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Abstract. By analyzing datasets derived from four moor-
ings during spring 2022, this study provides direct evidence
that near-inertial waves (NIWs) can be largely enhanced by a
passing cyclonic eddy (CE) in the northwestern South China
Sea. Results show that the enhancement of NIWs mainly oc-
curred at north side of the CE due to asymmetry of eddy
structure. In vertical, the enhancement concentrated at above
200 m and reached peaks at around 100 m. Significant en-
ergy transfer rates between the CE and NIWs appeared at
the same depth of the enhancement can reach a magnitude of
10−8 m2 s−3 at the CE’s edge. Under the impact of the CE,
power of the first five NIWs modes was promoted signifi-
cantly and dominated by the second and third modes. Over-
all, the CE transferred energy to NIWs before near-inertial
kinetic energy reaching its peaks, while NIWs gave energy
back to the CE after the peaks.

1 Introduction

Near-inertial waves (NIWs) are ubiquitous features through-
out the global ocean with frequencies near the Coriolis fre-
quency f (Garrett, 2001). As dominant modes of high-
frequency variability in oceans, they contain half of the ki-
netic energy in internal wave fields (Alford, 2003; Alford et
al., 2016; Ferrari and Wunsch, 2009). NIWs transfer energy

from mixed layer to interior and ultimately dissipate into mi-
croscale turbulence, providing an energy source for abyssal
diapycnal mixing (Chen et al., 2017; Ferrari and Wunsch,
2009). Therefore, NIWs are of vital importance for energy
cascade among multiscale dynamic processes.

Due to horizontal spatial scales of 10–100 km and slow
group speed of NIWs, they are likely to interact strongly with
mesoscale eddies in oceans (Alford et al., 2016). Besides res-
onant frequency shifting from local f to the effective inertial
frequency caused by mesoscale vorticity (Klein et al., 2003;
Kunze, 1985; Weller, 1982), energy exchange between ed-
dies and NIWs also plays an important role in oceanic en-
ergy cascade (Ferrari and Wunsch, 2009; Thomas, 2017). Re-
searchers have stated that the NIWs can extract energy from
eddy and affect the vertical material transport (Barkan et al.,
2021; Esposito et al., 2023). Moreover, energy transfer from
mean flows can balance the dissipation of near-inertial en-
ergy near the critical layer, thereby conserving near-inertial
energy during eddy migration (Xu et al., 2022b).

Jing et al. (2017, 2018) suggested that there is a per-
manent energy transfer from eddies to NIWs under a posi-
tive Okubo–Weiss parameter condition. Furthermore, Yu et
al. (2022) revealed that enhanced near-inertial kinetic en-
ergy (NIKE) is found preferentially in regions of anticyclonic
vorticity. Using surface drifter dataset, Liu et al. (2023) indi-
cated that bidirectional energy transfer exists between eddy
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and NIWs in the global oceans. Above studies all empha-
sized role of eddy on affecting frequencies of NIWs, NIKE
as well.

As the largest semi-enclosed marginal sea in the north-
western Pacific Ocean, the South China Sea (SCS) has fre-
quent eddy activities (Chen et al., 2011; Chu et al., 2014;
Nan et al., 2011; Wang et al., 2003, 2008). Early studies,
by using various eddy detection algorithms, have statistically
characterized the mean properties of eddies, identifying peak
occurrences along western boundary currents and shelf break
regions (Lin et al., 2007; Wang et al., 2003; Xiu et al., 2010).
Specifically, Chen et al. (2011) indicated that eddies occur
35 %–60 % of the time in the northern SCS, underscoring
their critical role in regional oceanography. Recent advance-
ments in remote sensing and in-situ observational technolo-
gies have enabled significant insights into eddy formation
and their three-dimensional structures (Chu et al., 2022; He
et al., 2018; Nan et al., 2011; Wang et al., 2023; Zhang et
al., 2016). Due to their unique three-dimensional structures
and spatiotemporal scales, eddies mediate significant mate-
rial transport (He et al., 2018; Zhang et al., 2015, 2019) and
substantial energy exchanges with internal waves and west-
ern boundary currents (Chu et al., 2014; Fan et al., 2024;
Huang et al., 2018; Liu et al., 2023; Xu et al., 2022a; Zhang
et al., 2023; Zhao et al., 2023).

In the northwestern SCS, large portion of eddies propa-
gate westward and terminate near Xisha Trough (Fig. 1a)
(Wang et al., 2003; Zhai et al., 2010), making this place as
an ideal area for investigating NIWs and its interaction with
eddies. However, interaction and energy exchange processes
between them remain to be investigated in this area. In this
study, four moorings, each equipped with a Teledyne RD
Acoustic Doppler Current Profiler (ADCP), were deployed
in the Xisha Trough of the northwestern SCS (Fig. 1a). Dur-
ing spring 2022, a cyclonic eddy (CE) propagated westward
across the mooring array, giving an opportunity to study en-
ergy transfer between NIWs and the CE in this area. We in-
troduce data and methods in Sect. 2, present the observation
results in Sect. 3, discuss energy transfer between NIWs and
the CE in Sect. 4, and give a conclusion in Sect. 5.

2 Methodology

2.1 Data

The four moorings (Q1–Q4) were deployed in the study area
on 21–23 August 2021. One upward-looking 75 kHz ADCP
along with a CTD (SBE 37sm) was fixed at approximately
480 m depth and continuously monitored current velocity for
each mooring (Fig. 1b). The ADCPs were set to have 30 bins
with 16 m of vertical interval and 30 min of temporal inter-
val, enabling extraction of NIWs of the upper ocean. The
moorings were recovered on 13–15 November 2022. Several
ADCP bins near the sea surface were omitted due to large

fluctuations, and the remaining were vertically linearly inter-
polated to 1 m resolution. Due to the significant vertical fluc-
tuations based on CTD data in certain periods, flow velocity
compensation correction was applied to ADCP data, which
was calculated based on depth change and flow direction.

The Copernicus Marine Environment Monitoring Ser-
vice (CMEMS) provides daily geostrophic current and sea
level anomaly (SLA) data with a resolution of 0.25°×0.25°,
which were used to detect eddy during the observation pe-
riod. The 1/12° three-dimensional products were obtained
from CMEMS to calculate energy transfer rate between eddy
and NIWs. The eddy dataset from Archiving, Validation,
and Interpretation of Satellite Oceanographic (AVISO) was
used to provide the trajectories and edges of the eddy. World
Ocean Atlas (WOA18) data was used to extract temperature
and salinity data. The European Centre for Medium-Range
Weather Forecasts (ECMWF) Reanalysis V5 (ERA-5) data,
which has hourly temporal and 0.25° spatial resolutions, was
used to calculate near-inertial energy input from the wind
field.

2.2 Method

The method for ADCP velocity flow velocity compensation
correction is as follows:

V true(t)= V measured(t)+V platform(t), (1)

V platform(t)=
1x

1t
i+

1y

1t
j , (2)

(x,y)= (ρ cosθρ sinθ) (3)

(ρ,θ)= (

√
L2− z2

top, α), (4)

where Vtrue, Vmeasured and Vplatform are the true velocity, ob-
served velocity and the platform movement velocity, respec-
tively. (ρ, θ ) is the polar coordinate position of the ADCP
with the initial position as the origin. L, ztop and α are the
length of the rope at the position of the ADCP, the depth of
the ADCP and the direction angle of the horizontal projec-
tion.

The eddy-NIW energy transfer rate ε, where a positive
value indicates energy transfer from eddies to NIWs and a
negative value denotes the reverse, can be quantitatively cal-
culated following Jing et al. (2018):

ε =−(〈uiui〉− 〈vivi〉)
Sn

2
−〈uivi〉Ss, (5)

where Sn =
∂ug
∂x
−
∂vg
∂y

and Ss =
∂ug
∂y
+
∂vg
∂x

are the normal
strain and shear strain of the geostrophic velocity ug and vg,
which are obtained from the CMEMS three-dimensional re-
analysis data (Chen et al., 2023). We used fourth-order But-
terworth band-pass filter with the cutoff frequency (0.8 f –
1.2 f ) to separate near-inertial velocity ui and vi from the
ADCP data. The 〈·〉 represents a moving average of 3 inter-
nal wave periods.
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Figure 1. (a) Location of four moorings (Q1–Q4) in the northwestern SCS. The shaded background color represents topography. Orange
lines indicate tracks of long-lasting eddy propagating from the Luzon area to the Xisha Trough from 1993 to 2023. (b) Structure of upward-
looking ADCP mooring along the slope of topography. (c) The power spectra during eddy period (blue line) and whole observation period
(black line). The spectra are averaged above 200 m.

Near-inertial wind work was estimated as (Alford, 2001;
Dasaro, 1985; Voet et al., 2024):

W = τi · ui, (6)

where ui is near-inertial velocity at sea surface derived from
CMEMS products and τi is bandpassed near-inertial wind
stress after calculated as (Alford, 2020; Liu et al., 2019):

τ = ρaCD |U10−uc|(U10−uc) , (7)

where ρa = 1.3 kg m−3 is density of air, U10 is 10 m wind
velocity vector derived from ERA5 data, uc is ocean cur-
rent vector derived from CMEMS data,CD is drag coefficient
(Oey et al., 2006).

We used the Okubo–Weiss parameter (OW) (Provenzale,
1999) method to detect the CE. The OW parameter was com-
puted from the horizontal velocity field as follows:

σ = S2
sh+ S

2
st− ζ

2, (8)

where Ssh =
∂u
∂y
+

∂v
∂x

and Sst =
∂u
∂x
−
∂v
∂y

are the shear and
strain deformation, respectively, and ζ is the relative vortic-
ity.

3 Results

3.1 Near-inertial frequency and NIKE

The snapshots of SLA and surface geostrophic velocity fields
show that the CE approached the mooring array on 1 Febru-
ary (Fig. 2). Its center passed throughQ3 around 26 February
and it left the mooring array on 9 March. During the en-
tire observation period, NIWs exhibited a small blue shift
of near-inertial frequency with a peak value of 0.616 cpd
(cycles per day) (Fig. 1c), while a significant blue shift oc-
curred during the eddy period (1 February–9 March) due to
the background positive vorticity of the CE. The peak of
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Figure 2. (a–j) The snapshot of sea level anomaly and geostrophic current vector during 1 February–9 March. The black line indicates the
Okubo–Weiss parameters.

spectral frequency (ωp) reached 0.667 cpd, with a relative
frequency shift (ωp−f

f
, RFS) of about 10.8 % in this area.

It is significantly larger than the global RFS (Guo et al.,
2021), suggesting significant impact of the CE on local near-
inertial frequencies. The observed near-inertial spectral peak,
ωp =0.667 cpd, in the CE is consistent with the effective in-
ertial frequency, feff = f+ζ ≈ 0.69 cpd, estimated from sur-
face geostrophic currents and the local inertial frequency.

Horizontal velocity wavelet power spectra show that
strong power of NIWs occurred during eddy period but with
large variations at different eddy stages (Fig. 3a–d). To quan-
tify NIKE at different stages of the CE, we defined two time
periods named as Period 1 (16–26 February) and Period 2
(26 February–8 March), covering 10 d before and after the
eddy’s center passed through the mooring array. In addition,
no eddy period with calm wind during 1–20 June was cho-
sen for extra comparison. Figure 3e–h shows temporal and
vertical variations of NIKE at the four moorings during eddy
period. The missing data of NIKE at surface layers are due
to mooring swing caused by strong currents. It can be seen

that NIKE was enhanced largely at above 200 m during Pe-
riod 2. And peak values of NIKE concentrated at around
100 m. The time-averaged NIKE during Period 2 has almost
an order of magnitude larger than that during the no eddy pe-
riod (Fig. 3i–l), suggesting significant impact of the CE on
local NIKE. Moreover, NIKE illustrates asymmetry in space
during eddy period (Fig. 3e–l). At north side of the CE (Q1–
Q2), NIKEs became much stronger than that at south side of
the CE (Q3 andQ4), especially atQ2 with a maximum value
up to 12.0 J m−3 (Fig. 3f), which has the same magnitude as
the result observed by Xu et al. (2022b).

3.2 Impact of eddy on NIWs

To ensure the fact that the CE could largely enhance
NIWs in the northwestern SCS, we compared time series
of vertical-integrated (above 200 m) NIKE at each mooring
with mooring-eddy distance, wind-input NIKE and eddy ki-
netic energy (EKE) in the study area (Figs. 4 and 5). NIWs
were enhanced gradually accompanied by weakening EKE
during Period 1 when wind-input NIKE was relatively stable
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Figure 3. (a–d) 100 m-depth horizontal velocity wavelet power spectra at Q1–Q4 during eddy period. (e–h) Vertical distribution of NIKE
at Q1–Q4. The gray triangles indicate the time when the CE edge contacts and leaves the mooring array. (i–l) Vertical distribution of time-
averaged NIKE during “no eddy period” (black line), “Period 1” (blue line), and “Period 2” (red line) at Q1–Q4. The red dashed lines mark
two periods of the CE.

and minor. The wind work during the eddy period is about
several orders of magnitude smaller than that affected by ty-
phoons (Ouyang et al., 2022; Yuan et al., 2024) and several
times smaller than the wind work results of Voet et al. (2024)
in the Iceland basin. Results suggest a vivid energy transfer
from Eddy to NIWs during this period that will be quanti-
fied and discussed in Sect. 4. After passing of the CE’s cen-
ter, the CE enhanced NIWs faster, indicating more energy
transfer from eddy to NIWs during Period 2 than that during
Period 1. The slight increase of EKE during Period 2 was
contributed by background western boundary current veloc-
ity input (Fig. 2).

In space, NIWs intensity reached 600 J m−2 at Q2,
whereas values atQ3 andQ4 were approximately 300 J m−2.
This difference may be associated with the CE’s vorticity dis-

tribution, where relative vorticities observed north of the CE
(between Q1–Q2) were notably stronger than those mea-
sured south of the CE (between Q3–Q4) (Fig. 6). Zhao et
al. (2021, 2023) pointed out that NIWs generation is signifi-
cantly influenced by the eddy structure in which eddy with
stronger shears tend to generate more powerful NIWs. In
our case, Fig. 2 shows that the north side of the CE exhib-
ited spatial overlap with the western boundary current of the
northwestern SCS (Fig. 2) where strong shear could enhance
NIWs largely at this side (Zhao et al., 2021, 2023).

3.3 Impact of eddy on near-inertial modes

The CE not only affected frequency and energy of NIWs,
but also their modes in the study area. Here, we calcu-
lated vertical-averaged energy (above 200 m) of the first five
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Figure 4. Time series of raw (thin lines) and daily-smoothed (thick lines) depth-integrated (above 200 m) NIKE at Q1–Q4 (solid lines)
accompanying with distance between the CE’s center and each mooring (dashed lines) during eddy period. The black dashed line represents
the mean distance between the CE’s center and four moorings. The triangles mark the time when the eddy edge contacts and leaves the
mooring array.

Figure 5. (a) Time series of raw (thin lines) and daily-smoothed (thick lines) averaged wind-input NIKE at Q1–Q4. (b) Time series of raw
(thin lines) and daily-smoothed (thick lines) area integrated EKE.

Figure 6. Time series of raw (thin lines) and daily-smoothed (thick lines) relative vorticity among four moorings. Vertical gray dashed lines
mark two periods of the CE.
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Figure 7. (a–d) Time series of NIKE for the first five modes at Q1–Q4 during eddy period. (e, f) The time-averaged proportions of each
mode and all five modes during period 1 and period 2 at Q1–Q4. Black border indicates proportion sum of the first three modes.

modes of near-inertial velocity during eddy period (Fig. 7a–
d). All five modes grew since Period 1 and reached peak
values at Period 2. But the CE had different influence on
different modes with low modes (mainly the second and
third modes) being significantly enhanced, especially near
the CE’s center. Low modes rose from 46 % (Q2) and
54.4 % (Q3) of total energy during Period 1 to 87.6 % (Q2)
and 79.5 % (Q3) during Period 2, respectively (Fig. 7e and f).
The first mode has longer vertical wavelength and propagates

faster than other modes that make it easy escape from eddy’s
influence (Chen et al., 2013). Overall, energy proportion of
the first five modes were promoted from 81.5 %, 66.8 %,
69 %, and 78.5 % during Period 1 to 90.8 %, 88.8 %, 87.7 %,
94 % at Q1–Q4, respectively (Fig. 7e and f). In conclusion,
the cyclonic eddy has a prominent influence on different
modes of NIWs, resulting in the intensification of lower-
mode energy within its core region, especially for modes 2
and 3.
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Figure 8. (a–d) Vertical distribution of energy transfer rate between the CE and NIWs at Q1–Q4 during eddy period.

4 Discussion

Energy exchange between eddies and NIWs is one of the
most important processes in oceanic energy cascade (Al-
ford et al., 2016; Ferrari and Wunsch, 2009; Thomas, 2017).
By simulations, Jing et al. (2017) found that the energy
transfer efficiency from eddies to NIWs is about 2 % of
the near-inertial energy input by the wind in the Kuroshio
Extension region. Based on surface drifter dataset, Liu et
al. (2023) stated that energy transfer efficiency can reach
about 13 %, indicating previous underestimation of eddy im-
pact on NIWs. For obtaining precise results, direct ocean cur-
rent measurement by long-term mooring is essential (Jing et
al., 2018). In this section, eddy-NIWs energy transfer rate
during eddy period in the study area is quantified and dis-
cussed (Fig. 8). Corresponding to the layer of NIKE en-
hancement (Fig. 3), large energy transfer rates occurred at
above 200 m with the peak values at around 100 m during
eddy period, rather than surface and mixing layers (Jing et
al., 2017; Liu et al., 2023). Both positive and negative trans-
fer rates can reach a magnitude of 10−8 m2 s−3 in the study
area, in which they are of same order of magnitude as the
results reported by Chen et al. (2023) in the Northwestern

Pacific Ocean, but they are significantly stronger than the re-
sults of Jing et al. (2018) in the Gulf of Mexico. The differ-
ences may be attributed to the strength of eddies, their ro-
tation direction and the intensity of NIWs. Previous studies
have shown that eddy rotation plays a critical role in energy
transfer and NIWs propagation due to differences in vortic-
ity input and stratification modulation (Alford et al., 2016;
Jing et al., 2017). In addition, eddy-NIWs energy transfer is
largely dependent on eddy structure in which high rate can
be caused by strong eddy shear (Zhao et al., 2023). It can be
found that energy transfer at Q1, Q2 and Q4 were more ac-
tive than that at Q3 due to occurrence of large shear strain
at CE’s edge (Fig. 9a and b). Although NIKEs at Q4 were
relative weak, the strong shear strains of the low frequency
flow promoted local transfer rates at this area. Thomas and
Daniel (2020) and Li et al. (2022) both stated that NIWs
draw energy from the background flow when the energy of
NIWs is small compared to that of the background flow, and
release energy to the background flow when the energy of
NIWs is large compared to that of the background flow. Sim-
ilarly, our results show that positive/negative energy transfers
from the CE to NIWs dominated “Before Strongest”/“After
Strongest” periods at most mooring stations (Fig. 9c), in-
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Figure 9. (a) Time series of depth-averaged (above 200 m) normal strain
(
−(〈uiui〉〈vivi〉)

Sn
2

)
of the CE for each mooring. (b) Time-series

of depth-averaged (above 200 m) shear strain (−〈uivi〉Ss) of the CE for each mooring. (c) Time- (7 d) and depth-averaged (above 200 m)
positive (light red), negative (light blue) and net transfer rate (dark red and blue indicate positive and negative values) before and after the
NIKE reaching its peak at Q1–Q4.

dicating an inhomogeneous and bidirectional energy trans-
fer between eddy and NIWs during different periods in the
northwestern SCS. Moreover, we compared the energy trans-
ferring from the CE to the NIWs with net NIKE increase-
ment during “Before Strongest” period. Here, we multiplied
the net energy transfer rate by density, then integrated them
over the 0–200 m depths during “Before strongest” period as:

Tstrongest∫
Tstrongest−7 days

0 m∫
−200 m

ρ0εdzdt , in which ε represents net en-

ergy transfer rate. Results show that there were 79, 346, 47,
and 115 J m−2 energy transferring from the CE to the NIWs
during the period at Q1–Q4, respectively, which account for
about 16 %, 88 %, 27 %, and 47 % of the net NIKE increase-
ments (492, 394, 175 and 245 J m−2 atQ1–Q4, respectively)
. In average, they account for approximately 45 % of the net

NIKE increasement (325 J m−2) in this area indicating a key
role of mesoscale eddy on NIWs in the Northwestern SCS.

5 Conclusion

During spring 2022, the CE passed through the northwestern
SCS. Our four long-term moorings with ADCP instruments
captured the interaction and energy exchange processes be-
tween eddy and local NIWs for the first time in this area. We
found that NIWs can be largely enhanced by the passing CE.
Horizontally, the CE transferred more energy to NIWs at the
north side than that at the south side of the CE. This disparity
may be attributed to the eddy asymmetry with stronger rel-
ative vorticity and shear in the northern region, which can
significantly amplify NIWs generation (Zhao et al., 2021,
2023). In vertical, the enhancement of NIKE occurred at
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above 200 m, with a maximum exceeding 12 J m−3 at a depth
of 100 m. Power comparison of different NIWs modes during
eddy period indicate that the CE promoted percentage of first
five modes, especially the second and third modes. Overall,
NIWs drew energy from the CE during the enhancing pe-
riod of NIKE, while they gave energy back to the CE dur-
ing weakening period of NIKE. This study is helpful for un-
derstanding multi-scale interaction and energy cascade in the
northwestern SCS.
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