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Abstract. Understanding how changes in Atlantic merid-
ional heat transport (MHT) and the Earth’s climate relate
to one another is crucial to our ability to predict the fu-
ture climate response to anthropogenic forcing. Attaining
this understanding requires continuous and accurate records
of MHT across the whole Atlantic. While such records can
be obtained through direct ocean observing systems, these
systems are expensive to install and maintain, and thus, in
practice, records of MHT derived in this way are restricted
to a few latitudes. An alternative approach, based on hydro-
graphic and satellite components of the global ocean observ-
ing system, consists of inferring heat transport convergence
as a residual from the difference between ocean heat con-
tent (OHC) changes and surface heat flux. In its simplest
form, this approach derives the OHC from hydrographic ob-
servations alone; however, these observations are spatially
sparse and unevenly distributed, which can introduce signifi-
cant errors and biases into the MHT estimates. Here, we com-
bine data from hydrography, satellite altimetry, and satellite
gravimetry through joint spatiotemporal modelling to gener-
ate probabilistic estimates of MHT for the period 2004–2020
at 3-month resolution across 12 latitudinal sections of the At-
lantic Ocean between 65° N and 35° S. Our approach lever-
ages the higher spatial sampling of the satellite observations
to compensate for the sparseness and irregular distribution of
the hydrographic data, leading to significantly improved esti-
mates of MHT compared to those derived from hydrographic
data alone. The fusion of the various datasets is done us-
ing rigorous Bayesian statistical methods that account for the
spatial resolution mismatch between datasets and ensure an
adequate representation and propagation of uncertainty. Our

estimates of MHT at 26° N agree remarkably well with es-
timates based on direct ocean observations from the RAPID
array, both in magnitude and phase of the variability, with
a correlation of 0.68 for quarterly (3-monthly) time series
and 0.81 after applying a yearly running mean. For the pe-
riod 2004–2017, the correlation increases to 0.78 and 0.92,
respectively. The time-mean MHT at 26° N is also captured
by our approach, with a value of 1.14 PW [1.01, 1.27] (5 %–
95 % credible interval). Estimates of MHT at other latitudes
are also consistent with what we expect based on earlier esti-
mates as well as on our current understanding of MHT in the
Atlantic Ocean.

1 Introduction

Changes in the Earth’s climate since the Industrial Revolu-
tion are primarily a result of the excess heat trapped in the
climate system by the accumulation of greenhouse gases,
leading to global warming. A substantial portion of this extra
heat, over 90 %, has been absorbed by the world’s oceans
(Meyssignac et al., 2019; von Schuckmann et al., 2020),
temporarily slowing the warming of the atmosphere, albeit
at the cost of higher sea levels, accelerated ice sheet melt-
ing, and harm to marine ecosystems. However, the ocean’s
role extends beyond being merely a passive thermal buffer
against global warming. It also plays a central role in medi-
ating the climate system response to greenhouse gas emis-
sions by helping to shape – through heat redistribution – the
pattern of sea-surface warming, on which climate feedback
processes depend (Andrews et al., 2018; Dong et al., 2019).
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Ocean currents also play a crucial part in regulating the re-
gional climate by transporting heat poleward from the tropics
and then releasing it into the atmosphere at higher latitudes
(Woollings et al., 2012; Buckley and Marshall, 2016; Zhang
et al., 2019; Yin and Zhao, 2021). In the Atlantic Ocean, heat
is transported northward throughout the basin by a vast sys-
tem of ocean currents – the Atlantic meridional overturning
circulation (AMOC) (Frajka-Williams et al., 2019) – carry-
ing warm surface waters northward and cold waters south-
ward at deeper levels. Importantly, the AMOC is capable of
storing heat (and carbon dioxide) deep in the ocean, where it
can remain sequestered for centuries before resurfacing thou-
sands of kilometres away. This unique capability endows the
AMOC with the potential to affect the global climate over
long timescales.

Extensive research efforts in recent decades have been
dedicated to monitoring the AMOC and meridional heat
transport (MHT) through various multi-observational ap-
proaches (Frajka-Williams et al., 2019; Li et al., 2021a),
leading to significant progress in our understanding of these
two critical climate-relevant factors (Srokosz et al., 2021).
Nevertheless, despite this progress, significant knowledge
gaps persist, such as questions about the latitudinal coher-
ence of the AMOC (and MHT) and whether it is weakening
(Jackson et al., 2022; Piecuch and Beal, 2023; Volkov et al.,
2024), among other major concerns. Filling these remaining
gaps is crucial to advancing our understanding of future cli-
mate change. However, ongoing efforts to achieve this are
faced with challenges related to limitations in observing ca-
pability as well as in the methods currently being used for
combining noisy and sparse data from multiple sources. This
study is particularly motivated by those limitations and fo-
cuses, specifically in the context of quantifying MHT.

Past changes in Atlantic MHT have been estimated mainly
through two different approaches. The first approach, em-
ployed by both the RAPID/Meridional Overturning Circu-
lation and Heat-flux Array/Western Boundary Time Series
(hereafter RAPID) programme (Cunningham et al., 2007;
Johns et al., 2011; McCarthy et al., 2015; Johns et al., 2023a)
and the Overturning in the Subpolar North Atlantic Program
(OSNAP) (Lozier et al., 2019; Li et al., 2021a), calculates
MHT directly by integrating the product of the temperature
and cross-sectional velocity across designated transbasin sec-
tions (26° N in RAPID and 50–60° N in OSNAP). Tempera-
tures and velocities are estimated based on hydrographic data
from transport mooring arrays, Argo profiling floats, and, in
the case of the OSNAP section, ocean gliders. Heat transport
through the Florida Straits in the RAPID section is estimated
based on measurements from a submarine cable (Volkov et
al., 2024). This approach is widely regarded as the gold stan-
dard for monitoring both MHT and the AMOC, but it still
comes with limitations. In particular, such an observing ar-
ray system is time-consuming and expensive to install and
maintain, making it impractical for ocean-wide monitoring.
Consequently, estimates of MHT based on this approach are

restricted to these two latitudes, and thus they are not suffi-
ciently latitudinally dense to characterize the spatiotemporal
structure of the MHT.

The second approach, which is the focus of this study, at-
tempts to fill these existing latitudinal gaps in observing. It
consists of inferring ocean heat transport convergence (HTC)
as a residual from the imbalance between changes in ocean
heat content (OHC) and surface heat flux (HF). Here, we
shall concern ourselves mainly with the estimation of OHC
changes and will rely on state-of-the-art estimates of HF de-
rived elsewhere in the literature. However, it is important to
emphasize that both components of the energy balance are
crucial to the success of this approach in their own right, re-
quiring their own thorough consideration. Most past studies
derive OHC changes from gridded temperature (T ) and salin-
ity (S) datasets produced through objective analysis of hydro-
graphic profiles from various instruments (e.g. Argo floats,
bathythermographs, bottles) (Roberts et al., 2017; Cheng et
al., 2021; von Schuckmann et al., 2020). While such profiles
have almost ocean-wide coverage, they are spatially sparse
(including the Argo era), almost non-existent below 2000 m,
irregularly spaced, noisy, and highly heterogenous across in-
struments in terms of accuracy. These data issues can in-
troduce significant biases and uncertainties into the gridded
T /S products and, by propagation, into the estimates of OHC
changes, especially on regional scales, restricting the accu-
racy with which we can estimate MHT through this heat-
budget approach. Some studies use T and S data from ocean
reanalyses as an alternative to observations (Trenberth and
Fasullo, 2017; Trenberth et al., 2019), but such reanalyses
have biases and uncertainties of their own and crucially de-
pend on the availability of hydrographic data for assimila-
tion; thus, they face similar issues to in situ observations.

A promising solution to the issues discussed above, with a
view to improving the accuracy of OHC estimates, is to com-
bine hydrography-derived thermosteric (TS) and halosteric
(HS) height anomalies with sea level (SL) from satellite
altimetry and ocean mass (OM) from satellite gravimetry,
leveraging the relatively good spatial sampling of the satel-
lite observations. The key idea is to exploit the fact that
TS is directly linked to OHC and that SL is related to TS
through SL=TS+HS+OM. A special case of this ap-
proach arises when the focus is on estimating global aver-
age OHC because, on global scales, halosteric effects are
negligible (Lowe and Gregory, 2006; Gregory et al., 2019),
and thus TS (and OHC) can be derived from satellite data
alone as the residual of SL and OM (Dieng et al., 2015;
Meyssignac et al., 2019; Hakuba et al., 2021; Marti et al.,
2022). However, the estimation of MHT requires knowledge
of regional OHC changes, and on such scales, halosteric ef-
fects can no longer be ignored (Maes, 1998; Wang et al.,
2017) and need to be estimated from hydrographic data. In
this case, a straightforward combination of the satellite and
hydrographic data is direct pointwise subtraction, where the
operation TS=SL−OM−HS is performed independently
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at each grid point. This simple data-merging approach has
already shown improvements over estimates of MHT based
solely on hydrographic data (Meyssignac et al., 2024), but it
lacks a formal statistical framework to address the complex-
ities of the three datasets. These complexities include data
error structures, spatial dependencies, and resolution mis-
matches, among others. For example, the three datasets differ
in spatial resolution, making them inherently incompatible
without adjustments – a challenge known as the change of
support problem (Gelfand et al., 2001; Gotway and Young,
2002). Moreover, each dataset has unique and complex error
structures in both time and space. Successfully integrating
the three datasets requires accounting for both the resolution
mismatch and the error structures within a statistically coher-
ent framework that models all datasets and their associated
uncertainties simultaneously and comprehensively.

One of the first attempts to quantify MHT through joint
modelling of hydrographic and satellite data was presented in
the work of Kelly et al. (2014, 2016). They estimated HTCs
by evaluating the heat budget over latitudinally bounded re-
gions of the Atlantic Ocean based on data from hydrography,
altimetry, and gravimetry together with reanalysis-derived
surface heat fluxes. They used a two-step procedure wherein
they first calculated spatial averages over each of the re-
gions independently for each dataset and then assessed the
heat budget through joint modelling of the spatially averaged
time series. While conceptually simple, this procedure has
several limitations. By first calculating spatial averages sep-
arately for each variable, the procedure ignores any spatial
dependencies between the variables and loses the opportu-
nity to leverage cross-variable spatial information, both of
which can lead to suboptimal estimates of spatially averaged
values. Also, such a modelling choice makes the estimation
of uncertainties in the spatially averaged values challenging,
often requiring ad hoc or approximate methods.

Here, we present a Bayesian hierarchical framework (see
Cressie and Wikle, 2011, for a general description of spa-
tiotemporal hierarchical models) for estimating MHT that
combines data from hydrography, altimetry, and gravimetry
in a statistically rigorous way. Our approach extends that of
Kelly et al. (2016) by accounting for spatiotemporal depen-
dencies between processes (i.e. TS, HS, and OM) and en-
abling information sharing across the various datasets. This
is achieved by simultaneous spatiotemporal modelling of the
observational fields and their error structures, in contrast to
time series modelling of spatially averaged values as done in
Kelly et al. (2016). The idea of combining multi-source cli-
matic data through spatiotemporal Bayesian modelling has
been successfully used before, for example, to assess Antarc-
tic ice mass changes (Zammit-Mangion et al., 2014, 2015)
and sea-level trends (Piecuch et al., 2018; Calafat et al.,
2022), but, to our knowledge, has not been applied to MHT
and merging hydrography, altimetry, and gravimetry. Our ap-
proach overcomes the limitations of hydrography-only-based
analyses and addresses the issues associated with combin-

Figure 1. Latitude lines across which MHT is estimated using a
spatiotemporal BHM. The coloured areas denote the regions over
which the heat budgets are evaluated. Both the MHT across each
latitude and the HTC in each budget region have been labelled with
numbers, and this is the notation that we follow in Sect. 5.1.

ing data from disparate sources, leading to more robust and
accurate estimates of both OHC and MHT. Importantly, by
considering error structures jointly, the hierarchical approach
provides a coherent way to propagate uncertainty in the data,
model, and parameters through the analysis to the estimates
of the MHT. We use our Bayesian hierarchical model (BHM)
to produce observation-based probabilistic estimates of non-
seasonal quarterly (3-month-averaged) MHT for the period
2004–2020 across 12 latitudinal sections over the Atlantic
Ocean between 65° N and 35° S. The sections are shown in
Fig. 1. Some of the sections have been chosen arbitrarily to
cover most of the Atlantic Ocean, while others have been se-
lected because MHT or AMOC volume transport estimates
from direct ocean observations are available or will be in the
future.

2 Data

2.1 Hydrography-derived TS and HS heights

TS and HS heights are calculated using monthly gridded
fields of T and S from the ISAS20 product (Gaillard et al.,
2016; Kolodziejczyk et al, 2023; available at https://www.
seanoe.org/data/00412/52367/, last access: 15 July 2021),
which provides data on a 1/2°×1/2° grid for the period Jan-
uary 2002 to December 2020 and is based solely on Argo
profiles. ISAS20 also provides uncertainty estimates for the
objectively analysed T and S fields. While Argo floats can go
as deep as 2000 m, only about 58 % of the Atlantic profiles
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have data below 1900 m on average over the period 2004–
2020 (lower than that in the early years of that period and
higher in the most recent years). In contrast, about 72 % of
the profiles reach, on average, a depth of at least 1500 m (see
also Wong et al., 2020). For this reason, we decide to use
only T and S data from the surface to 1500 m in the calcu-
lation of TS and HS (the contribution from below 1500 m is
accounted for by inflating the uncertainty in the TS and HS
data, as explained later). It is also important to mention that
we exclude the Gulf of Mexico and the Caribbean Sea in the
evaluation of the heat budgets (Fig. 1), as there appears to be
a problem with the hydrographic data from ISAS20 in those
regions. We have tested the impact of excluding data in these
regions on our estimates of MHT and found it to be minimal.

TS and HS changes reflect the expansion and contraction
of the water column induced by T and S variations, respec-
tively. Assuming that such variations in T and S are small
relative to the time-mean value, TS and HS anomalies can be
calculated at each horizontal grid point (latitude–longitude)
and for each month as follows (Gill and Niiler, 1973):

TS=

0∫
−1500

αT ′dz , (1)

HS=−

0∫
−1500

βS′dz , (2)

where α and β are the coefficients of thermal expansion and
haline contraction, respectively, and the prime denotes devi-
ations from the time-mean fields (i.e. anomalies). The inte-
gration is carried out over the vertical coordinate z.

To obtain uncertainty estimates for TS and HS, we use
Monte Carlo simulation to propagate uncertainties in T and
S through Eqs. (1) and (2). This procedure involves first gen-
erating random profiles of T and S at each horizontal grid
point and for each month under the assumption that the er-
rors provided for the gridded data are normally distributed,
where we allow for vertically correlated errors. Mathemati-
cally, the procedure would be expressed as follows:

T i ∼N (µT ,6T ) , (3)

Si ∼N (µS,6S) , (4)

where the superscript “i” denotes a random profile (i =
1, . . . , 100); µT and µS represent the means of the normal
distributions, which are set equal to the original gridded T
and S values; and 6T and 6S are covariance matrices that
encode the magnitude of the errors and their dependency
in the vertical direction. The covariance matrices are spec-
ified by assuming an exponential model of the form 6nm =

σnσme
−dnm/l , where dnm is the distance between the nth and

mth vertical levels, σn and σm are the error standard devia-
tions provided by the gridded products at the corresponding
levels, and l is a vertical decorrelation length scale. We set l

equal to 100 m, based on the decorrelation length scales typi-
cally used in the objective analysis of Argo data (Good et al.,
2013).

Then, for each random profile T i and Si , we calculate
the corresponding TS and HS values by evaluating Eqs. (1)
and (2). This yields 100 random samples of TS and HS at
each grid point and for each month. The standard deviations
of the random samples provide an estimate of the uncertain-
ties associated with the TS and HS fields.

The uncertainty estimates described above account only
for uncertainty in the month-to-month variability. However,
we also want to account for uncertainty in the long-term
trend. To quantify such uncertainty, we use T and S data
from a second dataset, i.e. the EN4 product (Good et al.,
2013; available at https://www.metoffice.gov.uk/hadobs/en4,
last access: 16 February 2023), and derive trend uncertainty
estimates from the spread across the ISAS20 and EN4 prod-
ucts (see Sect. 2.5 for more details).

Finally, we note that the contribution of waters below
1500 m to TS and HS will be inferred in the BHM by ex-
ploiting the relationship SL=TS+HS+OM and the fact
that the SL from altimetry reflects the full-depth TS and HS
contributions. To enable this, we inflate the uncertainty in the
ISAS20-derived TS and HS by 20 %, allowing for a deep-
ocean (below 1500 m) TS and HS contribution.

2.2 SL from satellite altimetry

The altimetry sea-level data are from the gridded sea-surface
height product (based on a stable two-satellite constellation)
(SEALEVEL_GLO_PHY_CLIMATE_L4_MY_008_057)
produced and distributed by the Copernicus Climate
Change Service (C3S). These data are available at
https://doi.org/10.48670/moi-00145 (Copernicus Ma-
rine Service, 2024) and are provided as daily fields on a
1/4°× 1/4° near-global grid. For this study, C3S refers
to the period from January 2004 to December 2020. The
C3S data are provided with all standard corrections applied,
including corrections for tropospheric (wet and dry) and
ionospheric path delays, sea state bias, tides (solid earth,
ocean, loading, and pole), and barotropic atmospheric
effects (wind and atmospheric pressure for periods< 20 d
and inverse barometer effects for longer periods). We also
adjust the sea-level fields for glacial isostatic adjustment
(GIA) using the estimates derived by Frederikse et al. (2020)
and for deformation effects on the sea floor (+0.1 mm yr−1,
spatially uniform) due to contemporary mass changes of the
Greenland and Antarctic ice sheets, glaciers, and terrestrial
water storage (Frederikse et al., 2017).

The altimetry data are affected by several sources of un-
certainty (Prandi et al., 2020, 2021), including mapping
errors, high-frequency errors arising from both orbit de-
termination and any of the geophysical corrections men-
tioned above, low-frequency errors associated with the wet
tropospheric correction, drift errors from orbit determina-
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tion, inter-mission biases (from Jason-1 to Jason-2 and from
Jason-2 to Jason-3), and errors from the GIA. We account for
all these error source contributions. The mapping errors are
provided by C3S as part of the gridded product, whereas esti-
mates for the other error sources are from Prandi et al. (2021)
(available at https://www.seanoe.org/data/00637/74862/, last
access: 23 March 2023). Details of how these uncertainties
are taken into account in the data fusion analysis are given in
Sect. 3.

2.3 OM from satellite gravimetry

The OM data are based on measurements collected by
the Gravity Recovery and Climate Experiment (GRACE).
Here, we use the global time-variable gravity mascon
solution (RL06v2.0) from the NASA Goddard Space
Flight Center (GSFC) (Loomis et al., 2019), available at
https://earth.gsfc.nasa.gov/geo/data/grace-mascons (last
access: 1 December 2023). The data span the period from
April 2003 to December 2021 and are provided in the form
of monthly mascons on an equal-area 1°× 1° (at the Equa-
tor) grid. Non-tidal ocean bottom pressure variations (GAD
product) with their global ocean mean removed have been
restored, and a GIA correction has been applied, ensuring
that the resulting OM data are comparable to the residual
of altimetric SL and hydrography-derived TS+HS. The
product supplies uncertainty estimates at each mascon, ac-
counting both for serially uncorrelated errors due to leakage
and stochastic noise and for leakage trends. In addition, we
account for errors in the OM long-term trend due to the GIA
correction, geocentre motion, and Earth oblateness (i.e. the
degree 2 order 0 zonal spherical harmonic coefficient). Such
errors are estimated based on the ensemble of global GRACE
solutions from Blazquez et al. (2018), which is available
at https://www.aviso.altimetry.fr/en/data/products/ocean-
indicators-products/barystatic-and-manometric-sea-level-
changes-from-satellite-geodesy.html (last access: 13 June
2025).

2.4 Surface heat flux

The net surface HF is calculated by combining top-of-the-
atmosphere (TOA) radiative flux with the divergence of
the vertical integral of the total energy flux and the ten-
dency of the vertical integral of the total energy as de-
scribed in Mayer et al. (2022). The TOA flux has been
obtained from the Clouds and the Earth’s Radiant En-
ergy System–Energy Balanced and Filled (CERES-EBAF)
Edition-4.2.1 monthly data product (Loeb et al., 2018; avail-
able at https://ceres.larc.nasa.gov/data, last access: 12 June
2025), whereas the vertically integrated atmospheric en-
ergy quantities are those of Mayer et al. (2021, 2022) and
have been obtained from the Copernicus Climate Data Store
(https://doi.org/10.24381/cds.c2451f6b, Mayer et al., 2021).
Because neither of these datasets provides uncertainty es-

timates, we assess uncertainty in surface HF by compar-
ing these estimates with HF derived from two reanalysis
datasets: ERA5 (Hersbach et al., 2023; available at https:
//cds.climate.copernicus.eu, last access: 4 December 2023)
and NCEP/NCAR (Kalnay et al., 1996; available at https://
psl.noaa.gov/data/reanalysis/reanalysis.shtml, last access: 11
December 2022). The reanalysis-based HF across the air–sea
interface is calculated as the sum of radiative and turbulent
fluxes. While variability in HF is broadly consistent across
the three datasets, differences in their time-mean HF values
can be significant. Therefore, we estimate uncertainty sepa-
rately for HF variability and the time-mean HF. Uncertainty
in HF variability is calculated as the standard deviation (SD)
of the HF anomalies (relative to the respective time means)
across the three products at each time step, whereas uncer-
tainty in the time-mean HF is computed as the SD of the
long-term means from the three datasets. These SDs are cal-
culated based on the spatially averaged HF time series over
the budget regions (see Fig. 1). Note that the reanalysis-based
HF data are used only for estimating uncertainty and are not
directly incorporated into the BHM.

2.5 Resolving the spatial resolution mismatch

Here, we aim to combine three datasets that are incompati-
ble in terms of spatial resolution. Both the hydrographic data
and the GRACE data are provided on relatively fine grids,
but their effective spatial resolution is much lower, as these
data do not resolve features at the scale of the grid spacing.
In particular, monthly GRACE data can be regarded as spa-
tial averages over a ∼ 300 km footprint (Tapley et al., 2019).
The gridded hydrographic product is based on Argo profiles.
Although such profiles represent point-level measurements,
they are sparsely collected over the ocean, with an average
spatial separation of about 3° (in any given month). This
separation sets a practical limit to the smallest features that
can be resolved (on average) by the Argo data. Additionally,
the Argo-derived gridded data incorporate some degree of
spatial smoothing due to the interpolation process, which is
largely determined by the decorrelation length scales used by
the gridding methods. Such length scales are typically on the
order of 300 km (Good et al., 2013), except within a few de-
grees of the Equator, where they are significantly larger. The
effective resolution of the gridded altimetry data is higher
than that of the GRACE and hydrographic data, although it
varies with latitude. The decorrelation length scales used in
the mapping of the altimetry data, which we take as a rough
measure of spatial resolution, range from∼ 350 km in a low-
latitude band (±15° N) to ∼ 150 km poleward of this band
(Ballarotta et al., 2019). In considering ways of resolving the
resolution mismatch problem, it is important to remember
that, here, we aim to assess heat budgets over large ocean re-
gions, and this requires only spatial averages of the relevant
variables over such regions (i.e. we do not need point-level
estimates). In this context, the simplest solution to the spatial
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support problem is to aggregate each of the three datasets into
areal units (i.e. grid cells) of a size similar to the resolution of
the coarsest-resolution data. In this way, the aggregated data
will all have the same level of spatial resolution and can then
be combined using areal spatiotemporal modelling (Banerjee
et al., 2014). In this study, we adopt this approach.

We set the size of the target areal units to 3°× 3°, as this
aligns with the decorrelation length scales used in the map-
ping of the hydrographic data and with the resolution of the
GRACE data. For all three datasets, we aggregate the data
by averaging the original grid cells over the target areal units
through proportional area weighting (i.e. weights are com-
puted as the proportion of the target areal unit that lies within
each source grid cell).

The uncertainties in the aggregated data are computed by
propagating the source data uncertainties through the spatial
averaging process using standard error propagation formulae.
In particular, the error variance of the aggregated data at any
given target cell is calculated as

σ 2
=

n∑
i=1

w2
i σ

2
i +

n∑
i=1

n∑
j 6=i

wiwjρijσiσj , (5)

where wi is the weight assigned to the ith source grid cell
in the aggregation process, σi is the standard error of the
source data at the ith grid cell, and ρij is the error corre-
lation between the ith and j th source grid cells. Note that
the correlations ρij are not known exactly and thus somehow
need to be approximated. Here, we assume a spatial corre-
lation function of the form ρij = e

−dij /l , where dij is the
geodesic distance between the centroids of the ith and j th
source grid cells and l denotes a decorrelation length scale.
For the GRACE data, we assume that errors from all sources
are perfectly correlated in space. For the uncertainty in the
TS and HS variability, we set l = 300 km at latitudes pole-
ward of 5° and l = 600 km otherwise (based on the decorre-
lation length scales used in the mapping process). The uncer-
tainty in the TS and HS trends (see Sect. 2.1) is calculated
as |βISAS20−βEN4|/

√
2, where βISAS20 and βEN4 are, re-

spectively, the trend estimates from ISAS20 and EN4 derived
from the spatially averaged time series over each target areal
unit. Finally, for the altimetry data, we use different length
scales depending on the type of error (see Sect. 2.2). For the
interpolation errors, we set l = 150 km at latitudes poleward
of 15° and l = 350 km otherwise (based on the length scales
used in the original gridding of the data). The high-frequency
errors are assumed to be spatially uncorrelated. For the er-
rors associated with the wet tropospheric correction and the
GIA, we set l = 300 km. The drift errors and inter-mission bi-
ases are assumed to be perfectly correlated in space (over the
length scales on which the spatial aggregation takes place).

2.6 Considerations on data temporal resolution

Although the data described above are available at monthly
resolution, their effective temporal resolution is somewhat

lower due to the relatively low sampling rate of the observa-
tions on which the gridded products are based. For example,
most satellite altimeters have a repeat cycle that ranges from
10 d (e.g. Jason satellites) to 35 d (e.g. the Envisat satellite),
whereas GRACE has a repeat cycle of 30 d. Argo floats pro-
vide a vertical profile once every 10 d. In practice, this means
that the month-to-month variability in the gridded products
exhibits significant levels of noise. Such noise at high fre-
quencies can be greatly amplified by the time derivatives
involved in the calculation of MHT (the amplification fac-
tor is proportional to frequency) and, in turn, can corrupt
our estimates of MHT. To minimize this issue, we trade off
some temporal resolution for a significant reduction in noise
by converting the monthly data to 3-month averages (i.e. to
quarterly data: Jan-Feb-Mar, and so on). The temporal aver-
aging is performed after the spatial averaging into grid cells.

The uncertainties associated with the quarterly data are
calculated by propagating the uncertainties in the monthly
data using Eq. (5), where now the sub-indices i and j refer
to the ith and j th months, respectively. For the uncertainties
in TS and HS variability and for the high-frequency errors in
the GRACE and altimetry data (and the errors in the wet tro-
pospheric correction), we set wi = 1/3 and assume serially
uncorrelated errors (ρij = 0). In contrast, the leakage trends
as well as the errors due to the GIA correction, geocentre mo-
tion, and Earth oblateness in the GRACE data are, by defini-
tion, perfectly correlated in time, and thus such errors are not
reduced by the temporal averaging (their value remains the
same). Similarly, for altimetry, the drift errors, inter-mission
biases, and GIA errors are all modelled as a linear trend error
and thus are also perfectly correlated in time. The uncertain-
ties in the TS and HS trends are also perfectly correlated in
time.

3 Bayesian hierarchical framework

Here, we develop a Bayesian hierarchical framework that in-
tegrates observations from altimetry, GRACE, and hydrog-
raphy together with surface HF data to estimate HTC from
ocean heat budgets over a set of latitudinally bounded re-
gions (see Fig. 1). A schematic of the Bayesian model archi-
tecture is shown in Fig. 2. The model is composed of two
distinct but interconnected parts: one that models the spa-
tiotemporal evolution of the sea-level components (TS, HS,
and OM) based on the 3°× 3° areal units of quarterly (3-
month-averaged) observations from hydrography, altimetry,
and GRACE and another part that determines non-seasonal
quarterly HTC as the residual of OHC tendency (derived us-
ing estimates of TS from the first component of the model)
less surface HF over selected regions bounded by latitude
lines (Fig. 1). The heat budgets are evaluated over all regions
simultaneously, allowing for, but not enforcing, correlation
in HTC between regions. It is important to note that the two
parts described above are components of the same Bayesian
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model, i.e. we compute a single posterior distribution from
which we derive expectation values (means and quantiles)
for all the quantities of interest.

Our approach centres on the notion that the data, being ob-
served with error, can be regarded as the sum of a true latent
spatiotemporal process plus observation error. For example,
the GRACE data can be viewed as noisy observations of the
OM latent process, and similarly for all the other datasets.
Here, the term “process” refers to a stochastic process (i.e. a
collection of random variables indexed by either time, space,
or both), whereas the term “latent process” means that the
process is not directly measured but inferred from noisy ob-
servations. The aim is then to separate the various latent
processes (TS, HS, OM, and HTC) from the observational
noise through joint statistical modelling of all the available
data (i.e. hydrography, altimetry, GRACE, and surface HF).
By conducting joint modelling and accounting for spatial
dependencies, we allow for information exchange both be-
tween observational datasets and across locations, improving
the estimation of the true underlying process. The success
of this approach relies on the careful representation of un-
certainty, not the least because the model uses uncertainty
to decide which observations should have more influence.
Furthermore, we need to consider not only uncertainty as-
sociated with measurement noise but also uncertainty arising
from limited knowledge of the latent process as well as un-
certainty in unknown parameters of the BHM such as decor-
relation length scales and error variances. This problem can
be conveniently formulated within a Bayesian hierarchical
framework.

Here, we develop a BHM with three layers (each layer
takes the form of a probability model): (1) a data model that
describes the distribution of the observations (SL, TS, HS,
OM, and HF) conditional on the latent processes; (2) a pro-
cess model that describes the spatiotemporal evolution of the
latent processes conditional on a set of parameters; and (3) a
parameter model that describes the uncertainty in the model
parameters and encodes any prior information that we have
about the data and the processes. By modelling the latent pro-
cesses probabilistically as random fields, we account for the
fact that there are many plausible realizations of the underly-
ing processes consistent with the observational data, thereby
capturing uncertainty arising from limited knowledge of the
latent processes. In our BHM, each component of sea level
(i.e. TS, HS, and OM) is modelled as the sum of three con-
tributions, namely seasonal changes, variability, and a linear
trend. The non-seasonal HTC is modelled as the combina-
tion of variability, a linear trend, and an intercept. Next, we
describe each layer of the BHM, starting with the data layer.

3.1 Observation layer

Let B = {Bi |i = 1, . . . ,N} denote the set of 3°× 3° cells on
which the observations have been aggregated and zp,t (Bi)

denote an observation on the ith cell at time step t for p ∈ P ,

where P = {SL,TS,HS,OM}. The data layer of the BHM
for the sea-level observations can then be written as

zp,t (Bi)=yp,t (Bi)+ ap (Bi)+ bp (Bi) t + ep,t (Bi) ,

i = 1, . . ., N, t = 1, . . ., T , (6)

where yp,t (Bi) denote the true latent process of interest. The
term ap(Bi) represents data offsets, modelled as indepen-
dent and identically distributed (i.i.d.) normal random vari-
ables with variance of 1 m2, ap(Bi) N(0,1). These offsets
account for potential differences in vertical reference levels
across the various observational datasets used in the analysis
(hydrography, altimetry, and GRACE). The variables bp(Bi)

denote data error trends, modelled as i.i.d. normal random
variables, bp(Bi) N(0,γ 2

p (Bi)). These include orbit errors,
inter-mission biases, and GIA uncertainties in the altimetry
data; trend errors in the TS and HS data; and GIA, geocen-
tre motion, and Earth oblateness errors (as well as leakage
trends) in the GRACE data. Finally, ep,t (Bi) are assumed to
be serially and spatially uncorrelated observation errors, with
ep,t (Bi) N(0,σ 2

p,t (Bi)). The variances γ 2
p (Bi) and σ 2

p,t (Bi)

are specified based on the data uncertainties calculated as de-
scribed in Sect. 2.

Next, we define the data model for the surface HF data.
Let R = {Rj |j = 1, . . . ,M} denote the set of regions over
which the heat budgets are evaluated andQt (Rj ) be the non-
seasonal surface HF into the ocean at time t spatially aver-
aged over Rj . We express Qt (Rj ) as the sum of its time-
mean value, 〈Qt (Rj )〉, plus a fluctuating part, Q′t (Rj ), as
this allows us to model uncertainty in both components ex-
plicitly. With this, the observation layer for the HF data is
written as a heat budget:

Q′t
(
Rj
)
=H ′t

(
Rj
)
−U ′t

(
Rj
)
+ vt

(
Rj
)
, j = 1, . . ., M , (7)〈

Qt

(
Rj
)〉
=
〈
Ht
(
Rj
)
−Ut

(
Rj
)〉
+ q

(
Rj
)
, j = 1, . . ., M , (8)

where Ht (Rj ) is the non-seasonal OHC tendency spa-
tially averaged over Rj , Ut (Rj ) is the HTC through the
lateral boundaries of Rj , and vt (Rj ) and q(Rj ) are se-
rially and spatially uncorrelated observation errors, with
vt (Rj ) N(0,η2

t (Rj )) and q(Rj ) N(0,δ2(Rj )). The SDs
ηt (Rj ) and δ(Rj ) are set equal to the SDs of the HF calcu-
lated as described in Sect. 2.4. The prime ′ denotes deviation
with respect to the time mean.

3.2 Process layer

Here, we describe the process layer of the BHM (i.e. the term
yp,t in Eq. 6). Seasonal changes in the sea-level components
are modelled as

xSeas
p,t (Bi)= a1,p (Bi)cos(ωt)+ a2,p (Bi)sin(ωt) p ∈ P r {SL} ,

(9)

where ω is the angular velocity of the annual cycle and
ak,p(Bi), for k = 1, 2, are assumed to follow a spatial con-
ditional autoregressive (CAR) process (Cressie and Wikle,

https://doi.org/10.5194/os-21-2743-2025 Ocean Sci., 21, 2743–2762, 2025



2750 F. M. Calafat et al.: Estimates of Atlantic meridional heat transport from spatiotemporal fusion of Argo

Figure 2. Schematic of the Bayesian hierarchical framework used to estimate MHT. The direction of the arrows in the Bayesian diagram
reflects the flow of information in the generative process: from parameters/processes to observations.

2011):

ak,p (Bi)∼MVN
(

0,
(
IN −αa,pK

)−1
τ 2

a,pD
)
, (10)

where MVN denotes a multivariate normal distribution, IN is
the identity matrix of sizeN , αa,p is a parameter that controls
the degree of spatial autocorrelation (to be estimated), K is
the adjacency matrix (kii = 0; kij = 1 if Bi and Bj are neigh-
bours, and kij = 0 otherwise), τa,p is an SD parameter (to be
estimated), and D= diag(1/ni) is an N×N diagonal matrix
with ni equal to the number of neighbours of the ith grid cell.
Two cells are considered to be neighbours if the distance be-
tween their centroids is no larger than 7° (i.e. roughly 2 times
the size of the cells). CAR models are classes of Markov ran-
dom fields commonly used to describe spatial autocorrelation
in areally aggregated data.

The non-seasonal variability in TS, HS, and OM is mod-
elled as spatial fields that evolve through time according to a
first-order autoregressive moving average (ARMA) process.
Here, we note that the TS and HS components of sea level
tend to covary inversely. To capture this spatiotemporal in-
teraction between TS and HS, we use the method of core-
gionalization (Gelfand et al., 2004), which assumes that the
interaction is local. With this, the model for the non-seasonal
variability can be written as

xVar
p,t (Bi)= ρpx

Var
p,t−1 (Bi)+ θpmp,t−1 (Bi)+mp,t (Bi)

−ψmTS,t (Bi)1{HS}(p) p ∈ P r {SL} , (11)

where ρp and θp, for p ∈ P r {SL}, are spatially con-
stant coefficients that control, respectively, the degree of
temporal autocorrelation and past-noise dependence, ψ is

a positive parameter (to be estimated) that determines
the strength of the interaction between the TS and HS
fields, and mp,t (Bi) are CAR processes, with mp,t (Bi)∼

MVN(0, (IN −αm,pK)−1τ 2
m,pD). The factor 1A(x) is an in-

dicator function such that 1A(x)= 1 if x ∈ A and 1A(x)= 0
otherwise.

The linear trends in the latent sea-level processes are mod-
elled as spatial fields, where again we capture the interaction
between the TS and HS fields through coregionalization:

xTrend
p,t (Bi)=

(
gp (Bi)−φgTS (Bi)1{HS}(p)

)
t, p ∈ P r {SL} ,

(12)

where φ is an interaction parameter (to be estimated) and
gp(Bi) are CAR processes, with gp(Bi)∼MVN(µg,p(IN −
αg,pK)−1τ 2

g,pD), for p ∈ P r {SL}. The mean of the CAR
process, µg,p, is set to 0 for p ∈ {TS,HS} and to 2 mm yr−1

for p ∈ {OM} based on the spatially averaged trends from the
observational data (computed using ordinary least squares).

With all the contributions now defined, the true latent pro-
cess for each sea-level component is given by

yp,t (Bi)= x
Seas
p,t (Bi)+ x

Var
p,t (Bi)+ x

Trend
p,t (Bi) , p ∈ P r {SL} ,

(13)
ySL,t (Bi)= yTS,t (Bi)+ yHS,t (Bi)+ yOM,t (Bi) . (14)

Note that yTS,t and yHS,t are the full-depth TS and HS con-
tributions to total SL changes.

The non-seasonal OHC tendency spatially averaged over
Rj is computed as follows. Let yDes

TS,t (Rj ) be the deseasonal-
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ized TS at time t spatially averaged over Rj , computed as

yDes
TS,t

(
Rj
)
=

N∑
i=1
wij

(
xVar

TS,t (Bi)+ x
Trend
TS,t (Bi)

)
N∑
i=1
wij

,

j = 1, . . ., M , (15)

where the weights wij are computed as the proportion of the
region Rj area that lies within the grid cell Bi . The non-
seasonal OHC tendency is then calculated using central dif-
ferences as

Ht
(
Rj
)
=
ρ0c

(
Rj
)

α
(
Rj
) (

yDes
TS,t+1

(
Rj
)
− yDes

TS,t−1
(
Rj
)

2

)
,

j = 1, . . ., M , (16)

where ρ0 is a reference seawater density, c(Rj ) is the time-
mean heat capacity of seawater spatially averaged over Rj ,
and α(Rj ) is the time-mean coefficient of thermal expansion
spatially averaged over Rj and vertically averaged over the
top 1500 m of the ocean. Note that Eq. (16) assumes a con-
stant α to relate vertically integrated HTC to changes in TS.
While this neglects vertical variations in α, the approxima-
tion is necessary because modelling the relationship exactly
would require knowledge of the vertical structure of HTC,
which is not available. Furthermore, our Bayesian framework
operates on two-dimensional, vertically integrated fields; in-
corporating vertical variations into the framework would sig-
nificantly increase the model’s complexity. Nevertheless, to
assess the impact of this assumption, we tested the sensitivity
of our estimates to different choices of α, obtained by averag-
ing over different depth ranges. The results show almost no
effect on the phase of the estimated HTC variability and only
a small effect on its amplitude. While this test does not fully
rule out the possibility of small biases, it gives us confidence
that the approximation is unlikely to introduce substantial er-
rors.

Finally, the HTC through the lateral boundaries of Rj ,
Ut (Rj ), is modelled as the sum of three contributions,
namely variability, a linear trend, and an intercept. The vari-
ability in Ut (Rj ) is allowed to be correlated across regions,
and thus we modelled it as a spatial CAR process that evolves
through time according to a first-order ARMA process:

uVar
t

(
Rj
)
= ρ

U
uVar
t−1

(
Rj
)
+ θUft−1

(
Rj
)
+ ft

(
Rj
)
, (17)

where ρU and θU are spatially constant coefficients that con-
trol, respectively, the degree of autocorrelation and past-
noise dependence and ft (Rj ) is a spatial CAR process
ft (Rj )∼MVN(0, (IM−αUL)−1τ 2

UDU ). Here, L is theM×
M adjacency matrix, and DU = diag(1/nj ) is an M ×M di-
agonal matrix, with nj equal to the number of neighbours of
the j th region. In this case, two regions are considered to be
neighbours if they share a common border.

Both the linear trend and the intercept are modelled as
i.i.d. normal random variables with an SD of 1.3 W m−2 yr−1

and 127 W m−2, with uTrend(Rj ) N(0,1.32) and
uIntc(Rj ) N(0,1272).

With this, the HTC is calculated as

Ut
(
Rj
)
= uVar

t

(
Rj
)
+ tuTrend (Rj )+ uIntc (Rj ) . (18)

3.3 Parameter layer

The BHM is completed by defining the parameter layer.
The prior distributions ascribed to the hyperparameter of the
BHM are summarized in Table 1. Here, we provide justifi-
cation for the informative priors. First, the priors assigned to
the ARMA parameters (ρ∗ and θ∗) ensure that the ARMA
processes are stationary and invertible by enforcing the fol-
lowing conditions: 0< ρ∗ < 1 and |θ∗|< 1. The constraint
applied to the autocorrelation parameters of the CAR pro-
cesses, α∗ < λ−1

max, is necessary to ensure that the covariance
matrix of the CAR processes is positive definite. The choice
of the location parameter for the truncated normal distribu-
tions assigned to the SDs of the CAR trend processes (i.e.
τg,TS, τg,HS, and τg,OM) is based on the SD of the trend fields
derived from the observations. Finally, the interaction param-
eters (ψ and φ) are assumed to be positive because the TS
and HS components tend to be anticorrelated, with values
likely ranging from 0 to 1.

3.4 Inference

Inference in the BHM is accomplished by numerically sam-
pling from the posterior distribution of the processes and pa-
rameters given the observational data using the No-U-Turn
Sampler (NUTS) as implemented by the NumPyro proba-
bilistic programming language (Phan et al., 2019). NUTS
is a Markov chain Monte Carlo (MCMC) method that uses
Hamiltonian dynamics to enable rapid exploration of the
posterior distribution. We run the sampler with four chains
of 1000 iterations each (warm-up= 1000) for a total of
4000 post-warm-up draws. Such draws represent samples
from the posterior distribution.

4 BHM evaluation

4.1 MCMC diagnostics

We begin the evaluation of the model by assessing how ac-
curately the MCMC samples characterize the posterior dis-
tribution. To this aim, we use a number of MCMC diagnos-
tics that are designed to diagnose problems with the sampler
and assess convergence and mixing. In this context, conver-
gence means that the Markov chains have reached a station-
ary distribution that coincides with the true posterior distri-
bution, whereas mixing refers to the number of iterations re-
quired for a Markov chain to approximate the posterior dis-
tribution adequately. While there are no definitive tests of
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Table 1. Prior distributions ascribed to the hyperparameters of the BHM. The constant λmax is the maximum eigenvalue of the corresponding
adjacency matrix (K for αa,p , αm,p , and αg,p; L for αU ). The notation half-N denotes a half normal distribution, whereas trunc-N(,)[a,b]
represents a truncated normal distribution with support in the interval [a,b].

Parameter Units Description Prior distribution

ρpp ∈ {TS,HS,OM,U} – ARMA autocorrelation Uniform(0, 1)
θpp ∈ {TS,HS,OM,U} – ARMA past noise Uniform(−1, 1)
αa,p,αm,p,αg,p,αUp ∈ {TS,HS,OM} – CAR autocorrelation Uniform(λ−1

max)
τa,p,τm,pp ∈ {TS,HS,OM} m CAR standard deviation half-N(0, 1)
τg,TS mm yr−1 CAR standard deviation trunc-N(3.5, 1)[0,∞]
τg,HS mm yr−1 CAR standard deviation trunc-N(2.0, 0.32)[0,∞]
τg,OM mm yr−1 CAR standard deviation trunc-N(1.3, 0.32)[0,∞]
τU W m−2 CAR standard deviation half-N(1272)
ψ,φ – Interaction TS–HS half-N(0, 1)

convergence, we can use various diagnostics to determine
whether Markov chains appear to have converged. One of
such diagnostics is the potential scale reduction statistic (Gel-
man and Rubin, 1992), R̂, which checks whether Markov
chains initialized from different values have the same dis-
tribution (a necessary, although insufficient, condition for
convergence). Mathematically, R̂ compares the sample vari-
ances both within and between Markov chains. When all the
Markov chains have converged to the same distribution, val-
ues of R̂ should be close to 1 for all model parameters. While
there is no universally accepted cut-off point for convergence
based on R̂, values of R̂ > 1.2 are typically considered to be
suggestive of non-convergence. In addition to convergence,
evaluating the mixing of the Markov chains is also important,
as this can be poor in complex models due to high autocorre-
lation of the MCMC samples. The higher the autocorrelation,
the larger the MCMC standard error (given a fixed number of
iterations), and thus the larger the error of the estimates de-
rived from the posterior samples. As a measure of mixing
and autocorrelation, we use estimates of the effective sample
size, neff, for each hyperparameter (Gelman et al., 2014). In
general, a value of neff per iteration< 0.001 is indicative of
poorly mixing chains and suggestive of possible biased esti-
mates.

We find R̂ to be < 1.06 for all hyperparameters in the
BHM, suggesting that the Markov chains have converged to
the equilibrium distribution and are providing a good approx-
imation to the posterior distribution. Additionally, the neff per
iteration is > 0.01 for all hyperparameters with an average
value of 0.43, indicating low autocorrelation and good mix-
ing.

We use additional diagnostic tools, specific to Hamilto-
nian Monte Carlo, that offer information about the ability
of NUTS to explore the posterior distribution. These tools
include divergent transitions and tree-depth saturation. The
presence of divergences would indicate that the sampler has
run into regions of challenging posterior geometry that it
is unable to explore well, whereas the appearance of tree-

depth saturations would indicate that the sampler is terminat-
ing prematurely to avoid an excessively long execution time,
thus leaving regions of the posterior distribution unexplored.
We confirm that none of the iterations showed any divergent
transitions or tree-depth saturations, giving us additional con-
fidence in the reliability of our Bayesian solution.

4.2 Goodness of fit

Here, we evaluate the performance of our Bayesian model by
examining its ability to accurately fit the observational data.
We begin by examining the residuals from the observation
model (Eq. 6), focusing on the SL process, as this integrates
all the sea-level components (i.e. zSL,t −ySL,t −aSL−bSLt).
The observation model assumes that the residuals are nor-
mally distributed, and thus gross violations of this assump-
tion would signal the inadequacy of the model to describe
the underlying structure of the data. It is, therefore, important
to confirm the appropriateness of the normality assumption.
Here, we do this by testing the null hypothesis that the resid-
uals conform to a normal distribution using the Anderson–
Darling test (Anderson and Darling, 1954). We apply the test
separately to the time series of residuals at each grid cell and
for each iteration. The test fails to reject the null hypothesis
(5 % significance level) in about 95 % of the cases (4000 iter-
ations× 641 cells), confirming the validity of the normality
assumption. We also verify that there are no systematic de-
partures between the Bayesian solution and the observations.
In particular, we find that the time means of the residuals
across all the grid cells are distributed symmetrically around
0, with a mean value of −0.1 mm and an SD of 3.4 mm.

Both the MCMC diagnostics and the residual analysis pre-
sented above indicate a good fit of the Bayesian model to
the observational data. Despite this, it is still important to
check that the posterior inferences from the model look plau-
sible when compared to the observational data. We do this by
plotting estimates of SL, TS, HS, and OM against observa-
tional time series at a randomly selected grid cell (Fig. 3).
All the sea-level components show considerable inter-annual
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Figure 3. Quarterly (3-month-averaged) time series of non-seasonal (a) sea level, (b) thermosteric, (c) halosteric, and (d) ocean mass
as derived from the BHM at a randomly selected grid cell (red) together with the corresponding observed time series (black). Bayesian
estimates of the linear trend at the same grid cell (blue) are also shown for the SL and its components. The shading around the red and blue
lines represents the 5 %–95 % credible interval.

variability, although such variability is significantly larger in
the SL and the TS with peak-to-peak fluctuations that can
reach more than 20 cm, as compared to 8 cm for the HS and
2 cm for the OM. While the inter-annual variability is similar
between the observations and the Bayesian solution, as we
would expect, there are also significant differences between
the two, especially for the TS and HS. These differences re-
flect the relatively large uncertainties associated with the TS
and HS observations and also demonstrate a crucial point:
the ability of the BHM to constrain the TS and HS estimates
based on information from the SL and OM data.

For completeness, we also plotted the linear trend es-
timates derived from the BHM on top of the time series
(Fig. 3). In assessing the trends, it is important to note that
the Bayesian trends are not directly comparable to least
squares trends calculated from individual observed time se-
ries. Bayesian trends aim to capture the true underlying
trend, free from the influence of ARMA variability and noise,
whereas least squares trends will be affected by these factors.
In practice, this means that the Bayesian trends will not nec-
essarily be entirely aligned with what visually appears to be
the tendency of the time series, although we would generally

expect some degree of alignment, especially if the trend is
large relative to the variability. In the example of the figure,
the trends do agree to a large extent with the long-term ten-
dency displayed by the time series, including in the OM time
series for which the trend is the dominant signal.

5 Atlantic meridional heat transport

5.1 Calculation of the MHT

In this section, we describe how estimates of MHT over the
Atlantic Ocean are derived from our Bayesian estimates of
HTC. The BHM does not provide MHT directly as an out-
put, but this can be calculated by meridionally integrating the
HTCs. The integration can be started from any of the 12 lat-
itude lines (see Fig. 1), but here we choose (for reasons that
will become obvious later) to start from the northernmost lat-
itude (i.e. 65° N). In this case, the northward heat transport
across the ith latitudinal section at time t , MHTi,t (using the
same labelling as shown in Fig. 1), can be calculated as
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MHTi,t =MHT1,t +

i−1∑
j=1

HTCj,t , i = 1, . . ., M + 1 , (19)

where MHT1,t is the northward heat transport at 65° N and
HTCj,t is the heat transport convergence in region Rj at
time t (i.e. Ut (Rj )). Clearly, to evaluate Eq. (19) at any
latitude line, we need an estimate of MHT1,t , but such an
estimate is not available. Let us now suppose that we set
MHT1,t = 0 and then evaluate Eq. (19). This will produce
estimates of MHT that will be accurate at any latitude where
the true transport, MHTTrue

i,t , is large relative to the true trans-
port at 65° N, i.e. where the following condition is met:
MHTTrue

i,t �MHTTrue
1,t . While the validity of this approxi-

mation cannot be tested at all latitudes due to the lack of
MHT estimates, it can be assessed at 26° N by comparing
direct, independent estimates of MHT from the RAPID array
(at 26° N) with those from the OSNAP array (at 50–60° N).
The MHTs derived from RAPID and OSNAP are available
at https://doi.org/10.17604/3nfq-va20 (Johns et al., 2023b)
and https://doi.org/10.35090/8hqw-c147 (Li et al., 2021b),
respectively. The comparison shows that the SD of the MHT
time series (3-month means; overlapping period) is over 4
times larger at RAPID than at OSNAP, whereas the time-
mean MHT is more comparable in magnitude, with values
of 1.19 PW (RAPID) and 0.51 PW (OSNAP). This indicates
that ignoring the variability of MHT1 in Eq. (19) will pro-
vide a very good approximation to the MHT variability at
26° N, assuming that the MHT variability at 65° N is similar
to (or smaller than) that at the latitude of OSNAP. Ignoring
the time-mean value of MHT1 will, however, incur a larger
error. Considering this, we approximate Eq. (19) as follows
(we drop the temporal subscript t to simplify the notation):

MHTi =
〈
MHTOSNAP

〉
+〈HTC1〉+

i−1∑
j=1

HTCj ,

i = 2, . . ., M + 1 , (20)

where the angle brackets denote the time mean and
〈MHTOSNAP

〉 is the time-mean MHT from the OSNAP array
over the period 2014–2018 (i.e. it is set equal to 0.506 PW).
Hence, in Eq. (20), we are essentially setting MHT1 = 0 and
the time-mean value of MHT at 60° N equal to 〈MHTOSNAP

〉.
In making this approximation, we have implicitly assumed
that the time-mean MHT at 60° N is constant over the period
of our analysis, which appears to be a reasonable assumption
based on the lack of a significant trend in the OSNAP MHT
time series.

One might question why we do not start integrating the
HTCs at 26° N instead of at 65° N and then use the MHT
from the RAPID array to set the integration constant, thereby
avoiding any approximations. While this approach is indeed
straightforward, it raises its own issues. First, our estimates

would become directly dependent on the RAPID-derived
MHT, leaving no independent observational estimates avail-
able to validate our results. Second, due to inherent uncer-
tainties in both our calculations and the RAPID data, the
meridionally integrated HTCs can never exactly match the
RAPID MHT values. These discrepancies would propagate
errors into the MHT estimates at all latitudes, with relatively
larger errors occurring at latitudes where the MHT variabil-
ity is small compared to that at 26° N, notably in the subpolar
North Atlantic. Of course, the approximation used in Eq. (20)
also introduces errors at these lower-variability latitudes, so
it is important to determine which of these two approaches
provides more reliable MHT estimates.

To assess this, we compare estimates of MHT in the
North Atlantic derived using Eq. (20) with those derived
from Eq. (21) and constrained using the RAPID-derived
MHT (Fig. 4). To support the comparison, we also show the
OSNAP-derived MHT time series at 60° N. At 26° N, the
two Bayesian MHT estimates closely match each other in
both magnitude and phase. However, the differences between
them become more pronounced at higher latitudes. Specifi-
cally, the magnitude of the MHT variability in the Bayesian
solution constrained by the RAPID-derived MHT remains
nearly constant across latitudes. This contradicts direct ob-
servational evidence from the RAPID and OSNAP arrays,
which shows that MHT variability at 26° N is more than 4
times greater than at 60° N. In contrast, the variability in the
MHT derived from Eq. (20) decreases progressively towards
higher latitudes and closely matches the magnitude of the
MHT variability from OSNAP at 60° N, despite assuming
zero variability at 65° N. These findings highlight two key
points: (1) the approximation inherent in Eq. (20) holds to
a good approximation; and (2) the solution obtained using
Eq. (20) is more accurate than the one based on the RAPID-
based constraint. In the following, we present the Bayesian
MHT estimates derived using Eq. (20).

5.2 MHT at 26° N

Here, we compare our Bayesian estimates of MHT at 26° N
calculated using Eq. (20) with the MHT from the RAPID ar-
ray. In the following, any estimates derived from the BHM
will be summarized by the posterior mean and the 5 %–
95 % CI (credible interval), where the CIs will be denoted by
square brackets. The CIs are computed as the 5th to 95th per-
centiles of the posterior distribution, based on samples ob-
tained from the BHM.

Before proceeding with the comparison, we note a recent
study by Volkov et al. (2024) reporting on a spurious drift
in the submarine cable measurements of the Florida Cur-
rent that are used in the calculation of the RAPID-derived
AMOC and MHT. In that study, they show that, after cor-
recting for this spurious drift, the negative trend that is de-
tectable in the uncorrected RAPID AMOC time series be-
comes barely statistically significant. This drift is also cer-
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Figure 4. Quarterly (3-month-averaged) time series of MHT
anomalies in the North Atlantic across the latitudinal sections de-
noted on the vertical axis as derived from the BHM by using
Eq. (20) (red line) and by setting the MHT at 26° N equal to the
RAPID-derived MHT (blue line). The OSNAP-derived MHT (yel-
low line) is also shown at 60° N.

tain to affect the RAPID-derived MHT time series, but no
correction for the MHT is publicly available at the time of
writing this article. In view of this, we choose to remove a
linear trend from the time series of MHT before the com-
parison to ensure that the comparison metrics reflect the true
degree of concordance between the Bayesian and the RAPID
estimates. However, given the current debate on whether or
not the AMOC is weakening, it is worth mentioning that our
Bayesian estimate of MHT at 26° N shows no statistically
significant trend for the period 2004–2020, with a value of
0.09 PW per decade [−0.03, 0.22]. Given the strong corre-
lation between the AMOC and the MHT at 26° N (Johns et
al., 2023a), the lack of a statistically significant trend in the
Bayesian solution appears to support the findings of Volkov
et al. (2024).

Moving now to the comparison, we begin by showing the
quarterly MHT time series as derived from the BHM to-
gether with the MHT from RAPID (Fig. 5a). Note that these
time series represent 3-month-averaged values without any
smoothing or scaling applied to them (i.e. they are the di-
rect solutions from the BHM, except for the removal of a
linear trend). Visually, it is already clear that the Bayesian
solution accurately captures the variability in the RAPID-
derived MHT, in terms of both the phase and the magnitude
of the variability. This includes the prominent drop in MHT
around 2010, the magnitude and timing of which are both
captured with remarkable precision by the Bayesian solution.

Figure 5. (a) Quarterly (3-month-averaged) time series of MHT at
26° N derived using the BHM (red line) together with the RAPID-
derived MHT (black line). The shading around the Bayesian time
series represents the 5 %–95 % CI. (b) SD of the MHT time se-
ries shown in panel (a), summarized by the mean (central mark),
interquartile range (box), and 5 %–95 % CI (whiskers). (c) Time
mean of the MHT time series shown in panel (a), with the boxes
and whiskers defined as in (b). The quantiles for the BHM solution
have been computed from the posterior distribution, whereas for the
RAPID-derived time series, they have been calculated based on the
uncertainty provided by Johns et al. (2023a), assuming a normal
distribution. The CIs associated with the Bayesian estimates of the
SD and the time-mean MHT reflect both statistical uncertainty due
to the variability of the MHT time series and uncertainty from all
sources considered in the BHM.

The most significant discrepancy between the two time series
emerges after mid-2017, interestingly coinciding with the
gap between the GRACE and GRACE Follow-On missions.
More quantitatively, the correlation between the RAPID and
Bayesian time series for the period from 2004 to early 2017 is
high and statistically significant at the 95 % confidence level,
with a value of 0.78. For the period 2004–2020, the corre-
lation remains statistically significant but decreases slightly
to 0.68. The SD of the MHT time series, which provides a
measure of the magnitude of the variability, is also in excel-
lent agreement between the Bayesian solution and the MHT
from RAPID (Fig. 5b), with values of .18± 0.03 PW for
RAPID (90 % frequentist confidence interval) and 0.17 PW
[0.15, 0.20] for the BHM.

Focusing now on the time-mean MHT, we can already
sense from the comparison of the time series (Fig. 5a) that
the Bayesian solution matches the time-mean MHT from
RAPID very well. This visual intuition is confirmed by cal-
culating the time-mean value of the time series and its un-
certainty for the period 2004–2020 (Fig. 5c). The time-mean
MHT from RAPID is 1.19± 0.20 PW (90 % confidence in-
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Figure 6. Low-pass-filtered (four-quarter running mean) time se-
ries of MHT at 26° N derived using the BHM (red line) together
with the RAPID-derived MHT (black line). The shading around the
Bayesian time series represents the 5 %–95 % CI.

terval), whereas for the BHM, we obtain a value of 1.14 PW
[1.01, 1.27], thus confirming an almost perfect agreement.

Next, we evaluate the agreement between the Bayesian so-
lution and the RAPID-derived MHT at lower frequencies by
applying a four-quarter running mean to the MHT time series
(Fig. 6). This is important because agreement at the quarterly
scale does not necessarily imply agreement at lower frequen-
cies. At these lower frequencies, the agreement with RAPID
is also remarkably good, with a correlation of 0.92 for the
period 2004 to early 2017. For the period of 2004–2020, the
correlation is slightly lower but remains high with a value
of 0.81. The BHM-derived MHT time series closely tracks
both the timing and magnitude of many prominent features
in the RAPID data, including the sharp drop around 2010 and
the subsequent recovery. The main discrepancy arises after
2017, when the Bayesian estimate shows a gradual decline
in MHT, whereas the RAPID time series displays a rapid in-
crease during 2017–2018, followed by an even steeper de-
cline in 2019. A smaller mismatch also occurs during 2005–
2007, when the RAPID-derived MHT exhibits higher MHT
values compared to the Bayesian estimate, but such differ-
ences fall within the Bayesian uncertainty band. Further-
more, the elevated MHT values in the RAPID time series
in this period are expected to decrease following the applica-
tion of the drift correction proposed by Volkov et al. (2024),
which would likely further improve the agreement between
the RAPID time series and the Bayesian estimate.

Earlier in this paper, we argued that deriving MHT from
hydrographic observations alone is likely to introduce sig-
nificant errors into the MHT estimates due to the sparse-
ness of these observations and claimed that these difficul-
ties can be overcome by incorporating SL and OM data from
satellites. To support this claim, we have derived the MHT
at 26° N from Eq. (20) using only hydrographic data (the
same data as used in the BHM) and compared it with the
RAPID-derived MHT (Fig. A1). It is immediately clear that
the agreement with the MHT from RAPID is significantly
worse for the hydrography-only-based estimates than for the

BHM estimates, with correlations of 0.39 and 0.55 for the
quarterly and low-pass-filtered time series, respectively. Fur-
thermore, the variability in the hydrography-only-based es-
timates is significantly larger than in both the RAPID and
BHM estimates, reflecting errors arising from the sparseness
of the hydrographic data.

5.3 MHT over the Atlantic Ocean

Although the excellent agreement of the Bayesian estimate
with the MHT from RAPID at 26° N does not guarantee a
similar performance at other latitudes, it does give us confi-
dence that the estimates are robust and likely to reflect true
changes. In this section, we show our estimates of MHT
across 11 latitude lines over the Atlantic (we do not include
65° N, as our estimates are set to zero at this latitude), both in
their quarterly (3-month-averaged) resolution (Fig. 7a) and
after applying a four-quarter running mean (Fig. 7b). Note
that, unlike for the comparison with the MHT from RAPID,
here we do not remove a linear trend from any of the time
series.

Looking at the quarterly MHT time series (Fig. 7a), we
observe a number of distinct features. The amplitude of the
MHT fluctuations tends to increase gradually from north
to south. For example, taking the SD of the time series
as a measure of variability, we find that SD values range
from 0.02 PW [0.02, 0.03] at 60° N to a maximum value of
0.31 PW [0.26, 0.35] at 35° S. Peak-to-peak fluctuations can
be as large as 0.8 PW at 26° N and 1.5 PW at both 35 and
25° S. The MHT fluctuations show a strong latitudinal coher-
ence within two bands of latitudes, namely between 35 and
16° N and from 5° N to 35° S. Such bands are not entirely de-
coupled from one another, but the MHT coherence within a
band is much stronger than between bands. In particular, the
event of 2010, which is so prominent in the MHT time series
at 26° N, is also clearly visible at 16° N but much less so at
5° N. The lack of coherence south of 16° N during this event
can be attributed to its main underlying cause – a southward
shift of the North Atlantic subtropical gyre driven by a south-
ward displacement of the mid-latitude westerlies (Evans et
al., 2017) – the effects of which were largely confined to
the mid-latitude regions with limited influence further south.
Turning now our attention to the low-pass-filtered time se-
ries (Fig. 7b), we note again that the magnitude of the fluc-
tuations increases southward, although differences in mag-
nitude across latitudes are smaller. The bands of latitudinal
coherence are essentially the same as noted for the quarterly
values.

Finally, it is also interesting to plot the time-mean MHT
from the BHM across all the latitudinal sections of the At-
lantic (Fig. 8). For comparison, observation-based estimates
from the RAPID array (at 26° N), Trenberth et al. (2019) (de-
noted by T19), and Liu et al. (2022) (denoted by Liu22) are
also shown. The time-mean MHT is computed over the pe-
riod 2004–2020 for the Bayesian solution and RAPID, 2004–
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Figure 7. (a) Quarterly (3-month-averaged) time series of MHT anomalies across the latitudinal sections denoted on the vertical axis as
estimated using the BHM. (b) Same as panel (a) but with a four-quarter running mean applied to the time series.

2016 for T19, and 2006–2013 for Liu22. Focusing first on the
Bayesian solution, we note that the time-mean MHT is posi-
tive, and thus northward, at all latitudes, it achieves its max-
imum value around 26° N. The time-mean MHT has a value
of 0.51 PW [0.49, 0.52] at 60° N (recall that this value is set to
match the time-mean MHT from the OSNAP array), which
gradually increases southward, reaching a maximum value
of 1.14 PW [1.01, 1.27] at 26° N before decreasing again to
a minimum value of 0.31 PW [0.06, 0.54] at 35° S. Note that
the Bayesian CIs tend to become wider as we move south-
wards. This reflects both increased MHT variability as well
as larger differences between surface HF products (recall that
the uncertainty in the surface HF data has been calculated
as the spread over the three HF products). The latitudinal
structure of the time-mean MHT from the Bayesian solu-
tion closely resembles that of other observation-based esti-
mates (RAPID, T19, and Liu22). In the North Atlantic, the
Bayesian estimates generally fall between those of T19 and
Liu22. South of the Equator, the Bayesian MHT is lower
than both T19 and Liu22, though it remains very close to

T19 and consistent with Liu22 when accounting for uncer-
tainty ranges. The differences between the BHM solution
and other estimates may arise from the fact that they cover
slightly different time periods. To evaluate this, we calcu-
lated the time-mean MHT from the BHM over the Liu22 pe-
riod (2006–2013) and compared it to BHM estimates for the
period 2004–2020. The differences in the time-mean MHT
between the two periods are less than 10 % of the time-mean
MHT at all latitudes, suggesting that the discrepancies with
T19 and Liu22 are unlikely to be due to differences in aver-
aging periods alone. Methodological and data-related differ-
ences are therefore a more likely explanation.

6 Conclusions

Here, we have generated observation-based probabilistic es-
timates of MHT for the period 2004–2020 at 3-month-mean
resolution across 12 latitudinal sections of the Atlantic Ocean
between 65° N and 35° S. The MHT has been calculated
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Figure 8. Time-mean MHT derived from the BHM along with the
associated 5 %–95 % CIs (whiskers) at multiple latitudes of the At-
lantic Ocean. The CIs reflect both statistical uncertainty due to the
variability of the MHT time series as well as uncertainty from all
sources considered in the BHM. Observation-based estimates from
the RAPID array, Trenberth et al. (2019) (denoted by T19), and Liu
et al. (2022) (denoted by Liu22) are also shown. The confidence in-
terval associated with the RAPID (90 % interval) has been derived
from the values provided by Johns et al. (2023a).

based on estimates of HTC, which, in turn, have been in-
ferred as a residual from the difference between OHC ten-
dency and surface HF through joint spatiotemporal mod-
elling of observations from hydrography, satellite altimetry,
and satellite gravimetry.

Our estimates of MHT agree remarkably well with esti-
mates based on direct ocean observations from the RAPID
array at 26° N, capturing both the magnitude and phase of
the MHT variability in the RAPID time series with high fi-
delity. Compared with previous studies, our approach yields
higher correlations with the RAPID-derived MHT. For ex-
ample, Meyssignac et al. (2024) reported a correlation of
0.54 for the period 2005–2018, while we find a correlation of
0.85 for the same period when applying a four-quarter low-
pass filter. Similarly, Liu et al. (2020) found a correlation of
0.66 for 2008–2016, compared to 0.93 for the BHM-derived
MHT. For 2004–2016, Mayer et al. (2022) reported a cor-
relation of 0.72, whereas our estimate reaches 0.92 for that
period. Note that all correlations reported in these previous
studies are based on annual or 12-month low-pass-filtered
data, consistent with the temporal smoothing we apply in our
comparisons. Part of the reason for the higher correlations
may be because we focus on detrended time series to remove
the influence of a known drift in the RAPID-derived MHT,
whereas previous studies may have included linear trends in
their correlation estimates. However, the improvements also
likely reflect methodological differences, particularly our use
of a BHM to account for spatiotemporal dependencies when
combining hydrographic and satellite measurements.

We have also found that the magnitude of the variabil-
ity tends to grow gradually from north to south, with peak-
to-peak fluctuations that can reach 1.5 PW at the southern-
most latitudinal sections. The MHT variability is not co-
herent across the whole Atlantic Ocean but instead covaries
within, although not between, two distinct bands of latitudes,
namely between 35 and 16° N and from 5° N to 35° S. Re-
garding the time-mean MHT, our Bayesian solution shows
northward MHT across the entire Atlantic Ocean, with a lat-
itudinal profile that is characterized by relatively small trans-
port in the South Atlantic Ocean, particularly south of 11° S,
and maximum transport around 26° N.

Our results are exceptionally good if we accept the agree-
ment with RAPID-derived MHT as a measure of perfor-
mance, but there are some limitations that the users of these
estimates need to be aware of. The first one is that our esti-
mates of MHT have been derived by assuming no variabil-
ity in the MHT at 65° N. As discussed earlier, this assump-
tion will produce very accurate estimates of MHT variabil-
ity over most of the Atlantic Ocean, but the incurred er-
rors will be larger at high latitudes of the North Atlantic,
where the MHT variability is smaller in magnitude, partic-
ularly north of 45° N. Additionally, while estimates of the
time-mean MHT are not affected by this assumption, it is
important to remember that the time-mean MHT at 60° N
has been set equal to that derived from the OSNAP array
over the period 2014–2018. This assumes a constant time-
mean MHT at 60° N over the analysis period (2004–2020),
and thus deviations from this premise will introduce an error
into the time-mean MHT at all the other latitudes. That said,
such an error is expected to be very small based on the ab-
sence of a trend in the MHT time series from OSNAP and the
excellent agreement with the RAPID-derived MHT at 26° N.
Note also that our Bayesian model operates in two dimen-
sions and therefore uses a vertically integrated thermal ex-
pansion coefficient to relate changes in TS to the vertically
integrated HTC, which may introduce some approximation
error. Finally, it is also important to note that our estimates
are derived from observational data spatially aggregated into
3°×3° areal units; hence, our approach is unlikely to resolve
variations in MHT between latitude lines spaced by less than
3°.
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Appendix A: Additional figures

Figure A1. (a) Quarterly (3-month-averaged) time series of MHT at 26° N derived from Eq. (20) using only hydrographic data (red line),
together with the RAPID-derived MHT (black line). (b) The same as (a) but with a four-quarter running mean applied.
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