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Abstract. In the framework of a changing climate, it is use-
ful to devise methods capable of effectively assessing and
monitoring the changing landscape of air–sea CO2 fluxes.
In this study, we developed an integrated machine learning
tool to objectively classify and track marine carbon biomes
under seasonally and interannually changing environmental
conditions. The tool was applied to the monthly output of a
global ocean biogeochemistry model at 0.25° resolution run
under atmospheric forcing for the period 1958–2018. Car-
bon biomes are defined as regions having consistent relations
between surface CO2 fugacity (f CO2) and its main drivers
(temperature, dissolved inorganic carbon, alkalinity). We de-
tected carbon biomes by using an agglomerative hierarchical
clustering (HC) methodology applied to spatial target–driver
relationships, whereby a novel adaptive approach to cut the
HC dendrogram based on the compactness and similarity of
the clusters was employed. Based only on the spatial vari-
ability of the target–driver relationships and with no prior
knowledge of the cluster location, we were able to detect
well-defined and geographically meaningful carbon biomes.
A deep learning model was constructed to track the seasonal
and interannual evolution of the carbon biomes, wherein a
feed-forward neural network was trained to assign labels to
detected biomes. We find that the area covered by the car-
bon biomes responds robustly to seasonal variations in envi-
ronmental conditions. A seasonal alternation between differ-
ent biomes is observed over the North Atlantic and Southern
Ocean. Long-term trends in biome coverage over the 1970–
2018 period, namely a 1 % to 2 % per decade expansion of
the subtropical biome in the North Atlantic and a 0.5 % to
1 % per decade expansion of the subpolar biome in the South-
ern Ocean, are suggestive of long-term climate shifts. Our

approach thus provides a framework that can facilitate the
monitoring of the impacts of climate change on the ocean
carbon cycle and the evaluation of carbon cycle projections
across Earth system models.

1 Introduction

By absorbing roughly 25 % of human-induced carbon emis-
sions annually (Friedlingstein et al., 2023), the global ocean
is a critical component of the Earth’s climate and has, until
now, mitigated the effects of anthropogenic climate change.
The ocean’s ability to take up CO2 depends on both physical
processes (the “solubility pump”) and biological processes
(the “biological pump”) (Sarmiento and Gruber, 2006). The
biological soft-tissue pump is driven by the absorption of
dissolved inorganic carbon (DIC) by photosynthetic primary
producers in the sunlit ocean and by its release into the ocean
interior through organic matter remineralization. The solu-
bility pump is driven by various factors, notably ocean tem-
perature, chemistry, and circulation. Sea surface tempera-
ture (SST) strongly affects CO2 solubility, with colder wa-
ters capable of absorbing more CO2 than warmer waters.
The chemical composition of seawater also plays a role, with
waters characterized by higher alkalinity capable of absorb-
ing higher quantities of CO2 for a given DIC concentration
(Williams and Follows, 2011). Ocean circulation and mix-
ing strongly influence air–sea CO2 fluxes through their effect
on the vertical exchanges of DIC and alkalinity between the
ocean surface and its interior.

The processes that govern air–sea CO2 fluxes display con-
siderable spatial and temporal variability. SST imprints a
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strong north–south gradient of CO2 solubility, with colder
high-latitude waters exhibiting a higher CO2 uptake than
warmer tropical waters (Williams and Follows, 2011). Over-
laid on the solubility-driven gradients, patterns of primary
productivity and ocean circulation strongly affect the spa-
tial variability of air–sea CO2 fluxes. Subpolar regions of
high primary productivity act overall as a strong CO2 sink
(Takahashi et al., 2009; Mikaloff Fletcher et al., 2007; De-
Vries et al., 2023). Exceptions are the subpolar latitudes
of the Southern Ocean, the equatorial Pacific, and the east-
ern boundaries of the ocean basins, where wind-driven up-
welling of high-DIC waters and the incomplete utilization
of upwelled nutrients make them prone to CO2 outgassing
(Takahashi et al., 2009; Mikaloff Fletcher et al., 2007). High-
latitude regions are strongly influenced by sea ice cover,
which seasonally hinders the air–sea exchanges of CO2
and affects surface stratification and primary productivity.
The above processes display a substantial seasonal evolu-
tion: SST peaks in summer, primary production is highest
in spring and summer, and upwelling and vertical mixing
are most intense in the cold and wind-swept winter months.
Past studies have subdivided the ocean into regions where
the air–sea CO2 flux seasonality is more in phase with SST
(“thermal” control) and others where it is more in phase with
DIC (“non-thermal” control) (Takahashi et al., 2002; Prend
et al., 2022). The oligotrophic subtropical gyres are ther-
mally driven, whereas polar and subpolar regions (character-
ized by strong biological production and DIC physical trans-
port) are mostly non-thermally driven (Takahashi et al., 2002;
Prend et al., 2022). While the seasonal cycle is the strongest
source of temporal variation, the natural variability of the cli-
mate system also introduces year-to-year changes in the pro-
cesses governing the CO2 uptake (Landschützer et al., 2016;
Gruber et al., 2023). Prominent examples are the El Niño–
Southern Oscillation (ENSO), which modulates the strength
of the upwelling in the equatorial Pacific (Feely et al., 2006);
the Southern Annular Mode, which modulates the strength
of the Southern Ocean upwelling and associated CO2 out-
gassing (Lovenduski et al., 2007); and the North Atlantic Os-
cillation, which modulates the strength of the subpolar North
Atlantic deep mixing and overturning circulation with impli-
cations for the carbon cycle (Pérez et al., 2013; Patara et al.,
2011).

These widely varying environmental conditions have
prompted past studies to objectively classify the global ocean
into marine biogeochemical biomes. Marine biomes are char-
acterized by coherent physical forcing and environmental
conditions, which are representative of distinctive ecosystem
structures (Longhurst, 1995; Sonnewald et al., 2020; Oliver
et al., 2015). The classification in marine biomes has sev-
eral applications, such as evaluating and comparing ocean
biogeochemical models (Vichi et al., 2011; DeVries et al.,
2023), producing air–sea CO2 flux reconstructions based on
sparse observational data (Landschützer et al., 2013), and
efficiently interpreting increasingly large datasets produced

by Earth system models (Jones and Ito, 2019; Couespel
et al., 2024). Recently, biome classification has gone beyond
ecosystem applications and explored carbon uptake struc-
tures (Fay and McKinley, 2014; Jones and Ito, 2019; Krast-
ing et al., 2022; Couespel et al., 2024). For instance, Fay and
McKinley (2014) defined marine biomes based on predefined
limits of sea ice concentration, SST, mixed layer depth, and
chlorophyll values. These biomes, capable of following dy-
namical ocean boundaries, have been extensively used to as-
sess and compare air–sea CO2 fluxes across different models
and data products in the recent RECCAP-2 project (DeVries
et al., 2023).

Against the backdrop of rapidly evolving machine learn-
ing (ML) methods, recent studies have contributed a set of
tools for categorizing the global ocean into marine biomes
(Landschützer et al., 2013; Jones and Ito, 2019; Sonnewald
et al., 2020; Krasting et al., 2022; Mohanty et al., 2023a;
Couespel et al., 2024). In their work, Couespel et al. (2024)
built target–driver relationships between air–sea CO2 flux
and biogeochemical predictors over a time series and used
Gaussian mixture models to cluster the identified temporal
associations into carbon regimes. Jones and Ito (2019) also
used Gaussian mixture models to segment the ocean sur-
face based on the surface budget of dissolved inorganic car-
bon, whereas Landschützer et al. (2013) used self-organizing
maps to cluster the nonlinear relationships between CO2
partial pressure and its drivers. Sonnewald et al. (2020)
presented the Systematic Aggregated Eco-Province (SAGE)
method for constructing eco-provinces, which integrated t-
stochastic neighbor embedding (t-SNE) and DBSCAN clus-
tering. The works by Krasting et al. (2022) shed light on Arc-
tic Ocean acidification, where water mass properties were
segmented into four clusters using the SAGE method.

When combined with the ability to track the biomes
in time, ML-based detection methods could potentially be
used to monitor the time evolution of marine biomes under
changing climate conditions. For instance, Reygondeau et al.
(2020) implemented a regression-based ensemble approach
to predict four biomes (subdivided into 56 biogeochemical
provinces) in the future. To this end, they used a supervised
method based on the location and properties of the 56 bio-
geochemical Longhurst provinces (Longhurst, 1995). How-
ever, due to the strong fluidity of ocean biomes in response
to seasonal and interannual changes in environmental con-
ditions, using tracking methods tied to specific locations is
not ideal. The challenges in designing ML-based methods for
tracking ecosystems over time are numerous. These include
(i) the lack of high-quality annotated geoscientific datasets
needed for training and validation steps, (ii) building an in-
tricate algorithm to capture the complex spatiotemporal vari-
ability within biomes, and (iii) the requirement for consider-
able computational resources, time, or financial investment,
depending on the scale of the available data. Nonetheless,
tracking provinces over time can be used to assess and pre-
dict transformations in ecosystem functioning and carbon cy-
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cle dynamics. Biogeochemical provinces are dynamic enti-
ties whose spatial extent and position fluctuate in response to
climate variations and are anticipated to be further influenced
by forthcoming global climate change (Reygondeau et al.,
2020; Couespel et al., 2024). Monitoring these changes over
time will detect early signs of ecosystem disruptions, such
as ocean acidification (Krasting et al., 2022), allowing for
timely intervention and protection measures.

Building upon this motivation, in this study, we built a new
strategy capable of detecting and tracking carbon biomes
over time, which are defined as regions of consistent rela-
tionships between surface CO2 fugacity (a quantity closely
related to CO2 partial pressure) and its drivers. Instead of
applying clustering to the drivers directly, we built multiple
localized target–driver relationships between CO2 fugacity
and its predominant drivers (i.e., surface temperature, dis-
solved inorganic carbon, and alkalinity). Then, we applied
agglomerative hierarchical clustering to group similar target–
driver connections and detect the carbon biomes through a
distribution-aware technique (Mohanty et al., 2023a). Once
the clusters are labeled as specific carbon biomes, we em-
ploy a simplistic version of a neural network to capture the
connections between the labels and the target–driver rela-
tionships, enabling the tracking or the prediction of carbon
biomes in time. Our approach thus provides a framework
that will facilitate monitoring climate change’s impacts on
the ocean carbon cycle and evaluating carbon cycle projec-
tions across Earth system models.

The paper is structured as follows: Sect. 2 describes the
global ocean biogeochemistry model used for our analysis
and the variables collected from it, the technique to build
the target–driver relationships, the application of clustering
method to detect the carbon biomes, and the building blocks
of the neural network to track the biomes over time. Section 3
elucidates the outcome of the target–driver analysis and the
detected clusters, as well as the tracking of the carbon biomes
over time. Section 4 discusses our main findings, highlights
the study’s limitations, and elaborates on potential research
ideas for future studies.

2 Methodology

We define a carbon biome as a region characterized by com-
mon relationships between carbon uptake and its drivers.
Specifically, we use sea surface fugacity of CO2 (f CO2) as
the target variable and sea surface temperature (SST), sur-
face dissolved inorganic carbon (DIC), and surface alkalin-
ity (ALK) as its drivers. These variables are obtained from
a simulation with a global ocean biogeochemistry model
(Sect. 2.1). In the face of the intricate and spatially hetero-
geneous relationship between f CO2 and its drivers, we con-
struct multiple localized linear relationships within discrete
regions, each spanning a 2°× 2° dimension, as explained in
Sect. 2.2. Subsequently, an agglomerative hierarchical clus-

tering methodology is employed, leveraging the collection
of regional multivariate linear regression models. Notably,
we employ a distance–variance selection methodology (Mo-
hanty et al., 2023a) tailored to the specifics of our task,
thereby automating the detection of clusters on the dendro-
gram, as outlined in Sect. 2.3. We introduce the application
of artificial neural networks in Sect. 2.4 to track the detected
carbon clusters. Figure 1 schematically visualizes the entire
analytical pipeline, encapsulating the sequential processes.

2.1 Ocean model output

We use the monthly output of a global ocean biogeochem-
istry model composed of the ocean sea ice model NEMO-
LIM2 (Madec, 2016) and the biogeochemistry model MOPS
(Kriest and Oschlies, 2015; Chien et al., 2022). The model
configuration (hereafter called ORCA025-MOPS) is dis-
cretized on a global grid having approximately 0.25° hori-
zontal resolution (Barnier et al., 2007) and 46 vertical lev-
els. MOPS simulates the lower trophic levels of the ecosys-
tem and carbonate chemistry using nine biogeochemical trac-
ers (phosphate, nitrate, phytoplankton, zooplankton, detritus,
dissolved organic matter, oxygen, DIC, and alkalinity). Cal-
cium carbonate dissolution and production, as well as their
effects on alkalinity, are parameterized based on Schmit-
tner et al. (2008). The carbonate chemistry and the air–sea
CO2 exchanges are based on Orr et al. (2017), with an ap-
proximate and non-iterative method to compute the carbon-
ate chemistry equilibrium (Follows et al., 2006). This non-
iterative solution has been selected for this high-resolution
model as a trade-off between computational efficiency and
output realism. ORCA025-MOPS shows realistic spatial pat-
terns and seasonality of air–sea CO2 fluxes, as recently as-
sessed in the RECCAP-2 intercomparison project (DeVries
et al., 2023). However, we removed a few outliers by purging
data points with pre-industrial DIC below 1500 µmol kg−1,
alkalinity below 1700 µmol kg−1, and pre-industrial f CO2
above 500 µatm.

The spin-up of ORCA025-MOPS is the following: a
NEMO-MOPS configuration at 0.5° horizontal resolu-
tion (ORCA05-MOPS) was initialized from Levitus et al.
(1998) for the temperature and salinity, from GLODAPv.2
(Lauvset et al., 2016; Key et al., 2015) for alkalinity and pre-
industrial DIC, and from the World Ocean Atlas 2013 (Gar-
cia et al., 2019) for oxygen, nitrate, and phosphate. ORCA05-
MOPS was run for four cycles of the atmospheric reanalysis
dataset JRA55-do forcing (Tsujino et al., 2018) from 1958–
2018. Starting from a pre-industrial value of 284.32 ppm,
the atmospheric CO2 mixing ratio increased since 1850 fol-
lowing Meinshausen et al. (2017). Two distinct DIC trac-
ers were used to separate natural f CO2 and DIC (run un-
der the pre-industrial atmospheric CO2 mixing ratio equal to
284.32 ppm) from contemporary f CO2 (run under the his-
torical atmospheric CO2 mixing ratio).
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Figure 1. Schematic presentation of the step-by-step approach taken by our study to detect (Task 1) and track (Task 2) marine carbon biomes.

We evaluated the model output of SST, sea surface
salinity (SSS), mixed layer depth (MLD), surface pre-
industrial DIC, and surface alkalinity against observation-
based datasets, as shown in Fig. G1. We see that the mag-
nitude and spatial patterns of climatological SST, SSS, and
winter MLD are reasonably simulated with respect to obser-
vational datasets (Good et al., 2013; Sallée et al., 2021). This
is anticipated since the physical ocean model is forced by
observed reanalysis data and contains a weak surface salin-
ity restoration in ice-free regions (1 year over 50 m depth).
Compared to the GLODAPv2 dataset (Key et al., 2015), pre-
industrial DIC and alkalinity show reasonable spatial pat-
terns but overestimated mean values. This is due to the model
adjustment during the 250-year spin-up, which causes bio-
geochemical properties to deviate from the GLODAPv2 ini-
tial conditions. We argue, however, that the bias in mean
properties should not significantly affect our results since
(1) spatial gradients are reasonably simulated, and (2) the
biomes are built on spatial relationships between f CO2 and
its drivers so that a shift in mean values of DIC and ALK
likely does not play an important role.

We extracted four metrics from the monthly ORCA025-
MOPS output: SST, surface DIC, surface alkalinity (ALK),
and sea surface f CO2. f CO2, which equals pCO2 corrected
for the nonideal behavior of the gas (Pfeil et al., 2013), de-
termines the direction and magnitude of the air–sea CO2 flux
(Wanninkhof, 2014). We selected f CO2 instead of air–sea
CO2 flux for our analysis since f CO2 carries the imprints
of temporal and spatial variability of carbon uptake and out-
gassing patterns without being sensitive to uncertainties in
gas exchange parameterizations. We furthermore decided to
use only these three drivers (without including sea surface

salinity) since they are known to drive most of the f CO2
variability (Williams and Follows, 2011; Lauderdale et al.,
2016). For both f CO2 and DIC, we use their natural com-
ponents rather than their contemporary components since we
are not interested in this study in including the anthropogenic
carbon increase in the biome detection. In our previously
published work (Mohanty et al., 2023b), we built an online
tool to support marine scientists in detecting carbon biomes.
In the tool, we provide an option to construct the biomes from
anthropogenic and pre-industrial CO2 uptake. We observed
that the biomes detected in both cases look spatially almost
identical, indicating that anthropogenic carbon does not sig-
nificantly impact carbon biomes built upon the target–driver
relationship.

2.2 Constructing the target–driver relationships

As stated in the previous section, the carbon biomes are
detected based on the relationship that f CO2 has with its
three main drivers (SST, DIC, and ALK). We decided to
build biomes on target–driver relationships rather than on
the drivers since we aim to capture regionally specific rela-
tionships between f CO2 and its drivers. To construct these
local linear target–driver relationships, the global ocean is
subdivided into boxes of 2°× 2° dimension, and spatial re-
lationships between the target variable, f CO2, and its three
drivers are computed over each box using multivariate linear
regression (MLR), a supervised machine learning approach.
We have chosen the grid size to be 2°× 2° as target–driver
relationships tend to be mostly linear on a smaller scale
(Fig. A1). For each month from 1958 to 2018, the MLR in-
side each 2°× 2° box is obtained according to Eq. (1):
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f CO2 = coefSST ·SST+ coefDIC ·DIC+ coefALK ·ALK+C, (1)

where coefSST, coefDIC, and coefALK are the regression co-
efficients of SST, DIC, and ALK, respectively, and C is the
regression constant.

The regression coefficients (hereafter RCs) provide quan-
titative measures of the strength and direction of the rela-
tionships between the selected drivers (SST, DIC, ALK) and
the target variable (f CO2). A positive coefficient indicates a
positive relationship (as the value of the independent driver
increases, the value of the dependent target also tends to in-
crease). In contrast, a negative coefficient indicates a nega-
tive relationship (as the value of the independent driver de-
creases, the value of the dependent target also tends to de-
crease). Larger coefficients suggest a stronger influence of
the corresponding drivers in that particular 2°× 2° grid box
on f CO2, making it more significant. In Fig. 2a–c, an ex-
ample of the RCs for January 2009 is shown, highlighting
regions where similar relationships between the target and
drivers exist.

We have chosen MLR over univariate linear regression be-
cause MLR allows for considering multiple factors simul-
taneously and can capture more complex relationships be-
tween predictors and the dependent variable than univariate
regression, which considers only one predictor at a time. The
RCs from MLR can differ in magnitude and even in sign
from regression slopes computed using univariate regression
(compare Figs. 2 and A1). This is not surprising since MLR
attempts to optimize the R2 score by fitting a hyperplane
among the target and three drivers. As a result, RCs com-
puted through MLR can be negative, even though the uni-
variate target–driver relationship is positive (e.g., compare
the f CO2–ALK multilinear relationship in Fig. 2c with the
univariate relationship in Fig. A1g). Finally, we have opted
for MLR as a baseline approach. Furthermore, MLRs deliver
an understanding of what has been learned due to their lin-
ear nature, thus facilitating the interpretability of the target–
driver relationships.

2.3 Detection of carbon biomes using adaptive
agglomerative hierarchical clustering

The RCs from the MLR (Sect. 2.2) serve as the founda-
tion to detect the carbon biomes. Carbon biomes are de-
tected based on the linear target–driver relationships ob-
tained over 2°× 2° boxes. We employ an unsupervised ma-
chine learning approach, namely the agglomerative hierar-
chical clustering (HC) technique (Müllner, 2011), to con-
struct a dendrogram based on the aggregation of the MLR
coefficients (RCSST, RCALK, RCDIC). Before applying the
HC technique, the RCs are first normalized (Fig. 2d–f) to
have a mean of zero and a standard deviation of 1. Normal-
izing RCs ensures that all variables contribute equally to the
agglomeration process, regardless of their original scales. We

select a hierarchical clustering method for two main reasons:
(1) it prevents the necessity for a predetermined number of
clusters, thus circumventing subjective bias, and (2) it sim-
plifies the visual exploration of the resulting dendrogram,
thereby aiding in the interpretation of pertinent clusters (car-
bon biomes) and underlying data distributions. Besides, hi-
erarchical clustering enables the extraction of clusters with
varying degrees of granularity when the dendrogram is cut at
different levels (Lin et al., 2022). As an input to our HC algo-
rithm, we have chosen the RCs of January 2009. The specific
choice of year and month does not affect the biome outcome,
as the normalized RCs of SST, DIC, and ALK distributions
stay steady over the years (see Appendix H).

The HC algorithm initiates by treating each normalized
RC of individual 2°× 2° boxes as a distinct cluster. Subse-
quently, pairs of singleton clusters are iteratively merged un-
til all clusters combine into one prominent cluster, encom-
passing all locally linear regression models. In conjunction
with Euclidean distance (the distance between two points in
space in the feature space), Ward linkage is employed to con-
struct the dendrogram. The Euclidean distance ed(p,q) be-
tween two data points (i.e., Euclidean distance between the
RCs of two grid boxes) p and q is measured as shown in
Eq. (2).

ed(p,q)=√(
qcoefSST −pcoefSST

)2
+
(
qcoefDIC −pcoefDIC

)2
+
(
qcoefALK −pcoefALK

)2 (2)

The Ward linkage is based on a method that combines data
points to get compact clusters that minimize variance (in the
ML literature, it is known as the Ward distance minimiza-
tion algorithm; Müllner, 2011). It aims to lower the variance
while combining two clusters, and the Euclidean distance
(i.e., the straight-line distance between two points in space
calculated using Pythagorean theorem) quantifies the dis-
tance between two clusters by measuring the increase in the
sum of squares of individual clusters following their combi-
nation. The heights of the U-shaped links within the dendro-
gram signify this merging distance (i.e., the merging cost) in
terms of the Euclidean distance. In other words, two branches
that combine and build a cluster together on the vertical axis
(in the ML literature, merging at a higher height) are more
dissimilar (have a higher merging cost) than two branches
merging at a lower height.

In a recent study (Mohanty et al., 2023a), we found that the
conventional approach for identifying clusters within a den-
drogram, entailing the selection of a specific distance value
along the dendrogram’s vertical axis, is not optimal for cap-
turing the local statistical distributions, which vary substan-
tially among branches. Because of unequal data distribution
among the dendrogram branches, selecting a global cut at a
lower distance would result in an excessive number of clus-
ters on one branch, whereas picking a cut at a higher distance
value would produce too few clusters on another branch
(Fig. 3a). To overcome this limitation, Mohanty et al. (2023a)
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Figure 2. Spatial multivariate linear regression coefficients. The maps show non-normalized (a, c, e) and normalized (b, d, f) regression
coefficients (RCs) computed over 2°× 2° boxes of f CO2 with respect to its three drivers, i.e., (a, b) SST, (c, d) surface DIC, and (e, f) sur-
face ALK.

Figure 3. Carbon biomes in January 2009 detected through hierarchical clustering (HC). (a) Dendrogram resulting from the HC, with local
cuts based on the distance–variance selection methodology. The text indicates the names of the detected seven clusters (i.e., the carbon
biomes). (b) Geographical location of the detected clusters. The white boxes illustrate the basins – the North Atlantic between 75–0° W and
10–70° N and the Southern Ocean between 45–77° S – which will be analyzed in Sect. 3.2.
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devised a novel adaptive approach to provide local cuts to the
dendrogram. The method relies on the distance–variance se-
lection technique and detects multiple local cuts on the den-
drogram by considering both the compactness and similarity
of the clusters. This algorithm operates based on two param-
eters, the change in distance (1Dist) and the change in vari-
ance (1Var), that indicate the changes in distance and vari-
ance between different U-shaped links while traversing down
the dendrogram from its root to its leaf nodes. This adaptive
method serves the dual purpose of ensuring that the resultant
clusters, representing carbon biomes, exhibit similarity and
compactness, thus enhancing the robustness of cluster detec-
tion.

As we did not fix the number of provinces to be de-
tected, we chose Bayesian information criterion (BIC) scores
to select a meaningful partitioning (see evaluation in Ap-
pendix B). BIC scores are a statistical measure that augments
the identification of an optimal number of clusters that effec-
tively capture the underlying structure, balancing goodness
of fit and model complexity. As detailed in Appendix B, we
conducted 16 experiments with different parameter choices
for 1Dist and 1Var. Based on our evaluation, we opted for
1Dist= 25.0 and 1Var= 0.1, as we can already distinguish
distinct clusters with the lowest difference in the distance
with the fixed difference in variance.

2.4 Tracking carbon uptake provinces using
feed-forward neural networks

After having recognized the carbon biomes on the dendro-
gram, our intent now is to monitor their dynamics over
time, revealing any evolving patterns within them. Since each
biome is defined by the regression coefficients (RCs) of the
drivers, obtaining localized RCs for subsequent months be-
comes mandatory. However, conducting adaptive clustering
again in another month poses the challenge of connecting
and matching two sets of identified biomes. Moreover, per-
forming one-to-one matching based solely on RCs without
location information is challenging. Hence, we shifted our
focus to training neural networks to monitor and track carbon
biomes over time. Based on the data from the initial month
of the temporal sequence, the clustering process detects dis-
tinct carbon biomes. These clusters are identified and labeled,
forming the foundation for subsequent tracking. The RCs of
subsequent months are fed to the feed-forward neural net-
works (FNNs) as a classification problem to categorize them
into distinct carbon uptake provinces.

We chose a feed-forward neural network for predicting the
carbon biomes for two main reasons – nonlinearity detection
and making the deep learning model scalable. (1) Nonlin-
earity detection: as the association between coefficients of
SST, DIC, and ALK and the cluster labels is complex and
cannot be defined by a linear relationship, FNNs can capture
the underlying intricate patterns effectively. FNNs can learn
elaborate interactions among input features(coefficients of

SST, DIC, and ALK), which is crucial when predicting car-
bon biomes. For example, the impact of SST will vary from
one spatial location to the other depending on the concentra-
tion of DIC or ALK, and a neural network is able to learn
such relationships from the data. The FNNs’ ability to model
nonlinear connections is promising when dealing with mul-
tidimensional environmental variables. (2) Scalability during
model construction: FNNs are versatile and allow flexibility
in designing the model architecture, i.e., the number of lay-
ers, neurons per layer, and activation functions. FNNs can be
scaled up by adding more layers or neurons to accommodate
larger datasets and to learn more complex relationships be-
tween drivers and their targets. This adaptability enables the
network to adapt to the sophistication of the data and biome
labels, thus improving prediction accuracy.

Our tracking step involves training FNNs using the labeled
carbon biomes obtained from the initial month as target la-
bels. These neural networks are trained using this labeled
dataset to learn the underlying patterns and relationships
within the clusters. The inputs to the FNNs are the regres-
sion coefficients of SST, DIC, and ALK of January 2009 (see
Appendix H). The aim is to impart the network with the abil-
ity to discern and predict the connection of data (regression
coefficients of the drivers) to the identified clusters based on
their respective characteristics. It focuses mainly on the fea-
tures that define carbon biomes. Once trained, these neural
networks are deployed to predict or assign cluster labels to
the data points observed in the subsequent months of the tem-
poral series. With the training process, the model learned to
associate different RCs with different carbon regimes. Then,
we use the same trained model to predict and track carbon
provinces from January 1958 to December 2018.

For the tracking task, our FNN model comprised multi-
ple dense layers with rectified linear unit (ReLU) (Agarap,
2018) activation functions interspersed with dropout layers
for regularization. The model architecture consisted of an in-
put layer followed by several hidden layers, each contain-
ing 64, 128, 256, 128, and 64 neurons. The choice of ReLU
activation functions in the hidden layers facilitates the learn-
ing of nonlinear relationships within the data. Furthermore,
L2 regularization with a regularization parameter of 0.01 was
applied to the kernel weights of each dense layer to mit-
igate overfitting. The output layer, comprising seven neu-
rons, utilized the softmax activation function (Goodfellow
et al., 2016) to deliver a probability distribution over the
seven classes of carbon biomes. The model was trained us-
ing the ADAM (Adaptive Moment Estimation) (Kingma and
Ba, 2017) optimizer with a learning rate of 0.001 optimized
for categorical cross-entropy loss. Additionally, performance
metrics such as accuracy, precision, and recall were moni-
tored during training to assess the model’s predictive capa-
bilities. The training process was conducted over 50 epochs
with a batch size of 32, and the model’s performance was
evaluated on a validation dataset. Overall, the implemented
FNN architecture with appropriate regularization and opti-
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mization techniques aimed to effectively capture the under-
lying patterns in the data and achieve robust classification
performance. To prevent overfitting, early stopping with pa-
tience of five epochs was employed as a regularization tech-
nique. This led to finishing our training within 30 epochs.

We relied on metrics such as accuracy, precision, and re-
call to assess the performance of our FNN model in the con-
text of multiclass prediction tasks. Accuracy measures the
correctness of the model’s predictions across all biome la-
bels. It is calculated as the ratio of the number of correctly
predicted cases to the total number of cases in the dataset.
For a particular cluster label, precision measures correctly
predicted instances over all the instances that are predicted as
that specific class or biome label. Furthermore, for a respec-
tive cluster label, recall is the proportion of correctly classi-
fied instances over all the instances of that specific class or
biome label. The different parts of the FNN are explained in
Appendix D.

It is worth mentioning that an alternative method was
tested in the past for tracking the carbon biomes (Mohanty
et al., 2023a), where we experimented with whether the car-
bon biomes could be tracked only based on the changes in
the feature–driver relationships over time. Specifically, we
ran the HC algorithm for every month of each year. Then, we
calculated the Frobenius norm, a distance metric, between
the normalized RCs of each cluster between one step and
the next. We subsequently matched the clusters exhibiting
the lowest Frobenius distance. However, this approach was
not optimal since the cluster numbers returned by our adap-
tive HC were not fixed, and the Frobenius norm failed to
match all clusters over time. Through our current study, we
trained a neural network to learn the associations between la-
bels and the underlying regression coefficients (RCs). This
allowed us to predict the locations of the same labels over
time in an effective way. As shown in Fig. H1, the normal-
ized RCs within each biome are (with the exception of the
strongly variable ICE biomes) substantially stable over all
months and years.

3 Results

3.1 Detection of carbon biomes

The relationship between f CO2 and its three drivers (here-
after called RCSST, RCDIC, RCALK) exhibits large spatial
variations (Fig. 2), indicative of different dynamics acting
over different regions of the global ocean. We find an ex-
pected positive relationship of f CO2 with respect to SST
over large swaths of the global ocean (Fig. 2a) since higher
SST reduces the seawater CO2 solubility and, thus, en-
hances its fugacity at the ocean surface. Over most of the
global ocean RCSST is typically included between 10 and
16 µatm °C−1. When pCO2 is affected only by tempera-
ture, Takahashi et al. (1993) determined a relative varia-

tion in pCO2 of 0.0423 °C−1, equivalent to 16.9 µatm °C−1

for a pCO2 value of 400 µatm. The deviation of our simu-
lated RCSST from this expected value indicates the influence
of non-thermal processes on f CO2. Also, we are consider-
ing RCs from multilinear regressions which, as mentioned in
Sect. 2.2, may differ from the univariate perspective. At polar
latitudes, RCSST values are much higher, are mostly negative,
and are characterized by higher spatial variability. In this re-
spect, the following points should be considered: (i) SST in
polar regions deviates only slightly from the freezing temper-
ature (Fig. A1), which leads to high RCSST even in the pres-
ence of moderate variations in f CO2. (ii) The rather counter-
intuitive negative RCSST values can be understood by consid-
ering that when an increase in surface temperature melts sea
ice, the ensuing air–sea CO2 exchanges and phytoplankton
growth lead to a reduction of f CO2. (iii) Leads and fractures
in sea ice may generate a strong spatial variability in f CO2
due to the array of processes (air–sea CO2 exchanges, biolog-
ical productivity) which are set in motion when a previously
sea-ice-covered region is exposed to the atmosphere. RCDIC
is positive basically everywhere, indicating an expected pos-
itive dependence of f CO2 on DIC. RCALK is instead mostly
negative since increases in ALK have a buffering effect on
f CO2. RCDIC and RCALK therefore tend to have opposite
and specular effects on f CO2 (Fig. 4c).

The RCs resulting from the MLR have been normalized
before being fed to the hierarchical clustering (HC) algo-
rithm (Sect. 2.3) so that, over the globe, RCs for each driver
have a mean of zero and a standard deviation of 1 (Fig. 2,
right column). The normalized RCs (hereafter RCnorm) can
thus be understood as anomalies with respect to the global
mean. As an example, negative values of RCnorm

DIC over the
subtropical gyres indicate a dependence of f CO2 on DIC
that is lower than the global average. The HC algorithm run
on RCnorm values of January 2009 produces the dendrogram
shown in Fig. 3a. As explained in Sect. 2.3, the resulting clus-
ters depend on the choice of where to cut the dendrogram.
Instead of selecting a fixed height for the dendrogram cut,
we used the distance–variance selection methodology (Mo-
hanty et al., 2023a) to define local cuts based on the under-
lying data distribution. This procedure yields a total of seven
carbon biomes, each possessing analogous characteristics in
terms of target–driver relationships (Fig. 4a–c). The dendro-
gram detects three main branches, exhibiting distinct combi-
nations of RCnorm values (Fig. 4d) and specific geographical
locations (Fig. 3b).

The leftmost branch on the dendrogram detaches itself
from the other branches at an elevated height, indicating that
it is very dissimilar from the other two branches. This branch
is located at polar latitudes in all months, especially in the
Arctic (blue in Figs. 3b, 5a, b and C1), and is hereafter called
the ICE branch. The ICE branch distinguishes itself by hav-
ing strongly negative RCnorm

SST and RCnorm
ALK and strongly pos-

itive RCnorm
DIC (Fig. 4). The ICE branch is thus characterized

by large spatial gradients in f CO2 and its drivers, negative
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Figure 4. Distribution of normalized regression coefficients (RCnorm) in the carbon biomes detected for January 2009. (a) RCnorm
SST against

norm
DIC , (b) RCnorm

SST against RCnorm
ALK , (c) RCnorm

ALK against RCnorm
DIC . (d) RCnorm

SST , RCnorm
DIC , and RCnorm

ALK averaged over the carbon biomes. Colors
indicate the detected carbon biomes: ICE biomes in blue shading, SUBP+UP biomes in green shading, and SUBTR biomes in orange
shading. SUBP+UP I was not tracked (see main text) and is therefore shown in gray.

dependence from SST, and a strong positive dependence on
DIC. Our analysis thus suggests that the ICE branch is mostly
driven by non-thermal processes but is characterized by a dis-
tinctive dependence of f CO2 on SST due to the interaction
with sea ice (as explained above). Based on our parameter
choice, two ICE sub-branches are identified as biomes (ICE I
and ICE II). The two ICE biomes are characterized by dif-
ferent magnitudes (but the same sign) of the RCnorm values.
Specifically, ICE I corresponds to fewer boxes and is charac-
terized by the most extreme values of the RCnorm, whereas
ICE II covers larger parts of the polar ocean and has some-
what lower magnitudes of RCnorm values.

The rightmost branch on the dendrogram is geographi-
cally located at subpolar latitudes as well as in upwelling
regions, i.e., equatorial Pacific and coastal upwelling ar-
eas (green in Figs. 3b, 5c–f and C1). This branch, which
we call SUBP+UP, distinguishes itself from the other two
branches by having positive values of RCnorm

SST and RCnorm
DIC

and negative values of RCnorm
ALK (Fig. 4d). RCnorm

DIC always has
a larger magnitude than RCSST, suggesting increased im-
portance of non-thermal processes in driving f CO2 vari-
ability in those regions. The selected parameter settings de-
tect three SUBP+UP biomes (SUBP+UP I, SUBP+UP II,
SUBP+UP III), each characterized by different flavors of the

RCnorm combinations. SUBP+UP III is characterized by the
highest RCnorm

DIC values of this branch, suggestive of a stronger
dependence of f CO2 on non-thermal processes, and is pre-
dominantly located in high-latitude subpolar areas (Fig. 5c
and d). SUBP+UP II is characterized by small values of all
three RCnorm values (i.e., they are closer to the global mean)
and often marks the transition towards midlatitude and sub-
tropical regimes (Fig. 5e and f). SUBP+UP I has a strongly
positive RCnorm

SST and is found at the edge with the ICE branch
(Fig. 3b). However, since it contained only 0.55 % of the total
sample size, it was discarded from the tracking process (see
Sect. 3.2).

The middle branch in the dendrogram is geographically
located in the tropics, in the subtropical gyres, and in large
parts of the North Atlantic (orange in Figs. 3b, 5g–j and C1).
This branch, which we call SUBTR, distinguishes itself from
the other two branches by having positive values of RCnorm

SST
and RCnorm

ALK and negative values of RCnorm
DIC (Fig. 4d). Neg-

ative (positive) values of RCnorm
DIC (RCnorm

ALK) are indicative
of regions where the dependence of f CO2 on DIC and
ALK is lower than the global average. This combination of
RC values suggests the enhanced importance of thermal pro-
cesses in driving f CO2 variability in the SUBTR branch.
The HC algorithm detects two SUBTR biomes (SUBTR I
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Figure 5. Percentage coverage of carbon biomes over the years 1958 to 2018, where a value of 100 % indicates that the biome is present in
each simulation year in the 2× 2 box and a value of 0 % that it is never present in the 2× 2 box. Shown are the five main carbon biomes:
(a, b) ICE II, (c, d) SUBP+UP III, (e, f) SUBP+UP II, (g, h) SUBTR II, and (i, j) SUBTR I in January (a, c, e, g, i) and July (b, d, f, h, j).
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and SUBTR II), characterized by different flavors of RCnorm

combinations. In SUBTR II, RCnorm
DIC is particularly low and

is located in the central parts of the subtropical gyres (Fig. 5g
and h). SUBTR II is, therefore, identified as the biome most
strongly driven by thermal processes. SUBTR I is instead
characterized by more moderate values of RCnorm and is
found over large swaths of the global ocean, including sub-
tropical, middle, and even subpolar latitudes (Fig. 5i and j).

Finally, it should be noted that the RCnorm values are more
compact over the SUBTR biomes and SUBP+UP II biomes
than over the remaining biomes. This can be visualized in
Fig. 4a–c, where a large variance around the mean is found
for the ICE and SUBP+UP I biomes. This different statis-
tical distribution of the data within the different dendrogram
branches is one of the reasons why, for this dataset, local cuts
to the dendrogram work better than a fixed global cut.

3.2 Tracking of carbon biomes

Temporal tracking of carbon biomes was performed using a
forward-feed neural network (FNN) model. The inputs to the
FNN model are the RCnorm values obtained through MLR,
and the target labels are the seven carbon biomes detected on
the dendrogram (Fig. 1). As explained in Sect. 2.4 and further
discussed in Sect. 4, we selected January 2009 as the month
for which to run the HC and produce the biome labels and
temporally predicted all other months during the 1958–2018
period using FNN. 80 % of the RCnorm values were used for
training and validation, and the remaining 20 % were used
to test the learned model. During training, the validation ac-
curacy reached 94.81 %, precision was 95.22 %, and recall
stood at 94.06 %. The good results from our FNN model on
the training data were also reflected in the test data, where
we obtained a test accuracy of 94.83 %, precision of 95.39 %,
and recall of 94.5 %. We have chosen the biomes predicted
by the FNN with the highest probability. More information
on FNN evaluation can be found in Appendix D, includ-
ing the confusion matrix on the test set, highlighting the
abovementioned values of test accuracy, precision, and recall
(Fig. D1e). The biome SUBP+UP I contained only 0.55 %
of the total sample size and was excluded by the FNN model
while learning the relationships between the biome label and
the RCs.

The tracking of carbon biomes allows us to address the fol-
lowing questions: (Q1) does the geographical location of the
biomes vary significantly from year to year? (Q2) Are there
seasonal fluctuations of the biome coverage in the course of
a year? (Q3) Are there year-to-year changes and long-term
trends in the biome coverage in response to climate variabil-
ity and change? It should be stressed that both the detection
and the tracking are solely based on the RCnorm

SST , RCnorm
DIC ,

and RCnorm
ALK values, without any prior knowledge of the ge-

ographical locations of the biomes. The temporal tracking
is, therefore, a purely location-agnostic process that depends
only on the carbon dynamics specific to that region.

Figure 5 shows the percentage coverage of the five main
biomes (SUBTR I, SUBTR II, SUBP+UP II, SUBP+UP III,
ICE III) computed over the 1958-2018 period, distinguishing
between January and July. All biomes are characterized by
core regions where the coverage reaches 100 %, peripheral
regions where the biome is found only in some years, and
external regions where the biome is never detected. From
Figs. 5 and 6c–f, we see that the biome coverage is overall
consistent from year to year, indicating that the trained FNN
is able to consistently predict regions with similar RC pat-
terns over time. Only a couple of years were found to be
inconsistent with the overall pattern. The occasional abrupt
shifts in biome coverage (e.g., January 1969 and March 1958
in the North Atlantic and September 1969 in the Southern
Ocean) are to be considered climate-driven transient features.

Distinctive features characterize the different biomes in
terms of seasonality. SUBTR II (Fig. 5g and h), the most
thermally driven biome, seasonally dominates in the winter
months in the subtropical gyres (i.e., in the Northern Hemi-
sphere in January and in the Southern Hemisphere in July).
This is possibly related to the fact that in winter when there
is little biological productivity, f CO2 is mostly driven by
SST. SUBTR I (Fig. 5i and j), covering large swaths of the
global ocean, has a tendency for higher coverage in the sum-
mer months. This is potentially because SUBTR I has a less
pronounced thermal control than SUBTR II and, therefore,
dominates in locations and months for which non-thermal
processes also play some role. SUBP+UP III has its greatest
extent in the winter months of the subpolar and high latitudes
when strong non-thermal controls (e.g., convection and up-
welling) drive f CO2. In the summer months, SUBP+UP II,
with its somewhat more nuanced non-thermal control, occu-
pies subpolar areas occupied by SUBP+UP III in winter. An
exception is the North Atlantic, as will described later on.
ICE II is found almost exclusively in the Arctic Ocean, with
little seasonal variation.

The biome coverage and underlying environmental prop-
erties are further explored for two basins of climatic rele-
vance (contours in Fig. 3b): (1) the North Atlantic between
75–0° W and 10–70° N and (2) the Southern Ocean between
45 and 77° S. Figure 6a and b show the mean seasonal evo-
lution of the percentage coverage of the three main biomes
for each basin, with the standard deviation computed over
the 61 simulation years shown as shading. 100 % coverage
for a biome thus would indicate that the biome covers the
whole basin, whereas 0 % coverage indicates that the biome
never occurs in the basin. To gain a better perspective of the
environmental conditions affecting each biome, we further
analyzed the mean seasonal cycle of SST, sea surface salin-
ity (SSS), and mixed layer depth (MLD) over each of the
three main biomes detected in the two basins (Fig. 7). In an-
alyzing these seasonal cycles of environmental parameters, it
should be remembered that the area on which the averages
are computed changes with time, which can complicate the
interpretation. However, we believe this analysis is still use-
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Figure 6. Seasonal and interannual variations of carbon biome coverage. Shown is the percentage coverage of the three main biomes over
the North Atlantic (a, c, e) and Southern Ocean (b, d, f). The limits of the basins are shown in Fig. 3b. The percentage coverage is computed
as the weighted area average of the carbon biome divided by the total area of the basin so that a value of 100 % would be achieved when
the biome covers the whole basin. (a, b) Mean seasonal cycle of the carbon biome coverage, with shading indicating the standard deviation
across the 61 simulation years. (c–f) Weighted area average of the percentage coverage of carbon biomes over 1958–2018 in the months of
(c, d) January and (e, f) July. The North Atlantic basin lies between 75–0° W and 10–70° N, and the Southern Ocean is between 45–77° S.

ful as it allows us to better characterize the biomes in terms
of environmental properties.

The North Atlantic (NATL) exhibits a sharp divide be-
tween the subtropical and subpolar gyres, separated by the
North Atlantic Current (Fig. 5). SUBTR I and SUBTR II
seasonally compete, with SUBTR I dominating in summer
(around 80 % of the whole NATL) and SUBTR II in win-
ter (around 60 % of the whole NATL) (Fig. 6a). SUBTR II
shows overall the highest SST and SSS and the lowest win-

ter MLD (Fig. 7a–c), consistent with the strongly stratified
subtropical gyre conditions. A dip in SST and SSS in July–
August, with elevated uncertainty levels, is connected to the
very low coverage of SUBTR II in these months (Fig. 5h),
an aspect which amplifies the importance of limited coastal
and high-latitude regions. SUBP+UP II, the third most rep-
resented biome in the NATL, gains its highest coverage in
winter (around 20 % of the whole NATL). SUBP+UP II is
mostly found in the subpolar NATL (Fig. 5e and f), where it
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Figure 7. Seasonality of environmental parameters over biomes in the North Atlantic and Southern Ocean. Mean seasonal cycle over 1958–
2018 of (a, d) SST, (b, e) sea surface salinity (SSS), and (c, f) mixed layer depth (MLD), averaged within the three main carbon biomes in
the North Atlantic (a–c) and Southern Ocean (d–f). The limits of the basins are shown in Fig. 3b. Shading indicates the standard deviation
over the 61 simulation years. The North Atlantic basin lies between 75–0° W and 10–70° N, and the Southern Ocean is between 45–77° S.

seasonally competes with SUBTR I, which is instead most
present in summer. Interestingly, in the eastern parts of the
subpolar North Atlantic, SUBTR I dominates in both winter
and summer (Fig. 5i and j), possibly because of the influence
of the North Atlantic Current bringing subtropical waters to
those areas. In other words, from a carbon perspective, the
eastern subpolar NATL is more similar to midlatitude and
subtropical domains than the western subpolar NATL. As ex-
pected, SUBP+UP II has lower SST (with a peak and sum-
mer) and the deepest winter MLD with respect to the SUBTR
biomes (Fig. 7a–c). The dip in SSS in the summer months is
likely related to the fact that in summer SUBP+UP II mostly
occupies sea ice melting regions (Fig. 5f).

The Southern Ocean (SO) exhibits a seasonal competition
of SUBTR I, SUBP+UP II, and SUBP+UP III (Fig. 6b).
SUBP+UP III is the coldest biome (Fig. 7d), and it oc-
cupies the subpolar regions dominated by wind-driven up-
welling and moderately deep mixed layers (Fig. 7f). It is
most extended in winter when it covers more than 50 %
of the whole SO. The enhanced SSS in the winter season
(Fig. 7e) is consistent with the increased wind-driven up-
welling of relatively salty Circumpolar Deep Water in the
winter months. In the summer months, SUBP+UP III re-
cedes, and SUBP+UP II gains more relevance (Fig. 6b).
SUBP+UP II is overall warmer than SUBP+UP III and is
found in midlatitude regions characterized by deep winter
MLD (Sallée et al., 2021). In all months, SUBP+UP II typ-
ically follows the path of the Antarctic Circumpolar Cur-
rent as well as water mass formation areas to the north of
it (Fig. 5e and f). SUBTR I, with its higher SST and SSS, is

a more thermally driven biome with the highest coverage in
the summer months (Fig. 6b).

When performing the carbon biome tracking over the
whole 1958–2018 period, we find that some biomes have ex-
panded, whereas some have shrunk. In the NATL, SUBTR I
and SUBTR II, which compete on seasonal timescales, show
anticorrelated interannual variability over the 1958–2018 pe-
riod. In winter, SUBTR I and SUBTR II also show diverging
trends since the 1970s, with SUBTR II expanding by about
10 % at the expense of SUBTR I. This might be related to a
concomitant increase in SST over the North Atlantic subtrop-
ical gyre (Bulgin et al., 2020), which might have enhanced
the thermal control of SST on f CO2. In the Southern Ocean,
SUBP+UP II and SUBP+UP III show competing variabili-
ties on interannual timescales and – since the late 1960s – an
overall 10 % increase in SUBP+UP III in summer at the ex-
pense of SUBP+UP II. This might be related to the concomi-
tant increase in Southern Hemisphere westerly winds (Swart
et al., 2015), which has created more favorable conditions
for DIC upwelling and therefore enhanced the non-thermal
control on f CO2 (Gruber et al., 2023).

Additionally, to better understand and visualize the trends
in biome coverage over the global ocean, we have com-
puted (i) the coverage change for five biomes between
1970–1979 and 2009–2018, as shown in Fig. 8; (ii) the
trends in biome coverage between 1970 and 2018 over the
North Atlantic Ocean and Southern Ocean for all months
(not only January and July), as presented in Table E1; and
(iii) the changes in SST between 1970–1979 and 2009–
2018 in both the model and the observation-based dataset
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Figure 8. Change in the percentage coverage of carbon biomes between 1970–1979 and 2009–2018. Shown are the five main carbon biomes:
(a, b) ICE II, (c, d) SUBP+UP III, (e, f) SUBP+UP II, (g, h) SUBTR II, and (i, j) SUBTR I in January (a, c, e, g, i) and July (b, d, f, h, j).
As an example, a value of +100 % indicates that over a 2° box, a particular biome was present for each of the 10 years from 2009–2018 and
never present in any of the 10 years between 1970–1979. Conversely, a value of −100 % indicates that the biome was always present from
1970–1979 and never in 2009–2018. A value of 0 % indicates that the biome was equally present between the two decades.
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EN4.2.2 (Good et al., 2013), shown in Fig. F1, to interpret
the trends in the context of the changing climate. Table E1
shows that, in the North Atlantic, the percentage coverages
of the SUBTR I and SUBTR II biomes are negatively cor-
related and show opposing linear trends between 1970–2018
for each month of the year. While the correlations are al-
ways statistically significant (p < 0.04), the linear trends
are statistically significant only between January and May.
Over these months, SUBTR II (the most thermally driven
biome) expanded at a rate of ∼ 1 %–2 % per decade, while
the SUBTR I biome contracted at a similar rate. Locally, the
trends in biome coverage may reach even higher values; i.e.,
the changes may exceed 50 % between the decade 1970–
1979 and the decade 2009–2018, as shown in Fig. 8. Fig-
ure 8 also shows that SUBTR II expanded in all basins in
the winter hemisphere (January in the Northern Hemisphere,
July in the Southern Hemisphere) at the expense of SUBTR I,
which instead expanded in the summer hemisphere and the
tropics. The expansion of the SUBTR II biome could be re-
lated to a concomitant increase in SST over the North At-
lantic and subtropical gyres (Fig. F1), in agreement with
the observational dataset EN4.2.2 (Good et al., 2013). This
might have enhanced the thermal control of SST on f CO2,
thereby favoring the thermally driven SUBTR II biome. We
can further speculate that the expansion of SUBTR II is
particularly strong in winter, which may be related to the
low phytoplankton carbon uptake in these months, a char-
acteristic that enhances the thermally driven character of the
biome. In the Southern Ocean, the percentage coverages of
the SUBP+UP II and SUBP+UP III biomes are also nega-
tively correlated on interannual timescales and mostly show
opposing linear trends between 1970–2018 (Table E1). The
statistically significant trends are found here in the summer
months (December–March), with an expansion of the non-
thermally driven SUBP+UP III biome of 0.5 %–1 % and a
contraction of the SUBP+UP II biome. Again, locally the
trends in biome coverage may reach values exceeding 50 %
between the decade 1970–1979 and the decade 2009–2018.
The expansion of the non-thermally driven SUBP+UP III
biome might be related to the concomitant increase in South-
ern Hemisphere westerly winds (Swart et al., 2015), which
has created more favorable conditions for DIC upwelling and
therefore enhanced the non-thermal control on f CO2 (Gru-
ber et al., 2023). The increased upwelling caused a nega-
tive trend in SST (Fig. 4), which in the model is particu-
larly strong in the austral summer months and much less
pronounced in the austral winter months. This might explain
why the expansion of SUBP+UP III was stronger in the
austral summer months. However, since this winter–summer
asymmetry is not visible in the observation-based EN4.2.2
dataset, it remains uncertain whether the model might under-
estimate the SUBP+UP III expansion in winter.

4 Discussion and conclusions

In the framework of a rapidly evolving climate and ocean
carbon cycle, the aim of this study was to develop a machine
learning tool to detect ocean carbon biomes and track them
under seasonally and interannually varying environmental
conditions. We defined carbon biomes as regions having con-
sistent relations between surface CO2 fugacity (f CO2) and
its main drivers (temperature, dissolved inorganic carbon,
and alkalinity). With a combination of localized multilinear
regression (MLR) models, agglomerative hierarchical clus-
tering (HC), and a forward-feed neural network, we were
able to successfully detect and track ocean carbon biomes
both seasonally and over the 1958–2018 period. The key fea-
tures and novelties in our study are (i) employing target–
driver relationships as an input to the HC algorithm, instead
of directly feeding in the environmental parameters to the
clustering method; (ii) using a distribution-aware clustering
method to group these relationships, ensuring that each group
is compact and cohesive, with similar internal relationships;
and (iii) building a tool to track the evolution of the detected
clusters or carbon regimes over time. This methodology en-
abled us to detect well-defined carbon biomes (representa-
tive of subtropical, upwelling, subpolar, and sea-ice-covered
regimes) whose geographical location and spatial extent re-
sponded meaningfully to seasonal and interannually varying
environmental conditions. It is to be stressed that the detec-
tion and tracking of the carbon biomes were done entirely
without providing any information about the geographical
location of the biomes. The fact that the detection uncov-
ered biomes with meaningful geographical characteristics is
purely the result of the different ways in which the f CO2
reacts to its drivers, which in turn is intimately intertwined
with the underlying ocean dynamics.

There are a number of considerations that need to be made
regarding our methodology and some aspects where we see
room for improvement in future studies. For example, ana-
lyzing spatial target–driver relationships via methods focus-
ing on polynomial functions with degree≥ 2 and different
neural network architectures could also be implemented. In
order to construct labels needed to train the FNN, we needed
to select a specific month and year (in this case, we selected
January 2009). The question arises as to whether our results
are sensitive to the choice of this selection. The regression
coefficients (RCs) computed with MLR show a smooth tran-
sition from one month to another and are relatively invari-
ant from one year to the next. Building upon this stability,
we found that the carbon biomes detected for other random
years are comparable to that based on the January 2009 base-
line (not shown). However, we acknowledge that the month
and year selection introduces a subjectivity that would be
preferable to avoid. The hypothesis that the selection of dif-
ferent months and years may lead to different biome seg-
mentations cannot be excluded, and we suggest that future
work should investigate the volatility or stability of the cho-
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sen reference. Another option would have been to perform
clustering on a monthly basis to detect the carbon biomes.
However, this option comes with additional caveats. Firstly,
employing HC with Ward linkage over an extensive spatial
domain enclosing more than 10 000 grid boxes is intrinsi-
cally time-intensive. Secondly, the absence of an established
technique to successfully match clusters between successive
months beyond visual inspection is a big challenge. Given the
broad temporal scope of our analysis traversing 732 months
(61 years× 12 months), manual tracking via visual analysis
would have been impractical and subjective. Therefore, we
adopted a practical strategy where we labeled the seven de-
tected clusters for one specific year and month and employed
a neural network with predictive capacities to learn the in-
tricate associations between the RCs and the assigned clus-
ter labels. With the deep learning model successfully learn-
ing the subtle relationships between these variables, it can
predict cluster labels based on input regression coefficients
and corresponding probabilities. Subsequently, the carbon
biomes predicted by the FNN with the highest probability
are selected as the most probable clusters. Our study does
not provide the exact locations of static biomes, but rather –
due to the temporally varying nature of the ocean – a prob-
ability that a specific biome will be found in a particular
place (Fig. 5). We acknowledge that it would be practical for
model evaluation or intercomparison studies to define a set
of static biomes over which different model diagnostics can
be averaged (as done in, e.g., DeVries et al., 2023). How-
ever, the usage of static biomes comes with disadvantages
owing to time-varying and model-specific locations of ocean
fronts (Fay and McKinley, 2014). We suggest that future re-
search could use the detection and tracking tool proposed
here across different data classes to test the spatial homo-
geneity of the carbon biomes as well as to better understand
the specific dynamics of each model.

Another aspect to consider regards the selection of feed-
forward neural networks (FNNs), which come with several
challenges that can hinder their effectiveness in certain ap-
plications. One primary concern is the complexity of FNN
architectures, which may lead to overfitting and difficulty
in interpretation due to the large number of parameters in-
volved. Further, FNNs are often criticized for their black-
box nature (Irrgang et al., 2021), as they lack clarity in the
decision-making approach, making it demanding to compre-
hend how inputs are connected to outputs. While convolu-
tional neural networks (CNNs) (LeCun et al., 2015) and long
short-term memory (LSTM) (Hochreiter and Schmidhuber,
1997) networks are powerful alternatives to FNNs in certain
contexts, they may not be well-suited for all tasks. CNNs are
outstanding at pulling spatial features from data such as im-
ages, audio, and videos (Goodfellow et al., 2016), and LSTM
networks are adept at apprehending temporal dependencies
in sequential data. However, these methods may not have
been suitable for our study. CNNs and LSTMs would have
required not just one (as we utilized in our FNN model) but

rather hundreds of annotated maps of global oceans depict-
ing ocean biomes. Considering that we are operating with
61× 12= 732 maps of RCs, either clustering or manually
labeling half of them with respective biomes would have
been required to train these models, while the remaining
maps would have been utilized for biome tracking. Conse-
quently, both clustering and manually determining the same
biomes across multiple months would have been particularly
time-consuming, compounded by the additional training time
needed for these models. Essentially, we would have needed
to specify the presence and locations of carbon biomes across
multiple months even before initiating the tracking process.
Additionally, we focused on optimizing the NN architec-
ture’s accuracy and precision with different hyperparame-
ters. Experimenting with different nonlinear functions, in-
dividual weights, and biases for every layer of NN could
be incredibly time-consuming. The opaque nature of neural
networks makes precisely interpreting what each neuron has
learned harder. This is especially true for deep networks with
many layers. As a future study, interpretability techniques
like layer-wise relevance propagation (LRP) (Binder et al.,
2016), Shapely values (Hart, 1989), and LIME (Ribeiro et al.,
2016) could be applied to understand essential features and
how neurons or layers contribute to the model’s prediction
capabilities.

The carbon biomes found in this study are geographically
analogous to those found in past classification studies that
focused on the ocean carbon cycle (Jones and Ito, 2019;
Landschützer et al., 2016). Even though based on differ-
ent classification methods and input parameters, the biomes
found in these past studies resemble those found here. It can,
therefore, be concluded that different carbon properties share
a similar dependence on the underlying dynamical context
(e.g., oligotrophic subtropical gyres vs. productive upwelling
regions), which in our case translates into distinct spatial
target–driver relationships between f CO2 and its drivers.
Also, similarly to Jones and Ito (2019) and Couespel et al.
(2024), we find that the same biome can occur in distinct geo-
graphical locations. This can be seen for, e.g., the SUBP+UP
biomes, which are found in both tropical and subpolar up-
welling areas. The classification used here thus differs from
that proposed by Fay and McKinley (2014), which involves
splitting the ocean into four major ocean basins (Atlantic, Pa-
cific, Indian, and Southern Ocean), followed by the applica-
tion of criteria based on specific variable ranges (such as SST,
MLD, chlorophyll concentration, and sea ice). The biomes
found by Fay and McKinley (2014), which are widely used
to evaluate and compare ocean carbon cycle models (DeVries
et al., 2023), thus have a clear geographical separation, which
instead somewhat breaks down in the clustering method used
here. This result suggests that geographically separated re-
gions can be more closely connected regarding ocean carbon
dynamics than their geographical location would suggest.

In this investigation, we find three main dynamical
branches (sea-ice-covered, subpolar+ upwelling, and tropi-
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cal+ subtropical), each characterized by different combina-
tions of spatial target–driver relationships and underlying en-
vironmental parameters. The three branches differ in how
spatial changes in f CO2 depend on spatial changes in SST
and DIC. The subtropical branch has a weak dependence on
DIC and stronger on SST, the subpolar+ upwelling branch
shows a strong dependence on DIC and a weaker dependence
on SST, and the sea-ice-covered regions have a strong depen-
dence on both SST and DIC. We used the terms thermal and
non-thermal controls of f CO2 to give a semantic interpre-
tation of the different regimes. We acknowledge, however,
that this denomination is different with respect to past stud-
ies, which used these terms to separate regions where the
seasonality of f CO2 was in phase with SST (thermal con-
trol) or DIC (non-thermal control) (Takahashi et al., 2002;
Prend et al., 2022). To the best of our knowledge, we are
unaware of studies comparing how the connection between
f CO2 and its drivers differs spatially vs. seasonally. Owing
to sparse observations, studying the spatial connection be-
tween f CO2 and its drivers is challenging, even though an
increasing number of continuous observations, e.g., through
sail drone (Sutton et al., 2021) and sailboat measurements
(e.g., Behncke et al., 2024), could soon change this. Future
work could explore how the detection and tracking of carbon
biomes would differ when using seasonal target–driver re-
lationships instead of spatial target–driver relationships. For
instance, we can speculate that seasonal target–driver rela-
tionships would probably not have yielded such large regres-
sion coefficients in the Arctic, so the ICE biome would likely
not have been so distant from the other biomes.

Further, we highlight that our carbon biome detection and
tracking method is transferable to other ocean models. Still,
the exact biome locations and model weights and parame-
ters (linear regression, clustering, neural networks) are not,
as they are specific to the ocean model experiments. Ideally,
the tool should be run from scratch based on a specific ocean
model output or observational dataset. The requirements in-
clude saving surface CO2 fugacity or partial pressure, DIC,
alkalinity, and temperature at a resolution sufficient to re-
solve the seasonal cycle. While utilizing our proposed ap-
proach to discover biomes, it must be noted that (1) the box
size for conducting the MVLR must be adapted based on
the granularity of the underlying dataset. If the dataset has
a coarse resolution, bigger boxes will be needed to construct
the spatial target–driver relationships, with the drawback of
achieving a less refined picture, cutting through sharp cur-
rent, or averaging different regimes. (2) A BIC test can be
run to select suitable 1Dist and 1Var parameters for the
HC algorithm, and (3) a neural network algorithm can then
be trained to track or predict the biomes over time. Through
these three vital steps, our method can easily be applied to
both model output and observational data.

The rapidly changing climate conditions pose a significant
threat to the ocean carbon cycle, and machine learning tech-
niques are increasingly rising to the challenge of detecting

ocean patterns, predicting changes, and making analysis pro-
cesses more efficient (Irrgang et al., 2021; Couespel et al.,
2024; Krasting et al., 2022). This study marks a step for-
ward in the research field since it provides a robust tool for
the temporal tracking of marine carbon biomes. We found
that the biome coverage reacts consistently to the seasonality
of environmental parameters, such as SST, mixing, and up-
welling. We also found that the biome coverage can change
over the years, possibly in connection with multi-decadal
trends in wind and temperature. The possibility of detecting
and tracking meaningful carbon structures within the global
ocean opens several opportunities. First of all, it provides a
tool for narrowing down the massive volume of data pro-
duced by ocean biogeochemistry and Earth system models
and focusing on the evolution of coherent structures in the
ocean instead of properties over every grid point. This ap-
proach could thus facilitate the evaluation and intercompari-
son of ocean biogeochemistry and Earth system models in a
compact and systematic fashion. When applied to future sce-
nario runs, coherent detection and tracking of carbon biomes
could yield an alternative prediction of the future carbon cy-
cle evolution while at the same time providing a strong in-
terpretation framework of the underlying carbon dynamics.
Since the approach relies solely on methods unaware of ge-
ographical coordinates, it is best positioned to capture the
fluidity of the biomes in response to, for example, chang-
ing sea ice and stratification patterns. Against the backdrop
of a rapidly changing climate as well as machine learning
techniques, the approach presented here – combining a novel
adaptive clustering technique and a robust tracking algorithm
– is thus well-suited to addressing these challenges.

Appendix A: Setup for localized target–driver
relationship

Our study aimed to collect the localized target–driver
relationships instead of a global association. Figure A1a
illustrates 2°× 2° boxes on the ocean surface, inside which
we build the localized linear relationships between the
target and the drivers in individual months over 61 years.
The scatter plots (Fig. A1b–d) show the distribution of
different drivers with respect to f CO2 in the grid box
highlighted in cyan from the Arctic basin. Here, RCSST =

−102.12 µatm °C−1, RCDIC = 0.689 µatm µmol kg−1,
and RCALK =−0.485 µatm µmol kg−1. Similarly, the
scatter plots (Fig. A1e–g) present the distribution of
three drivers with respect to f CO2 in the grid box
highlighted in red from the North Atlantic basin. Here,
RCSST = 0.081 µatm °C−1, RCDIC = 1.047 µatm µmol kg−1,
and RCALK =−0.728 µatm µmol kg−1. The scatter plot
(Fig. A1g) shows that values of ALK keep increasing with re-
spect to f CO2 and the detected RCALK is negative. This oc-
curs as we conduct multivariate linear regression, not univari-
ate, and the final outcome of multivariate linear regression is
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influenced by the presence of all variables under considera-
tion. Now, the scatter plots (Fig. A1h–j) highlight respective
target–driver distribution in the equatorial Pacific, with
RCSST = 12.9 µatm °C−1, RCDIC = 1.349 µatm µmol kg−1,
and RCALK =−0.93 µatm µmol kg−1. Finally, the
plots (Fig. A1k–m) show the respective target–
driver distribution in the Southern Ocean, with
RCSST = 9.22 µatm °C−1, RCDIC = 1.317 µatm µmol kg−1,
and RCALK =−0.845 µatm µmol kg−1.

It should be noted that uniformity in the quantity of data
points across all boxes is not guaranteed. Firstly, the disparity
arises from certain boxes encompassing land and sea areas.
Additionally, the structure of the ocean model grid does not
conform strictly to a consistent 0.25° regular grid. To address
this disproportion, we employed statistical measures, specif-
ically p values, to test the significance of the regression co-
efficients. The subsequent analysis confines itself to boxes
with p values less than 0.04. After this filtering, 99.64 % of
2°× 2° grid boxes were retained, ensuring a focus on sta-
tistically meaningful associations within the data. Following
this step, our analysis yields a collection of diverse local and
spatial linear relationships between f CO2 and its associated
drivers across the entire expanse of the ocean surface.
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Figure A1. (a) 2°× 2° boxes used for computing multivariate linear regressions, with the contours indicating the two basins – the North
Atlantic and Southern Ocean – used for the detailed analysis in Sect. 3.2. The North Atlantic basin lies between 75–0° W and 10–70° N, and
the Southern Ocean is between 45–77° S. (b–m) Scatter plots of f CO2 against SST (b, e, h, k), DIC (c, f, i, l), and ALK (d, g, j, m) over the
four boxes indicated as colors in panel (a).
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Appendix B: Cluster selection based on BIC scores

B1 Normalized input for adaptive clustering

The inputs to the clustering algorithm are the normalized re-
gression coefficients. Clustering algorithms are sensitive to
the scale of variables. Variables with larger scales can domi-
nate the grouping procedure and distort the results (Han et al.,
2011). Normalizing variables ensures that all variables con-
tribute equally to the agglomeration process, regardless of
their original scales. Additionally, normalized data can lead
to more meaningful clusters by focusing on relative differ-
ences between data points rather than absolute values. This
gives us clusters that better capture the underlying structure
of the data and are easier to interpret.

B2 BIC scores

BIC is a statistical measure utilized for model preference.
BIC is based on the likelihood function and penalizes models
for complexity to avoid overfitting. The BIC score for each
clustering solution c (where |c| is the total number of clusters
found) is computed using Eq. (B1):

BIC=−2 ·6 log(likelihood(c))+ log(n) · k, (B1)

where log(likelihood) is the natural logarithm of the likeli-
hood of the data per cluster c, k is the number of parameters
or degrees of freedom in the model, and n is the number of
data points. The likelihood measures how well the clusters
explain the observed data. BIC comprises a penalty term for
the number of parameters (in our case, three). This penalty
term discourages overly complex models and helps prevent
overfitting. The clustering solution with the lowest BIC score
is chosen as the optimal solution. Lower BIC scores indicate
a better trade-off between model fit and model complexity.

If we had cut the dendrogram using a global parameter,
we would have ended up with either too much fragmenta-
tion at subpolar and high latitudes (e.g., selecting a distance
of 20) or too little structure (e.g., a cut at 40). Using the adap-
tive method delineated in Sect. 2.3, we achieve a reasonable
number of clusters reflective of their underlying data struc-
ture. We rely on BIC scores to select a pair of 1Dist and
1Var. BIC scores can be used in clustering to determine the
optimal number of groups by comparing the fit of different
cluster solutions. First, the output of the distance–variance
cluster selection methodology for different combinations of
1Dist (ranging from 20 to 30) and 1Var (ranging from 0
to 1.0) is determined. For each selection, we receive a dif-
ferent number of clusters. Second, the likelihood of the input
data (regression coefficients of the drivers) given the model
is calculated for each clustering scenario.

We conducted 16 experiments for regression coefficients
of January 2009 with different parameter choices as shown in
Table B1. The clusters obtained through these pairs of 1Dist
and 1Var have between 40 and 100 BIC scores. These exper-

Table B1. Cluster (carbon biomes) selection for January 2009. BIC
scores calculated over different combinations of clustering param-
eters 1Dist and 1Var for hierarchical clustering on normalized re-
gression coefficients of SST, DIC, and ALK. The parameter values
of 1Dist and 1Var in bold were selected for January 2009, which
resulted in seven carbon biomes.

Exp. 1Dist 1Var No. of BIC
no. clusters score

1 20 0.1 9 95.54
2 20 0.5 6 76.20
3 20 0.8 5 73.14
4 20 1.0 5 73.14
5 25 0.1 7 65.76
6 25 0.5 4 46.42
7 25 0.8 3 43.36
8 25 1.0 3 43.36
9 28 0.1 7 65.76
10 28 0.5 4 46.42
11 28 0.8 3 43.36
12 28 1.0 3 43.36
13 30 0.1 7 65.76
14 30 0.5 4 46.42
15 30 0.8 3 43.36
16 30 1.0 3 43.36

iments show that the BIC scores decrease as 1Dist increases.
With 1Dist= 20.0 and 1Var= 0.1, we get nine clusters
with the highest BIC scores (this implies a clustering model
with higher complexity and overfitting). With 1Dist= 30.0
and 1Var= 1.0, we get the lowest BIC scores, but the num-
ber of carbon uptake provinces is three, i.e., too low. We also
see that for 1Dist= 25.0, 28.0, and 30.0 and 1Var= 0.1,
we get a comparatively lower BIC score and seven clusters.
We opted for 1Dist= 25.0 and 1Var= 0.1, as we can al-
ready distinguish distinct clusters with the lowest difference
in the distance with the fixed difference in variance. We se-
lected the clustering solution with the low BIC score to find
the simplest model that best fits the data. BIC scores help
identify the optimal number of clusters that effectively cap-
ture the underlying structure of the data without overfitting.
These scores provide a principled approach to model selec-
tion in clustering, balancing goodness of fit and model com-
plexity.

Appendix C: Visualization of shifting biomes between
January and December in 2009

Figure C1 highlights how the carbon regimes detected in Jan-
uary 2009 have spatially evolved in the following 11 months.
The dendrogram map (Fig. C1a) has all seven clusters de-
tected. The maps (Fig. C1b to l) have six clusters or carbon
biomes, as predicted by the FNN model.
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Figure C1. Carbon biomes over 12 months in 2009. The map in panel (a) is the outcome of the adaptive hierarchical clustering algorithm,
while the maps in (b)–(l) are the output of the FNN model.

Appendix D: FNN model construction and evaluation

There are different components of implementing FNNs – ac-
tivation functions, loss functions, optimizers, and evaluation
criteria. Activation functions are an integral part of neural
network construction. We have chosen the rectified liner unit
(ReLU) for our input and hidden layers. The function returns
the input value itself if it is positive. It returns 0 if the input
value is negative. This has been shown in Eq. (D1). Depend-
ing on the outcome, the FNNs learn the importance of one
variable (in our case, coefficients of SST, DIC, and ALK)

over the others while predicting the biome labels. ReLU al-
lows the network to learn more informative and discrimina-
tive features from the input data, producing enhanced perfor-
mance. It provides nonlinearities without the vanishing gra-
dient issue compared with sigmoid or tanh activation func-
tions. This enables faster learning and better optimization of
the model parameters.

f (x)=max(0,x) (D1)

Our task is tracking the carbon biomes; i.e., the goal is to
classify a set of regression coefficients into a particular clus-
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ter label. Thus, for the final layer in our FNN model, we use
the softmax function. Softmax is well-suited for our multi-
class classification task, as its objective is to provide one
of several mutually exclusive cluster labels to input target–
driver relationship data. Softmax also provides individual
probabilities for each label, capturing uncertainties if neces-
sary. These probabilities convey the FNN model’s confidence
or certainty about each cluster and biome label, permitting a
probabilistic interpretation of the predictions. We pair soft-
max (Eq. D2) with the cross-entropy loss function (Eq. D3),
which measures the distinction between the predicted prob-
ability distribution and the actual distribution of cluster and
biome labels. Mathematically, let z= (z1, z2, . . ., zk) be the
vector of scores produced by the neural networks for K num-
ber of cluster labels. The softmax function is applied to each
element of z to produce the vector of predicted probabilities
over K classes; ŷ = (ŷ1, ŷ2, . . ., ŷK), as shown in Eq. D2:

ŷi =
ezi

K∑
j=1

ezj

, (D2)

where, i = 1, 2, . . ., K .
Let y = (y1, y2, . . ., yK) be the one-hot encoded vector

for the actual cluster label (i.e., a vector with a 1 in the posi-
tion corresponding to the true biome and 0 s elsewhere). The
cross-entropy loss L between the predicted probabilities ŷ

and the true labels y is computed as Eq. (C3):

L(y, ŷ)=−

K∑
i=1

yi log
(
ŷi

)
, (D3)

where L(y, ŷ) is the cross-entropy loss, K represents the to-
tal number of class labels or cluster labels, ŷ is the vector
representing the predicted probability distribution over the
K clusters, ŷi is the predicted probability of class i, and yi is
the true probability of cluster label i (1 if the class is the true
label and 0 otherwise).

FNNs also require an optimizer. An optimizer is an algo-
rithm used to adjust the parameters (such as weights and bi-
ases) of the neural network during the training process. The
objective of an optimizer is to minimize the loss function,
which measures the difference between the predicted clus-
ter label of the neural network and the actual cluster label.
These optimizers help the neural network learn the funda-
mental patterns in the data and improve its performance by
iteratively adjusting the parameters based on the gradient of
the loss function. We employ ADAM (adaptive moment es-
timation) (Kingma and Ba, 2017) in our cluster prediction
and tracking task. It is an adaptive learning rate optimization
algorithm that combines the advantages of two other popu-
lar optimizers: AdaGrad (Duchi et al., 2011) and RMSProp
(Ruder, 2016). ADAM speeds up the training process and im-
proves generalization performance (i.e., lowered overfitting).
The evaluation metrics used in our FNN model – accuracy (in

percentage), precision, and recall – are defined as Eqs. (D4)–
(D6), respectively.

Accuracy=
no. of correctly predicted instances
total no. of instances in the dataset

× 100 (D4)

Precision=
true positives

true positives+ false positives
(D5)

Recall=
true positives

true positives+ false negatives
(D6)

During the experimentation, we first fixed the architecture
with the number of layers being six (a relatively small num-
ber given the number of input features, i.e., three slopes) and
the number of neurons per layer being 64, 128, and 256 (a
standard practice in the ML community to choose neurons
as a power of 2) to conduct sensitivity analysis for the hy-
perparameters (optimizer, learning rate, batch size, number
of epochs, etc.) used in the neural network architecture. We
have utilized a five-cross-validation technique for this analy-
sis. Second, to understand how the model complexity could
affect the outcome, we kept the hyperparameters constant
and attempted to alter the neural network architecture by
removing or adding a hidden layer, which resulted in a de-
crease or nonsignificant increase in test loss and accuracy
(not shown).

To optimize and select a robust feed-forward neural net-
work (FNN), we aimed to recognize the most constructive
amalgam of hyperparameters that would maximize the pre-
dictive accuracy, precision, and recall of the deep learning
model. Hence, we experimented with various hyperparam-
eter configurations, including diverse batch sizes, optimiz-
ers, learning rates, and numbers of training epochs. We eval-
uated 16, 32, and 64 batch sizes with optimizers such as
ADAM and stochastic gradient descent (SGD) with learn-
ing rates of 0.01 and 0.001. Additionally, we extended the
number of training epochs from 50 to 200 to determine the
influence of training duration on model performance. In to-
tality, we ran 240 experiments, and the list of different com-
binations of hyperparameters can be found on our GitHub
link.

Through this tuning process, we observed that the ADAM
optimizer attained the highest test accuracy of 95.9 % over
50 epochs with a batch size of 32 and a learning rate set
to 0.01. We employed early stopping to prevent overfitting,
leading to the FNN being trained for 30 epochs. Figure D1
highlights how well the neural network was trained, and the
plot in Fig. D1 emphasizes the change in cross-entropy loss
during training and validation. The plots in Fig. D1b–e show
how accuracy, precision, and recall, respectively, evolved
during training and validation over the 30 epochs. The confu-
sion matrix in Fig. D1e highlights the average test accuracy
as 94.83 %, precision as 95.39 %, and recall as 94.5 % over
seven different clusters.
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Figure D1. FNN model evaluation: during the training process, we used cross-entropy loss (a), accuracy (b), precision (c), and recall (d) to
evaluate the quality of the model. The heatmap (e) is the confusion matrix plotted on a test set from January 2009 regression coefficients. In
the confusion matrix, the numbers 1 to 7 represent the carbon biomes – 1: ICE I, 2: ICE II, 3: SUBTR I, 4: SUBTR II, 5: SUBP+UP III,
6: SUBP+UP I, and 7: SUBP+UP II.

D1 Limitations behind tracking SUBP+UP I

Our FNN model incorporated RCSST, RCDIC, and RCALK as
inputs, with the target being the aforementioned carbon
regimes. The distribution of labeled regimes across 2°× 2°
grid boxes is as follows: ICE I (1.03 %), ICE II (4.39 %),
SUBTR I (37.40 %), SUBTR II (23.60 %), SUBP+UP I
(0.55 %), SUBP+UP II (18.97 %), and SUBP+UP III
(14.06 %). This indicates an inconsistent distribution of in-
puts among different labels in our FNN. The trained FNNs
were subsequently employed to predict the seven regimes
for 12 months over a span of 61 years (1958–2018). No-
tably, the prediction and tracking process successfully pre-
dicted six regimes, excluding SUBP+UP I. Such behavior in
FNNs can arise from training on an imbalanced dataset, lead-
ing to a bias toward majority biome labels. In Fig. 3a, the RCs
of SUBP+UP I exhibit closer proximity to SUBP+UP II,
with their combination occurring at a very low Euclidean
distance, suggesting minimal variation in the underlying dis-
tribution of both biomes. Furthermore, the combination of
SUBP+UP I and SUBP+UP II lies closer to SUBP+UP III.
As a result, the FNN model struggled to discern the struc-
ture of SUBP+UP I due to the scarcity of data points, lead-
ing it to associate the underlying RCs more strongly with

SUBP+UP II and SUBP+UP III, which exhibit closer prox-
imity in terms of RC distributions. The confusion matrix
(Fig. D1e) illustrates the test predictions from January 2009,
revealing that biome SUBP+UP I was predominantly pre-
dicted to be SUBP+UP II or SUBP+UP III.
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Appendix E: Trends and correlations

Table E1. Correlations among biomes in North Atlantic (NATL) and Southern Ocean (SO) basins along with their respective trends. For
each month over 49 years (1970–2018), we calculated the (i) correlations between SUBTR I and II in NATL, (ii) individual trend coefficients
of SUBTR I and II in NATL, (iii) correlations between SUBP+UP II and III in SO, and (iv) individual trend coefficients of SUBP+UP II
and III in SO. Note that the individual trend coefficient here represents the trend per decade. All statistically significant figures with p values
less than 0.04 are highlighted in bold.

Sr. no. Month NATL SO

Correlations Trend Trend Correlations Trend Trend
(SUBTR I vs. II) SUBTR I SUBTR II (SUBP+UP II vs. III) SUBP+UP II SUBP+UP III

1 Jan –0.96 –1.44 1.87 –0.65 –0.79 1.34
2 Feb –0.96 –0.95 1.31 –0.62 –0.63 1.0
3 Mar –0.90 –0.87 1.09 –0.74 –0.45 0.73
4 Apr –0.77 –0.79 1.13 –0.50 −0.07 0.44
5 May –0.59 −0.33 0.64 –0.63 0.18 0.08
6 Jun –0.81 0.91 −0.31 –0.68 0.04 −0.09
7 Jul –0.65 0.78 −0.4 –0.75 −0.17 −0.03
8 Aug –0.60 −0.27 0.36 –0.76 −0.08 −0.2
9 Sep –0.60 0.52 −0.4 –0.61 −0.11 −0.05
10 Oct –0.40 0.41 −0.09 –0.46 0.24 −0.1
11 Nov –0.74 0.18 0.47 –0.57 −0.11 0.41
12 Dec –0.87 –1.08 1.59 –0.48 –0.68 0.88

Appendix F: Trend of observational sea surface
temperature

Figure F1. Change in SST between 1970–1970 and 2009–2018 in the model and in the EN4.2.2 observation-based product (Good et al.,
2013). (a, b) Model and (c, d) EN4.2.2 product for (a, c) January and (b, d) July. The trend value in degrees Celsius (°C) per decade has
been computed by dividing the SST difference by the number of years separating the median years of the two decades (i.e., 39 years) and
multiplying by 10.
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Appendix G: Comparison between simulated and
observed climatologies of physical variables

Figure G1. Comparison of simulated and observed climatologies of (a, b) sea surface temperature (SST), (c, d) sea surface salinity (SSS),
(e, f) mixed layer depth (MLD) in March for the Northern Hemisphere and in September for the Southern Hemisphere, (g, h) natural (or
pre-industrial) surface dissolved inorganic carbon (DIC), and (i, j) surface alkalinity. Observational estimates are from Good et al. (2013) for
SST and SSS, Sallée et al. (2021) for MLD, and the GLODAPv2 2016 release (Lauvset et al., 2016) for pre-industrial DIC and alkalinity.
The 2000–2018 climatologies for all variables except MLD are shown, for which a 1970–2018 average was computed (in accordance with
the observational dataset).
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Appendix H: Choice of January 2009 for biome
detection

The choice of January and the year 2009 was random in our
study, but this random choice is not expected to make a differ-
ence in the biome outcome. Figure H1 shows the kernel den-
sity distribution (KDE) of the regression coefficients (RCs)
for some random years and the mean and standard devia-
tion of RCs corresponding to each tracked biome computed
over the 12 months of each year between 1958 and 2018.
The KDE plot is a nonparametric way to estimate a continu-
ous probability density function of the random variable. It is
utilized to depict the distribution of data points in a smooth
curve, which assists in comprehending the underlying data
distribution.

The new analysis indicates that the RC kernel density dis-
tribution shows only subtle changes from year to year. The
RCs within each biome (except for the strongly variable ICE
biomes) are substantially stable overall in months and years.
This stable behavior of the RCs over single biomes sug-
gests that the specific month and year selected to build labels
through hierarchical clustering should not affect the results.
Instead, we argue that the leading subjective choice is the
choice of the parameters used to cut the dendrogram result-
ing from the hierarchical clustering. The parameter choice
yields a different degree of fragmentation or aggregation of
the resulting clusters (not shown). We do not consider this a
caveat because a different amount of aggregation and frag-
mentation may be desired depending on the user-defined ap-
plication. However, once the labels are defined, we reason
that the neural network can consistently track the different
RC combinations in each detected biome.
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Figure H1. Distribution of normalized regression coefficients (RCs) resulting from the MVLR between f CO2 and its drivers, i.e., (a, b) SST,
(c, d) DIC, and (e, f) ALK. (a, c, e) Mean RCs over each of the six tracked biomes: ICE I, ICE II, SUBP+UP II, SUBP+UP III, SUBTR I, and
SUBTR II. The mean and standard deviation are shown over the 12 months between 1958 and 2018. (b, d, f) Kernel density estimation (KDE)
of normalized RCs over selected years. The KDE plot estimates the probability density function (PDF) of a continuous random variable, in
our case the RCs, and visualizes the distribution of data points in a smooth curve, which helps to understand the underlying data distribution.

Code availability. Our analysis was conducted in Python.
Information on how to (1) extract and process ocean model
outputs (NetCDF files) and (2) rerun the experiments of detec-
tion and tracking can be found via our GitHub project: https:
//github.com/swemoh/Detection-and-Tracking-of-Carbon-Biomes
(Mohanty, 2025).
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MAR at https://data.geomar.de/downloads/20.500.12085/
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