit waves too short to re-
solve but long enough to be in contact with the seabed.

If conditions are calm, with wind waves exhibiting wave-
lengths much smaller than twice the water depth, then the
perturbation of near-bottom tidal currents due to orbital wave
motion remains negligible. If conditions are sufficiently agi-
tated, such that wavelengths reach the order of magnitude of
the water depth in size, then wave orbital motion may con-
siderably influence bottom currents. Simulating waves and
sediment transport in an integrated model that is capable of
resolving waves enhances the rigor in depicting these shear
forces.

The sections below contain the wave-resolving simula-
tion of the Rouse number distribution to resolve small scales
in the balance of sediment entrainment and deposition. The
Voronoi model developed here is suitable for wave resolu-
tion, as the variable number of edges per finite volume re-
duces wave fronts on acute triangle angles. In terms of nu-
merical diffusion (Holleman et al., 2013), Voronoi meshes
exhibit a reduction compared to Delaunay meshes (Chan
et al., 2018). Analytical verification of the model made
possible by dynamic domain contractions has been doc-
umented separately (Lawen, 2023). Earlier triangle-mesh-
based versions of the model have been in use for a decade
(Lawen et al., 2013, 2014) for studies of reactive transport.
Several reasons might have initially supported the choice of
unstructured triangle meshes (Lawen et al., 2014), which
followed prolific (Falcieri et al., 2014; Ricchi et al., 2017)
models based on structured meshes (Lawen et al., 2010;
Ladant et al., 2024) vis-á-vis Voronoi meshes: for exam-
ple, cells in the latter mesh type are formed by a vary-
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ing number of edges. Without sparse matrix storage mode,
the sizes of arrays for vertices and faces are, thus, de-
termined by the Voronoi cell with the most faces. Mean-
while, triangle cells always have just three horizontal faces
(Lawen et al., 2013, 2014; Cousins et al., 2013; Tadesse and
Fröhle, 2020), yielding compact arrays for early cache-fitting
simulations of multiple bus-snooping schemes and, thus,
cache-coherent cores or CPUs. Voronoi meshing has lately
also been applied to oceanography, with work (Herzfeld
et al., 2020; Ringler et al., 2013) mentioning different sta-
bility concerns vs. Delaunay-mesh-borne models. That is,
an algorithm that might be stable on a Delaunay mesh
might not necessarily be stable on a Voronoi mesh.
The need for the development of ocean models based on
Voronoi meshes has been put forth with dedicated empha-
sis (Ringler et al., 2013): “all 23 global ocean models used
in the Intergovernmental Panel on Climate Change (IPCC)
4th Assessment Report (Intergovernmental Panel on Cli-
mate Change, 2007) were based on structured, conforming
quadrilateral meshes (see Chap. 8, p. 597, of Randall and
Bony, 2007). Our view is that the global ocean modeling
community benefits from having a diversity of numerical ap-
proaches. While this diversification is well underway with
respect to the modeling of the vertical coordinate (Hallberg,
1997; Bleck, 2002), progress in developing new methods
for modeling the horizontal structure of the global ocean on
climate-change timescales has lagged behind”.

The ADCIRC (Pringle et al., 2021; Kerr et al., 2013;
Shashank et al., 2021; Szpilka et al., 2022), FESOM (Wang
et al., 2014), Fluidity-ICOM (Kimura et al., 2013), FVCOM
(Yu et al., 2017), ICON (Mehlmann and Korn, 2021; Loge-
mann et al., 2021; Linardakis et al., 2022), Mike 3 Wave
FM (Kaergaard et al., 2019), SCHISM (Lynett et al., 2017,
formerly SELFE), SLIM (Dobbelaere et al., 2024; Sterckx
et al., 2023; Vincent et al., 2022), SUNTAS (Fringer et al.,
2006; Masunaga et al., 2023), Thetis (Scott et al., 2023; Wall-
work et al., 2024; Mawson et al., 2022), and UNTRIM (Ca-
sulli, 1999; Mahavadi et al., 2024) models simulate triangular
and/or quadrilateral meshes. The D-Flow FM (Frölke, 2016)
and E3SM (Feng et al., 2022; Leung et al., 2020; Petersen
et al., 2019; Golaz et al., 2019) models, including configura-
tions such as the MPAS (Lilly et al., 2023, 2025; Pal et al.,
2023), also process pentagons and hexagons. The Voronoi-
mesh-borne model provided here further contributes to the
requested diversity.

Model validation was performed with five correlations of
simulated surface elevations, with time series from a tidal
survey of three locations and two seasons. Validation of hy-
drodynamic models commonly relies on time series of sur-
face elevations, as reported in a number of works (Hsu et al.,
1999; Blumberg, 1977; Oey et al., 1985; Park and Kuo, 1993;
Muin and Spaulding, 1996), owing to the reliable correla-
tion between simulations and measurements due to the well-
posed dynamics of tides. This follows from the magnitudes
of the hydrostatic and momentum terms and has been ob-

served in general, including in recent works (Lawen et al.,
2013, 2014; Yu et al., 2017). That is, Earth’s gravity levels
water tables such that tidal constituents are usually rather
well-behaved quantities in comparison to velocity compo-
nents. The bottom drag was calibrated to vertical current pro-
files to obtain reliable values for bottom roughness.

2 Method

The Cauchy partial differential equation (PDE) adds the
depiction of stresses to the Euler momentum PDE. In the
Navier–Stokes PDE, the stresses of the Cauchy PDE are
specified for Newtonian fluids, that is, molecular momentum
dissipation is proportional to the fluid’s shear rate. Reynolds-
averaged Navier–Stokes (RANS) simulations and large-eddy
simulations (LES) harness momentum transport by utiliz-
ing the diffusive term in the Navier–Stokes PDE. Approx-
imations and configurations of the latter for coastal ocean
domains are known as shallow-water equations (SWEs) or
primitive equations, primitive in the sense of the fundamental
governing function. The model solves, in conjunction with
the continuity PDE (Eq. 10), the incompressible Navier–
Stokes PDE (Eq. 1) configured for surface flow, which ac-
counts in the control volume V (m3)

∂ (ρ u V )

∂t
+

∑ ∂ (uiρi u V )

∂x
= F +∇ ·

τxxτxyτxzτyxτyyτyz
τzxτzyτzz

 (1)

for the component velocities u= [u v w] (ms−1), with the
force F (kgms−2) due to the hydrostatic pressure gradient
and Coriolis acceleration, as detailed in Sect. 2.2 and 2.3.
The stress tensor τij (kgms−2) is configured for an incom-
pressible Newtonian fluid and horizontally isotropic viscos-
ity in Sect. 2.4. Finite volume approximations are demon-
strated for all terms in the following dedicated subsections:
Sect. 2.1 for continuity, Sect. 2.2 for advection and hydro-
static pressure, Sect. 2.3 for Coriolis acceleration, Sect. 2.4
for viscous stress, Sect. 2.5 for the Smagorinsky coefficient,
Sect. 2.6 for hydrodynamic boundary conditions, Sect. 2.7
for sediment transport, and Sect. 57 for erosion. These sub-
sections also incorporate derivations of the respective terms.

If component velocities are uniform throughout a finite
volume, then the latter is termed convective: quantities are
uniformly “convected” throughout a cell. If component ve-
locities are nonuniform throughout a finite volume, then
an algorithm is termed conservative if the same quantities
exit and enter adjacent finite volumes through faces. That
is, constituents are conserved and not lost throughout the
domain. Variable velocities within one finite volume, that
is, the conservative case, correspond to transport veloci-
ties remaining in the PDE’s derivative. Transport velocities
can be arranged outside the PDE’s derivative, correspond-
ing to uniform velocity components in a finite volume if
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the continuity PDE is inserted into the PDE of the quanti-
ties concerned. The PDE system is then termed convective.
A uniform velocity is obviously more suitable to warrant
constituent emission from a finite volume. Therefore, con-
servative algorithms are less likely to ascertain the stability
of the simulation, particularly if errors are repetitively ampli-
fied in circulation (Lawen et al., 2014). Both cases are here
derived via the constituent balance of a finite volume. While
considering a convective case of quantity transport, the con-
servative case is still used to derive the algorithm for the con-
tinuity PDE. Summation indices range over x, y, and z for
derivatives and for finite volume terms, over the faces of the
Voronoi polygon. A control volume balance of quantity flows
ji along xi (m) for dimension i and quantity f yields

∂f

∂t
=−

∑ ∂ji

∂xi
(2)

for n spatial dimensions. That is, for advection with velocity
components u, v, and w (ms−1),

∂f

∂t
=−

∑ ∂ (uif )

∂xi
. (3)

The finite volume approximations utilized to convert the
partial differential equations for momentum, continuity, and
scalar transport into finite volume equations are listed in Ta-
ble 1 below.

Most of the upwind and central difference algorithms
listed have been used before in a similar manner in the 3D
Simulation for Marine and Atmospheric Reactive Transport
(3D SMART) (Lawen et al., 2013, 2014) for other transport
quantities, such as height h (m), temperature T (°C), salin-
ity S (PSU), and concentration c (kgm−3), and on triangle
meshes instead of Voronoi meshes.

These approximations of derivatives are expressed in Ta-
ble 2 in areasA (m2) and edges e (m) alongside an evaluation
of derivatives based on the total differential. 1>0(q) denotes
the indicator function that evaluates whether the volume flow
qi (m3 s−1) through face i into the finite volume fulfills a
particular logical condition, such as for influx and efflux or
whether the flow is entering or exiting, to facilitate upwind-
ing. ni(f ) denotes here a quantity value at the centroid of a
face shared with neighbor i in the neighbor list.

The Wavedyne, the new Voronoi-mesh-borne version of
the 3D SMART, features a gradient computation based on
the total derivative: a polygon’s centroid and the centroids
of two neighboring cells β and γ constitute a triangle. That
is, the total derivative is denoted for one of two edges of a
triangle, formed between the centroid of a particular cell and
the centroids of two adjacent cells, β and γ , if β is likewise
adjacent to γ ,

δf1 =
∂f1

∂x
δx1+

∂f1

∂y
δy1, (4)

with particular edge components δxi , δyi , and δfi for edge i
but with a common ∂f/∂x and ∂f/∂y throughout the triangle,

yielding

∂f

∂x
=

(
δf1−

∂f

∂y
δy1

)
/δx1. (5)

Likewise, the total derivative can be denoted for another
edge, and the gradient from the left-hand side (LHS) of
Eq. (5) is inserted:

δf2 =

(
δf1−

∂f

∂y
δy1

)
δx2

δx1
+
∂f

∂y
δy2, (6)

which may be resolved for the complementary gradient

∂f

∂y
=
δf2− δf1δx2/δx1

δy2− δy1δx2/δx1
. (7)

Assembling the gradient for asymmetrical Voronoi cells
out of triangles requires, furthermore, weighting factors. In
Table 2, binary α takes a logical functionality, carrying the
value 0 or 1, and is calculated before the simulation to select
edges 1 and 2 such that division by small numbers is avoided,
enhancing accuracy. Likewise, whereas the total derivative of
∂f/∂y in Table 2 is calculated before ∂f/∂x, the calculation
is also conducted in inverted order to provide a substitute in
case of division by zero.

Arrays for α, β, and γ are computed once and for all be-
fore the simulation, as these arrays depend only on the mesh
geometry. Nevertheless, the computational costs of the pro-
cedure cannot be said to be negligible, as they lead to a dou-
bling of the run time vis-á-vis the central difference approx-
imation listed in Tables 1 and 2. Algorithm validation has
been conducted using a method of manufactured solutions
(MMS), which has been submitted separately for publication
(Lawen, 2024a). The MMS was realized by oscillating the
seabed to match the flow field to an analytical solution.

2.1 Continuity

The continuity PDE is obtained by specifying the transport
PDE (Eq. 2) for mass. The conservative form is converted
into the convective form by applying the product rule for
derivatives in the equation for mass continuity.

∂m

∂t
=−

∑ ∂ṁi

∂xi
(8)

With ∂m= ∂ (ρV ) (kgm−3 m3), this is rendered as

∂ (ρV )

∂t
=−

∑ ∂ (uiρV )

∂xi
, (9)

dividing V = ph by the polygon area p in a convective form,
that is, after application of the product rule

∂ (ρh)

∂t
=−

∑
ui
∂ (ρh)

∂xi
− ρh

∑ ∂ui

∂xi
. (10)

On the right-hand side (RHS) of the approximation below,
the first term exhibits the convective form for the quantity h,
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Table 1. Term approximation.

Term Convective Conservative Central Diffusive Total
upwind central difference central derivative

difference difference

Advect u,v,w,hρ,T ,S,c ∇

Advect q ∇

Hydrostatic pressure ∂
∂xi

∂
∂xi

Viscous diffusion ∇
2

Eddy shear rates ∂
∂xi

∂
∂xi

∇ in eddy viscosity’s ∇ · τ ∂
∂xi

∂
∂xi

Smagorinsky model ∂
∂xi

∂
∂xi

Table 2. Finite volume approximations.

Integrated quantity flux approximation

f ′
∣∣∣∣convective

upwind
A−1∑

i

[
qi
(
ni(f )1>0(qi)+ fi1≤0(qi)

)]
f ′
∣∣∣∣conservative

central
(2A)−1∑

i

[
qifi + ni(q)ni(f )

]
f ′
∣∣∣∣central

(2A)−1∑
i

[
proj⊥r (ei)(ni(f )− f )

]
f ′′
∣∣∣∣central

A−1∑
i

[
|ei |(ni(f )− f )

]
fy

∣∣∣∣ total
derivative

α(fβ−f )+0α(fγ−f )−(α(fγ−f )+0α(fβ−f ))δx2/δx1
δy2−δy1δx2/δx1

fx

∣∣∣∣ total
derivative

(
α
(
fγ − f

)
− 0α

(
fβ − f

)
− δy1∂f/∂y

)
/δx1

and the second term exhibits the conservative form for a con-
stant quantity equal to 1. Two corresponding finite volume
approximations, for the convective and conservative cases,
respectively, can be inserted from Table 2. The first term is
approximated with upwinding and the second term with a
central difference approximation. +δt denotes a quantity at
the subsequent time level. Past triangle mesh-versions of the
3D SMART species transport (Lawen et al., 2013, 2014) also
featured semi-implicit matrix reordering algorithms. How-
ever, these attained only a tripling of time steps at the expense
of flops for the reordering, rendering the net computational
gain questionable.

(
h+δtρ+δt −hρ

) p
δt

=

upwind︷ ︸︸ ︷∑[
qi

hi

(
n(hiρi)1>0(qi)+hiρi1≤0(qi)

)]

+
hρ

2

central difference︷ ︸︸ ︷∑[
qi

hi
+
n(qi)

n(hi)

]
(11)

Here, qi is the volume flow through face i based on the
component velocities at the cell’s centroid. Meanwhile, n(qi)
is the volume flow based on the component velocities of the
neighbor at face i. The latter is included to approximate the
volume flow at the face between two cells. The total hor-
izontal flow through cell faces, the summed-up component
volume flows, are the products of component velocities and
the perpendicular edge components. That is,

qi

hi
= proj⊥x(ei)u− proj⊥y(ei)v. (12)
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2.2 Convective material derivative and hydrostatic
pressure

In addition to the time derivative, the material derivative also
contains advective momentum transport in the Euler momen-
tum, Cauchy, Navier–Stokes, shallow-water, and primitive
equations. Inserting momentum into the PDE for quantity ad-
vection yields

∂ (uρV )

∂t
=−

∑ ∂ (uiρuV )

∂xi
. (13)

Applying the product rule to the LHS and RHS yields

u
∂ (ρV )

∂t
+ρV

∂u

∂t
=−

∑[
uiρV

∂u

∂xi
+u

∂ (uiρV )

∂xi

]
. (14)

Inserting the conservative form of the continuity PDE into
the LHS yields the opportunity to eliminate terms, returning
only one term each for the LHS and RHS:

ρV
∂u

∂t
=−ρV

∑[
ui
∂u

∂xi

]
. (15)

The fluid from Eq. (13) can be denoted by the velocity in
its spatially differential form:

∂ (ρ u V )/∂t =−
∑ ∂ (ρi u V )

∂x

dxi
dt
, (16)

which matches the form of the RHS of the total deriva-
tive df =

∑
∂f/∂s ds, with ds = [dx1. . . dxn, dt] divided

by the time increment. Hence,

d(ρu V )
dt

=
∂ (ρ u V )

∂t
+

∑ ∂ (ρi u V )

∂x

dxi
dt

(17)

or, in consideration of ui = dxi/dt ,

d(ρu V )
dt

=
∂ (ρ u V )

∂t
+

∑ ∂ (ui u ρi V )

∂x
. (18)

PDE and the finite volume equation (FVE) can, hence, be
configured as an Euler equation by including forces. As New-
ton’s second law holds for force F and momentum mu,

F = d(mu)/dt. (19)

Given that mu= ρ V u, the net force in the LHS is obtained
by summing up all forces Fj in a free-body diagram.∑

F j =
∑ ∂ (uimu)

∂xi
+
∂mu

∂t
(20)

In terms of FVE approximation, a quantity balance for a
regularly or irregularly shaped finite volume transported with
an upwind approximation in volume flows qi into volume V
returns for quantity f

∂ (f V )

∂t
=

∑(
qi
(
n(fi)1>0(qi)+ fi1≤0(qi)

))
. (21)

1 is the indicator function that denotes the logical condi-
tion of using quantity values of neighboring cells for faces
i where volume flows qi are positive, that is, during inflow-
ing. The component velocity basis for the volume flows de-
termines whether this FVE corresponds to the conservative
or the convective case. The latter is the case if the centroid’s
component velocities are applied to all faces. Inserting mo-
mentum into the FVE (Eq. 21) for quantity advection yields

∂ (uρV )

∂t
=

∑
i

(
qi
(
ρn(ui)1>0(qi)+ ρui1≤0(qi)

))
. (22)

If the force acting on surfaces i of the irregular fluid parcel is
pressure, then as per Fi = (δP)iproj⊥r(Ai), with the pressure
difference δP and the vector of orthogonal component areas
proj⊥r(Ai), the following holds:

∑
i

(
(δP)iproj⊥r(Ai)

)
=

∑ ∂ (uip)

∂xi
+
∂p

∂t
. (23)

Due to a difference in surface height δh/2 between adjacent
centroids and the edge of the considered cell, it follows that

g
∑
i

[(
ρ
δh

2

)
i

proj⊥r(Ai)
]
=

∑ ∂ (uimu)

∂xi
+
∂mu

∂t
(24)

g
∑
i

[(
ρ
δh
2

)
i

proj⊥r (Ai)
]
=

∑ ∂ (uiρV u)

∂xi
+
∂ (ρV u)

∂t
, (25)

which is again inserted into the RHS of the FVE.

g
∑
i

[(
ρ
δh

2

)
i

proj⊥r(Ai)
]
=

∑
i

(qi (ρn(ui)1>0(qi)

+ρui1≤0(qi)
))
+
∂ (ρV u)

∂t
(26)

The pressure term alone, here on the LHS, constitutes the
minimal momentum transport configurations in ocean mod-
eling, as given by the Laplace tidal equations (LTEs) or
linearized shallow-water equations (SWEs) (Biewald et al.,
2024). With a discrete time derivative and the term for Cori-
olis acceleration Fc, this yields

ρV
(
u+δt −u

)
δt

= g
∑
i

[(
ρ
δh

2

)
i

proj⊥r(Ai)
]

−

∑
i

(
qi
(
ρn(ui)1>0(qi)+ ρui1≤0(qi)

))
+Fc. (27)

The method is of the first order in space and time to attain
high-resolution meshes (Fig. 6) to resolve waves, while re-
maining efficient in terms of flops: to resolve waves, the cell
size should be a log order below the part of the wave spec-
trum of interest, i.e., maximizing the cell count and minimiz-
ing flops per cell.
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2.3 Coriolis acceleration

Forces, including rotational pseudo-forces, can be substituted
into the left-hand side (LHS) of Eq. (20). For the latter, the
LHS has to be transformed into the Earth’s rotating latitude–
longitude reference frame. To observe the acceleration in a
rotating reference frame, it can be denoted in terms of the
spatial vector relative to the inertial reference frame:

d2r

dt i
=

[
d
dt
+�×

][
dr
dt
+�× r

]
, (28)

where i indicates the inertial reference frame. This yields, for
all n components denoted in the momentum vector mu,

F −m
dω
dt
× r − 2m(ω× v)−mω× (ω× r)=

∂mu

∂t

+

∑(
ui
∂mu

∂xi

)
, (29)

with � being Earth’s angular velocity. This procedure recov-
ers a term to account for Earth’s rotation alone. The effects
due to Earth’s axial tilt, which is accounted for in the inso-
lation simulation for surface heat exchange, the inclination
relative to the solar plane, and the Sun’s inclination relative
to the galactic plane, are unanimously deemed negligible at
the scale of the required transport accuracy and given other
uncertainties, such as those due to bathymetric uncertainty.
Likewise, Earth’s angular velocity is considered a constant,
and, hence, its time derivative vanishes:

F − 2m(ω× v)−mω× (ω× r)=
∂mu

∂t
+

∑(
ui
∂mu

∂xi

)
.

(30)

The vertical component of the Coriolis acceleration is
deemed negligible (Kundu et al., 2016) and is heavily
masked by imperfectly defined vertical turbulent momentum
transport. Evaluating the cross products yields, for Earth’s
zonal and meridional dimensions, a negligible term with
quadratic angular velocity, a perpendicular centripetal, and
radially inward acceleration; without which

F +

 0 2mω sin(φ) 0
−2mω sin(φ) 0 0

0 0 0

u= ∂mu
∂t

+

∑(
ui
∂mu

∂xi

)
(31)

is obtained for a particular latitude φ (rad), where Earth’s an-
gular velocity ω (rad s−1) is given by 2π(24× 602 s)−1. As
the Coriolis term does not contain any derivatives, no approx-
imation is required.

2.4 Viscous stress, turbulence, LES, and RANS

The consideration of surface forces also accounts for the in-
ternal friction of the fluid, the viscosity. Each of the three

component velocities at the centroids of the faces of the ex-
amined control volume undergoes strain in three spatial di-
mensions, yielding nine strain rate elements that are com-
monly presented in tensor form, as shown in Eq. (1). Note
that tensor calculus falls here into the confines of matrix cal-
culus. The viscous stress tensor is usually denoted in the
form below, including the Nabla operator from the first-
order Taylor expansion to attain the differential notation of
the force balance at the infinitesimal control volume. For
example, for the first component velocity, the dot product
yields ∂τxx/∂x+∂τxy/∂y+∂τxz/∂z for the first tensor row.
The Navier–Stokes PDE is set apart from the Cauchy mo-
mentum PDE by being specified for Newtonian fluids where
– assuming incompressibility – stress τij is linearly propor-
tional to the sum of the gradient of velocity i in direction j
and the gradient of velocity j in direction i. The proportion-
ality coefficient µij is termed the viscosity. The entirety of
all stresses denoted by the stress tensor can, hence, be sub-
stituted by the proportionality of incompressible Newtonian
fluids to the sum of the strain rate tensor and its transpose.
Note that the absence of volume viscosity is warranted due
to the assumption of incompressibility.

∇ ·

(
τxx τxy τxz
τyx τyy τyz
τzx τzy τzz

)
=∇ ·


µxx

∂u
∂x

µxy
∂u
∂y

µxz
∂u
∂z

µyx
∂v
∂x

µyy
∂v
∂y

µyz
∂v
∂z

µzx
∂w
∂x

µzy
∂w
∂y

µzz
∂w
∂z



+

µxx ∂u∂x µyx
∂v
∂x

µzx
∂w
∂x

µxy
∂u
∂y

µyy
∂v
∂y

µzy
∂w
∂y

µxz
∂u
∂z

µyz
∂v
∂z

µzz
∂w
∂z




(32)

The RHS contains the strain rate tensor and its transpose.
In the case of molecular viscosity, that is, momentum trans-
port due to molecular diffusion and interaction, an isotropic
and spatially constant coefficient is assumed for all nine ij
combinations. As per the latter assumption, the viscosity co-
efficient can be denoted outside the tensor.

∇ ·µ



∂u
∂x

∂u
∂y

∂u
∂z

∂v
∂x

∂v
∂y

∂v
∂z

∂w
∂x

∂w
∂y

∂w
∂z

+
 ∂u
∂x

∂v
∂x

∂w
∂x

∂u
∂y

∂v
∂y

∂w
∂y

∂u
∂z

∂v
∂z

∂w
∂z


 (33)

Inserting term (33) into Eq. (32) and resolving its dot product
yields, for the first row (that is, for the viscous stress term of
component velocity u),

∂τxx

∂x
+
∂τxy

∂y
+
∂τxz

∂z
= µ

∂ ( ∂u∂x + ∂u
∂x

)
∂x

+

∂
(
∂u
∂y
+

∂v
∂x

)
∂y

+

∂
(
∂u
∂z
+

∂w
∂x

)
∂z

 . (34)

In Eulerian fluid dynamics, that is, continuum mechanics,
the assumption of continuous variables flows directly from
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the very concept under consideration and is assumed for the
quantities’ derivatives as well. Therefore, Clairaut’s theorem
can be applied, rendering the order of partial differentia-
tion immaterial. This assumption breaks down at quantity
jumps. Yet at infinite gradients, Eulerian diffusive models
break down anyway. Fortunately, such conditions are, at the
scale considered, not present in the coastal ocean systems
described here. Therefore, the partial derivatives on the LHS
can be sorted as follows:

∂τxx

∂x
+
∂τxy

∂y
+
∂τxz

∂z
µ

(
∂2u

∂x2 +
∂2u

∂y2 +
∂2u

∂z2

)

+µ

∂

=0︷ ︸︸ ︷(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)
∂x

. (35)

Here the insertion of the continuity PDE ∇u= 0 eliminates
three of the partial derivatives, yielding, for the entire system
of PDEs,

∂ (ρ u V )

∂t
+

∑ ∂ (uiρi u V )

∂x
= F

+µ

(
∂2u

∂x2 +
∂2u

∂y2 +
∂2u

∂z2

)
. (36)

Molecular viscosity is isotropic and largely constant and can,
therefore, due to being constant, be placed outside the deriva-
tive. Yet eddy viscosity is not at all constant. In the case of
eddy viscosity, the Smagorinsky model assumes horizontally
isotropic viscosity. Furthermore,

∂w

∂x
�
∂u

∂x
,
∂w

∂x
�
∂u

∂y
,
∂w

∂x
�
∂v

∂x
(37)

and analogously for ∂w/∂y, yielding

∇ ·


k

∂u
∂x

k ∂u
∂y

kz
∂u
∂z

k ∂v
∂x

k ∂v
∂y

kz
∂v
∂z

k ∂w
∂x

k ∂w
∂y

kz
∂w
∂z

+
 k ∂u∂x k ∂v

∂x
0 ∂w
∂x

k ∂u
∂y

k ∂v
∂y

0 ∂w
∂y

kz
∂u
∂z

kz
∂v
∂z

kz
∂w
∂z


,

(38)

with horizontally isotropic eddy viscosity k and vertical eddy
viscosity kz. Therefore, Clairaut’s theorem cannot be applied,
except to the third row of the transpose. That is, the transpose
of the strain rate tensor remains relevant. The partial deriva-
tives are, thus, collected differently, yielding, for the horizon-
tal component velocities,

∂ (ρ u V )

∂t
+

∑ ∂ (uiρi u V )

∂x
= F + 2

∂ (k∂u/∂x)

∂x

+
∂ (k (∂u/∂y+ ∂v/∂x))

∂y
+
∂ (kz∂u/∂z)

∂z
(39)

∂ (ρ v V )

∂t
+

∑ ∂ (uiρi v V )

∂x
= F + 2

∂ (k∂v/∂y)

∂y

+
∂ (k (∂v/∂x+ ∂u/∂y))

∂x
+
∂ (kz∂v/∂z)

∂z
. (40)

The dot product of the transpose of the strain rate tensor for
the third row, the vertical velocity component w, is

∇ ·

(
k
∂w

∂x
+ k

∂w

∂y
+ kz

∂w

∂z

)
+

∂
(
kz
∂u
∂z

)
∂x

+

∂
(
kz
∂v
∂z

)
∂y

+

∂
(
kz
∂w
∂z

)
∂z

. (41)

Applying the product rule and sorting terms produces

∇ ·

(
k
∂w

∂x
+ k

∂w

∂y
+ kz

∂w

∂z

)
+
∂kz

∂x

∂u

∂z
+
∂kz

∂y

∂v

∂z

+
∂kz

∂z

∂w

∂z
+ kz

(
∂ ∂u
∂z

∂x
+
∂ ∂v
∂z

∂y
+
∂ ∂w
∂z

∂z

)
. (42)

For the last three terms, Clairaut’s theorem can again be ap-
plied, changing the order of partial differentiation. Further-
more, some terms are approximated using finite differences.

∇ ·

(
k
∂w

∂x
+ k

∂w

∂y
+ kz

∂w

∂z

)
+
δkz

δx

δu

δz
+
δkz

δy

δv

δz

+
δkz

δz

δw

δz
+ kz

∂

=0︷ ︸︸ ︷(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)
∂z

, (43)

again yielding the opportunity to exploit the continuity PDE
to eliminate terms. Also, the finite difference approximation
yields the opportunity to rearrange divisors:

∇ ·

(
k
∂w

∂x
+ k

∂w

∂y
+ kz

∂w

∂z

)
+
δkz

δz

≈0︷ ︸︸ ︷(
δu

δx
+
δv

δy
+
δw

δz

)
, (44)

recovering the finite difference approximation of the continu-
ity PDE, which is approximately zero, and, thus, eliminating
further terms. Inserted into the PDE for the vertical compo-
nent velocity, this yields

∂ (ρ w V )

∂t
+

∑ ∂ (uiρi w V )

∂x
= F +

∂ (k∂w/∂x)

∂x

+
∂ (k∂w/∂y)

∂y
+
∂ (kz∂w/∂z)

∂z
. (45)
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Tables 1 and 2 list the selectable approximations for
the eddy diffusive terms. Transport unresolved by the
mesh is at the smallest scale of molecular diffusion that
is also present during laminar flow. Negligible molec-
ular diffusion and also unresolved eddies are usually
modeled as random, that is, diffusive phenomena, and
are referred to by the fictitious quantity eddy diffusion.
Direct numerical simulation (DNS) is computationally pro-
hibitively expensive on the geophysical scale without a quan-
tum computing resource (Itani, 2021; Bharadwaj and Sreeni-
vasan, 2022). Henceforth, unresolved turbulence is treated
using two fictitious models and quantities: (1) Reynolds-
averaged Navier–Stokes (RANS) simulations and (2) large-
eddy simulations (LES). In the first approach, transient fluc-
tuations are split off the modeled velocity, whereas in the sec-
ond, transport is filtered by deducting (Smagorinsky, 1963)
spatially unresolved transport. That is, the former smooths
over time, the latter smooths over space, and both can be
used in the same model for the vertical and horizontal, re-
spectively (Yu et al., 2017, 2018).

The RANS approach is more receptive to buoyancy, which
is important for vertical turbulence, whereas LES, devel-
oped by Smagorinsky, is computationally more effective for
isotropic flows, which are a valid description of the horizon-
tal. Therefore, RANS models, in particular k–ε models, are
commonly used for the vertical, and an LES–Smagorinsky
model is used for the horizontal. The same approach has been
selected for this model and documented in subsequent sec-
tions.

The transport PDEs derived above, including a diffusive
term for turbulence in conjunction with a density quantify-
ing PDE, are termed the primitive equations, where primi-
tive corresponds to its basic governing utility and not to a
lack of sophistication. Or, if inertial considerations are re-
stricted to two dimensions and the vertical is approximated
by mere continuity, then the set of PDEs that is yielded is
called shallow-water equations.

2.5 Smagorinsky turbulence

Transport of vector and scalar quantities is split into a re-
solved and an unresolved component. This step is commonly
referred to as filtering, with a filtered velocity u and an unre-
solved residual velocity. Underlying the Smagorinsky model
is the assumption that Reynolds stress can be modeled by the
rate of the strain tensor, introducing another fictitious viscos-
ity that is itself modeled by the rate of the strain tensor. The
Smagorinsky model has an inherent assumption of an even
weighting of the fluctuating velocity. The averaging in the
filter function can also introduce a heavier weight close to
the centroids, given that the velocities are stored at the cen-
troid.

The Smagorinsky model corresponds only to a uniform
isotropic filter, also termed a box filter. An alternative is a
Gaussian, bell-shaped filter function that samples the fluctu-

ating velocity predominantly at the centroids. The eddy vis-
cosity is dependent on the filter size, here the Voronoi cell
size. Molecular viscosity is usually ignored, given that it is
logarithmic orders of magnitude smaller than eddy viscosity.
The Smagorinsky model is simpler than the RANS model,
as it assumes isotropic turbulence, which is warranted in the
horizontal plane but not in the vertical plane.

In the Smagorinsky model, the strain rate tensor of the re-
solved flow represents the local deformation of the flow. The
model is obtained from Kolmogorov modeling (Kolmogorov,
1941) of the turbulent energy dissipation from the average
of the fluctuating velocity, where the proportionality of the
former to the Reynolds stress is inferred from dimensional
analysis. Utilization of a diffusive term under the assumption
of random and, thus, gradient-driven transport is readily ob-
tained from the fluid’s Lagrangian description, given that ran-
dom transport holds in the thermodynamic Lagrangian do-
main at every scale of unresolved geometry.

kH =
CSP

2

√(
∂u

∂x

)2

+

(
∂v

∂y

)2

+ 2−1
(
∂v

∂x
+
∂u

∂y

)2

, (46)

with the Smagorinsky coefficient CS. The eddy diffusiv-
ity constant is usually (Yang and Khangaonkar, 2008; Chen
et al., 2011) treated as isotropic horizontally but is computed
separately for the vertical. The eddy diffusivity is modeled
with the eddy viscosity µ for momentum transport, which
can be set as prognostic or diagnostic for the horizontal and
the vertical. That is, in the latter case, a value obtained from
a parameter identification is applied. Otherwise, in the prog-
nostic case, the horizontal eddy viscosity is computed using
the Smagorinsky model.

Numerical diffusion is to be expected as well, that is, artifi-
cial diffusion inherent to continuum descriptions of physics.
Numerical diffusion does not pose a detriment to the sta-
bility but does to the accuracy of a simulation, by inflating
eddy diffusion. Nevertheless, LES and RANS models permit
nominal compliance with the Navier–Stokes PDE, compre-
hensiveness in approximating all terms, or possible stability
benefits that a diffusive term conveys to some algorithms.

The evaluation of the Cartesian gradient at the centroids
is not readily available in unstructured meshes and requires
dedicated computation (Skamarock et al., 2012). Given that
the magnitudes of other uncertainties are of higher logarith-
mic orders in the LES and RANS models, it appears ques-
tionable to expend flops to refine the computation of the
derivatives in Eq. (46) to compute estimates for this ficti-
tious quantity. Nevertheless, to not have to quantify the un-
certainty due to these interpolations, the derivatives of the
velocity components at the centroid are here rigorously com-
puted by applying the total derivative to each triangle that
spans a centroid and two adjacent neighbors. Most of these
computations can be calculated ahead of the simulation and
stored in auxiliary arrays, as provided in Table 2.
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The filtered transport in the eddy diffusive terms requires
a proportionality coefficient to link the strain rate to an eddy
diffusive force. In coastal ocean momentum transport, it is
commonly assumed that this coefficient grows with the LES
spatial filter, represented by the Voronoi polygon size P , and
with the strain rate terms in the root of Eq. (46) above. Algo-
rithms to compute gradients are listed in Tables 1 and 2. All
geometric meta-quantities are calculated in advance ahead of
the simulation and are stored to minimize the computational
load.

2.6 Hydrodynamic boundary conditions

The no-flux boundary is simply attained by setting all fluxes
through the boundary face to zero. For scalar quantities, that
is, quantities without a hydrostatic pressure term such as tem-
perature, salinity, sediment, and tracers, the free-slip bound-
ary condition keeps quantities from growing out of bounds.
The free-slip boundary condition keeps the velocity vector in
the finite volume parallel to the boundary. That is, no com-
ponent is perpendicular to a solid boundary face. At the open
boundary conditions that connect the model to the open sea,
the surface elevation is set to the surveyed tidal meter time
series or to tidal data from any other source.

Rigor in depicting bottom stress is limited by the usually
unknown roughness distribution of the vast seafloor. Some
assumptions have been made here: without a velocity to shed
from or fluid to interact with, no friction force can act, which
renders the assumption of bottom stress being dependent on
velocity and density plausible. If an advected fluid particle is
exerted upon by isotropically oriented roughness elements,
then the number of exertions is proportional to the advection
velocity’s magnitude and Lagrangian particle density. Fur-
thermore, the net force exerted can, as with any force, be
denoted by its components, that is, in terms of velocity com-
ponents, as momentum is removed from the same. Therefore,
the bottom-stress proportionality is obtained and is rendered
as an equation (Feddersen et al., 2003; Faria et al., 1998) by
introducing a proportionality coefficient:

τ ∝ ρ〈‖u‖u〉

τ = ρcd〈‖u‖u〉, (47)

with the coefficient cd termed the drag coefficient. As evi-
denced by Eq. (47) for a particular stress τ , the drag coeffi-
cient cd depends on the height above the bottom, given the
velocity’s dependence on this height. For example, if a slim
bottom layer is modeled utilizing a slow segment within the
vertical velocity profile, then the drag coefficient grows.

An estimate for cd is usually obtained (Grant and Madsen,
1979) by applying the Prandtl–Kármán logarithmic velocity
profile to oceanic applications, that is,

‖u‖ =
u∗

κ
ln
(
z

z0

)
, (48)

where the friction velocity is defined by

‖τ‖ = ρu2
∗, (49)

with the bottom stress τ , the friction velocity u∗, the Kár-
mán constant κ = 0.4, the roughness length z0, and the height
above the seafloor z. Bottom drag has been specified by con-
ducting parameter identifications for the friction velocity and
drag coefficient (Faria et al., 1998) or by identifying a suit-
able roughness length (Isobe and Beardsley, 2006; Weisberg
and Zheng, 2006; Yang and Khangaonkar, 2008). Yet, while
the drag coefficient depends on the bottom-layer height, the
friction velocity depends on the local velocity. Both are, thus,
not independent of transient quantities. Therefore, for the
purpose of modeling various depths and flow regimes, only
the roughness length is sufficiently fundamental to hold for
the entire tidal cycle. Resolving Eq. (48) for u∗ and specify-
ing the RHS for two heights eliminate the friction velocity:

κ‖u1‖

ln
(
z1
z0

) = κ‖u2‖

ln
(
z2
z0

) , (50)

and, after rearrangement, this resolves to the ubiquitous
form for roughness length identification in atmospheric and
oceanic applications alike:

lnz0 =
‖u1‖ lnz2−‖u2‖ lnz1

‖u1‖−‖u2‖
. (51)

The drag coefficient cd in the boundary condition is then ob-
tained by taking the magnitude of the LHS and RHS vectors
in Eq. (47) while substituting the RHS from Eq. (49) for the
LHS.

ρu2
∗ = ‖ρcd〈‖u‖u〉‖ (52)

Furthermore, Eq. (48), resolved for the friction velocity, sub-
stitutes for the same term in Eq. (52).(

κ‖u‖

lnz− lnz0

)2

= cd‖u‖‖u‖, (53)

thus yielding the common form (Chen et al., 2011) for
the calculation of the drag coefficient distribution from the
roughness length,

cd(x,y, t)=

(
κ

lnz(x,y, t)− lnz0

)2

. (54)

In Eq. (54), it is explicit that cd(x,y, t) is not a constant but
a horizontal distribution if the layer thickness z(x,y, t) is not
constant. Seabed change or tidal transience, depending on the
layer configuration, can result in a time dependency.

2.7 Sediment transport, waves, and entrainment

Sediment is transported like any other constituent, with the
addition of sediment settling and bottom-sediment entrain-
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ment. A mass balance for the sediment type C returns

∂C

∂t
+
∂(uC)

∂x
+
∂(vC)

∂y
+
∂ ((w−ws)C)

∂z

=
∂

∂x

(
Dx
∂C

∂x

)
+
∂

∂y

(
Dy
∂C

∂y

)
+
∂

∂z

(
Dz
∂C

∂z

)
−E,

(55)

with the entrainment term E. The consideration of eddy dif-
fusion in the sections above has shown that the horizontal
eddy diffusive coefficients are horizontally isotropic. Fur-
thermore, the insertion of continuity renders the velocities
outside of the derivatives.

∂C

∂t
+ u

∂C

∂x
+ v

∂C

∂y
+ (w−ws)

∂C

∂z
=
∂

∂x

(
Ah
∂C

∂x

)
+
∂

∂y

(
Ah
∂C

∂y

)
+
∂

∂z

(
Dz
∂C

∂z

)
−E (56)

The settling velocity ws for fine sediment, set in the input
file, can be calculated with Stoke’s law:

ws =
d2g(ρs− ρ)

18µ
, (57)

where d is the diameter of the sediment particle (m), g is
the acceleration due to gravity (ms−2), ρs is the density
of the sediment particle (kgm−3), ρ is the density of the
fluid (kgm−3), and µ is the dynamic viscosity of the fluid
(kgm−1 s−1). The influence of orbital wave motion on near-
bottom tidal currents depends on the length of the agitating
waves. If conditions are calm, with wind waves exhibiting
wavelengths much smaller than twice the water depth, then
the perturbation of near-bottom tidal currents due to orbital
wave motion remains small or insignificant. If conditions
are sufficiently agitated, such that wavelengths reach the or-
der of magnitude of the water depth in size, then wave or-
bital motion drives bottom currents considerably. Addition-
ally, high-energy waves yield disproportionate increases in
erosive fluxes, contributing to shoreline development consid-
erably. The Rouse number that indicates whether sediment
entrainment or deposition occurs is given by

Ro=
ws

κu∗
. (58)

For sheltered conditions, the survey’s wave meter recorded
wavelengths not exceeding 0.5 m. Therefore, erosive fluxes
have been simulated for three conditions, with a dedicated
high-resolution mesh for wave-resolving simulations, as de-
tailed in Sect. 3.4: tidal currents during sheltered condi-
tions and during two high-energy-wave scenarios are shown.
Waves are approximated as second-order Stokes waves as per
the Le Méhauté diagram.

3 Application

Documentation of how to build the model step by step is
given in the subsections on meshing (Sect. 3.1) and on
case-dependent horizontal and vertical boundary conditions
(Sect. 3.2) below. That is, setting tidal boundary conditions to
drive the model and setting the bottom-friction parameter to
attenuate it are shown. The water body modeled is shown in
Fig. 1. A highly resolved beach model for wave simulations
is nested within a model of the entirety of the bay. Five sur-
vey locations in Doha Bay provided boundary forcing (two)
and triple validation, in addition to examining the same loca-
tions for two different seasons.

3.1 Meshing

To obtain the horizontal geometry of the sea surface, a satel-
lite image, as exhibited in Fig. 1, can be downloaded from
Google Earth; however, any other image, map, or CAD draw-
ing can be used. The coastline and boundaries are then
marked with a 24-bit RGB code identifier in a .bmp file
in any .bmp editing tool. Land pixels are then automat-
ically flood-filled with the color RGB and all other pix-
els set to 0 with the logical array and flood-fill function
excise('image.bmp',RGB).

Maps and CAD designs of future developments can be su-
perimposed through the script overlay overlay. The mesh
is created directly from the .bmp with the mesh generator
meshing22a('image.bmp'). The latter automatically
provides a higher resolution at coastal boundaries by dis-
tributing more Voronoi polygon seeds close to the shore. The
relaxation algorithm redistributes the polygon centroids as
per Lloyd’s algorithm but is based on a discrete tessellation.
The mesh depicted in Fig. 2 is georeferenced by marking two
reference coordinates, (xa,ya) and (xb,yb), within the 24-bit
.bmp file fed to the meshing generator with a particular 24-bit
RGB color.

The function [x1,y1,xd,yd] =
coord23('.bmp', RGB,xa,ya,xb,yb) then
returns the coordinates of the bottom-left corner (x1,y1)
of the image and the first reference point (xa,ya) in
pixel coordinates (xd,yd). These can be used to scale and
translate the mesh to georeference it for small sites.

The georeferencing is embedded within the script for the
bathymetry interpolation onto the mesh, bath22a, by book-
keeping a depth value in the vector hb for each cell. The
interpolation of bath22a attributes surveyed and remotely
sensed depths according to their area share of Voronoi poly-
gons. The composite of the surveyed and remotely sensed
bathymetry is shown in Fig. 2.

A string of finite volume cells that bound mangrove nooks,
ongoing developments, coverage by marine vessels, or ill-
resolved harbor bathymetry can be identified in an index plot
with plot0(u,v,1:length(u),'mesh.mat','0',
'-','txt'); null vectors as dummy velocities; and the vi-
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Figure 1. Doha Bay, © Google Earth 2023. The stars indicate the locations of the tidal and current meters.

Figure 2. Bathymetry with corrected marina design depth. The wave-resolving mesh is shown in Fig. 6.
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sualized quantity, here the indices, denoted ('txt') in each
delineated ('-') cell. The meshing code is not discussed
here because the consistency of the output Voronoi diagram
can be ascertained visually.

The boundary of the area to be amended is then de-
noted in a list of cells (list_const) with a constant
null concentration (c_const = 0) in the simulation’s case
file (c(list_const) = c_const). Any random cell
inside a listed area of concern (list_c0) can conve-
niently return all the area’s cells as non-zero via advec-
tive propagation. That is, the tidal advection simulation is
merely exploited to automatically mark the area delineated
by list_const. Identified cells, that is, a concerned area
area_i = (c>0), may be bookkept save name.mat
area_i and set (hb(area_i) = ) to the desired depth.

3.2 Boundary conditions

Tidal, current, open, and/or other horizontal boundaries are
specified by plotting cell indices with the plotting function
accordingly configured, using a zero-order interpolation
plot23(u,v,1:length(u),'mesh.mat','0',
'-','txt'). The mesh generator numbers cell indices
sequentially along the boundary. Therefore, quantities at the
boundary can be set to boundary conditions by referring to
a particular boundary section with index_1:index_2.
For example, in the case of a tidal boundary con-
dition, nodes(1:length(istart:iend)) =
istart:iend.

The bed roughness length was identified, as illustrated in
Fig. 3, with Eq. (51) used to specify the bottom-boundary
condition. The time series of vertical profiles from current
meters came with some uncertainties: occasionally the sur-
face velocity is slower than in lower layers, which can occur
due to transient dynamics such as wind forcing. The verti-
cal profile spacing from the sea surface, with a top layer of
1.2 m and other layers of 0.5 m, exhibited cumulative layer
thicknesses that occasionally did not match the total mea-
sured depth. Therefore, considerable uncertainty in the layer
thickness had to be assumed, and a sensitivity study was con-
ducted for the same.

Equation (51) can be ill-suited to such uncertainties, which
will not always average out: if, for example, there is only a
minuscule difference between the two velocities in the de-
nominator, then the roughness length is overestimated by
logarithmic orders of magnitude. Likewise, the equation is
sensitive to an error in height z1. Consequentially, the differ-
ences between layers that are two layers apart, that is, layer 3
and 5, instead of adjacent 0.5 m thin layers have been consid-
ered. The bottom layer, in principle, would have been more
indicative but has been disregarded to obtain a lower relative
error for the reference height. Additionally, measurements
were excluded that did not exhibit a significant or positive
vertical velocity difference δu= u1− u2.

Figure 3. The identified roughness length z0 vs. varied uncertain
reference height z1 = 1.25± 0.15 m and the altered minimal veloc-
ity difference δu from 1 % (dashed line) to 10 % (dotted line), with
ascending 1 % increments in between (solid lines).

In order to obtain a well-behaved response despite the un-
certainties in reference height and the filtration of small δu,
both parameters have been varied, and the parameter identi-
fication was conducted with 2000 measurements. The rough-
ness length distribution is shown in Fig. 3. Compared to
the considerable fluctuations in surface friction in particu-
lar, Fig. 3 retains the good behavior and returns a roughness
length on the order of 0.2 m, regardless of the minimal δ in
velocity and the assumed reference height. That is, regard-
less of the two parameters varied, a roughness length on the
order of 0.2 m is obtained.

3.3 Validation

Surface elevation predictions have been stored during the
simulation for finite volumes that correspond to the tidal
and current meter locations within the computational do-
main. The measured and simulated time series were verti-
cally referenced to the observed mean sea level with TM
= TM - mean(TM) and were correlated. For the mea-
sured time series, the start time is specified using t1 =
datetime(2022,9,14,12,0,0), and the end time is
translocated by hours(.5)*(length(TM)-1) with re-
spect to the start time. The resultant time vector is built as per
the data point frequency tTM=t1:hours(.5):t2, reflec-
tive of the half-hourly sampling. The trivial hold on com-
mand allows the superposition of the plots for the measured
and simulated surface elevation with plot(tTM,TM) and
so forth.

Surveyed and simulated surface elevations, as well as the
error, mean error, and root-mean-square error (RMSE), are
depicted in Figs. 4 and 5. Table 3, furthermore, contains per-
cent errors besides absolute errors: percent RMSE, R2, and
Pearson’s R (Reese et al., 2024; Barghorn et al., 2024), to
quantify the quality of the correlation. Two survey locations
served to specify the boundary forcing, and three survey lo-
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Table 3. Validation of the simulation with measured surface eleva-
tion.

Quantity CM2 TM2 TM3 TM2 TM3
August August August April April

% error ε 1.7 4.8 2.4 5.6 3.8

Abs. ε 3.3 9.4 4.6 8.9 6.0
[cm]

RMSE 4.4 12 5.9 10 7.6
[cm]

% NRMSE 2.3 6.9 3.1 6.5 4.8

R2 0.99 0.94 0.98 0.94 0.97

Pearson’s R 1.0∗ 0.97 0.99 0.97 0.99

∗ 0.9957 rounded to the third digit.

Figure 4. Correlation between simulated and surveyed surface el-
evation at the location of current meter no. 2, which also recorded
depth, that is, surface elevation, in August 2023.

cations served to validate the accuracy of the simulation.
Given that two seasons have been examined, four time se-
ries were available for boundary forcing and six to validate
the simulation.

3.4 Waves, sediment entrainment, and settling

Wave motion has been resolved with a high-resolution mesh
for wave propagation, with an even resolution throughout the
entire domain. High-energy waves, according to the National
Oceanic and Atmospheric Administration (NOAA) CFSR
model, have been compiled (Lawen, 2024b) for 25.50° N,
52.17° E, listed in Table 4, and wave transmission has been
modeled within Doha Bay, as cited by Lawen (2024b). For
the shortest and longest wave periods, 6.40 and 7.12 s, a

Table 4. High-energy wave conditions east of Safliya Island, NOAA
CFSR.

Return period [yr] Hs [m] Tp [s] Direction [°]

100 1.92 6.40 12.5
100 2.34 7.12 57.5
100 2.67 6.99 102.5
100 2.05 5.72 147.5

transmission to significant wave heights on the order of 0.1
and 0.4 m, respectively, was found (Lawen, 2024b). The
same parameters were simulated with the wave-resolving
model in order to resolve wave transmissions for local
beaches. The periods of 6.4 and 7.12 s correspond to wave-
lengths L= gT 2/(2π) of 64 and 79 m, which were resolved
using the 6 m fine, high-resolution mesh without wetting and
drying (Memmola et al., 2020).

Fine structures (Fig. 7) in tidal currents have also been
resolved using the high-resolution mesh. Both horizontal
geometry and bathymetry determine the transformation of
incoming waves. Acceleration due to continuity at nar-
row or shallow sections yields acceleration in both the
depth-averaged and the friction velocity, the latter driv-
ing the entrainment of sediment and, hence, erosion.
Second-order Stokes waves enter the high-resolution do-
main, which is depicted for the friction velocity in Fig. 8.
The boundary of the high-resolution domain is aligned with
the wave direction (Lawen, 2024b), with the waves superim-
posed on the tidal boundary condition. High friction veloc-
ity entails erosion. The dynamic friction velocity distribution
can, thus, reveal spots that are vulnerable to morphological
changes.

The dynamic Rouse number distribution visualizes where
and when sediment settling and erosion predominate, as both
are time-dependent (Patzke et al., 2022). Values below and
above 1 correspond to erosion and settling, respectively. Is-
land developments perturb the natural coastal ocean equilib-
rium of sediment transport. The highly resolved simulation
(Fig. 9) brings into focus the fine pattern and structures, en-
hancing the reliability of the former based on mitigating mea-
sures.

The Rouse number distribution was simulated, resolving
wavelengths on the order of 60 m on a 6 m Voronoi mesh,
avoiding wave fronts on acute finite volume polygon angles.
The tile pattern exhibited in Fig. 6 stems from the 30 m res-
olution of the open-source Landsat images utilized in re-
mote sensing. The mesh thus has a higher resolution than
the bathymetric model. Nevertheless, commercially available
satellite images can facilitate a remote sensing resolution that
matches the resolution of the mesh.

A high-resolution mesh was produced, and the wave
boundary was aligned with the wave direction. Currents were
simulated for sheltered and high-energy conditions, and the
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Figure 5. Correlation between simulated and surveyed surface elevation at the location of tidal meters no. 2 (a, c) and no. 3 (b, d) during
August (a, b) and April (c, d) of 2023.

Figure 6. The wave-resolving high-resolution mesh to bring into focus the propagation of high-energy waves. The northern portion of the
mesh is not shown to resolve individual cells in the plot.
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Figure 7. Wave-resolving simulation of the tidal regime, showing the velocity magnitude distribution.

Figure 8. Wave-resolving simulation of the high-energy regime, showing a moment in time for the dynamic bottom-friction velocity distri-
bution. The latter governs the erosion model in terms of the Rouse number.

Rouse number distribution is shown for the latter. If the
wave’s orbital motion does not reach the seafloor, then per-
turbations of bottom-layer currents are small. But waves with
wavelengths in excess of the water depth do exert an influ-
ence on bottom currents, with the latter governing shear and,
thus, erosion. Such medium- and long-wavelength waves can
result from tidal forcing, displayed in Fig. 7 as seiches and
longwave agitation.

The friction velocity distribution (Fig. 8) and the ratio be-
tween settling and erosion fluxes (Fig. 9) match previously
observed processes: they show the potential for erosion at
the southernmost beach and sediment settling at the sheltered
beach in the southwest. Sediment settling was found to oc-

cur in the sheltered southernmost one of the three crescent
beaches in both the model and observations. Erosion is im-
peded adjacent to groynes. That is, the wave-resolving sim-
ulation brought fine patterns into focus that might not be re-
covered without the high resolution that was used, enhancing
coastal management. This encourages researchers to conduct
sediment transport simulations on Voronoi-mesh-based plat-
forms and with high resolution enabled by parallelization or
GPU acceleration. The wave-resolving simulation (Fig. 8) re-
solves the wave-driven dynamics that dominate the friction
velocity and wave attenuation in the marina north of the de-
velopment.
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Figure 9. Ratio of sediment settling and erosion fluxes, showing sediment settling at the southeastern end of the beaches depicted (red),
erosion (blue) at the southernmost beach, and the functioning of the groynes. The northern groyne that is tilted to the south shelters its
southern side.

4 Conclusions

Simulated surface elevations have been validated with five
time series from three tidal meters and for two seasons, April
and August 2023. The model exceeds real-time performance
on a Ryzen 9 or comparable desktop CPU. Vertical current
profile data were used to calibrate and conduct a sensitivity
study for the roughness length, boundary conditions were set
based on two tidal meters, and the validation was conducted
based on data from three locations, totaling five locations for
validation, calibration, and boundary conditions.

The correlation between simulated and surveyed surface
elevation time series exhibited an exceptionally precise cor-
relation, with data and simulation for some plots being visu-
ally identical, yielding high confidence in the model results.
The mean error and RMSE were consistently below 7 %, as
visualized in Figs. 4 and 5 and compiled in Table 3. With
Voronoi-capable models, a reduction in cell count; numerical
diffusion (Holleman et al., 2013; Chan et al., 2018); and, as
demonstrated here, acute polygon angles can all be achieved.
The model structure aligns with seamless pre- and post-
processing in Matlab (as documented in the paper), auto-
matic parallelization, and seamless GPU acceleration. Docu-
mented are different approximations of some terms from the
Navier–Stokes PDEs, which are listed in Table 1. These al-
ternatives additionally provide cross-correlation between dif-
ferent solvers, readily providing a discrepancy-based error
estimate for adaptive time stepping.

The model comes with a comprehensive environment of
modules: a remote sensing module with spiking neuron fil-
tration, published previously (Lawen et al., 2022); its pollu-
tant fate transport model for nonlinear conversion, published
previously (Lawen et al., 2013, 2014); and the Voronoi mesh
generator, published separately. The simulated, highly re-
solved dynamic Rouse number distribution, the ratio between
sediment settling and erosive flux displayed in Fig. 9, ac-
counts for orbital wave motion. Otherwise unresolved details
in settling and erosion, particularly adjacent to the groynes,
have been recovered in Fig. 9. Wave-resolved simulations
can, therefore, considerably enhance coastal management.

Voronoi schemes can be expanded to n dimensions, which
might not improve results for coastal systems: the usual ap-
proach (Lawen et al., 2010, 2013, 2014) to resolving the ver-
tical via multiple layers retains an alignment with the dom-
inant horizontal current components and, thus, avoids nu-
merical diffusion. That is, retaining multiple layers achieves
quasi-flow alignment for the vertical. This caution might not
hold for modeling wave breaking or moving coastal meshes
(4D Voronoi). For comprehensiveness, the development of a
global model may be a subsequent stage, a step that likewise
provides boundary conditions for regional and local models
(Holleman and Stacey, 2014; Chou et al., 2015).
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Appendix A: Bathymetry survey coverage

Figure A1. Bathymetry survey for modeled beaches. Domain sec-
tions outside the survey area were augmented with remote sens-
ing. The remote sensing methodology has been published separately
(Lawen et al., 2022).

Code availability. The Matlab version of the model can be ac-
cessed free of cost at https://www.environment.report/wavedyne.
html (Lawen, 2025b). Bathymetry measurements to run the model
for the relevant area can be obtained with the code provided at https:
//environment.report/spike-neuron-bathy.html (Lawen, 2025a).

Data availability. The Landsat satellite imagery used for remote
sensing is publicly available through the United States Geolog-
ical Survey (USGS) Earth Explorer platform at the URL https:
//earthexplorer.usgs.gov/ (United States Geological Survey, 2025).
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