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Abstract. Global ocean biogeochemistry models are fre-
quently used to derive a comprehensive estimate of the global
ocean carbon uptake. These models are designed to repre-
sent the most important processes of the ocean carbon cy-
cle, but the idealized process representation and uncertain-
ties in the initialization of model variables lead to errors in
their predictions. Here, observations of ocean physics (tem-
perature and salinity) are assimilated into the ocean biogeo-
chemistry model FESOM2.1-REcoM3 over the period 2010–
2020 to study the effect on the air–sea carbon dioxide (CO2)
flux and other biogeochemical (BGC) variables. The assimi-
lation nearly halves the model–observation differences in sea
surface temperature and salinity, with modest effects on the
modeled ecosystem and CO2 fluxes. The main effects of the
assimilation on the air–sea CO2 flux occur on small scales
in highly dynamic regions, which pose challenges to ocean
models. Its largest imprint is in the Southern Ocean during
winter. South of 50° S, winter CO2 outgassing is reduced;
thus the regional CO2 uptake increases by 0.18 Pg C yr−1

through the assimilation. Other particularly strong regional
effects on the air–sea CO2 flux are located in the area of
the North Atlantic Current (NAC). However, the effect on
the global ocean carbon uptake is a comparatively small in-
crease by 0.05 Pg C yr−1 induced by the assimilation, yield-
ing a global mean uptake of 2.78 Pg C yr−1 for the period
2010–2020.

1 Introduction

The ocean plays a pivotal role in regulating the global carbon
budget and thereby mitigating the impacts of anthropogenic
carbon dioxide (CO2) emissions on the Earth’s climate. Since

the 1960s, the ocean has consistently absorbed around 25 %
of anthropogenic CO2 emissions annually (Friedlingstein
et al., 2023) and has cumulatively taken up 26 %–34 % of
fossil and land-use-change CO2 emissions since the onset
of the Industrial Revolution (Crisp et al., 2022). However,
quantification of air–sea CO2 flux still remains challenging.
Air–sea CO2 flux is usually inferred from the gradient of par-
tial pressure (pCO2) or fugacity of CO2 across the air–sea
interface (Wanninkhof, 2014). However, during 2010–2020,
which constitutes the best-sampled decade in terms of sur-
face ocean pCO2 observations so far, observations covered
merely 3 % of the monthly global ocean (as calculated from
the 1°× 1° SOCAT product; Bakker et al., 2023). While the
North Atlantic and North Pacific are comparably well ob-
served, data remain scarce in vast regions, such as the Indian
Ocean, the South Pacific, and areas south of 30° S during aus-
tral winter, where less than 1 % of SOCAT grid cells has been
sampled. Although these observations are thought to be rep-
resentative of a larger area (Jones et al., 2012; Hauck et al.,
2020), challenges in deriving a comprehensive global esti-
mate of the global ocean CO2 uptake arise due to substantial
spatial and temporal pCO2 variations and potential biases
induced by the irregular sampling pattern (Denvil-Sommer
et al., 2021; Gloege et al., 2021; Hauck et al., 2023b). Partic-
ularly in the Southern Ocean, the uncertainty is considerable
(Gerber et al., 2009; Gloege et al., 2021), and estimates of
the mean flux range from −0.37 to −1.25 Pg C yr−1 for the
period 2010–2018 (data provided by Hauck et al., 2023b).

In the Global Carbon Budget, estimates of the ocean car-
bon sink were initially derived from hindcast simulations of
global ocean biogeochemistry models (GOBMs) (Le Quéré
et al., 2009; Wanninkhof et al., 2013; Hauck et al., 2020).
More recently, air–sea CO2 flux estimates were added based
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on regression and machine learning techniques, interpolat-
ing pCO2 observations to achieve global coverage through
advanced statistical methods (referred to as pCO2 products;
Rödenbeck et al., 2015). Furthermore, atmospheric transport
models that ingest atmospheric CO2 measurements were em-
ployed to estimate the ocean carbon uptake (referred to as at-
mospheric inversions; Peylin et al., 2013). Although the dif-
ferent estimation methods have provided valuable and robust
insights into large-scale patterns of oceanic carbon uptake
(Gruber et al., 2009), discrepancies have emerged. Assess-
ments based on pCO2 products tend to yield larger estimates
of the ocean carbon sink, with stronger trends towards more
uptake, compared to estimates based on models (Friedling-
stein et al., 2023; Terhaar et al., 2022). The larger estimates
are supported by ocean interior observations (Müller et al.,
2023), atmospheric oxygen data, and atmospheric inversions
(Friedlingstein et al., 2023). For the years 2010–2020, pCO2
products included in the Global Carbon Project suggest a
mean oceanic sink of 3± 0.4 Pg C yr−1, while the mean of
Global Carbon Project GOBMs is 2.5± 0.4 Pg C yr−1 (data
provided by Friedlingstein et al., 2023). Trends over the same
time period are 0.7 and 0.3 Pg C yr−1 per decade, respec-
tively.

Machine learning estimates perform well when trained
with sufficient data (Gloege et al., 2021). Their performance
is less reliable in data-sparse areas. Particularly in the South-
ern Ocean, many pCO2 products show diverging results from
one another and are likely biased towards more ocean uptake
(Hauck et al., 2023b). However even in parts of the North Pa-
cific, which is undersampled in the 2010s, some pCO2 prod-
ucts show spurious decadal trends (Mayot et al., 2024). Mod-
els provide process-driven estimates of the CO2 flux across
the entire global ocean, drawing from the theory of ocean dy-
namics and biological and chemical processes (Hauck et al.,
2020; Fennel et al., 2022). Despite the growing confidence
in our mechanistic understanding of the ocean carbon cy-
cle (Crisp et al., 2022), models are also subject to uncer-
tainty. This uncertainty stems from uncertainties in model
parametrization, model spin-up, and initial conditions; unre-
solved sub-grid-scale processes; and uncertainties in the at-
mospheric forcing (Hauck et al., 2020; Terhaar et al., 2024).

Data assimilation (DA) can be employed to address the
emerging discrepancies between pCO2 products and mod-
els (Carroll et al., 2020). Several studies assimilating ocean
surface pCO2 have focused on specific regions (e.g., a base-
line state of air–sea CO2 fluxes in the Southern Ocean; Verdy
and Mazloff, 2017), short time periods (e.g., optimized bio-
geochemical (BGC) initial fields for the period 2009–2011 in
Brix et al., 2015), or the climatological mean state (e.g., cor-
rections of large-scale pCO2 model biases in While et al.,
2012). These studies capture the assimilated pCO2 obser-
vations well, while obeying physical laws and BGC equa-
tions. Data assimilation can also be used to provide a bet-
ter understanding of various components of the ocean car-
bon cycle, such as the transport of anthropogenic CO2 in the

ocean (e.g., a reconstruction of anthropogenic carbon storage
since 1770 in Gerber et al., 2009), regional and interannual
variability in the air–sea CO2 flux (e.g., global reanalysis in
Ford and Barciela, 2017; Carroll et al., 2020; Valsala and
Maksyutov, 2010), the biological carbon pump (e.g., carbon
export at a nutrient-rich and nutrient-poor site and estimation
of BGC parameters related to air–sea CO2 fluxes; Sursham,
2018; Hemmings et al., 2008), and specific ecosystems (e.g.,
the northwest European shelf ecosystem in Ciavatta et al.,
2016, 2018). So far, however, there is no data assimilation
product that provides a long-term, annually updated estimate
of global ocean CO2 uptake.

While previous studies indicate that the available BGC
observations, when assimilated in isolation, are too sparse
to constrain the modeled carbon cycle (Verdy and Mazloff,
2017; Spring et al., 2021), the assimilation of physical vari-
ables is expected to have a significant indirect effect on the
modeled air–sea CO2 fluxes (Bernardello et al., 2024). This
is because the uptake of atmospheric CO2 depends in large
part on the physical carbon transport between the surface, the
mixed layer, and the deep ocean in the form of dissolved inor-
ganic carbon (DIC) through mixing, upwelling, and subduc-
tion (Doney et al., 2004). According to current knowledge,
ocean physics is the dominant driver of interannual variabil-
ity in the global air–sea CO2 flux and is also responsible for
stagnation and acceleration of the CO2 uptake on decadal
scales (Doney et al., 2009; Keppler and Landschützer, 2019;
Mayot et al., 2023; Liao et al., 2020; DeVries et al., 2017).
Related to the strong control that physics exerts on the in-
terannual variability in air–sea CO2 fluxes, it was shown in
one idealized study that assimilating ocean physics at the
initial state of a model simulation has a stronger and more
positive impact on the modeled carbon cycle on interannual
timescales than assimilating the BGC initial state (Fransner
et al., 2020). However, the relative importance of uncertain-
ties in physical and biogeochemical fields generally remains
an open research question (e.g., Séférian et al., 2014; Li et al.,
2016; Lebehot et al., 2019). Therefore, we use ensemble-
based data assimilation of physical observations into a global
ocean general circulation model coupled to a biogeochem-
istry model, aiming to improve the modeled air–sea CO2 flux
for the years 2010–2020. For this, we continuously assimi-
late temperature and salinity observations from remote sens-
ing at the surface and from in situ profile measurements for
11 years and update the modeled temperature, salinity, hor-
izontal velocities, and sea surface height using an ensemble
Kalman filter variant (Nerger et al., 2012).

Several difficulties are associated with physics DA into
GOBMs. A common issue is erroneous equatorial upwelling
leading to unrealistically high biological productivity in the
tropics (Park et al., 2018; Gasparin et al., 2021; Raghukumar
et al., 2015). Furthermore, any coupled ecosystem model is
adapted to its associated physical model with its strengths
and weaknesses through carefully selected parameter values
and a spin-up to near-equilibrium. Accordingly, the modeled
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carbon cycle may be sensitive to deviations from the phys-
ical state that is typical for this model (Kriest et al., 2020;
Spring et al., 2021). Potentially, this leads to biases in the car-
bon cycle through physics DA. Such effects highlight where
physical model errors are compensated for by BGC parame-
ters, and DA may thereby reveal critical areas for potentially
unrealistic BGC model behavior in projections in a chang-
ing climate (Löptien and Dietze, 2019). The question there-
fore arises to what extent an ecosystem model coupled to a
data-assimilated physical model also represents a more re-
alistic biogeochemistry and which mechanisms drive the re-
sponse of the CO2 flux in physics DA approaches. One pos-
sible driver is the physical transport of DIC and alkalinity
because velocities and diffusion are changed by the DA, af-
fecting in particular the upwelling of carbon-rich waters and
subduction, which are important to capture the ocean storage
of anthropogenic carbon (Davila et al., 2022). Furthermore,
physics DA may change pCO2 directly through its tempera-
ture dependence, an effect emphasized by Verdy and Mazloff
(2017). Additionally, the modeled biological pump might be
altered, for example, through the temperature dependency of
phytoplankton growth or through effects of stratification on
nutrient availability.

In this study, we describe the response of the model’s
air–sea CO2 flux to physics DA and identify the underly-
ing mechanistic drivers. To this end, we differentiate between
the thermally, DIC-, and alkalinity-induced components and
changes in lateral and vertical transport through mixing and
advection. We focus, firstly, on the global air–sea CO2 flux.
Secondly, we investigate the Southern Ocean given the rel-
evant impact of DA in Southern Ocean winter in our study.
Thirdly, we present regions in the North Atlantic given ob-
servational coverage and relevant local processes there.

2 Methods

2.1 Model FESOM2.1-REcoM3

The oceanic model component, FESOM2.1, computes the
advection and diffusion of passive biogeochemical tracers.
The model is based on hydrostatic primitive equations under
the Boussinesq approximation and utilizes a finite-volume
discretization approach with surface triangles projected ver-
tically to form prisms. Surface salinity (S), temperature (T ),
and biogeochemical tracers are located at the vertices of
triangles (nodes), while the horizontal velocities are cen-
tered at the triangles (elements). The model allows a variable
mesh resolution (see Sect. 2.2) and incorporates parametriza-
tions for diffusion and eddy-stirring along isoneutral sur-
faces, for which parametrized mixing is scaled by mesh reso-
lution (Danilov et al., 2017). Vertical mixing is parametrized
through the K-profile parametrization (KPP) scheme, and the
mixing depth is specified through a “boundary layer” (the
layer of active mixing, which may have a vertical structure

because the mixing of all properties across the layer is not
instantaneous, as opposed to the mixed layer which is de-
fined by already well mixed properties; Large et al., 1994),
with an additional vertical-mixing scheme used in the South-
ern Ocean (Monin–Obukhov parametrization; Timmermann
and Beckmann, 2004). The sea surface salinity (SSS) is re-
stored towards the World Ocean Atlas climatology through
a fictional surface flux with vSSS = 0.17 m d−1 according to
Eq. (1) and as in Gürses et al. (2023):

(SSSclim−SSSmodel)× vSSS× (hsurf)
−1, (1)

with surface-layer thickness hsurf. A detailed description of
FESOM2.1 and a model assessment are provided by Danilov
et al. (2017) and Scholz et al. (2019, 2022).

The ocean biogeochemistry component, the Regulated
Ecosystem Model version 3 (REcoM3), describes processes
in the ocean carbon cycle and represents oceanic carbon in
the form of dissolved inorganic carbon, dissolved organic
carbon, plankton, and detritus (Gürses et al., 2023). RE-
coM3 contains 28 BGC tracers listed in Table A1. There are
two phytoplankton groups (diatoms and small phytoplankton
with implicit representation of calcifier), two zooplankton
groups (mixed and polar macro-zooplankton) (Karakuş et al.,
2021), and two classes of detritus. REcoM3 includes variable
intracellular stoichiometry with ratios of C : N : Chl : CaCO3
for the small phytoplankton and C : N : Chl : Si for diatoms,
which are propagated to zooplankton and detritus (Schartau
et al., 2007; Hohn, 2008). The publicly available routines to
model the ocean carbonate system (mocsy2.0; Orr and Epi-
talon, 2015) are used to compute pCO2 and air–sea CO2 flux,
employing the gas-exchange parametrization of Wanninkhof
(2014). Alkalinity is restored by a fictional surface flux of
10 m yr−1 (as in Hauck et al., 2013; Schourup-Kristensen
et al., 2014; Gürses et al., 2023). The current model version
FESOM2.1-REcoM3 was assessed by Gürses et al. (2023),
and previous versions were evaluated and applied in global
and regional studies of the ocean carbon cycle and plank-
tonic ecosystems (Hauck et al., 2013; Schourup-Kristensen
et al., 2014; Hauck et al., 2020; Karakuş et al., 2021).

2.2 Simulation setup

The model setup for both simulations closely follows Gürses
et al. (2023). The mesh resolution is nominally 1°, rang-
ing between 120 and 20 km, with enhanced resolution in the
equatorial belt and north of 50° N (126 858 surface nodes).
It has 47 vertical layers with thicknesses ranging from 5 m
at the surface to 250 m in the deep ocean, as described by
Scholz et al. (2019, CORE mesh). The model time step is
45 min. For atmospheric forcing, JRA55-do v.1.5.0 is used, a
reanalysis product tailored for driving ocean–sea–ice models
(Tsujino et al., 2018a). The atmospheric CO2 mixing ratio
values were taken from the Global Carbon Budget (Joos and
Spahni, 2008; Ballantyne et al., 2012; Friedlingstein et al.,
2023). We use model restart fields from Gürses et al. (2023),
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where the model was spun up by repeating the 1961 JRA
forcing for 189 years with preindustrial atmospheric CO2
conditions, followed by a period from 1800 to 1957 with in-
creasing atmospheric CO2. Subsequently, simulations were
continued with historical JRA forcing from 1958 to 2009.
During the assimilation window (2010–2020), we conduct
two ensemble simulations to study the impact of data as-
similation (DA): one without DA (referred to as FREE) and
another identical setup applying DA (referred to as ASML).
For each simulation, the ensemble mean for the following
variables is written as output: temperature, salinity, velocity,
boundary-layer depth, surface pCO2, DIC, alkalinity, nutri-
ents, chlorophyll, net primary production, and biological ex-
port through sinking of detritus at 190 m. For the year 2020,
additional output is available for individual ensemble mem-
bers, mixed-layer depth, physical sources or sinks of DIC and
alkalinity through horizontal and vertical advection and dif-
fusion, and biological net sources or sinks of DIC and al-
kalinity through combined processes. For DIC, the net bio-
logical term is the sum of photosynthesis, respiration, rem-
ineralization of dissolved organic carbon, and formation and
dissolution of calcite (Gürses et al., 2023, Eq. A6). For alka-
linity, the net biological term is the sum of nitrogen assimila-
tion and remineralization and the formation and dissolution
of calcite (Gürses et al., 2023, Eq. A7).

2.3 Data assimilation

2.3.1 Assimilated observations

The assimilated observations are sea surface temperature
(SST), sea surface salinity, and profiles of temperature and
salinity. SST observations are from the Operational Sea Sur-
face Temperature and Ice Analysis (OSTIA) dataset (Good
et al., 2020). OSTIA provides daily gap-free maps of SST at a
horizontal resolution of 0.05°× 0.05°, compiled from in situ
and satellite data from infrared and microwave radiometers.
The OSTIA observations were averaged to the FESOM2.1
model grid because their spatial resolution is higher than the
nominal resolution of the model grid. An observation error
standard deviation of 0.8 °C is prescribed for the DA follow-
ing Nerger et al. (2020). Observations are excluded in the
DA process if the difference between the model and observa-
tion exceeds 3 times the observation error standard deviation,
thus 2.4 °C, and at grid points with sea ice in the model, as in
Tang et al. (2020) and Mu et al. (2022). This exclusion keeps
the model stable despite large differences between the model
and observations at these sites, particularly as water tempera-
ture and salinity develop differently under sea ice than under
the influence of the atmosphere (Tang et al., 2020). Instead,
a “gentler” correction is made by assimilating neighboring
points. After the initial phase, about 7 % of SST observa-
tions are excluded because of the 2.4 °C threshold. Never-
theless, the data assimilation still has a strong effect in ar-
eas where these large model–observation discrepancies are

typically found (the North Atlantic, Japan, and the Southern
Ocean).

The assimilated SSS data are from the European Space
Agency (ESA) Sea Surface Salinity Climate Change Initia-
tive (CCI) v03.21 dataset (Boutin et al., 2021). ESA-CCI
contains daily data at a spatial resolution of 50 km, albeit not
capturing temporal variability below weekly. The ESA-CCI
observations are averaged to the FESOM2.1 model grid. We
prescribe a constant observation error standard deviation of
0.5 psu following Nerger et al. (2024). Like for the SST data,
SSS observations are excluded at locations where sea ice is
present in the model.

The assimilated temperature and salinity profiles are from
the EN.4.2.2 dataset (Good et al., 2013). The EN4 dataset
contains quality-controlled profiles from various in situ
ocean profiling instruments. To assimilate the profiles, the
observations are assigned to the respective model layers
(depth range) in the vertical. In the horizontal, the model val-
ues are computed as the average of the grid points of the tri-
angle enclosing the observation. The observation error stan-
dard deviation is set to 0.8 °C for temperature and to 0.5 psu
for salinity without excluding observations, as in Tang et al.
(2020).

2.3.2 Assimilation method and implementation

For the assimilation, we use the Localized Error-Subspace
Transform Kalman Filter (LESTKF; Nerger et al., 2012). The
LESTKF sequentially updates the model forecast, incorpo-
rating observations when and where available. The model
state and error covariance are represented by an ensem-
ble simulation. Thereby, the assimilation of temperature and
salinity affects the state of the physical model in its whole, in-
cluding the horizontal velocities and sea surface height. A re-
view of the LESTKF and other filters frequently used in geo-
physics can be found in Vetra-Carvalho et al. (2018). The as-
similation is implemented using the Parallel Data Assimila-
tion Framework (PDAF version 2.1), a software environment
for data assimilation. PDAF is an open-source project and
provides fully implemented DA algorithms (Nerger et al.,
2020; http://pdaf.awi.de, last access: 28 January 2025). The
current implementation builds on the works of Mu et al.
(2022), who used DA of ocean temperature and salinity for
sea-ice forecasts with FESOM2.0 coupled to an atmospheric
model, and Tang et al. (2020), who studied the dynamic im-
pact of oceanic DA into FESOM1.4 onto a coupled atmo-
spheric component.

With localization of the LESTKF, the observation error
is increased for an increasing horizontal distance between
an observation and a model grid point, which weighs down
the influence of a more distant observation. This avoids the
model being influenced by observations at distant locations
through spurious ensemble estimated correlations. We use a
localization radius of 200 km and choose a fifth-order poly-
nomial weighting function that mimics a Gaussian function
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(Gaspari and Cohn, 1999). We apply daily analysis steps at
00:00 UTC model time, assimilating all available observa-
tions for the day. The DA process only directly updates the
physical model variables temperature, salinity, horizontal ve-
locities, and sea surface height. After each assimilation step,
corrections are applied to the analysis state to ensure the con-
sistency of model physics: salinity is set to a minimum value
of zero, and temperature is set to a minimum value of−2 °C,
if the value is otherwise below. The increment of sea sur-
face height (SSH) is limited to 2 standard deviations of the
ensemble. While in the simulation the correction was neces-
sary for about 10 % of SSH updates and 10−5 % of tempera-
ture values, the correction of salinity was never required. The
analysis step is followed by an ensemble forecast of 1 d.

The ensemble size is 40, a compromise to balance com-
putational resources while ensuring a sufficiently large en-
semble with enough variability even in the deep ocean. The
ensemble is generated through an initial perturbation of sea
surface height, horizontal and vertical velocities, tempera-
ture, salinity, and sea-ice concentration based on the imple-
mentation of Tang et al. (2020). This initial ensemble pertur-
bation is generated by second-order exact sampling (Pham,
2001) from a model trajectory of FESOM2.1. With this
method, the leading empirical orthogonal functions (EOFs)
of a model trajectory are used to generate an ensemble pertur-
bation that contains the leading patterns of model variability.
A timescale must be chosen for the variability that is rep-
resented by the ensemble. Here, we chose variability on a
weekly timescale (Tang et al., 2020).

To maintain ensemble spread, we apply a perturbed
atmospheric forcing with an autoregressive perturbation
(perturbm,n) at every model time step (n) to each ensemble
member (m):

perturbm,n+1 = (1− arc) · perturbm,n+ arc · s · randm, (2)

where randm is a stochastic element, again generated by
second-order exact sampling from a 72 d long trajectory
of atmospheric forcing fields that captures patterns of day-
to-day atmospheric variability. The autoregression coeffi-
cient (arc) can be used to tune how quickly the perturbation
changes and is set to the inverse number of model steps per
day. s is a scaling factor for each perturbed atmospheric forc-
ing field. For specific humidity, downwelling longwave radi-
ation and air temperature s = 10 is used. The perturbation of
winds is set to the smaller value s = 2 because the air–sea
CO2 flux in the model is particularly sensitive to perturba-
tions of the wind fields. Due to the functioning of the Kalman
filter (which updates the model error covariance in each anal-
ysis step to reflect the new reduced uncertainty), the ensem-
ble spread decays at each analysis step. As the method relies
on a sufficiently large ensemble spread, an inflation of the
ensemble covariance is applied (Pham et al., 1998). Thereby,
the ensemble covariance matrix is amplified by a factor of
1/ρ before entering the updating step. This so-called forget-
ting factor downweighs that past observations have reduced

the model uncertainty (see, e.g., Nerger et al., 2005). The for-
getting factor is tuned to maintain model uncertainty, where
ρ = 1 means no inflation and smaller values mean larger in-
flation. Here, we use a time-varying forgetting factor between
ρ = 0.95 and ρ = 1. The strongest inflation (ρ = 0.95) is ap-
plied during the first 2 weeks of the DA process. This is when
the DA increments are largest because the model state esti-
mates are furthest from the observations. During the follow-
ing 75 d, ρ is increased to 0.99. From month 17 onward, the
forgetting factor is set to either 0.99 or 1.0 depending on the
ensemble standard deviation of temperature.

The ensemble standard deviation of the local instanta-
neous air–sea CO2 fluxes that results from the perturbation
of physical fields is larger than that of the global CO2 flux,
with a mean standard deviation of 0.32 mmol C m−2 d−1 for
monthly means of local fluxes compared to a standard de-
viation of 0.0068 mmol C m−2 d−1 (0.01 Pg C yr−1) for the
annual global flux in FREE in the year 2020. The largest
ensemble standard deviation (Fig. A1a) is generated in the
Southern Ocean, the North Atlantic, and the North Pacific,
which corresponds to regions of high uncertainty in existing
CO2 flux estimates (Pérez et al., 2024; Hauck et al., 2023a;
Mayot et al., 2024). However, the modeled standard devia-
tion should not be understood as the true uncertainty of the
model but as a value dependent on tuning (Evensen, 2003).

2.4 Data analysis

We present CO2 flux estimates for the period 2010–2020 that
are compared to the Regional Carbon Cycle Assessment and
Processes 2 (RECCAP2) global air–sea CO2 flux estimates
(DeVries et al., 2023). The RECCAP2 pCO2 products ac-
count for oceanic outgassing of river carbon into the atmo-
sphere. To make them comparable with our estimate stem-
ming from a model without river carbon input, we apply
a river flux adjustment (Friedlingstein et al., 2023; Regnier
et al., 2022) to the RECCAP2 pCO2 products. Thus, we
quantify the anthropogenic perturbation of the ocean carbon
sink (as SOCEAN in the Global Carbon Budget; Friedlingstein
et al., 2023; Hauck et al., 2020) and not the contemporary
net air–sea CO2 flux with outgassing of river carbon (as in
the original RECCAP2 pCO2 products).

To study the effect of DA on the CO2 flux, we define
regions where the time-mean air–sea CO2 flux difference
ASML−FREE (1FCO2 ) is pronounced based on the biome
definition of Fay and McKinley (2014). Originally, these
are, going polewards from the subtropics in each hemi-
sphere, the subtropical seasonally stratified biome (STSS),
the subpolar seasonally stratified biome (SPSS), and the sea-
ice biome (ICE). In the Southern Ocean (denoted by sub-
script SO) within the STSSSO, we differentiate between the
area where 1FCO2 is positive (the assimilation leads to a
flux change directed out of the ocean), referred to as re-
gion “STSSSO+”, and the area where 1FCO2 is negative,
referred to as region “STSSSO−”. All Southern Ocean re-
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gions are outlined in Fig. 5a. In the North Atlantic (de-
noted by subscript NA), we consider four coherent regions
within the STSSNA and SPSSNA outlined in Fig. 7a. The
regions “Central STSSNA−” and “Western STSSNA+” are
located in the North Atlantic STSSNA biome and are de-
fined by 1FCO2 less than −1 mmol C m−2 d−1 and 1FCO2

greater than 1 mmol C m−2 d−1, respectively. The regions
“Newfoundland BasinNA+” and “Coastal SPSSNA−” are
part of the SPSSNA. The former is located east of New-
foundland and south of Greenland and is defined by 1FCO2

greater than 3 mmol C m−2 d−1, and the latter is located off
the North American coast and defined by 1FCO2 less than
−1 mmol C m−2 d−1. The Central STSSNA− and Western
STSSNA+ lie on the warm side of the North Atlantic Cur-
rent (NAC), and the Newfoundland BasinNA+ and Coastal
SPSSNA− lie on the cold side of the NAC, which is evident
from the modeled surface velocity field (Fig. A2a).

Within these regions, we identify the time of the year when
the DA affects air–sea CO2 flux and calculate the difference
ASML−FREE for physical and biogeochemical fields. In
order to assess the dynamic DA effects on surface pCO2, it
is useful to distinguish between different variables that con-
stitute the change in pCO2. Oceanic pCO2 varies mainly
with temperature, DIC, and alkalinity. Thus, we decompose
changes in pCO2 into their contributions from changes in
SST, surface DIC, and surface alkalinity (Alk). For that, we
apply the following approximations of Sarmiento and Gruber
(2006) and Takahashi et al. (1993):

1pCO2,DIC =
pCO2

DIC
· γDIC ·1DIC, (3)

1pCO2,Alk =
pCO2

Alk
· γAlk ·1Alk, (4)

1pCO2,SST = pCO2 · exp
(

0.0423°C−1
·1SST

)
. (5)

Here, differences between ASML and FREE are denoted by
1; else, the average of ASML and FREE is used for the com-
putation. The sensitivities γDIC and γAlk describe how pCO2
varies with changes in one variable while keeping all other
variables constant. For the sensitivities, we use an approxi-
mation derived from seawater carbonate chemistry following
Sarmiento and Gruber (2006):

γDIC =
3 ·Alk ·DIC− 2 ·DIC2

(2 ·DIC−Alk)(Alk−DIC)
, (6)

γAlk =
−Alk2

(2 ·DIC−Alk)(Alk−DIC)
. (7)

Based on the range of valid values for γDIC and γAlk ac-
cording to the explicit formulation by Egleston et al. (2010),
values are excluded above 18 and below −19, respectively.
This affects parts of the Southern Ocean SPSSSO and ICESO
biome (see white areas in Fig. 6b and c). Finally, the effect on
the air–sea CO2 flux relates directly to the pCO2 difference

at each grid point, as detailed in Orr et al. (2017, Eqs. 6–15):

1FCO2 = α · kw ·1pCO2, (8)

where α is the solubility of CO2 in seawater and kw is the
gas-transfer velocity.

To evaluate the impact of DA on ocean physics, we com-
pare the simulated SST and SSS to the assimilated obser-
vations (Sect. 2.3.1). For temperature and salinity at depth,
we use the EN4-OA product (Good et al., 2013, updated
to version 4.2.2). EN4-OA is an objective analysis ingest-
ing the assimilated EN4 profile data, interpolated to global
coverage on 42 depth levels. Furthermore, we compare the
sea-ice concentration with remote-sensing observations from
OSI-SAF 2010–2020 (EUMETSAT, 2022), the mixed-layer
depth in the year 2020 with the profile-observation-based cli-
matology of de Boyer Montégut et al. (2004, updated version
2023), and the horizontal near-surface velocities 2010–2020
with the drifter-based climatology of Laurindo et al. (2017a).

To evaluate the impact of the DA on biogeochemistry,
we compare model outputs with observational datasets of
surface pCO2, DIC, alkalinity, and surface chlorophyll.
To evaluate surface pCO2, we use observations from the
Surface Ocean CO2 Atlas (SOCAT Version 2023; Bakker
et al., 2023, 2016), which are provided as a monthly grid-
ded and quality-controlled compilation. To assess DIC and
alkalinity, we compare the modeled surface fields to the
GLODAPv2.2023 bottle data (Lauvset et al., 2024). At
depth, we compare the model output to the GLODAPv2 DIC
and alkalinity climatology (Lauvset et al., 2016), which is
based on observations from the period 1972–2013 and nor-
malized to 2002. To evaluate global surface chlorophyll, we
use observations from ESA-CCI, which is a multi-sensor
satellite ocean-color chlorophyll a dataset with monthly
global coverage (Sathyendranath et al., 2021). In addition,
for the Southern Ocean, we use the mean of three satel-
lite products (Johnson et al., 2013) that were processed with
more suitable algorithms for southern high latitudes. For
each observation type (OBS), we define the improvement as

improvementOBS = |FREE−OBS| − |ASML−OBS|. (9)

3 Results

3.1 Effect of DA on ocean physics

Before we investigate the CO2 flux, we first evaluate the ef-
fect of DA on the modeled physics. In particular, we com-
pare the model output of both simulations with the assimi-
lated observations to verify that the assimilation brings them
into better agreement with the observations. The assimilation
improves the agreement with the assimilated SST observa-
tions. On a global average, the SST in FREE is 0.14 °C colder
than the observations, which is the result of an extensive cold
bias in the tropics and subtropics and a warm bias in the
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Southern Ocean south of 40° S (Fig. 1a; mean state of SST
in Fig. A3a). In addition, there are regional SST differences
FREE−OBS near strong currents and in eddy-rich regions
in particular, such as the NAC, the Kuroshio Current, and the
Southern Subtropical Front. These SST differences are esti-
mated to lead to a solubility-driven global air–sea flux dif-
ference of −0.06 Pg C yr−1 (Eqs. 5 and 8). The assimilation
increases SST in the tropics and subtropics and reduces SST
south of 40° S, with particularly large effects in the Southern
Ocean and in the North Atlantic (difference ASML−FREE
in Fig. 1b). Thereby, the global mean model–observation dif-
ference is reduced from −0.14 to −0.12 °C and from 0.59 to
0.32 °C in absolute terms. This assimilation-induced change
in SST is estimated to drive a direct solubility-driven effect
on the global air–sea CO2 flux of −0.14 Pg C yr−1 (Eqs. 5
and 8). However, this global attribution is subject to high un-
certainty due to the non-linear dependency of pCO2 on tem-
perature and because regionally large effects with opposite
signs lead to uncertainty in the global mean.

The assimilation also improves the agreement with the as-
similated SSS observations. Additional experiments with and
without salinity restoring towards climatology show that the
best agreement with the SSS-CCI observations is achieved
by simultaneously using assimilation and restoring. A ben-
efit of the additional use of restoring is the global cover-
age of the SSS climatology. FREE shows a global SSS bias
(0.49 psu; Fig. 1d). The assimilation leads to a global sur-
face freshening (Fig. 1e). There are only a few regions where
SSS in FREE is fresher than the observations and where the
DA consequently increases the salinity, for example, in parts
of the North Atlantic. The assimilation improves the model–
observation agreement in 91 % of the observed ocean area,
particularly in the North Atlantic Central STSSNA− and in
the Southern Ocean STSSSO (Fig. 1f). Tests with the assimi-
lation of temperature alone show negative side effects of tem-
perature assimilation on SSS in some locations (not shown).
In the final setup with combined assimilation, negative ef-
fects on SSS are found in 9 % of the observed area. Globally,
the mean absolute difference is reduced from 0.32 to 0.17 psu
relative to the SSS observations. The direct solubility-driven
effect of salinity differences on the global air–sea CO2 flux
is estimated to be negligible.

The assimilation leads to a better agreement with subsur-
face temperature and salinity data from the EN4-OA product
in the upper 1000 m. In the upper 100–200 m of the ocean,
the model–observation difference in temperature follows the
surface signal (compare Figs. 1a and 2a), and the differ-
ence is reduced by the assimilation (Fig. 2b and c). At in-
termediate depth (roughly 200–500 m), a subsurface warm
bias exists in FREE in the Southern Hemisphere at mid-
latitudes (Fig. 2; mean state in Fig. A4a). This bias affects
the South Pacific, South Atlantic, and southern Indian Ocean
(not shown). The bias might be connected to the model’s sur-
face warm bias in the formation region of Antarctic interme-
diate water (Fig. 1a). Further model–observation differences

exist at greater depth than 500 m, where the model’s tempera-
ture is colder than the observations at almost all latitudes but
warmer than the observations north of 60° N. At most lati-
tudes and depths, the effect of the assimilation is to reduce
the model–observation differences (Fig. 2c).

The model is more saline than the observations from the
surface down to a depth of about 1000 m for most latitudes
(Fig. 2d). This shows that the model–observation difference
in this depth range follows the surface signal. The excep-
tions to this are at high latitudes below 200 m, where FREE
is fresher than the observations. At all other latitudes, the as-
similation acts towards a freshening, with the strongest effect
near the surface (Fig. 2e). This improves the agreement with
observations, particularly near the surface (Fig. 2d). How-
ever, the improvement is smaller at depth and even becomes
negative for some latitudes at greater depth. This might be
due to the limited amount of assimilated in situ salinity pro-
files.

The effect of the assimilation on temperature and salin-
ity is most pronounced in the upper 1000 m and, below that,
mostly decreases with depth (not shown). After the sec-
ond year of assimilation, the mean absolute difference be-
tween ASML and FREE stabilizes in the range 0.35–0.36 °C
for SST and 0.20–0.25 psu for SSS, while the effect of
DA on subsurface temperature and salinity keeps increasing
throughout the years 2010–2020.

Sea ice reacts dynamically to the changed ocean physi-
cal state. In the Southern Ocean, FREE is characterized by
a lower sea-ice concentration compared to OSI-SAF obser-
vations. The sea-ice extent, here defined as the area where
the sea-ice concentration is more than 15 %, reaches a maxi-
mum in September. The maximum extent is smaller in FREE
than in OSI-SAF, which is demonstrated by the 15 % line
surrounding that area for FREE and OSI-SAF (Fig. 3a; mean
state in Fig. A5) and by the sea-ice concentration difference
for the month September (Fig. 3b). Through DA, a higher
Antarctic sea-ice concentration is obtained. This improves
the agreement with OSI-SAF (Fig. 3c). During all other sea-
sons, the assimilation leads to a higher sea-ice concentra-
tion in the Antarctic, a larger sea-ice extent, and a better
agreement with OSI-SAF as well (only September is shown).
In the Arctic, the differences between FREE, ASML, and
OSI-SAF are regionally different (not shown).

The boundary-layer depth and mixed-layer depth are
mostly reduced through DA. In particular, deep-water for-
mation events characterized by a mixed-layer depth of more
than 1000 m occur less frequently in ASML (not shown).
This improves the agreement with the profile-observation-
based mixed-layer climatology of de Boyer Montégut et al.
(2004), reducing the mean absolute difference to the clima-
tology from 27 to 19 m (comparison of mixer-layer depth in
Fig. A6). In addition, the absolute difference of near-surface
horizontal velocities to the drifter-observation-based clima-
tology of Laurindo et al. (2017a) is reduced by about 10 %
through DA (comparison of surface velocities in Fig. A7).

https://doi.org/10.5194/os-21-437-2025 Ocean Sci., 21, 437–471, 2025



444 F. Bunsen et al.: Physics assimilation to assess the ocean carbon sink

Figure 1. Effect of data assimilation on sea surface temperature (SST) and sea surface salinity (SSS). All panels show the mean over the
period 2010–2020. (a) The model–observation difference in SST (FREE−OSTIA). (b) The difference ASML−FREE. (c) The improvement
of monthly averaged model SST relative to OSTIA, where positive denotes that the assimilation brings the model closer to observations
(Eq. 9). (d–f) The same for SSS, computed with SSS from ESA-CCI.

Figure 2. Effect of data assimilation on zonally averaged temperature and salinity in the upper 1000 m. All panels show the mean over the
period 2010–2020. (a) The model–observation difference in temperature (FREE−EN4-OA). (b) The difference ASML−FREE. (c) The
improvement of monthly averaged temperature relative to EN4-OA. (d–f) The same for salinity.

The biological productivity near the Equator is stable in
ASML and FREE, indicating that FESOM2.1-REcoM3 does
not suffer from the erroneous upwelling known from previ-
ous DA studies (Park et al., 2018). The meridional overturn-
ing, however, shows spurious structures, which may point to
hidden assimilation artifacts on vertical velocities. Through-

out the assimilation period, spurious, spatially limited, and
often deep overturning structures emerge, evolve through
several months or years, and disappear in the tropical Indian,
Pacific, and Atlantic basins (not shown). Thereby, the sur-
face overturning cell sometimes breaks apart where it should
extend over the Equator, exposing the bottom cell to the sur-
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Figure 3. Effect of data assimilation on Antarctic sea-ice concentration in September. All panels show differences in the sea-ice concentration
averaged for the month September over the period 2010–2020. The 15 % line for FREE, ASML, and OSI-SAF observations is shown as a
dashed, continuous, or dotted line in panel (a) or (b). (a) The difference between FREE and OSI-SAF observations. (b) The difference
ASML−FREE. (c) The improvement of September mean sea-ice concentration.

face (Fig. A8b). Transport in the North Atlantic at 26.5° N,
an indicator for the strength of the Atlantic Meridional Over-
turning Circulation, is between 8–9 Sv in FREE. In ASML,
during the first 2 years of assimilation, transport at 26.5° N
decreases to below 3 Sv and, during the following years, re-
covers to 7–8 Sv (2016–2020). One possible cause is the ef-
fect of data assimilation on the eddy parametrization (Gent
and Mcwilliams, 1990). The parametrized eddy activity is
relevant for the dynamics in the deep ocean, and corrupting it
may have a negative impact on the large-scale oceanic circu-
lation, as described in Sidorenko (2004, Chap. 5.5 onwards)
for a previous version of the ocean model FESOM.

In summary, the ASML temperature and salinity fields
from the surface to several hundred meters below and the
mixed-layer depth are in good agreement with observations,
and the agreement of horizontal near-surface velocities with
observations is improved. This can be interpreted as an indi-
cation that the velocity field in the upper part of the ocean is
also well represented. Although the spurious effects on deep-
ocean circulation should be further addressed in future work,
we are confident that the DA provides an improved physical
state in the upper ocean, which serves as an improved basis
to estimate the air–sea CO2 flux.

3.2 Effect of DA on global CO2 flux

The ocean absorbs 2.78 Pg C yr−1 in ASML and
2.83 Pg C yr−1 in FREE during 2010–2020 (Fig. 4b);
thus the assimilation decreases the global mean oceanic
CO2 uptake by 0.05 Pg C yr−1. The temporal evolution
of the annual global CO2 flux is similar in ASML and
FREE (Fig. 4a). The first assimilation year, 2010, stands
out because it is one of the very few years during which
the assimilation increases the oceanic CO2 uptake. This
slightly reduces the trend in CO2 uptake in 2010–2020
from −0.40± 0.09 Pg C yr−1 per decade in FREE to

−0.38± 0.11 Pg C yr−1 per decade in ASML (negative: into
the ocean). The trend thereby remains within its confidence
interval. Furthermore, the assimilation slightly reduces the
interannual variability in the global mean oceanic uptake,
demonstrated by a standard deviation of detrended annual
means of 0.11 Pg C yr−1 in FREE and 0.08 Pg C yr−1 in
ASML (not significantly different according to an F-test).
Through DA, the ensemble standard deviation of the global
CO2 flux is reduced from 1.0× 10−2 Pg C yr−1 in FREE to
0.7× 10−2 Pg C yr−1 in ASML in the year 2020.

The strongest time-mean air–sea CO2 flux is found at
mid- and high latitudes (Fig. 4c). The large-scale pattern
of the CO2 flux is generally very similar in FREE and in
ASML (FREE not shown). The largest local changes through
DA, both towards stronger or weaker CO2 fluxes, occur
in the North Atlantic in the area of the NAC and in the
coastal North Pacific (Fig. 4d). The most prominent large-
scale effect, though, is in the Southern Ocean (Fig. 4e and
f). South of 50° S, the area-integrated CO2 uptake increases
by 0.18 Pg C yr−1 through the assimilation. In contrast, the
uptake decreases by 0.07 Pg C yr−1 between 40–50° S. With
the exception of the Southern Ocean, CO2 uptake decreases
in all world oceans by a small amount (Fig. 4d).

3.3 Effect of DA on regional CO2 fluxes and their
drivers

3.3.1 Southern Ocean

In the Southern Ocean, the ocean takes up CO2 in the an-
nual average (Fig. 5a), with regionally heterogeneous effects
of DA (Fig. 5b). While the effect of DA on surface pCO2
and the air–sea CO2 flux can almost entirely be explained
by the combined variation in DIC and alkalinity at most lati-
tudes north of 40° S, the thermal effect also needs to be con-
sidered in the Southern Ocean (zonal mean pCO2 effects in
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Figure 4. Effect of data assimilation on the air–sea CO2 flux (negative: into the ocean). (a) Annual time series of global flux in FESOM2.1-
REcoM3 with ASML (black) and FREE (violet) and RECCAP2 estimates (DeVries et al., 2023) with pCO2 products (orange) and GOBMs
(blue) and their respective means (bold lines). Here, the river flux adjustment (−0.65 Pg C yr−1) was applied to the pCO2 products. (b) Time-
mean global flux 2010–2018 in ASML (black) and FREE (violet) and RECCAP estimates grouped by method (DeVries et al., 2023). Crosses
represent individual estimates (e.g., individual GOBMs), and bars represent the method mean (e.g., mean of 12 GOBMs). Here, the river
flux term was applied to all estimates except the models following the Global Carbon Budget methodology (Friedlingstein et al., 2023).
For FESOM2.1-REcoM3, the time-mean 2010–2020 is additionally shown (horizontal lines). (c) Spatial distribution of CO2 flux averaged
over the period 2010–2020 in ASML. (d) Spatial distribution of CO2 flux difference ASML−FREE averaged over the period 2010–2020.
(e) Zonal averages of CO2 flux 2010–2020 in ASML and FREE and (f) their difference.

Fig. A9a). In the following, we examine how the assimilation
influences the air–sea CO2 flux across individual regions in
the Southern Ocean.

STSSSO. In the northernmost biome of the Southern Ocean,
the subtropical seasonally stratified biome (STSSSO), the
mean oceanic CO2 uptake is comparably high (Fig. 5a). The
uptake is largest in austral winter and spring (June to Novem-
ber; Fig. 5c and d). The part of the STSSSO characterized by
a positive CO2 flux difference ASML−FREE (positive dif-

ference: reduced uptake through assimilation), which we call
the STSSSO+, roughly forms an outer northerly ring around
the STSSSO biome (hatched area in Fig. 5a and b). The re-
duction in CO2 uptake in the STSSSO+ is greatest in winter
and spring from July to October (Fig. 5g).

The increase in pCO2 in the STSSSO+ is partly driven
by lowered alkalinity and partly by increased surface DIC
(Fig. 6b and c). These, along with the colder SST and fresher
SSS in the STSSSO+ (Fig. 1b and e), are indications for a
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Figure 5. Effect of data assimilation on Southern Ocean CO2 flux (negative: into the ocean) and its seasonality averaged over the period
2010–2020. Additionally, lines in panels (a) and (b) denote the regions, and the green hatching denotes the STSSSO+. (a) Map of mean
CO2 flux in ASML. (b) Map of CO2 flux difference ASML−FREE. (c–f) Seasonal cycle of air–sea CO2 flux by region. Shading indicates
the range of ensemble members in the year 2020. (g–j) Seasonal air–sea CO2 flux difference ASML−FREE by region. Note the different
scales.

year-round stronger influence of subantarctic waters. This is
evident from typical water properties in the subantarctic and
subtropical Southern Ocean. In the subantarctic, surface DIC
is higher, surface alkalinity is lower, temperature is colder,
and salinity is lower (maps of SST, SSS, DIC, and alkalinity
in Fig. A10). In the fragmented area of the STSSSO+, dif-
ferent factors contribute to regional changes in the surface
DIC and alkalinity budget in ASML (sources minus sinks of
DIC and alkalinity in Fig. A11). Depending on location, an
increased upward transport of DIC through mixing, an in-
crease in DIC through a reduced biological sink of DIC in
spring, or a decrease in alkalinity through changes in hori-
zontal and vertical advection dominates. The seasonality of
the effect of DA on the air–sea CO2 flux in the STSSSO+

(Fig. 5c and g) is determined by seasonal temperature dif-

ferences between ASML and FREE (Fig. 6d and f). Dur-
ing summer, SST is slightly reduced (Fig. 6f), which lowers
pCO2 (Fig. 6a). This counteracts the effects of DIC and alka-
linity on pCO2 (Fig. 6b and c) and thus dampens the overall
DA effect on the air–sea CO2 flux during summer.

The part of the STSSSO characterized by a negative CO2
flux difference ASML−FREE, which we call the STSSSO−,
is a fragmented region and roughly consists of segments of
an inner southerly ring (non-hatched area in Fig. 5a and b).
Here, the increase in CO2 uptake through DA is largest in
summer and fall (November to April; Fig. 5h). The reduc-
tion in pCO2 is driven by increased alkalinity and partly
also by lower surface DIC (Fig. 6b and c, non-hatched area).
These, together with higher SST in ASML than FREE in
the STSSSO− regions (Fig. 1b), indicate a higher presence
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Figure 6. Drivers of the effects of data assimilation on pCO2 in the Southern Ocean. Panels (a), (b), and (c) show the effects of SST,
DIC, and alkalinity differences ASML−FREE simulations on surface pCO2. Additionally, hatching inside the STSSSO indicates where net
pCO2 is increased through the assimilation (STSSSO+). (d, e) Seasonal cycle of SST averaged over the regions STSSSO+ and STSSSO−
and (f, g) the difference ASML−FREE for each region. (h) Potential density profiles for the SPSSSO, with FREE (violet line) and ASML
(dashed black line) based on daily T and S and with EN4-OA (dotted green line) based on monthly T and S. (i) DIC profiles for the SPSSSO,
showing FREE (violet line), ASML (dashed black line) from 2010–2020, and climatological DIC from GLODAP. Shading in panels (d), (e),
(h), and (i) indicates the range of ensemble members in the year 2020.

of subtropical waters (see characteristics of subtropical wa-
ters in Fig. A10). Where there is lower DIC in the STSSSO−

in ASML (Fig. 6b), this can mostly be explained by an in-
creased biological sink of DIC, with the addition of sharply
defined local changes in horizontal advection of DIC and al-
kalinity (Fig. A11). Additionally, seasonal temperature ef-
fects occur. During winter, SST is higher in ASML than in
FREE (Fig. 6e and g). This increases pCO2 in the STSSSO−

(Fig. 6a), counteracting the effects of lower DIC and higher
alkalinity on pCO2 and dampening the overall DA effect dur-
ing winter.

The contrasting effects in the STSSSO indicate a horizontal
shift in water masses within the STSSSO biome. In the center
of the STSSSO, the Subantarctic Front is located, which is as-
sociated with the Antarctic Circumpolar Current (ACC) and
characterized by a strong gradient in SST, SSS, and various

other tracers (Chapman et al., 2020). Because SST and SSS
are directly influenced and improved by the assimilation, the
position of this front is also expected to change as a result
of the assimilation, leading to a horizontal relocation of wa-
ters separated by the front. With the relocation of the front,
dynamic shifts in regional characteristics occur, such as the
amount of DIC and alkalinity transported vertically through
mixing and the biological sources and sinks of DIC and al-
kalinity.

SPSSSO. Further south, in the subpolar seasonally strati-
fied biome (SPSSSO), the ocean absorbs CO2 all year round
(Fig. 5a). The oceanic uptake is increased through the assim-
ilation, shown by a negative flux difference ASML−FREE
in Fig. 5b. The largest difference between ASML and FREE
is seen in spring from September to October (Fig. 5i). Due to
the seasonally varying effect of DA, the seasonal cycle of the
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CO2 flux in the SPSSSO is altered. In ASML, the CO2 uptake
is weakest in February, gets stronger in fall (MAM), stag-
nates in winter (JJA), and resumes growth in spring (SON),
reaching peak uptake in November (Fig. 5e). In FREE, the
CO2 uptake weakens in winter, is weakest in September, and
gets stronger afterwards, reaching peak uptake in December.

In the SPSSSO, the increased CO2 uptake and lower sur-
face pCO2 during winter and spring are driven by a combi-
nation of colder temperatures and lower DIC (Fig. 6a and
b), which outweighs the opposite effect of a decrease in
alkalinity on pCO2 (Fig. 6c; relative importance of ther-
mal effect in Fig. A12a). Surface DIC is generally high
due to upward transport of carbon-rich deep water (e.g.,
Hauck et al., 2023a). The reason for lower surface DIC in
ASML is that the upward transport through mixing is re-
duced (Fig. A11) through a more stable stratification, which
is also evident from a reduced density in the upper 300 m and
an increased density below that (Fig. 6h). Thereby, the den-
sities in the SPSSSO agree better with densities calculated
from EN4-OA. The boundary layer and mixed layer in win-
ter and spring are shallower and thereby in better agreement
with the observation-based climatology (Fig. A6). Vertical
mixing within the boundary layer affects the vertical profiles
of DIC and alkalinity, towards lower DIC in ASML above
100 m and higher DIC below (Fig. 6i). The vertical profile
of DIC in ASML is closer to GLODAP DIC observations,
although some differences to GLODAP still exist. Beside
the fact that the differences in stratification and boundary-
layer depth affect the vertical DIC profile, they also imply
fewer available surface nutrients in ASML. Probably due to a
combination of lower nutrient availability and colder surface
temperature, ASML features lower net primary production
(NPP), lower chlorophyll concentrations, and a lower phyto-
plankton biomass in the SPSSSO (not shown). Thereby, the
modeled biogeochemical cycle adjusts to the lower transport
of nutrients to the surface by transferring less organic ma-
terial to depth, ultimately acting to compensate about 60 %
of the difference in physical transport of DIC (Fig. A13a)
and adding to the reduction in surface alkalinity (Fig. A13b).
Within the SPSSSO (roughly south of 50° S), differences be-
tween FREE and ASML in terms of the temperature effect
on pCO2, vertical transport of DIC and alkalinity, and bio-
logical sources and sinks are larger than at any other latitude
(Fig. A13).

ICESO. In the seasonally ice-covered biome (ICESO) sur-
rounding the Antarctic continent, the time-mean CO2 flux
is smaller than in other biomes (Fig. 5a). In this region, the
ocean absorbs CO2 during summer and there is a smaller out-
gassing during winter (Fig. 5f), as the region is mostly ice-
covered in winter (see sea-ice concentration in September in
Fig. 3). In the northern part of the ICESO biome, close to the
SPSSSO, the effect of the assimilation is similar to the effect
within the SPSSSO itself (Fig. 5b). Here, the assimilation acts
to increase ocean CO2 uptake or to weaken CO2 outgassing
during winter and spring (Fig. 5i and j). Thereby, interest-

ingly, the assimilation hinders outgassing of CO2 from May
to November in ASML in the ICESO biome (Fig. 5f; compar-
ison of winter outgassing with other estimates in Fig. A14).
The reduced outgassing and decreased pCO2 during win-
ter and spring are driven by similar processes to within the
SPSSSO. Again, lower surface DIC and colder temperatures
(Fig. 6a and b) outweigh the opposite effect of a decrease
in alkalinity on pCO2 (Fig. 6c). As in the SPSSSO, the rea-
son for the decrease in pCO2 is reduced surface DIC and in-
creased DIC below 100 m as a result of less upward transport
of DIC through mixing (Fig. A11) in a more stable strati-
fication due to surface freshening (Fig. 1e). In addition, as
the surface temperature is lower in ASML (Fig. 1b), the win-
ter sea-ice concentration is higher (Fig. 3b), which prevents
winter outgassing of CO2. In the southern part of the ICESO
biome, near the Antarctic continent, the effect of the DA on
the CO2 flux is small.

In summary, in the Southern Ocean, the main effects of
the DA on the CO2 flux are, firstly, an increase in the uptake
in the SPSSSO caused by surface cooling and by a more sta-
ble stratification and thus less upward transport of naturally
carbon-rich water through mixing and, secondly, an overall
lower CO2 uptake in the STSSSO as a consequence of a spa-
tial redistribution of fluxes near the Subantarctic Front.

3.3.2 North Atlantic

In the North Atlantic, the assimilation has noticeable effects
on the CO2 flux in the area of the North Atlantic Current,
where the ocean absorbs CO2 in the annual average (Fig. 7a).
During summer, however, the ocean releases CO2 while the
sea surface warms (Fig. 7c–f). In the Central STSSNA−, the
effect of the DA is to prevent outgassing during summer
(Fig. 7c and g). In the Western STSSNA+ and in the New-
foundland BasinNA+, the ocean CO2 uptake is decreased
during winter (Fig. 7d, e, h, and j). The regionally different
dynamics of the effects of the assimilation that drive these
differences in the air–sea CO2 flux in the North Atlantic are
investigated next.

Central STSSNA−. In the Central STSSNA−, the effect of
the DA is overall towards a more negative flux in CO2 from
May to November (Fig. 7g). Thus, spring and fall CO2 up-
take are increased and summer outgassing is prevented in
ASML (Fig. 7c). The reason for decreased surface pCO2 is
higher alkalinity in ASML (Fig. 8c). In this region, the al-
kalinity effect, which reduces pCO2, outweighs the oppos-
ing effects of DIC and SST on pCO2 (Fig. 8a and b). A
higher alkalinity could point to the presence of waters of sub-
tropical origin transported northward with the NAC (Völker
et al., 2002). Other fingerprints of waters transported by the
NAC are a warm SST particularly in winter, a higher salin-
ity, and higher DIC than that of North Atlantic subpolar wa-
ters (maps of SST, SSS, DIC, and alkalinity in Fig. A15;
Völker et al., 2002). The assimilation causes a change in
these properties towards a higher SST, higher salinity, and
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Figure 7. Effect of data assimilation on North Atlantic CO2 flux (negative: into the ocean) and its seasonality averaged over the period
2010–2020. (a) Map of mean CO2 flux in ASML. (b) Map of CO2 flux difference ASML−FREE. (c–f) Seasonal cycle of air–sea CO2 flux
by region. Shading indicates the range of ensemble members in the year 2020. (g–j) Seasonal air–sea CO2 flux difference ASML−FREE
by region. Note the different scales.

higher DIC in the Central STSSNA−. Simultaneously, ASML
represents a deeper boundary layer in this region (Fig. 8d).
While changes in the North Atlantic mixed-layer depth over-
all result in a spatial pattern in ASML that more closely
aligns with the pattern in the observation-based mixed-layer
climatology, the modeled mixed layer in the simulations is
still overall deeper than in the climatology, leading to less
agreement in the Central STSSNA− (Fig. A6). Likely facil-
itated by higher SST and more available nutrients through
deeper mixing in winter and spring, ASML features a higher
biological sink of DIC above 190 m (Fig. A16d); more bio-
logical carbon export through sinking of detritus at 190 m;
and more column-integrated phytoplankton biomass and sur-
face chlorophyll in spring, which is illustrated by the ex-
ample of surface chlorophyll difference between ASML and

FREE in Fig. 8e. In combination, the higher alkalinity as-
sociated with NAC transport and the higher biological sink
of DIC result in lowered surface pCO2 and higher oceanic
uptake.

Western STSSNA+. In the Western STSSNA+, the DA re-
duces the CO2 uptake and increases pCO2 mainly during
winter as a direct effect of increased SST (Fig. 8a). The di-
rect thermal effect is dominant over the combined effect of
DIC and alkalinity (relative importance of thermal effect in
Fig. A12b). The latter have effects comparable in magnitude
to SST but mostly cancel each other out (Fig. 8b–c). The
effect of DA on surface properties (SST, SSS, DIC, and al-
kalinity) in the Western STSSNA+ is similar to the effect in
the Central STSSNA−, which indicates a higher influence of
subtropical waters in both regions.
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Figure 8. Drivers of the effects of data assimilation on pCO2 in the North Atlantic. Panels (a), (b), and (c) show the effects of SST,
surface DIC, and alkalinity differences ASML−FREE on surface pCO2. (d) Difference in boundary-layer depth (ASML−FREE) for spring
(MAM) 2010–2020, where positive denotes a shallower boundary layer in ASML. (e) Difference in surface chlorophyll (ASML−FREE) for
spring (MAM) 2010–2020. (f) Potential density profiles for the Newfoundland BasinNA+ region, with FREE (violet line) and ASML (dashed
black line) based on daily T and S and with EN4-OA (dotted green line) based on monthly T and S. (g) DIC profiles for the Newfoundland
BasinNA+ region, showing FREE (violet line), ASML (dashed black line) from 2010–2020, and climatological DIC from GLODAP. The
shading in panels (f) and (g) indicates the range of ensemble members in the year 2020.

Newfoundland BasinNA+. In the Newfoundland
BasinNA+, the dominant effect of DA is a reduction in
the CO2 uptake and an increase in pCO2 mainly during
winter as a direct effect of increased SST (Fig. 8a). In
addition, ASML also features a more stable stratification due
to lower density at the surface than FREE (Fig. 8f), which
mostly affects DIC at 50-400 m depth through reduced
subduction of DIC (Fig. 8g). Furthermore, ASML represents
less surface chlorophyll in the Newfoundland BasinNA+

(Fig. 8e) as a result of a redistribution of biomass from
the surface to 50–400 m depth due to spring mixing (not
shown). The downward mixing of biomass results in an

increase in the biological sink of DIC above 50 m, likely due
to more primary production near the surface, and a decrease
in the biological sink at 50–400 m, likely due to more
remineralization at this depth. However, the differences in
the biological sink of DIC are compensated by the mixing of
DIC (profiles not shown). Overall, differences in the regional
DIC profile to the observational GLODAP climatology
slightly increase (Fig. 8g).

Coastal SPSSNA−. In the Coastal SPSSNA−, pCO2 is re-
duced and the ocean CO2 uptake is increased in ASML dur-
ing winter and spring (Fig. 7f and j). The reduction in pCO2
is facilitated by colder SST (Fig. 8a). This might be due to
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subpolar water masses penetrating further south along the
coast in ASML because the location where the current sepa-
rates from the coast is further south in ASML (velocities in
Fig. A2).

In summary, DA affects the CO2 flux in the North Atlantic
mainly through changes in SST, combined with changes in
horizontal advection of DIC and alkalinity near the NAC.
Changes in the vertical mixing of DIC and alkalinity are
largely compensated by feedbacks in biogeochemical cycles.
Which of these effects is dominant, however, varies from re-
gion to region.

3.4 Comparison with biogeochemical observations

3.4.1 pCO2 (SOCAT)

To evaluate the modeled air–sea CO2 flux based on obser-
vations, surface pCO2 is the most informative variable, as
it is closely related to the air–sea CO2 flux. Effects of the
DA on the modeled ecosystem and associated carbon fluxes,
along with thermal and dynamical effects that affect the CO2
flux, are all included in pCO2. The global mean of ab-
solute monthly model–observation differences to the avail-
able SOCAT pCO2 observations is 27.26 µatm for FREE.
For ASML, the difference is slightly larger at 27.60 µatm.
On global average, pCO2 is higher than in SOCAT by
3.70 µatm in FREE and 4.59 µatm in ASML, as regions
with positive and negative differences to SOCAT compen-
sate (Fig. 9a). As an illustration of the regional changes
through DA, the absolute differences in pCO2 amount to
8.08 µatm (absolute difference ASML−FREE calculated at
every grid point then averaged globally), which is ±27 %
of the mean absolute model–observation difference. A lin-
ear offline estimation demonstrates that this change in pCO2
would lead to an absolute change in the air–sea CO2 flux by
1.06 mmol C m−2 d−1 on average (Eq. 8).

Overall, FREE and ASML show very similar regional
pCO2 differences compared to SOCAT (difference of FREE
and SOCAT in Fig. 9a; difference of ASML and SOCAT not
shown). In the subtropical and tropical Atlantic and the sub-
tropical Pacific, FREE and ASML have higher pCO2 than
SOCAT, while, in the equatorial Pacific, pCO2 is lower.
At high latitudes, FREE and ASML represent mostly lower
pCO2 than SOCAT.

In the Southern Ocean, the simulations represent lower
pCO2 than SOCAT in the SPSSSO and ICESO biomes in
the annual mean (Fig. 9c), which is dominated by summer
differences to SOCAT (not shown) when most observations
are available. Through the assimilation, pCO2 is slightly in-
creased in summer and mostly reduced in winter (not shown),
leading to an overall better agreement with SOCAT (Fig. 9e).
In contrast, in the STSS, FREE and ASML represent higher
pCO2 than SOCAT, and, through the assimilation, the agree-
ment with SOCAT decreases.

In the North Atlantic, the simulations and SOCAT show
a similar large-scale pattern, namely that pCO2 is higher in
the subtropics (ASML around 400 µatm) than in the subpolar
regions (ASML around 280 µatm). However, this latitudinal
difference of pCO2 is stronger in the simulations compared
to SOCAT, meaning that, in the subtropics, pCO2 in the sim-
ulations is higher than in SOCAT (Fig. 9d), while it is lower
in the subpolar regions. Furthermore, in both simulations,
there is a pronounced pCO2 surface gradient in the NAC
and North Atlantic Subpolar Gyre region, whose position is
changed by the assimilation and which appears to be further
northward in SOCAT. Thereby, the assimilation overall leads
to a better agreement with SOCAT, in particular through a
decrease in pCO2 in the Central STSSNA−, where the aver-
age difference is reduced from 26 µatm (FREE−SOCAT) to
1 µatm (ASML−SOCAT). However, in the Newfoundland
BasinNA+, the average difference is reversed from−17 µatm
(FREE−SOCAT) to 13 µatm (ASML−SOCAT), which is
associated with a larger absolute discrepancy of ASML and
SOCAT.

3.4.2 DIC and alkalinity (GLODAP)

DIC and alkalinity are two of the most important vari-
ables from which pCO2 is derived (Sect. 3.3). Compar-
ing them with observations provides more insights into
the strengths and weaknesses of the modeled carbonate
system than a comparison with pCO2 observations alone.
The FESOM2.1-REcoM3 simulations represent higher sur-
face DIC than GLODAP bottle observations (Lauvset et
al., 2024, gridded monthly means) on average (Fig. 10a),
with a global mean surface difference FREE−GLODAP of
6.46 mmol C m−3 for DIC. Although fewer DIC observations
are available than pCO2 observations, similarities between
the respective model–observation differences for DIC and
pCO2 can be recognized. For example, DIC in the model is
lower in the tropical and subtropical Atlantic than GLODAP
and is higher in the polar Atlantic. This is consistent with
SOCAT pCO2 observations in the same areas. The model–
observation differences to GLODAP DIC and SOCAT pCO2
are also consistent with each other in the North Pacific.
The assimilation induces absolute changes in surface DIC
of 6.33 mmol C m−3 on global average, with regional differ-
ences in sign. These changes slightly reduce the mean ab-
solute difference to the surface observations from 32.78 to
32.15 mmol C m−3 and yield a mixed picture of the improve-
ment (Fig. 10b).

While the trend in surface DIC due to anthropogenic in-
put makes it necessary to compare the model with contem-
poraneous observations at the ocean surface, a comparison
with climatological data is meaningful below a depth of ap-
proximately 200 m. In fact, the modeled global distribution
of DIC at depth is overall similar to that in the GLODAP cli-
matology for both simulations (zonal mean DIC surface to
1000 m depth in Fig. A17). For example, the model results
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Figure 9. Partial pressure of CO2 (pCO2) at the surface averaged over the years 2010–2020. Panels (a)–(c) show the difference between
FREE and SOCAT observations in (a) the global ocean, (b) the Southern Ocean, and (c) the North Atlantic; panels (d)–(f) show the impact
of the assimilation as “improvement” relative to SOCAT observations computed from monthly mean pCO2 in the same regions. Positive
values (green) denote a reduced difference to SOCAT.

Figure 10. Comparison of the model results with surface DIC
and alkalinity bottle observations from GLODAP globally over the
years 2010–2020. (a) Surface DIC differences FREE−GLODAP.
(b) Improvement of monthly surface DIC relative to GLODAP.
(c, d) For alkalinity.

and GLODAP datasets show that DIC is lowest in the isopy-
cnals of the subtropical gyres (2050–2150 mmol C m−3;
Fig. A17a) and that DIC mostly increases with depth and
is higher in the Pacific (2420 mmol C m−3 at 1000 m in the
North Pacific) than in the Atlantic (2320 mmol C m−3 below
3000 m in the South Atlantic). However, depending on the
ocean basin and depth, there can be both negative and posi-
tive differences between the simulations and the GLODAP

climatology, which are in the order of 20 mmol C m−3

(Fig. A17c). On a global average, the assimilation leads
to an increase in DIC between 200–600 m depth and a re-
duction in DIC between the surface and 200 m, with the
largest effect in the upper 400 m (Fig. A17b). This leads
to an improved agreement with the GLODAP climatology,
with the largest global mean improvement at a depth of
400 m (2.5 mmol C m−3; Fig. A17d). Below 1000 m depth,
the global mean absolute difference FREE−ASML is only
1–2 mmol m−3 of DIC and alkalinity and is therefore sub-
stantially smaller than at the surface.

The comparison with GLODAP bottle alkalinity at the
surface shows a similar spatial pattern to that of DIC (see
Fig. 10a and c). The magnitude of the bias is also com-
parable (14 mmol Alk m−3). The global mean of the ab-
solute difference ASML−FREE of surface alkalinity is
7.72 mmol Alk m−3. The assimilation leads to a reduction in
the absolute difference of the model alkalinity to GLODAP
from 34.34 to 32.60 mmol Alk m−3. Since the effects of
physics assimilation on alkalinity and DIC are regionally
consistent, regions of improved or deteriorated agreement
with GLODAP often coincide for both variables (compare
Fig. 10b and d). Because changes in DIC and alkalinity have
an opposing effect on the CO2 flux, it is likely that their cor-
relation results in compensating effects. A linear estimate
shows that the joint effect of DIC and alkalinity changes
is responsible for a change in the CO2 flux in the order of
1.22 mmol C m−2 d−1 on average, and, globally integrated,
the assimilation-induced changes in DIC and alkalinity lead
to an estimated net increase in the air–sea CO2 flux in the
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order of 0.50 Pg C yr−1 (Eqs. 4, 3, and 8). However, this lin-
ear offline estimate is subject to a large uncertainty because
regionally large effects with opposite sign lead to uncertainty
in the global mean.

3.4.3 Surface chlorophyll (OC-CCI)

The representation of chlorophyll by the model is of inter-
est as a proxy for primary production. Surface chlorophyll
reflects the phytoplankton state and biomass; therefore, ef-
fects of the DA on the biological model state can be seen
in the total surface chlorophyll concentration. A compari-
son of the modeled surface chlorophyll with remotely sensed
chlorophyll from OC-CCI reveals that both simulations fea-
ture a higher surface chlorophyll concentration than OC-CCI
(FREE−OBS in Fig. 11a and c). In FREE, the difference
to OC-CCI is 0.02 mg m−3 on global average, with low de-
viations in the tropics and an enhanced difference north
of 30° N (0.12 mg m−3) and south of 30° S (0.24 mg m−3).
Apart from this, both simulations capture the global distribu-
tion of chlorophyll well. The simulations show the seasonal
maxima in each hemisphere around 1 month earlier in the
year (not shown). South of 30° S, FREE is in better agree-
ment with chlorophyll a from the Southern Ocean-specific
chlorophyll product of Johnson et al. (2013) (Fig. 11b) than
with OC-CCI data (Fig. 11a).

On global average, the assimilation slightly reduces the
differences between model and OC-CCI data, from a global
mean absolute difference of 0.31 to 0.29 mg m−3. The assim-
ilation changes the chlorophyll concentration by an absolute
value of 0.05 mg m−3 on average, which is 15 % of the global
mean absolute difference to OC-CCI. There are regions in
which assimilation leads to a reduction in chlorophyll and
thus to better agreement with the satellite products, for ex-
ample, in the North Atlantic Subpolar Gyre and the Southern
Ocean SPSSSO (Fig. 11e and f). In contrast, the model re-
acts to the DA with an increase in chlorophyll in the North
Atlantic Central STSSNA− and the Argentine Basin, which
leads to poorer agreement.

4 Discussion

The improvement in temperature and salinity overall leads
to a heterogeneous picture in biogeochemistry. While near-
surface temperature and salinity fields are improved through
DA almost everywhere, the global mean absolute differ-
ence in modeled surface pCO2 to SOCAT remains similar
in ASML compared to FREE, and this also applies to the
model–observation differences for surface chlorophyll, DIC,
and alkalinity (Sect. 3.4). Where improvements in one BGC
variable occur, these do not necessarily lead to consistent im-
provement in all BGC variables. For example, the represen-
tation of pCO2 improves, while that of chlorophyll deterio-
rates in the North Atlantic Central STSSNA− (Figs. 11f and

9f). In the Southern Ocean SPSSSO, the reduction in mod-
eled surface chlorophyll in spring and the increase in pCO2
in summer lead to a better agreement with pCO2 observa-
tions, yet the available observations of DIC and alkalinity do
not resolve the regional scales to evaluate the corresponding
changes in these variables (Figs. 9, 10, and 11f). The un-
certainty represented by the ensemble is reduced by the DA,
which has the most obvious effect on the directly assimilated
fields (SST in Fig. 6d and e and density in Fig. 8f). The en-
semble standard deviation of the CO2 flux, where it is large
in FREE, is constrained by the DA to globally more uniform
and smaller values (Figs. 5c–f, 7c–f, and A1). Only in the
North Pacific is the standard deviation of CO2 fluxes equally
high in ASML and FREE, precisely in a region that also
presents a challenge for pCO2 products (compare Fig. A1
and Mayot et al., 2024, Fig. 5a). In the rest of the ocean,
the reduced uncertainty represented by the ensemble does not
necessarily coincide with improved agreement with BGC ob-
servations. One possible reason for improvement of model–
data mismatch in one variable with worsening in another may
lie in inconsistencies between the observational datasets. An-
other reason may be missing processes in the model and the
use of constant BGC model parameters. Those parameters
are responsible for linking changes between ecosystem vari-
ables, and, in reality, they vary across space and time depend-
ing on species composition in the ecosystem (Mamnun et al.,
2023, Chap. 3). Overly simplified links between ecosystem
variables can lead to canceling errors, which means that the
state of one variable may worsen as a result of improving
the other through DA (as in Ford and Barciela, 2017). For
example, surface chlorophyll (Fig. 11f) and pCO2 (Fig. 9f)
in the central Greenland Sea deteriorate in response to im-
provements in SST (Fig. 1c), SSS (Fig. 1f), and sea-ice con-
centration (not shown). This could indicate that the BGC
parametrization compensates for flaws in the free-running
physical model in this region. The parameter mismatch might
cause difficulties in modeling the change in BGC variables
under the ongoing loss of Arctic sea ice (Chen et al., 2016).

The major effects of physics DA on BGC variables seem
to follow changes in SST and are largely uniform over the
full period of DA (Sect. 3.4). Surface chlorophyll changes
show a pattern similar to SST changes (Figs. 1 and 11). The
modeled phytoplankton growth is temperature-dependent
(Gürses et al., 2023). Furthermore, indirect temperature ef-
fects on plankton dynamics due to stratification and mixing
changes contribute, although those can have heterogeneous
effects and the correlation of chlorophyll and boundary-layer
depth is less clear (not shown). The changes in surface DIC
and alkalinity show similar spatial patterns with regional het-
erogeneity (Sect. 3.3), again with the major changes being
coherent with the changes in SST (Fig. 1). Furthermore, the
effects of the assimilation on DIC and on temperature in the
upper 1000 m correlate regionally: cooling through DA at in-
termediate depth (Fig. 2b) is usually accompanied by higher
DIC in ASML (Fig. A17b), while warming through DA near
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Figure 11. Surface chlorophyll for the years 2010–2020. (a–c) Difference between FREE and SOCAT observations in (a) the global ocean,
(b) the Southern Ocean, and (c) the North Atlantic; (d–f) impact of the assimilation as “improvement” relative to the observations in the same
regions. Panels (a), (c), (d), and (f) compare to monthly OC-CCI observations, and panels (b) and (e) refer to the climatology for 1998–2019
by Johnson et al. (2013).

the surface occurs together with reduced DIC in ASML. An
overall more stable ocean stratification in the upper hundreds
of meters explains why. On global average, the assimilation
leads to lower DIC above 200 m and higher DIC between
200–600 m depth. In regions of substantial DA effects on ver-
tical transport of DIC, for example, in the Central STSSNA−

or in the SPSSSO (Sect. 3.3), the modeled biogeochemical
cycles adjust dynamically to the altered vertical transport.
The resulting changes in biological sources and sinks of DIC
compensate for 20 %–70 % of the changes in vertical trans-
port of DIC (Fig. A13a). In addition to changes in stabil-
ity and mixing, the assimilation affects the distribution of
DIC and alkalinity through local changes in near-surface hor-
izontal transport. As the horizontal distribution of surface
DIC, alkalinity, and SST is governed by latitudinal gradients
and common pathways of transport (Figs. A10 and A15), all
of them undergo similar changes as the SST field is modi-
fied. An exception to this is in the STSSSO, where regional
shifts along contrasting surface gradients of DIC, alkalin-
ity, and temperature affect the respective variables differently
(Sect. 3.3). These shifts change the spatial pattern of air–
sea CO2 fluxes. With the exception of the Southern Ocean,
zonally averaged changes in surface pCO2 are dominated by
the combined effects of surface alkalinity and DIC on pCO2
(Fig. A9a). Because alkalinity and DIC are usually modified
according to the same pattern through mechanisms acting on
both, their effects on pCO2 are anticorrelated (Fig. A9b). The
direct thermal effect on pCO2 can still be the largest locally,
for example, in the North Atlantic Newfoundland BasinNA+

(Fig. A12b). While the DA dynamically induces changes in

surface pCO2 everywhere, the strongest effects on the air–
sea CO2 flux are at high latitudes, where pCO2 changes are
amplified by high wind velocities.

The net effect of DA on the global air–sea CO2 flux varies
from year to year between −0.12 and 0.15 Pg C yr−1, which
is small compared to the changes in regional CO2 fluxes. The
global net effect of lateral redistribution of alkalinity and DIC
at the ocean surface is a result of compensation between re-
gions where alkalinity and DIC are added and removed. Sim-
ilarly, regional SST effects on surface pCO2 mostly balance
out globally because DA primarily induces a correction of
regional SST biases, reducing the mean absolute difference
to the observations from 0.59 to 0.32 °C, rather than chang-
ing the global mean SST, which differs by only 0.02 °C be-
tween FREE and ASML. DA-induced differences in vertical
transport of DIC are comparably large south of 50° S, but ap-
proximately 95 % of them are balanced globally by opposing
changes in vertical transport further north (vertical transport
of DIC in Fig. A13a). In particular, the effect of DA on sub-
duction of DIC through vertical advection into the ocean’s
deeper layers (not shown), which is the rate-limiting step on
oceanic uptake of anthropogenic CO2 emissions (DeVries,
2022), appears small, which may be due to an insufficient
number of deep observations. Besides, experiments on longer
timescales might be necessary to generate a visible effect of
deep-circulation changes on the ocean’s carbon cycle (Cao
et al., 2009), which could, however, lead to imbalances in the
CO2 flux (Lebehot et al., 2019; Kriest et al., 2020; Primeau
and Deleersnijder, 2009). Another possible reason why the
DA effect on the global CO2 flux in our simulation is small
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is the variable stoichiometry in REcoM. The dynamic bio-
logical functioning reduces the sensitivity of critical fields,
like DIC, to physical changes (Buchanan et al., 2018). Fur-
thermore, negative feedback effects between surface alkalin-
ity, DIC, atmospheric pCO2, and air–sea fluxes might reduce
the overall response (Bunsen et al., 2024).

The overall impact of the DA on the air–sea CO2 flux
on a global scale is modest (0.05 Pg C yr−1) compared to
the differences between other estimates (e.g., a standard
deviation of 0.45 Pg C yr−1 of GOBMs in DeVries et al.,
2023). The global air–sea CO2 flux estimates of FREE and
ASML fall in the range of previous model estimates and in
the range of previous pCO2 products (Fig. 4a and b) for
the period 2010–2018, during which comparable estimates
are available (DeVries et al., 2023). We compare here to
two other data-assimilating BGC model approaches, namely
ECCO-Darwin (global; Carroll et al., 2020) and B-SOSE,
which is restricted to the Southern Ocean (Verdy and Ma-
zloff, 2017). Both approaches use linearized least-squares
optimization data assimilation methods (4D-var/adjoint and
Green’s function; Wunsch, 1996; Menemenlis et al., 2005).
However, the largest difference to our study is probably that
they assimilate BGC observations in addition to physical
data. Thus, as expected, the effect on pCO2 in our study
is smaller (3 %) than in ECCO-Darwin and B-SOSE, where
a reduction in pCO2 model–data misfit of 6 % and 64 %
was reported, respectively (here given as quadratic misfit).
The global CO2 flux (2010–2018) is smaller in FESOM2.1-
REcoM3 (−2.73 Pg C yr−1 in FREE and −2.78 Pg C yr−1 in
ASML) than in ECCO-Darwin (−3.13 Pg C yr−1). The dis-
crepancy between the CO2 flux estimates based on models
and pCO2 products is an area of active research and not fully
resolved (Friedlingstein et al., 2023; DeVries et al., 2023).
On the one hand, model biases in the Atlantic Meridional
Overturning Circulation, in Southern Ocean ventilation, and
possibly in the surface ocean carbonate chemistry were sug-
gested as reasons why models might underestimate the global
mean CO2 uptake in recent decades (Friedlingstein et al.,
2023; Terhaar et al., 2024, 2022). On the other hand, the spar-
sity of observations is a concern for the pCO2 products. Ac-
cording to one testbed simulation, the pCO2 products reflect
the global mean and the seasonal cycle relatively well, while
the decadal variability may be overestimated (Gloege et al.,
2021). An overestimation of the decadal trend, as suggested
by Hauck et al. (2023b), could explain the high estimates
of the pCO2 products for the present-day global mean CO2
flux. In contrast, for the North Atlantic, it was argued that
pCO2 is comparatively well constrained by observations in
the last decade but not in the 1980s, which has an erroneous
influence on the long-term trend (Pérez et al., 2024).

The effects of data assimilation on the CO2 flux are most
pronounced in the Southern Ocean STSSSO and SPSSSO in
winter. Verdy and Mazloff (2017) also found the largest ef-
fects of assimilation on the CO2 flux in this region. Although
the region is of crucial importance for the global ocean car-

bon sink, it also has the greatest uncertainty due to the lack
of ship-based winter observations (Friedlingstein et al., 2023;
Hauck et al., 2020). In the last decade, the number of winter
observations has increased due to the introduction of biogeo-
chemical Argo floats (Johnson et al., 2017; Williams et al.,
2017), although the float-based pCO2 derived from pH mea-
surements and estimated alkalinity is subject to higher un-
certainty compared to direct pCO2 measurements (Williams
et al., 2017; Bakker et al., 2016). Machine learning ap-
proaches incorporating BGC Argo float observations suggest
a stronger winter outgassing around Antarctica, particularly
south of 50° S in the SPSSSO and ICESO biomes, for 2015–
2017 (Bushinsky et al., 2019; Gray et al., 2018). This re-
sults in a lower estimate of annual Southern Ocean CO2 up-
take in the float products. One suggestion in the literature is
that model inadequacies in the representation of mixing and
upwelling in the Southern Ocean might cause the discrep-
ancy between float products and models (Gray et al., 2018).
However, improvements in the modeled ocean physics and
changes in mixing through data assimilation do not lead to
closer agreement between the FESOM2.1-REcoM3 estimate
and the float products (comparison of FESOM2.1-REcoM3,
float products, and B-SOSE in Fig. A14). In contrast, ASML
shows even weaker winter outgassing and stronger sum-
mer uptake south of 50° S than FREE, which brings the
FESOM2.1-REcoM3 estimate further away from the float
products. However, ASML is brought close to B-SOSE in
terms of winter outgassing in the Antarctic polar ocean south
of 60° S and winter uptake in the STSSSO around 40° S. Ad-
ditionally, airborne CO2 flux estimates and direct pCO2 mea-
surements stemming from a sail drone have questioned the
estimates of winter outgassing based on the BGC floats, at-
tributing the high pCO2 values either to possible biases in the
floats’ measuring devices or to anomalously high pCO2 in
the years 2015–2016 (Long et al., 2021; Sutton et al., 2021).

5 Conclusion

We apply data assimilation of temperature and salinity into
a global ocean–biogeochemical model to improve the phys-
ical state for the years 2010–2020. The simulation is then
assessed with regard to the effects on the biogeochemical
variables. The experiments show that the effect of data as-
similation (DA) on biogeochemical variables is mostly re-
lated to temperature changes. While the air–sea CO2 flux and
pCO2 are directly affected by sea surface temperature, the
DA also induces indirect changes to pCO2 through dissolved
inorganic carbon (DIC) and alkalinity. Globally integrated,
these are more relevant for pCO2 than the direct tempera-
ture effect. However, which of these factors has a dominant
effect on pCO2 varies locally. The assimilation leads to re-
gional shifts in areas of CO2 outgassing and uptake. Local
effects on the air–sea CO2 flux are particularly large in dy-
namic regions such as the North Atlantic Current and near
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the Subantarctic Front, whose pathways are challenging for
the model to resolve without DA. The largest effect on the
air–sea CO2 flux occurs in the Southern Ocean during win-
ter. In the simulation with assimilation, the uptake south of
50° S is increased due to shallower mixing and surface cool-
ing, and the uptake northward of that (40–50° S) is weak-
ened. In this area of the ocean, the uncertainty in current es-
timates of CO2 fluxes is particularly high. Overall, the un-
certainty inherent to the biogeochemical model appears to be
larger than the uncertainties induced through physical biases
in the free-running model. Locally, the changes in surface
pCO2, chlorophyll, alkalinity, and DIC caused by the assim-
ilation range between about 15 % and 30 % of the mean abso-
lute model–observation difference. However, local improve-
ments in one variable do not necessarily come along with im-
provements across other observed biogeochemical variables.
Therefore, globally, physics DA does not generally improve
the difference between the model and the observations. In
total, the effect of physics DA on the global ocean carbon
uptake at 0.05 Pg C yr−1 is small compared to the spread be-
tween previous estimates of models, pCO2 products, and
other DA estimates. While the assimilation of temperature
and salinity improves the representation of these two and also
of mixed-layer depth, sea-ice concentration, and horizontal
near-surface velocities, possible errors in the vertical veloc-
ities and overturning circulation are not eliminated. Further
biogeochemical variables are only indirectly affected. To this
end, the additional assimilation of biogeochemical observa-
tions is an obvious next step to reduce the uncertainty stem-
ming from the ecosystem model and to improve the model–
observation differences for biogeochemical variables.

Appendix A

Table A1. List of tracers in REcoM3

Tracers in REcoM3

Dissolved inorganic nitrogen and carbon (DIN, DIC)

Dissolved organic nitrogen and carbon (DON, DOC)

Alkalinity

Oxygen

Iron

Silicate

Intracellular concentrations of nitrogen, carbon, chlorophyll,
and calcium in small phytoplankton (PhyN, PhyC, PhyChl,
PhyCalc)

Intracellular concentrations of nitrogen, carbon, chlorophyll,
and silicate in diatoms (DiaN, DiaC, DiaChl, DiaSi)

Intracellular concentrations of nitrogen and carbon in each of
two zooplankton groups (HetN, HetC, Zoo2N, Zoo2C)

Two size classes of detritus for nitrogen, carbon, silicate, and
calcium (DetN, DetC, DetSi, DetCalc; DetZ2N, DetZ2C,
DetZ2Si, DetZ2Calc)

Figure A1. Ensemble standard deviation of monthly air–sea CO2
flux in the year 2020 in (a) FREE and (b) ASML.
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Figure A2. North Atlantic surface velocities: (a) time-mean in ASML and (b) difference ASML−FREE.

Figure A3. Time-mean sea surface (a) temperature and (b) salinity in ASML.

Figure A4. Zonally averaged time-mean (a) temperature and (b) salinity in ASML.
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Figure A5. September mean Antarctic sea-ice concentration in
ASML.

Figure A6. Mixed-layer depth (a, b) in FREE and (c, d) ASML
in the year 2020, (e, f) the profile-based climatology v2023 of
de Boyer Montégut et al. (2004), and (g, h) the improvement
through DA relative to the climatology. On the left: time-mean
mixed layer. On the right: maximum of monthly mean mixed layer.
For FREE and ASML (a–d), the mean absolute difference to the
climatology is given in the bottom-left corner.

Figure A7. Near-surface velocities (a, b) in FREE and (c, d) ASML
for the period 2010–2020, (e, f) the climatology from drifter ob-
servations of Laurindo et al. (2017a), and (g, h) the improvement
through DA relative to the climatology. On the left: zonal veloci-
ties. On the right: meridional velocities. For FREE and ASML (a–
d), the mean absolute difference to the climatology is given in the
bottom-left corner.

https://doi.org/10.5194/os-21-437-2025 Ocean Sci., 21, 437–471, 2025



460 F. Bunsen et al.: Physics assimilation to assess the ocean carbon sink

Figure A8. Global meridional overturning in (a) FREE and (b) ASML and (c) the difference ASML−FREE.

Figure A9. The net difference ASML−FREE of surface pCO2 by latitude (panel (a), blue line) and the offline-approximated effects causing
that pCO2 difference for the period 2010–2020. Thermal effect (panel (a), red line) and non-thermal effect calculated, firstly as the residual,
i.e., net-minus-thermal (panels (a) and (b), dotted light-green lines), and secondly as the sum of alkalinity and DIC effects (panels (a) and
(b), solid light-green lines), and effects of alkalinity and DIC individually (panel (b), orange and dark-green lines). The shaded areas in the
background indicate the zonal extent of defined biomes in the Southern Ocean: ICESO in light blue, SPSSSO in blue, and STSSSO in pink.
Colors blend where the regions overlap.
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Figure A10. Southern Ocean time-mean sea surface (a) temperature, (b) salinity, (c) DIC, and (d) alkalinity in ASML.

Figure A11. The difference ASML−FREE of source and sink terms for the ocean’s DIC and alkalinity content integrated over 0–190 m in
the Southern Ocean in the year 2020. Transport terms include advection and diffusion of DIC and alkalinity. Biological terms for DIC are the
sum of photosynthesis, respiration, remineralization of dissolved organic carbon, and formation and dissolution of calcite. Biological terms
for alkalinity are the sum of nitrogen assimilation and remineralization and the formation and dissolution of calcite.
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Figure A12. Linear offline estimate of the dominance of the thermal versus the non-thermal effect through the assimilation of pCO2 in the
Southern Ocean and North Atlantic for the period 2010–2020.

Figure A13. The difference ASML−FREE of source and sink terms for the ocean’s (a) DIC and (b) alkalinity content integrated over
0–190 m per 1° latitude in the year 2020. Transport terms include advection and diffusion of DIC and alkalinity. Meridional transport is
averaged across bins of 5° latitude. In panel (b), vertical and horizontal transport are summed up for readability. Biological terms for DIC are
the sum of photosynthesis, respiration, remineralization of dissolved organic carbon, and the formation and dissolution of calcite. Biological
terms for alkalinity are the sum of nitrogen assimilation and remineralization and the formation and dissolution of calcite.

Figure A14. Zonally averaged winter (JJA) air–sea CO2 flux (negative: into the ocean) in FREE, ASML, and previous estimates (Hauck
et al., 2023a; Verdy and Mazloff, 2017).
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Figure A15. North Atlantic time-mean sea surface (a) temperature, (b) salinity, (c) DIC, and (d) alkalinity in ASML.

Figure A16. The difference ASML−FREE of source and sink terms for the ocean’s DIC and alkalinity content integrated over 0–190 m
in the North Atlantic in the year 2020. Transport terms include advection and diffusion of DIC and alkalinity. Biological terms for DIC are
the sum of photosynthesis, respiration, remineralization of dissolved organic carbon, and the formation and dissolution of calcite. Biological
terms for alkalinity are the sum of nitrogen assimilation and remineralization and the formation and dissolution of calcite.
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Figure A17. Zonally averaged DIC: (a) time-mean in ASML, (b) difference ASML−FREE, (c) difference FREE−OBS based on the
GLODAP climatology (Lauvset et al., 2016), and (d) improvement respective to GLODAP.

Figure A18. Surface velocities in the Southern Ocean, (a) time-
mean in ASML, and (b) difference ASML−FREE.

Code and data availability. The code used to perform the
free simulation and the data assimilation is available at
https://doi.org/10.5281/zenodo.11495274 (Bunsen, 2024a).
This code archive additionally contains Jupyter Notebooks to
produce the article figures from the model output. The processed
model output data underlying the figures of this article are
available at https://doi.org/10.5281/zenodo.11495081 (Bunsen,
2024b). The datasets used for data assimilation, model forcing,
and evaluation were retrieved from the following sources: sea
surface temperature from https://doi.org/10.48670/moi-00165
(CMEMS, 2023; Good et al., 2020), sea surface salinity from
https://doi.org/10.5285/5920a2c77e3c45339477acd31ce62c3c
(Boutin et al., 2021), temperature and salinity profiles
from https://www.metoffice.gov.uk/hadobs/en4/ (Met Of-
fice, 2023; Good et al., 2013), sea-ice concentration from
https://doi.org/10.15770/EUM_SAF_OSI_0015 (EUMETSAT,
2022), mixed layer depth from https://doi.org/10.17882/91774
(de Boyer Montégut, 2023; de Boyer Montégut et al., 2004),
surface ocean velocities from https://doi.org/10.7266/N7SJ1HN5
(Laurindo et al., 2017b, a), atmospheric forcing fields from
https://doi.org/10.22033/ESGF/input4MIPs.2205 (Tsujino
et al., 2018b, a), atmospheric CO2 mixing ratios from
https://doi.org/10.18160/gcp-2023 (Global Carbon Project,
2023; Friedlingstein et al., 2023), air–sea CO2 flux from
https://doi.org/10.5281/zenodo.7990823 (Müller, 2023; DeVries
et al., 2023), pCO2 from https://doi.org/10.25921/r7xa-bt92
(Bakker et al., 2023, 2016), DIC and alkalinity from
https://doi.org/10.3334/cdiac/otg.ndp093_glodapv2 (Lauvset et al.,
2023a, 2016) and https://doi.org/10.25921/zyrq-ht66 (Lauvset et
al., 2023b, 2024; Olsen et al., 2016), surface chlorophyll from https:
//doi.org/10.5285/1dbe7a109c0244aaad713e078fd3059a (Sathyen-
dranath et al., 2021), and Southern Ocean surface chlorophyll from
https://catalogue-imos.aodn.org.au/geonetwork/srv/eng/catalog.
search#/metadata/10fcb776-d331-4a04-ac1f-4a48fa050385
(Johnson et al., 2014a, 2013) and https://catalogue-imos.
aodn.org.au/geonetwork/srv/eng/catalog.search#/metadata/
ce859887-bdf0-4eb0-acf2-80d38af4c85c (Johnson et al.,
2014b, 2013).
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