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Abstract. In this work we present a super-resolution
approach for deriving high-spatial-resolution and high-
temporal-resolution ocean colour satellite datasets. The tech-
nique is based on DINEOF (data-interpolating empirical
orthogonal functions), a data-driven method that uses the
spatio-temporal coherence of analysed datasets to infer miss-
ing information. DINEOF is used here to effectively increase
the spatial resolution of satellite data and is applied to a com-
bination of Sentinel-2 and Sentinel-3 datasets. The results
show that DINEOF is able to infer the spatial variability ob-
served in the Sentinel-2 data to the Sentinel-3 data while re-
constructing missing information due to clouds and reducing
the amount of noise in the initial dataset. In order to achieve
this, the Sentinel-2 and Sentinel-3 datasets have undergone
the same pre-processing, including a comprehensive, region-
independent, and pixel-based automatic switching scheme
for choosing the most appropriate atmospheric correction
and ocean colour algorithm to derive in-water products. The
super-resolution DINEOF has been applied to two different
variables (turbidity and chlorophyll) and two different do-
mains (Belgian coastal zone and the whole of the North Sea),
and the sub-mesoscale variability of the turbidity along the
Belgian coastal zone has been studied.

1 Introduction

The coastal ocean is a very dynamic region in both space
and time. Coastal regions are subject to strong anthropogenic
pressure, and satellite data provide the necessary spatial
and temporal coverage to study and monitor these regions.
There is a need however to measure these areas at high spa-
tial and temporal resolution in order to capture the relevant
scales of variability. While “traditional” ocean colour satel-
lites like Sentinel-3 provide daily temporal resolution, the
sensors on board these satellites do not measure at the nec-
essary high spatial resolution to resolve complex coastal dy-
namics. High-spatial-resolution sensors, like the MultiSpec-
tral Instrument (MSI) on board Sentinel-2 (10–60 m resolu-
tion), are able to resolve these small scales, but their tem-
poral revisit time is far from optimal (about 5 d considering
the Sentinel-2 A–B tandem). Additionally, both high-spatial-
resolution datasets and traditional ones are hindered by the
presence of clouds, resulting in a large amount of missing
data.

Super-resolution approaches that aim to increase the spa-
tial resolution of geophysical datasets have been developed
using neural network methodologies. For example, Thiria
et al. (2023) used a convolutional neural network to in-
crease the spatial resolution of simulated geostrophic ocean
currents, helped by simulated sea surface temperature data.
Liu and Wang (2021) also used convolutional neural net-
works, this time to increase the spatial resolution of low-
resolution bands on board the VIIRS (Visible Infrared Imag-
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ing Radiometer Suite) sensor, in order to obtain high-spatial-
resolution ocean colour products. Kim et al. (2023) and
Lambhate and Subramani (2020) increased the spatial res-
olution of sea surface temperature data using generative ad-
versarial networks, and Zou et al. (2023) used a transformer
model, also with sea surface temperature. Barthélémy et al.
(2022) used a super-resolution data assimilation approach,
based on an enhanced deep super-resolution network, to
ingest high-spatial-resolution observations into a hydrody-
namical model. Peach et al. (2023) compared process-based
and data-driven approaches based on neural networks to in-
crease the spatial resolution of wave forecasts, and Buon-
giorno Nardelli et al. (2022) used a deep convolutional neu-
ral network to infer high-spatial-resolution ocean dynamics
from satellite data. Applications are very diverse in terms
of the used methodologies and variables. In this work, we
propose a data-driven approach based on DINEOF (data-
interpolating empirical orthogonal functions) (Beckers and
Rixen, 2003; Alvera-Azcárate et al., 2005) to increase the
spatial resolution of Sentinel-3 ocean colour data using
Sentinel-2 data. The aim is to obtain a unique dataset with
the temporal resolution of Sentinel-3 and the spatial resolu-
tion of Sentinel-2 by combining both data streams. DINEOF
was developed to interpolate missing data due to e.g. the
presence of clouds, but as will be shown here it can also, at
the same time, increase the resolution of the final, cloud-free
dataset. DINEOF uses a truncated EOF basis to infer missing
information in satellite datasets hindered by the presence of
clouds. The EOF basis extracts the dominant spatio-temporal
variability and is therefore an efficient approach for extract-
ing high spatial variability. As a data-driven technique, it is
entirely based on the available data and does not need any
a priori information about scales of variability, the signal-to-
noise ratio, or other input variables, which makes its use easy
and adaptable to any geophysical variable.

A huge challenge when working with several datasets to
obtain a unique estimate of an ocean variable is the het-
erogeneity of the different sources: differences in the spec-
tral bands present in each satellite (Blondeau-Patissier et al.,
2014; Groom et al., 2019), different spatial resolutions, and
a difference in the measurement time. This last factor can
result in large differences in dynamic regions, as is the
case with the North Sea. In these regions, variables like
chlorophyll-a concentration or turbidity can experience large
changes within a few hours due to the influence of strong
tidal currents, storms, and the wave field (Fettweis et al.,
2010; Wilson and Heath, 2019; Desmit et al., 2024), an in-
fluence that is, in addition, dependent on the bathymetry. The
region of study, the Belgian coast of the North Sea (Fig. 1), is
a shallow region characterized by a series of sandbanks and
dredging channels that influence water dynamics and bottom
sediment resuspension. In this work, we aim to minimize the
differences due to the spectral characteristics of Sentinel-2
and Sentinel-3, as will be explained in Sect. 2. The differ-
ence in time does not pose a problem in this study, since for

a given day only one data source is used (Sentinel-2 if present
or Sentinel-3 otherwise), and no merging of the two satellite
datasets is performed.

This work is organized as follows: Sect. 2 describes the
region of study, the satellite data, and the in situ data used.
This section is followed by a description of the methodology
to produce super-resolution data using DINEOF (Sect. 3).
The results, including the validation and an assessment of
the scales resolved by all of the data sources, are presented in
Sect. 4. A description of small-scale variability in the south-
ern North Sea using the super-resolution dataset is presented
in Sect. 5, and we conclude this work in Sect. 6.

2 Data used

2.1 Study area

This study focuses on dynamics and optically complex wa-
ters in the Belgian coastal zone (BCZ). The BCZ is a rel-
atively shallow (< 50 m) well-mixed shelf sea connected to
the North Sea in the north and the English Channel in the
west (Ruddick and Lacroix, 2006). It is characterized by a
relatively high suspended sediment concentration, with a gra-
dient from several hundreds of grams per cubic metre near
the shore to < 1 g m−3 in the offshore waters, which is in-
versely related to the bathymetry (Nechad et al., 2009, 2011;
Neukermans et al., 2012). Strong tidal currents and the
tidal resuspension of sediments are the main causes of the
high turbidity in the nearshore area (Fettweis and Van den
Eynde, 2003; Fettweis et al., 2007). Annually recurring phy-
toplankton blooms are observed in spring and summer. These
blooms are generally composed of diatoms and Phaeocystis
globose (Lacroix et al., 2007). In recent years, blooms have
been occurring earlier, likely in response to sea surface tem-
perature increases and changes in nutrient outputs (Desmit
et al., 2020; Alvera-Azcárate et al., 2021b). The water type
is turbid coastal to turbid coastal with a high organic con-
tent. The water at Research Tower 1 (RT1) near Oostende
(51.24643° N, 2.91933° E), used in the validation of the var-
ious datasets in this work, is turbid with tidal variability and
with an occasional outflow from the port of Oostende (Bel-
gium) reaching the site.

2.2 Satellite data

The ocean colour satellite products used in this study
are generated following the methodology applied in the
high-resolution Copernicus Marine Service using a multi-
algorithm approach which aims to combine the best-suited
algorithms for different water types. The year 2020 was cho-
sen for the test period, as this year has the largest unbro-
ken time series of independent in situ data at the Oostende
RT1 station used to validate the super-resolution DINEOF
product and its potential to capture the coastal turbidity dy-
namics. To facilitate Sentinel-2 and Sentinel-3 product gen-
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Figure 1. Bathymetry (m) of the southern North Sea. The black square shows the region used in this study and the white triangle shows the
position of the validation station RT1.

eration, the processor is fully automated and set up in the
DIAS cloud environment CREODIAS (https://creodias.eu/,
last access: 30 March 2025). This processor starts from L1C
and L1 data for Sentinel-2/MSI and Sentinel-3/OLCI re-
spectively and combines atmospheric correction processing
(C2RCC+ACOLITE dark-spectrum fitting), IDEPIX pixel
classification, ocean colour algorithm application, and prod-
uct quality control (e.g. glint flagging or bottom reflection
flagging) to provide analysis-ready data layers (ARDLs), i.e.
chlorophyll (CHL), turbidity (TUR), and suspended partic-
ulate matter (SPM). A schematic overview of the different
processing steps taken is provided in Fig. 2.

2.2.1 Remote sensing reflectance and pixel
classification

In order to obtain high-quality remote sensing reflectance
(RRS) spectra for a large number of pixels while maintain-
ing the ability to handle both atypical water conditions and
challenging atmospheric conditions, the atmospheric correc-
tion algorithms ACOLITE/DSF (https://github.com/acolite/
acolite, last access: 30 March 2025) and C2RCC (https:
//c2rcc.org/, last access: 30 March 2025) are combined to
process L1C products to L2R (level-2 RRS) products. While
both algorithms have their strengths and weaknesses, they
each use different approaches to estimate RRS. C2RCC uses
an underlying water reflectance model to fit the estimated
RRS spectrum to a known form within the boundaries of the
training dataset. This method reduces noise in low-RRS sit-
uations and provides greater retrieval power in difficult cir-
cumstances, such as Sun-glinted and highly absorbing wa-
ters. On the other hand, ACOLITE/DSF does not assume a
specific water reflectance model, allowing it to return un-
usual RRS spectra that correspond to optical properties not
found in typical water reflectance models. This can com-

Figure 2. Processing steps applied to derive the L2 ARDL products
used for both the Sentinel-2/MSI and Sentinel-3/OLCI sensors. The
processor combines the atmospheric correction algorithms ACOL-
ITE and C2RCC, uses SNAP to crop and resample the data to the
region of interest, and runs IDEPIX for pixel classification, after
which all the intermediate layers are collocated together to the re-
quired resolution. In the final step, the in-water ocean colour prod-
ucts are generated using specialized algorithms.

plement C2RCC where it is less performant, such as when
dredging plumes and unusual algae blooms.
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To combine the two approaches, a comprehensive, region-
independent, and pixel-based automatic switching scheme
is required, along with a technique for achieving a seam-
less transition between the two algorithms. The C2RCC-
to-ACOLITE/DSF pixel-based switching is performed by
means of band comparison of the RRS560 and RRS865 prod-
ucts (defined as the green : near-infrared ratio) as provided by
the C2RCC processor. The green : near-infrared ratio can be
modelled using a logarithmic regression curve which starts
as linear for the smaller reflectance values but bends at the
point where the saturation of the most sensitive band (i.e.
RRS560) occurs. C2RCC pixels which deviate from the log-
arithmic model are considered erroneous outputs. The ACO-
LITE/DSF processor has the ability to provide higher RRS
ranges compared to C2RCC while being noisier for lower
RRS values, thus highlighting the complementary nature of
the two approaches. The green : near-infrared ratio value of
45 is selected as the transition point between the C2RCC
and ACOLITE/DSF products. To ensure a smooth transition
between the different atmospheric corrections, a weighted
transition is applied between the green : near-infrared ratio
boundaries of 50 and 40 based on the method described by
Novoa et al. (2017). The C2RCC-to-ACOLITE/DSF pixel-
based switching is described in detail in Van der Zande et al.
(2023). Compatibility of the Sentinel-2/MSI products and the
Sentinel-3/OLCI products was ensured by applying the iden-
tical processing chain to both datasets.

The IDEPIX software (v2.2.10, algorithm update 8.0.3),
available as a SNAP (Sentinel Application Platform) proces-
sor, is used for pixel classification, including cloud mask-
ing, cloud shadow identification, sea ice, floating vegetation,
sub-pixel objects (ships, small islands, and rocks), and the
land–water distinction taking temporary water bodies (e.g.
intertidal areas or lagoons) into account. SNAP is a software
package developed by the European Space Agency (ESA)
that is designed to process and analyse Earth observation
data, particularly from the Sentinel satellites. It provides a
common architecture for all Sentinel toolboxes and enables
the application of the C2RCC and IDEPIX processors to both
Sentinel-2 and Sentinel-3 images.

2.2.2 Turbidity and suspended particulate matter

The SPM and TUR products were generated using the
generic multi-sensor algorithm described by Nechad et al.
(2010). This algorithm provides the theoretical basis for SPM
and TUR as functions of RRS at a single band and provides
calibration coefficients for all wavelengths between 520 and
885 nm. It defines a relationship where RRS increases mono-
tonically with SPM or TUR, at first linearly and then tend-
ing towards an asymptotic or “saturation” reflectance. This
means that RRS becomes insensitive to changes in SPM and
TUR, which has led to the development of “switching single
band algorithms” (Novoa et al., 2017) using different wave-
lengths at different SPM concentrations in order to avoid the

saturation effect and typically a smooth weighting between
two adjacent spectral bands in order to avoid image artefacts.
The Novoa et al. (2017) approach is applied to the SPM and
TUR products, providing a multi-band SPM and TUR prod-
uct using two bands (red: 665 nm; near-infrared: 865 nm). An
example of the TUR products for the Belgian coastal zone
region is provided in Fig. 3, showing good correspondence
between the Sentinel-2/MSI and Sentinel-3/OLCI products
and providing information at different spatial and temporal
resolutions.

2.2.3 Multi-sensor chlorophyll data

In order to assess the small-scale information retained
in the final DINEOF reconstructions, an additional test
on a larger region has been done using data at 1 km
resolution. The aim is to create a degraded 5 km res-
olution dataset from the initial data and to compare
the DINEOF results to the initial, non-degraded dataset.
This scale assessment is described in Sect. 4.3. Daily
chlorophyll data at a spatial resolution of 1 km, ob-
tained from the level-3 multi-sensor cmems_obs-oc_atl_bgc-
plankton_my_l3-multi-1km_P1D product from CMEMS
(Copernicus Marine Service, https://doi.org/10.48670/moi-
00286), are used in this analysis. This product includes data
from different sensors (SeaWIFS, MERIS, MODIS-Aqua,
MODIS-Terra, VIIRS-SNPP, VIIRS-JPPS1, OLCI-S3A, and
OLCI-S3B) and covers the whole North Sea area (48.46–
55.96° N, −1.64–6.15° E). We have extracted data from 1
February to 1 November 2022 in order to have a long time
series of data, avoiding January and December, which have
low-light conditions and prevent the calculation of ocean
colour variables at the higher latitudes of the domain. The
choice of year was simply to avoid 2020, which is used in
the other tests. A total of 271 images are available, with an
average amount of missing data, due to cloud cover and qual-
ity control, of 38.17 %.

2.3 In situ data

The RRS products were validated using the Pan-and-Tilt Hy-
perspectral Radiometer system (PANTHYR, Vanhellemont,
2020; Vansteenwegen et al., 2019) for the period 2019–2022.
An autonomous PANTHYR system was deployed at RT1
near Oostende (51.24643° N, 2.91933° E). The PANTHYR
system has two TriOS RAMSES radiometers mounted on a
pan-and-tilt head, one for upwelling and downwelling spec-
tral radiances and one with a cosine collector to measure
spectral irradiance, enabling us to determine the RRS sig-
nal. The PANTHYR system measures autonomously ev-
ery 20 min at programmed relative azimuth angles to the
Sun. In the present study, measurements were made at a
270° azimuth angle. Because of the hyperspectral measure-
ments, one significant advantage of the PANTHYR datasets
when compared to AERONET-OC and typically used to val-

Ocean Sci., 21, 787–805, 2025 https://doi.org/10.5194/os-21-787-2025

https://doi.org/10.48670/moi-00286
https://doi.org/10.48670/moi-00286


A. Alvera-Azcárate et al.: Super-resolution DINEOF 791

Figure 3. TUR products for 5 April 2020 for the Belgian coastal zone region generated using the multi-sensor processor with Sentinel-
3/OLCI (a) and Sentinel-2/MSI (b) source data. Panel (c) shows a density scatterplot of the Sentinel-3 and Sentinel-2 datasets.

idate ocean colour satellites (Zibordi et al., 2009) is that the
hyperspectral instrument permits the validation of all MSI
and OLCI VNIR bands within the 400–900 nm range, in-
cluding several near-infrared bands not available with the
AERONET-OC instrument. RRS data were finally convolved
to the relative spectral response functions of the MSI and
OLCI instruments on Sentinel-3 A and B and Sentinel-2 A
and B.

Match-ups for the PANTHYR stations were ex-
tracted from locations slightly to the east (RT1_shifted;
51.24643° N, 2.9206°0 E) of the deployment tower to
avoid platform effects such as direct pixel contamination
and shadows as well as in-water wakes. For the match-up
extraction, a maximum time difference of 2 h between in situ
observation and satellite overpass was allowed. However,
the high-frequency measurement protocol from the in situ
measurement stations resulted in shorter time differences
between in situ and satellite observations. The match-up val-
idation protocol described by Bailey and Werdell (2006) was
applied to remove erroneous match-ups from the analysis.
Macro-pixels of 15× 15 60 m pixels for Sentinel-2/MSI and
3× 3 300 m pixels for Sentinel-3/OLCI were extracted from
the L2 products. This box allows for the evaluation of spatial
stability, or homogeneity, at the validation point. For the
satellite data it was required that at least 60 % of the pixels in
the defined box be valid (i.e. unflagged) to ensure statistical
confidence in the mean values retrieved. The arithmetic
mean and standard deviation of the non-masked pixels were
determined, enabling the computation of the coefficient of
variation (standard deviation divided by the filtered mean).
Satellite retrievals with extreme variation between pixels
in the defined box (coefficient of variation> 0.15) were
excluded from the match-up analysis.

3 Methodology

3.1 DINEOF

DINEOF (Beckers and Rixen, 2003; Alvera-Azcárate et al.,
2005) is used to calculate the reconstruction of the data and
to enhance the resolution of the combined Sentinel-2 and
Sentinel-3 dataset. It computes the missing data from a three-
dimensional dataset by calculating a truncated empirical or-
thogonal function (EOF) basis. These EOFs are calculated
increasingly (starting from one until the optimal number of
EOFs is found) and iteratively until a convergence is reached,
and at each iteration the estimate of the missing data is up-
dated using the latest EOF modes. About 3 % of valid data
(in the form of clouds, following Beckers et al., 2006) are
masked at the beginning of the procedure, and these data are
used to determine the number of EOFs that minimize the re-
construction error (in terms of its root mean square error or
RMSE). When three consecutive EOFs provide an increas-
ingly higher RMSE, the procedure is stopped and the final re-
construction is performed with the optimal number of EOFs
determined by this cross-validation.

In addition to the reconstruction of missing data in sev-
eral variables (e.g. sea surface temperature, Alvera-Azcárate
et al., 2005; chlorophyll, Alvera-Azcárate et al., 2021b;
turbidity, Alvera-Azcárate et al., 2015; salinity, Alvera-
Azcárate et al., 2016; and multi-variate reconstructions,
Alvera-Azcárate et al., 2007), DINEOF has been used
to detect outliers in satellite data (Alvera-Azcárate et al.,
2012, 2015) and shadows in high-spatial-resolution satellite
data (Alvera-Azcárate et al., 2021a). DINEOF has therefore
shown that it can perform a wide range of analyses of satel-
lite data with the aim of improving their quality and com-
pleteness.

3.2 Generation of super-resolution data

In order to obtain a super-resolution reconstruction from the
combination of Sentinel-3/OLCI and Sentinel-2/MSI data
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mentioned in Sect. 2, the initial gappy matrix is prepared as
follows: Sentinel-2 data are used preferentially and, on days
with no Sentinel-2 coverage, Sentinel-3 data, interpolated at
the Sentinel-2 spatial resolution of 60 m, are used. The matrix
therefore consists of a mixture of Sentinel-2 and Sentinel-3
data. The interpolation of Sentinel-3 data onto the Sentinel-2
grid using the nearest-neighbour method is done to preserve
the size of the matrix, which has to be constant in order to
be used in DINEOF and to determine the spatial resolution
of the final dataset, but no gain in resolution is made at this
step.

On days when Sentinel-2 and Sentinel-3 data are available,
only Sentinel-2 data are used. We could slightly increase
the spatial coverage on these days by combining both data
streams, but we found the increase to be very small, since
cloud distribution does not change substantially between the
Sentinel-3 and Sentinel-2 passes. In addition, depending on
the tidal currents, the difference in turbidity between the two
satellite passes can be quite high, and this can lead to dis-
continuities between both estimates, which in turn can be re-
tained in the final dataset. We have therefore decided to avoid
this problem by using a unique data source on a given day.

The initial dataset with the combined Sentinel-2 and
Sentinel-3 data has 210 time steps, of which 63 % are
Sentinel-3 data and 37 % are Sentinel-2 data. Days with
overly high cloud coverage (more than 98 % missing data
over the study region) are not used, which brings the final
size to 163 d, distributed from 18 January to 17 December
2020.

The combined dataset is fed into DINEOF as a unique
matrix. As DINEOF does not re-grid the data, it is impor-
tant that the initial data are already gridded to the final grid
that we want to obtain (i.e. the high-spatial-resolution grid).
Through the EOF basis calculation, the high spatial informa-
tion of Sentinel-2 is extracted by the EOFs, and this infor-
mation is then projected into the final dataset by the EOF ba-
sis, effectively increasing the spatial resolution of the initial
dataset.

4 Results

4.1 Super-resolution data

Super-resolution DINEOF (Sect. 3) has been applied to the
turbidity data in the Oostende region described in Sect. 2.
The initial matrix has 45 % of missing data. DINEOF was
applied to the combined Sentinel-2 and Sentinel-3 data for
2020, and 23 EOFs were retained as optimal for the recon-
struction, with a cross-validation error of 1.4 FNU. The size
of the matrix was 946× 789× 210 (longitude, latitude, and
time), and the DINEOF run took 8 h to complete (on an In-
tel Core i9-10900X CPU at 3.70 GHz). The only two op-
tional parameters to set in DINEOF are related to the fil-
tering of the temporal covariance matrix (Alvera-Azcárate

et al., 2009) and were fixed to α = 0.01 (the amplitude of
the filter) and n= 3 (the number of iterations of the filter).
These result in a filter of about 1.1 d. As shown in Alvera-
Azcárate et al. (2009), the use of this filter can result in more
EOFs being retained as optimal, which in turn results in a
higher variability in the final results. Several tests were per-
formed for values α = 0.01 to α = 0.1 and n= 1 to n= 10,
and the combination that maximized the number of EOFs
was retained. The first three EOFs explain 59.04 %, 25.73 %,
and 3.74 % of the total variability of the dataset, and the 23
EOFs retained explain the total of 97.9 % of the variability.
When analysing the spatial and temporal structures of these
EOFs, we can observe the influence of small-scale variability
contained in them. The first EOF mode (Fig. 4) displays an
inshore–offshore gradient on which more turbid waters are
found in the nearshore region. An increasing turbidity along
the coast is found towards the region of the Scheldt estuary.
The factors responsible for the higher turbidity in this region
have been attributed to tides and meteorological conditions
(Fettweis and Van den Eynde, 2003) and show peaks in Jan-
uary, April, June, and September–October 2020. This mode
shows large-scale processes, and there is no apparent small-
scale variability present in the first spatial EOF.

The second EOF mode (not shown) already displays
small-scale spatial variability. We show here the third EOF
mode (Fig. 5), which shows a NE–SW gradient with high
variability in the temporal mode. In the detailed panel shown
in the figure we can also appreciate a thin region along the
coast with behaviour opposite to the more offshore waters.
Thanks to its high spatial resolution, it has been shown
(https://www.esa.int/Applications/Observing_the_Earth/
Copernicus/Sentinel-2/Near-shore_phytoplankton_bloom_
captured_from_space, last access: 30 March 2025) that
Sentinel-2 is able to capture small-scale variability that was
previously unknown, i.e. a variability that has been captured
by the EOF basis to produce the final, super-resolution
datasets that will be shown in this section. The validation of
the initial data and the super-resolution reconstruction will
be presented in Sect. 4.2.

Figure 6 shows the initial turbidity data on 9 May 2020, a
day with, initially, Sentinel-3 data (i.e. low-resolution data).
A day with low cloud coverage was chosen in order to show
the ability of DINEOF to enhance the spatial resolution. The
initial data (Fig. 6a) show a series of high- and low-turbidity
regions, a pattern that is due to the presence of sandbanks
close to the Belgian coast. The changes in depth in this re-
gion induce large differences in turbidity from day to day.
High-turbidity values in the east of the figure are due to the
Scheldt–Rhine plume, which is located to the east of the do-
main. The reconstructed image (Fig. 6b) reproduces all of
these features, as also seen in the contours added to this fig-
ure. A north–south transect is also included in the figure to
show the small-scale variability that has been included in
the reconstruction. The initial data (in blue in Fig. 6c) do
not contain this small-scale variability and instead present a
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Figure 4. First EOF mode of the 2020 turbidity data obtained by DINEOF. (a) Spatial EOF mode. (b) Detail of the spatial mode in the black
square shown in panel (a). (c) Temporal EOF mode.

Figure 5. Third EOF mode of the 2020 turbidity data obtained by DINEOF. (a) Spatial EOF mode. (b) Detail of the spatial mode in the black
square shown in panel (a). (c) Temporal EOF mode.

step-like nature due to the low spatial resolution of the ini-
tial dataset. This step-like variability is absent from the fi-
nal, super-resolution data, which instead show smaller-scale
variability. A percentage change map is also included, show-
ing differences between the initial and final products over
the whole domain, with a dominance of along-shore struc-
tures following the sandbanks present in the region that cause
changes in turbidity. Most of the changes between the ini-
tial and final products therefore affect the structures of these
sandbanks and other high-turbidity features offshore. The
difference in resolution between the initial and final products
is also responsible for the changes observed in this figure.
Sentinel-2 data have a 60 m resolution, Sentinel-3 data have
a 300 m resolution, and the DINEOF reconstruction should

be between these two. The sandbanks have different TUR
intensities in all the products, and since they present sharp
gradients this will be felt in the percentage change map.

Figure 7 shows a similar reconstruction to Fig. 6 but this
time for a date on which Sentinel-2 data are available (i.e.
high-spatial-resolution data). This example shows that the
variability of the super-resolution DINEOF reconstruction is
similar to that of the initial dataset, and there is only a lim-
ited amount of variability lost with the analysis, mostly in
regions with low-turbidity values (Fig. 7c). The presence of
high-turbidity regions caused by the presence of sandbanks
is also visible in this image, and a sharp inshore–offshore tur-
bidity gradient can be seen that is retained well by the recon-
struction. The contours in both images show the small-scale
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Figure 6. (a) Initially cloudy data at 300 m resolution on 9 May 2020 (logarithmic scale; ln(FNU)). (b) DINEOF run of the mixed Sentinel-2
and Sentinel-3 dataset at 60 m resolution (logarithmic scale). Grey contours in panels (a) and (b): 1.5 ln(FNU); black contours: 3 ln(FNU).
(c) North–south transect for the two datasets (blue: initial data at 300 m; black: super-resolution DINEOF reconstruction). (d) Difference
between the initial and reconstructed data. (e) Percentage difference map.

variability retained in the reconstruction. Turbid waters in the
easternmost part of the domain, close to the Scheldt estuary
and the shallowest region of the domain, can also be seen.
The percentage change map in this figure shows smaller-
scale features, i.e. long and thin structures in an along-shore
direction, showing that the turbidity around the sandbanks
and in offshore high-turbidity features is being modified be-
tween the initial and final datasets. Again, the difference in
resolution between the different initial products is reflected
in the representation of sharp turbidity gradients in the final
product.

The results shown so far are from images that have good
data coverage, but DINEOF also provides super-resolution
data on days with high cloud coverage. Two examples in the
Supplement show the reconstruction on a day with almost
no initial data (Fig. S1) and a day with a high amount of
noise in the initial data (Fig. S2). On days with almost no

data (Fig. S1 on 12 April 2020), DINEOF is still able to
provide a reconstruction with good spatial variability. Re-
construction of the turbidity’s spatial distribution on days
with high amounts of missing data is possible because of
the three-dimensional nature of DINEOF, which exploits the
spatio-temporal coherence of the data and enhances tempo-
ral correlations (Alvera-Azcárate et al., 2009). The accuracy
of the reconstruction can however be affected when persis-
tent clouds obscure a specific region for several days (e.g.
Alvera-Azcárate et al., 2005; Zhao et al., 2024). The method
proposed by Beckers et al. (2006) would allow us to obtain a
pixel-by-pixel estimation of the reconstruction error variance
and can be used to assess the influence of persistent cloud
cover on the final result.

At some moments, there can be outliers or noise in the ini-
tial dataset despite the strong quality controls applied to the
data, as in Fig. S2. The fact that DINEOF uses a truncated
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Figure 7. (a) Initially cloudy data at 60 m resolution on 20 May 2020 (logarithmic scale; ln(FNU)). (b) DINEOF run of the mixed Sentinel-2
and Sentinel-3 dataset at 60 m resolution (logarithmic scale). Grey contours in panels (a) and (b): 2 ln(FNU); black contours: 3 ln(FNU). (c)
North–south transect for the two datasets (blue: initial data at 60 m; black: super-resolution DINEOF reconstruction). (d) Difference between
the initial and reconstructed data. (e) Percentage difference map.

EOF basis to compute the missing data results in a partial
loss of variability. However, this truncated EOF basis guaran-
tees that the presence of outliers will not influence the overall
quality of the reconstruction. As an example, in Fig. S2 we
can see the turbidity on 28 May 2020, with a region in the
northern part affected by the presence of noisy data. These
are probably due to undetected thin clouds. The north–south
transect shows that the variability of these data far exceeds
the normal variability expected for the region. The DINEOF
super-resolution results provide a reduced amount of noise
and an improved quality of the final product while still pro-
viding an accurate depiction of small-scale variability.

4.2 Validation

Using the in situ data described in Sect. 2.3, a quality as-
sessment of the initial data and the DINEOF results has
been realized. Figure 8 shows the RRS match-ups between

Sentinel-2/MSI and the PANTHYR in situ instrument in-
stalled on RT1. The metrics used are described in the Ap-
pendix. In the considered deployment period between 11
December 2019 and 1 August 2023, 528 MSI L1C images
were available for processing with 53 match-ups with the
PANTHYR instrument, which passed the quality flagging of
the individual atmospheric corrections (i.e. ACOLITE/DSF
and C2RCC), IDEPIX quality flagging, and match-up quality
flagging. When using the merged approach for atmospheric
correction, the best-performing bands are 490, 560, 665, and
704 nm, which are typically used for retrieval of turbidity and
turbid-water chlorophyll a. For these bands the median ab-
solute percentage error (MAPE) ranges between 9.88 % and
17.20 %.

Figure 9 shows the RRS match-ups between the Sentinel-
3/OLCI and PANTHYR instruments installed on RT1. In the
deployment period between 11 December 2019 and 1 August

https://doi.org/10.5194/os-21-787-2025 Ocean Sci., 21, 787–805, 2025



796 A. Alvera-Azcárate et al.: Super-resolution DINEOF

Figure 8. Validation of RRS for Sentinel-2/MSI data. Hyperspectral in situ stations from the HYPERNET network in Oostende (Belgium)
were used.

2023, 2334 OLCI L1FR images were available for process-
ing with 168 common match-ups with the PANTHYR instru-
ment, which passed the quality flagging of the individual at-
mospheric corrections (i.e. ACOLITE/DSF and C2RCC), the
IDEPIX quality flagging, and the match-up quality flagging.

For the merged approach of atmospheric correction, the best-
performing bands are 443, 490, 560, 665, and 709 nm, which
are typically used for retrieval of turbidity and turbid-water
chlorophyll a. For these bands the MAPE ranges between
10.74 % and 19.00 %.
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Figure 9. Validation of remote sensing reflectance (RRS) for Sentinel-3/OLCI data. Hyperspectral in situ stations from the HYPERNET
network in Oostende (Belgium) were used.
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Figure 10. Turbidity time series for 2020 at the RT1 HYPERNET station generated using the in situ hyperspectral PANTHYR data (green
line), the Sentinel-2 satellite data (orange dots), the Sentinel-3 satellite data (red dots), and the gap-filled DINEOF super-resolution satellite
product (blue line).

Figure 11. Match-up results of the daily Sentinel-2, Sentinel-3, and DINEOF super-resolution TUR products against in situ observations
obtained from the autonomous PANTHYR system at the RT1 station in the Belgian coastal zone.

The accuracy of the DINEOF super-resolution products
was validated for the Belgian coastal zone region by using
the hyperspectral in situ dataset from the autonomous PAN-
THYR system deployed at RT1 near Oostende to generate an
in situ turbidity product which was directly compared with
the satellite-derived turbidity products. This resulted in a tur-
bidity time series with a temporal resolution of 20 min when
daylight was available. The in situ turbidity product was gen-
erated with the same algorithm as used for the satellite prod-
ucts. Figure 10 shows the turbidity time series for 2020 over-
laying the in situ data, the Sentinel-2 and Sentinel-3 turbidity
products, and the final super-resolution DINEOF gap-filled
product showing that the DINEOF product is able to capture
the in situ turbidity signal between March and September. In
January and February the DINEOF product shows slightly
lower values, which can be caused by the fact that in those
months the availability of cloud-free satellite products from
Sentinel-2 and Sentinel-3 is very low. In situ observations

for the period September–December were unavailable as the
PANTHYR system was taken down for maintenance.

An objective intercomparison was achieved through a
match-up analysis. The match-up validation protocol de-
scribed by Bailey and Werdell (2006) was applied to remove
erroneous match-ups from the analysis based on macro-
pixels of 3× 3 pixels from the satellite turbidity products.
Figure 11 shows the results of the match-up analysis for
Sentinel-2, Sentinel-3, and the gap-filled DINEOF super-
resolution products. These graphs show that the Sentinel-2
and Sentinel-3 products are in good agreement with the in
situ observations, with mean average percentage differences
of around 6 %. The temporal frequency of Sentinel-3 over-
passes over the region of interest results in more than 3 times
more match-ups. Considering the DINEOF super-resolution
match-ups, this number of match-ups is increased by another
34 %, with very similar statistics compared to the Sentinel-3
match-ups, thus showing DINEOF’s ability to retain the tur-
bidity information provided by the source products. We do

Ocean Sci., 21, 787–805, 2025 https://doi.org/10.5194/os-21-787-2025



A. Alvera-Azcárate et al.: Super-resolution DINEOF 799

Figure 12. (a) Initially cloudy data with 5 km resolution on 1 June 2022. (b) DINEOF reconstruction of the 1 km data (reference run). (c)
DINEOF run of the mixed dataset. (d) North–south transect for the three datasets (black: initial data at 1 and 5 km; green: reference run
at 1 km; blue: super-resolution run). (e) Percentage difference map between the initial data and the DINEOF estimate. The data are on a
logarithmic scale.

Figure 13. Example of super-resolution DINEOF reconstruction. (a) Initial data downgraded to 5 km spatial resolution on 1 June 2022. (b)
Reconstruction of the reference run at 1 km spatial resolution. (c) Reconstruction of the 5 km data with DINEOF using the mixed 1 and 5 km
dataset. The data are on a logarithmic scale.

see a slight underestimation of the turbidity values by both
satellites, especially for higher values (turbidity> 50 FNU).
Further inspection indicates that this underestimation mostly
happens in the winter months (January–February), probably
due to the high cloud cover (data not shown).

4.3 Scale assessment

In order to determine which scales are reconstructed in the
super-resolution DINEOF approach, a test using the multi-
sensor satellite chlorophyll data at 1 km spatial resolution de-
scribed in Sect. 2.2.3 was performed. These data are down-
scaled to 5 km using a nearest-neighbour interpolation (to
avoid smoothing the data). Following the same procedure
as with the combined Sentinel-2 and Sentinel-3 turbidity
dataset, we intercalate the 1 km data and the 5 km data. The

ratio of this mixed dataset is one high-resolution image (at
1 km) to every three low-resolution images (at 5 km) in order
to mimic the ratio of the Sentinel-2 and Sentinel-3 combi-
nation used in the previous section. This allows us to com-
pare the scales reconstructed on this dataset with the initial
1 km data on days when 1 km data and 5 km data were used.
In addition, we have made a reference reconstruction of the
original, 1 km data so that we can assess how a full high-
spatial-resolution reconstruction compares with the mixed-
dataset reconstruction.

The DINEOF reconstruction of the mixed dataset used
22 EOFs, and an example of the reconstruction is shown in
Fig. 12. On this date, 1 June 2022, the initial dataset has a
spatial resolution of 5 km. A north–south transect shows that
the reconstruction (in blue) is able to increase the variabil-
ity of the 5 km data to mimic the variability of the reference
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Figure 14. (a) Initially cloudy data with 1 km resolution on 9 July 2022. (b) DINEOF reconstruction of the 1 km data (reference run).
(c) DINEOF run of the mixed dataset. (d) North–south transect for the three datasets (black: initial data at 1 and 5 km; green: reference run
at 1 km; blue: super-resolution run). (e) Percentage difference map between the initial data and the DINEOF estimate. The data are on a
logarithmic scale.

dataset, which only uses 1 km resolution data (in green). This
effectively increases the spatial resolution of the results with
respect to the downgraded dataset (in black), which shows a
step-like structure. A percentage difference map is also in-
cluded, which in addition to showing the regions with higher
or lower values in the reconstruction (positive or negative
percentage values respectively) shows a square pattern that
comes from the partial removal of the low-resolution infor-
mation.

In order to investigate this pattern further, Fig. 13 shows
a detail of the reconstruction on 1 June 2022, in which 5 km
data are initially present. The super-resolution DINEOF re-
construction (in Fig. 13c) is shown to provide higher spatial
resolution than the initial data, similar to what is obtained
with the reference reconstruction at 1 km (shown in Fig. 13b),
despite the coarse resolution of the initial field. There are
some remaining edge effects showing the initial 5 km grid
at the super-resolution, but this comes from the choice of
nearest-neighbour interpolation. A linear interpolation would
avoid such a pattern in the final results, although this would
need to be tested.

On a day with 1 km data initially (Fig. 14, 9 July 2022),
we can see that the variabilities observed in the north–south
transect for the reference run and the super-resolution recon-
struction are very similar, showing the ability of the super-
resolution approach to retain small-scale variability.

5 Sub-mesoscale variability in the Belgian coastal zone

The super-resolution data obtained in this work allow us to
analyse the variability of turbidity at the sub-mesoscale in the
study region. The river sediments carried out by the Scheldt
and the resuspension of bottom sediments at the along-shore
sandbanks are the two major contributors to the small-scale
variability of turbidity in this region.

Sandbank-induced high-turbidity patterns on the Belgian
coast are influenced by the topography, and horizontal wa-
ter movement due to tidal currents results in rapid particle
deposition outside these shallow environments. As a result,
turbidity is often high inside the sandbank region and up to
a depth of about 10 m, as observed for example in Fig. 15.
We use hourly surface currents obtained from Legrand and
Baetens (2021) to assess their influence on the turbidity dis-
tribution. The intensity of currents and their direction in the
hours preceding the time of the satellite pass have a large in-
fluence on the average turbidity values over the region, like
on 16 October (Fig. 16), which presents a similar tidal phase
to 19 May (top right image) but with stronger currents, re-
sulting in an overall higher turbidity over the whole region.

Figures 15c and 16c show that there is an overall decreas-
ing turbidity in the offshore direction, with similar variabil-
ity at all depths. The effect of the presence of sandbanks on
the resuspension of turbidity is also visible in these images,
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Figure 15. (a) DINEOF super-resolution reconstruction of turbidity on 19 May 2020. The black lines show the 5 and 10 m isobath and the
arrows show the surface currents at 10:00. The thick black line shows the transect across the sandbanks in panel (c), and the triangles are
positioned at the tops of some of these sandbanks for reference. (b) Hourly surface currents during 19 May at the light-grey triangle. (c)
Across-sandbank transect of turbidity. The light-grey lines show all the DINEOF 2020 data, the thick black line shows the 19 May turbidity,
and the triangles are shown to ease comparison with panel (a). The dark-red line shows the initial turbidity data, and the bathymetry is shown
in brown.

with regions of higher turbidity corresponding to the pres-
ence of these sandbanks. During weak water current peri-
ods (Fig. 15), the effect of the sandbanks on water turbid-
ity is seen clearly, with sediments depositing in the deeper,
inter-sandbank regions. During strong water current periods
(Fig. 16), turbidity is higher everywhere, and the effect of the
bathymetry is less evident.

The sandbank-induced high-turbidity patterns in Fig. 15
are about 2 km wide. Temporal scales of the resuspension–
deposition processes are mainly determined by tidal cur-
rents. It is therefore not possible to observe these processes
with satellite data, as they only offer one estimate per day
and variations at smaller scales are therefore not measured.
Fettweis et al. (2023) showed that, in regions with strong
tidal regimes, such as the Belgian coast, the daily sampling
from satellites is not enough to capture the variability in
the deposition–resuspension cycles caused by tidal currents.
Satellite data lack the temporal frequency needed to assess
the variability of turbidity at the sandbanks through time, but
they provide a relevant tool for analysing the spatial variabil-
ity at a high spatial resolution.

6 Conclusions

There are several satellite datasets monitoring ocean colour
globally, but each of them has different spatial, temporal, and
spectral characteristics. It is therefore necessary to develop
approaches that allow us to use these data streams in a syn-
ergistic way. In the case of coastal studies, there is also a
need to work at the highest spatial resolution possible in or-
der to capture the variability that is typical of these regions.
All ocean colour satellite sensors are affected by the presence
of clouds, and hence these approaches also need to interpo-
late missing data.

In this work, we have shown an approach for obtaining
super-resolution cloud-free satellite data using DINEOF. A
combination of Sentinel-2 and Sentinel-3 data representing
turbidity on the Belgian coast has been used, and the re-
sults show that, working on a combined dataset of Sentinel-2
and Sentinel-3 data, we are able to retain most of the spa-
tial variability present in Sentinel-2 data and to increase the
spatial variability of the Sentinel-3 data in order to mimic
the Sentinel-2 spatial resolution. The results have been val-
idated using independent in situ data, and the ability of DI-
NEOF to increase the spatial resolution has been validated
with a chlorophyll dataset covering the whole of the North
Sea. This last example demonstrated that DINEOF is able to
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Figure 16. (a) DINEOF super-resolution reconstruction of turbidity on 16 October 2020. The black lines show the 5 m and 10 m isobath and
the arrows show surface currents at 10:00. The thick black line shows the transect across the sandbanks shown in panel (c), and the triangles
are positioned at the tops of some of these sandbanks for reference. (b) Hourly surface currents during 16 October at the light-grey triangle.
(c) Across-sandbank transect of turbidity. The light-grey lines show all the DINEOF 2020 data, the thick black line shows the turbidity on 16
October, and the triangles are shown to ease comparison with panel (a). The dark-red line shows the initial turbidity data, and the bathymetry
is shown in brown.

recover high-spatial-resolution information, as compared to
the original, high-resolution data that were hidden from the
analysis. The approach has been tested for different regions
(the southern North Sea and Belgian coast in this work) and
variables (turbidity and chlorophyll concentration) and can
be applied to any other region and variable.

Data with a high spatio-temporal resolution allow us to
study small-scale variability in coastal regions, which has
been shown in this paper through the influence of sandbanks
on the turbidity distribution of the Belgian coast. Variables
like turbidity or chlorophyll concentration can vary abruptly
in a few metres and within a few hours because of the effect
of bathymetry and water currents, for example. Using sev-
eral satellite datasets to analyse these changes allows for bet-
ter coverage of the spatio-temporal scales involved. Satellite
data however lack the high temporal resolution that would be
needed to study the variability of these small-scale features
at adequate temporal scales.

Super-resolution satellite products obtained from syner-
gistic use for several satellite data streams are necessary
for studying the coastal ocean. The need for high-spatial-
resolution data decreases at more offshore locations, and
therefore the approach presented in this paper could be ap-
plied to a multi-resolution dataset with a higher spatial res-
olution in the most variable regions. Other future develop-

ments include the application of the super-resolution DI-
NEOF approach to variables like sea surface temperature,
although the absence of high-spatial-resolution data streams
with the necessary accuracy makes this a challenge.

Code availability. DINEOF is available at
https://doi.org/10.5281/zenodo.15187824 (Alvera-Azcárate et
al., 2025).

Data availability. The satellite data used in this work are openly
available through the Copernicus Marine Service catalogue. This
study uses high-resolution marine forecast products for the Bel-
gian coastal zone as produced by the Royal Belgian Institute of
Natural Sciences. The dataset is updated twice a day and can
be downloaded at https://erddap.naturalsciences.be/erddap/griddap/
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