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Abstract. This work uses data-driven approaches to study
the feasibility of reconstructing ocean interior variables (tem-
perature and salinity) from surface observations provided by
satellites and interior observations provided by Argo floats.
The feasibility of the approach is based on an Observing Sys-
tem Simulation Experiment (OSSE) in which we use the out-
puts from an ocean numerical model as the ground truth, and
simulate a real observing system of the ocean, taking the sur-
face of the model as a simulation of satellite observations,
and vertical profiles in the same locations as the real Argo
floats. We implemented different models based on Random
Forest Regressors and Long-Short Term Memory networks,
which were trained with the simulated observations and val-
idated against the complete numerical model results. We ob-
tain high spatial and temporal correlation using both tech-
nologies and an accurate description of the annual variability
of the data, accompanied by small biases.

1 Introduction

The ocean serves as Earth’s primary climate regulator, func-
tioning as a massive heat sink and carbon dioxide reser-
voir and distributing its thermal energy globally through
currents (Webster, 1994). Ocean monitoring relies on two
complementary approaches: satellite-based remote sensing,
which provides extensive surface-level data, and in situ ob-
servations through programs like the Argo float network
(Roemmich et al., 2009), which offers deep-water measure-
ments up to 2000 m. Satellite missions such as SMOS (Kerr

et al., 2010), Aquarius (Lagerloef et al., 2008), and SMAP
(Entekhabi et al., 2010) provide global sea surface salinity
(SSS) measurements, while AVHRR (Casey et al., 2010),
MODIS (Kilpatrick et al., 2015), and Sentinel-3 (Donlon
et al., 2012) deliver sea surface temperature (SST) observa-
tions. These measurements are processed into various oper-
ational products, including gap-filled SST products such as
OSTIA (Good et al., 2020), MUR (Chin et al., 2017), and
ESA CCI (Merchant et al., 2019), as well as SSS products,
including BEC (Olmedo et al., 2021), SMAP Level 3 (Re-
mote Sensing Systems, 2024), and ESA CCI (Boutin et al.,
2025).

The accurate estimation of ocean state variables such as
SST, SSS, and upper-ocean dynamics relies on a combination
of in situ measurements, satellite remote sensing, and physi-
cal modeling. Physical and data-assimilative ocean models —
ranging from general circulation models (GCMs) to regional
high-resolution systems — enable the estimation of the full
ocean column by solving the governing dynamical equations
(e.g., Navier—Stokes, heat, and salt conservation), but are
sensitive to initialization and parameterization errors (Sloyan
et al., 2019). Accurately resolving the first few meters of the
ocean requires careful treatment of near-surface processes
and vertical mixing, which are poorly constrained without
surface-to-depth observations. In addition, resolving the full
water column at the spatial and temporal resolution needed to
capture near-surface dynamics entails considerable compu-
tational demands, particularly for data-assimilative systems.
This challenge is faced in the Digital Twin of the Ocean
(DTO) concept, where the application of Artificial Intelli-
gence (AI) models to synthesize surface and deep-water mea-
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surements can achieve a 4D (3D ocean reconstruction + time
variability) reconstruction of ocean dynamics. The integra-
tion of different data sources along with advanced modeling
techniques presents a promising way to improve our under-
standing and prediction of oceanic changes in the context of
global climate dynamics.

The integration of Al and data-driven methodologies has
transformed physical oceanography, which was traditionally
dominated by theoretical models and limited observational
data. In recent years, oceanography has experienced a surge
of interest in data-driven approaches, fueled by advances in
computational resources, the availability of larger oceano-
graphic datasets (e.g., from Argo, satellite missions, and re-
analyses), and the growing maturity of deep learning frame-
works. Notably, one of the earliest applications of neural
networks in this field dates back to 2009, when Ballabrera-
Poy et al. (2009) demonstrated the potential of simple neu-
ral architectures to improve the reconstruction of subsur-
face salinity profiles in the eastern North Atlantic. More re-
cent research has demonstrated significant progress in recon-
structing 2D and 3D ocean variables. Subsurface salinity has
been reconstructed at 0.25° x 0.25° resolution in Tian et al.
(2022) by enhancing coarser resolution products (1°x 1° ata
monthly scale). Subsurface temperature and salinity anoma-
lies were reconstructed in Su et al. (2015, 2018, 2021) using
monthly gridded Argo data and Al models such as Support
Vector Machines and Long-Short Term Memory (LSTM)
Neural Networks. They used monthly gridded Argo data
at 1° x 1° resolution to perform their reconstruction. Buon-
giorno Nardelli (2020) proposed a deep learning network to
reconstruct the ocean water column using combined satellite
and in-situ measurements. Their innovative approach con-
sists of using the potential of the LSTM not to predict a time
series, but to predict a depth series. As in the previous stud-
ies, a gridded in situ dataset with monthly temporal resolu-
tion was used.

It has been demonstrated by the state of the art that dif-
ferent AI models can derive oceanic data at a large tempo-
ral scale and using gridded (and interpolated) in situ (i.e: 1
month Argo gridded products). Here, we want to assess if it is
feasible to reconstruct the ocean interior variables at the most
common native resolution of the microwave remote sensing
products (0.25° x 0.25°) while maintaining a daily temporal
resolution, which is suitable for studying temporal mesoscale
ocean dynamics, combined with non-gridded in-situ data to
avoid interpolations and to respect the spatial variability of
the measurements.

The paper is structured as follows: in Sect. 2, we give an
overview of the current sampling of the ocean from the per-
spective of the available products from remote sensing and
in situ observations, in Sect. 3 we introduce the datasets used
for the feasibility study. Then, in Sect. 4 we introduce the
methodology, including an analysis of the limitations of the
dataset, the selection of variables and model architectures,
the generation of the simulated observation system, and the
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implementation and training of the models. The results are
shown in Sect. 5 where we analyze the explainability, ac-
curacy, and errors of the models’ predictions with different
tools and perspectives. In Sect. 6 we discuss the obtained re-
sults, and in Sect. 7 we summarize the conclusions and pro-
pose different paths to explore in this field.

2 Current Sampling of the Ocean
2.1 Surface Remote Sensing products

We collected key information of the most widely used sea
surface level 3 (L3) and gap-filled level 4 (L4) products for
some potential variables such as SSS, SST, SSH, and cur-
rents. The SSS is summarized in Table 1, dominated by SSS
products from the SMOS and SMAP missions, but also from
Aquarius (Yueh, 2018). The earliest records are from the
SMOS mission, starting in 2010/2011. It has two L3 prod-
ucts (ESA CCI v5.5 Boutin et al., 2025 and BEC Global v2
Olmedo et al., 2020a) and one L4 (BEC Global v2 Olmedo
et al., 2020a), but none of them are served operationally. Two
L3 products are derived from SMAP (JPL v5.0 NASA/JPL,
2020 and RSS v6.0 Remote Sensing Systems, 2024), starting
from 2015 and offering an operational alternative. The un-
certainty of all SSS products ranges between 0.2 and 0.5 pss,
where 0.2 pss is the most common uncertainty value. The
temporal resolution is approximately 1 week, and the most
common spatial resolution is 0.25°.

The SST products are summarized in Table 2 (Good
et al.,, 2020; Wentz et al., 2021; Canada Meteorological
Center, 2012; E.U. Copernicus Marine Service Informa-
tion (CMEMS), 2024b; NASA/JPL, 2015). All the products
shown are derived from multi-sensor (microwave and in-
frared) analyses and are provided as daily Level 4 datasets,
with the exception of SSTAMSR2 REMSS, which is a Level 3
product. The spatial resolution varies among products, rang-
ing between 0.01°, when combining infrared and microwave
observations and 0.25° for the L3 microwave product. In any
case, it is always equal to or finer than the ones from the SSS
products, only available from microwave observations. For
this reason, our target spatial resolution is 0.25°. The most
common uncertainty value is 0.5 °C. Most of the products
overlap with the SSS time series, as the latest of the SST
datasets begins in 2002 (SSS earliest product is from 2010).
The only exception is the operational SMAP products, which
do not overlap with ESA CCI and CMC SST datasets, which
extend only until 2022 and 2017, respectively.

The SSH and surface current products are summarized
in Table 3 (E.U. Copernicus Marine Service Information
(CMEMYS), 2024a; Dohan, 2021). All datasets are derived
from multi-mission satellite altimetry and are provided as
Level 4 gridded products, with daily or sub-daily temporal
resolution. Spatial resolution varies between 0.25 and 0.1°,
generally coarser than SST and SSS datasets. Typical un-
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certainty in SSH is around 2-3 cm, while current estimates
have uncertainties of 5-10cms™! depending on the region
and method. Most products cover the full altimetry era begin-
ning in 1992, thus overlapping entirely with the SSS time se-
ries. However, near-real-time products may lag in reprocess-
ing quality and are not always consistent with the climate-
oriented datasets such as DUACS or CMEMS reprocessed
fields.

2.2 Insitu vertical profiles

The Argo program provides 300-400 daily vertical profiles
worldwide. These profiles are not homogeneously distributed
in space, as shown in Fig. 1. Each float has a 10d cycle
length during which it takes ocean measurements. The pro-
filer rises slowly in the last 6 h, taking measurements at dif-
ferent depths (2 m being the most common sampling inter-
val). Argo profiles report measurement uncertainties of ap-
proximately 0.002 °C for temperature and 0.01 for salinity
(Wong et al., 2023). The associated positioning error ranges
between 0.25 and 1.5 km in latitude and longitude, which is
considered negligible for the purposes of this study. The cov-
erage of the Argo floats is analyzed in Fig. 1. We observe
how the total number of floats in a pixel of the most common
satellite resolution (0.25° x 0.25°) for the 13-year time se-
ries, provides, on average, between 5 and 10 measurements
(top-left plot of Fig. 1). At a spatial resolution of 1° x 1°,
the complete time series yields an average of 40 to 80 mea-
surements per pixel (top-right panel of Fig. 1), which repre-
sents a relatively low sampling density in both cases. When
observing the temporal evolution in the number of floats in
the bottom plot in Fig. 1, we see that there are consistently
more than 400 unique floats per day between 2012 and 2020.
For the remaining period, there is a slightly smaller number
of floats, which are, on average, 300 per day. To see how
it applies to our desired reconstruction temporal resolution
(daily, 10d mean sliding window), we show in Fig. 2 the
number of Argo floats for a 10 d window (which corresponds
to the profiler cycle length and is a similar value of the ag-
gregation window of multiple satellite sources) at 1° x 1° and
5° x 5° resolution (top columns). Then, for the coarser reso-
lution, we computed the intra-pixel standard deviation of the
salinity and the temperature as seen by the reanalysis model.
We observe that, to obtain almost complete coverage of the
globe, we would need to resort to a resolution of 5° x 5° as
seen in the top-right panel in Fig. 2. The intra-pixel variabil-
ity of each 5° x 5° box is shown in the bottom panels in Fig. 2
and can reach values of more than 1.5 °C in temperature and
0.5 (gkg™!) in salinity. This variability would worsen the re-
constructions in areas where the intra-pixel variability is very
high (which are the regions of more activity and thus, zones
of interest).
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3 Datasets

The data-driven approach presented in this study relies on
two complementary datasets. The first one is the in-situ mea-
surements from the international Argo float network, which
provides vertical profiles of the physical properties of the
ocean (temperature and salinity). The second dataset is the
Copernicus Marine Service Global Ocean Ensemble Reanal-
ysis product, produced with a numerical ocean model con-
strained with data assimilation of satellite and in situ obser-
vations. It provides a complete picture of ocean state vari-
ables. The specific products that are used in the study are:

— Argo floats. We use Argo profilers (Argo, 2025) to deter-
mine the positions that our simulated observing system
has to sample. Argo data are collected and made freely
available by the International Argo Program and the na-
tional programs that contribute to it (http://www.argo.
ucsd.edu, last access: 15 October 2025). The Argo Pro-
gram is part of the Global Ocean Observing System. We
use all available profiles from 2010 to 2022, but only
consider those that reach a minimum depth of 1000 m
and have good quality measurements according to their
quality control standard.

— Copernicus Marine Service Global Ocean Ensem-
ble Reanalysis. This study has been conducted us-
ing E.U. Copernicus Marine Service Information
(https://doi.org/10.48670/moi-00024, Mercator Océan
International, 2025). The Copernicus Marine Service
Global Ocean Ensemble Physics Reanalysis product
(Mercator Océan International, 2025) is given at 0.25° x
0.25° resolution and contains daily temperature, salin-
ity, currents, and ice variables for 75 vertical levels. We
use this reanalysis to simulate sampling properties of
both in situ observations and satellite surface data.

4 Methodology

This work uses a reanalysis of daily 3D gridded data to simu-
late the current ocean observation system and assess the fea-
sibility of a 4D reconstruction of the ocean variables. Using
a reanalysis model instead of in-situ data enables us to ac-
cess the locations that are not sampled by the in-situ mea-
surements. The sampled locations are used in the training
datasets of our models (both in the train and test splits). In
contrast, the unsampled locations can be used to validate how
the model extrapolates to regions not seen by the profilers.
We discussed in Sect. 2.2 how the small number of in situ
measurements could affect our reconstructions. This poses
a problem when trying to reconstruct the daily state of the
ocean. So, to be able to work with daily data, we opt to use
a sparse data approach instead of gridded datasets, working
with individual profiles. With this methodology, the input of
the models is a structure that contains the surface variables

Ocean Sci., 21, 2579-2603, 2025
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Table 1. Gap-free Level 3 and Level 4 SSS Products Overview.

: On the global reconstruction of ocean interior variables

Product name — Producer (References)

Satellite(s)  Spatial Resolution = Temporal Resolution ~ Uncertainty  Time Period Level

ESA Level 3 SSS CCI v5.5 — ESA (Boutin et al., 2025)

SMOS 0.25°  1-week 0.2-0.5pss  2010-2023 L4

BEC Global v2.0 L3 SSS — BEC (ICM/CSIC) (Olmedo et al., 2020a)

SMOS 0.25°  9d running mean 0.2-0.3pss  2011-May 2021 L3

BEC Global v2.0 L4 SSS — BEC (ICM/CSIC) (Olmedo et al., 2020b)

SMOS 0.05°  Daily 0.2-0.3pss  2011-May 2021 L4

JPL SMAP Level 3 CAP SSS v5.0 — JPL (NASA/JPL, 2020)

SMAP 0.6°  8d running mean 0.2 pss 2015-Present L3

RSS SMAP Level 3 SSS v6.0 — RSS (Remote Sensing Systems, 2024)

SMAP 0.25°  8d running mean 0.2 pss 2015-Present L3

Aquarius CAP Level 3 — JPL (Yueh, 2018)

Aquarius 1°  7d running mean 0.2 pss 2011-2015 L3
Table 2. Level 3 and Gap-free Level 4 SST Products Overview.

Product name — Producer (References)

Satellite(s) Spatial Resolution =~ Temporal Resolution ~ Uncertainty  Time Period Level

OSTIA Global SST — UKMO (Good et al., 2020)

Multi-sensor  0.05° (5 km) Daily 0.3°C 1981—-present L4

SST AMSR2 REMSS — RSS (Wentz et al., 2021)

Multi-sensor  0.25° (25 km) Daily 0.5°C 2002—present L3

GHRSST Level 4 CMC Global Foundation SST v2.0 — CMC (Canada Meteorological Center, 2012)

Multi-sensor ~ 0.2° Daily

0.5°C 1991 to 2017 L4

SST CCI - UKMO, ESA CCI (E.U. Copernicus Marine Service Information (CMEMS), 2024b)

Multi-sensor ~ 0.05° Daily 0.5°C 1981 to 2022 L4
GHRSST Level 4 MUR Global Foundation SST v4.1 — JPL (NASA/JPL, 2015)
Multi-sensor ~ 0.01° Daily 0.5°C 2002—present L4

along with the acquisition condition identifier (i.e. latitude,
longitude, time of the year) as predictors and the salinity and
temperature vertical profiles as predicted variables. The fol-
lowing sections describe which are the potential variables
and how the final OSSE dataset is generated. We also dis-
cuss which kind of Al models we apply for this experiment
and how they were implemented.

Ocean Sci., 21, 2579-2603, 2025

4.1 Potential predictor variables

Satellite observations offer measurements of multiple vari-
ables that can be interconnected and describe different pro-
cesses of interest. However, not only do the measured values
offer important information, but also their acquisition con-
ditions, such as the acquisition time or the geolocation. As
this information also helps in the description and modeling
of the oceanic processes, considering them in our models
can help in the understanding of the relationships between
different water masses or seasonal patterns. In this work, we
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Table 3. Sea Surface Height (SSH) and currents Products Overview
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Product name — Producer (References)

Satellite(s) Resolution

Temporal Resolution

Uncertainty  Time Period Level

Global Ocean Gridded L 4 Sea Surface Heights And Derived Variables — CLS
(E.U. Copernicus Marine Service Information (CMEMS), 2024a)

Multi-sensor  0.25° (25km)  Daily

34cm 1993-Nov 2024 L4

Ocean Surface Current Analyses Real-time (OSCAR) Surface Currents — PO.DAAC (Dohan, 2021)

Multi-sensor ~ 0.25° Daily/weekly

2-3cm 2020-present L4
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Figure 1. Distribution of the Argo profiles with at least 1000 m depth and good quality data from 2010 to 2022. The top row shows the spatial
distribution at 0.25° x 0.25° and 1° x 1° regular grid. The bottom row shows the temporal distribution in a daily resolution (gray) and a 60 d

mean sliding window (dark gray).

consider the observation acquisition conditions to be the lat-
itude, longitude, depth, and time of the measurements. For
example, sea surface temperature shows a latitudinal varia-
tion pattern, with the equatorial region being the warmest. It
also presents daily and seasonal cycles, both of which present
latitudinal variations. The longitude coordinate does not di-
rectly impact the measured variables, but, along with the lati-
tude, can help the model understand the Earth’s topology and
determine the position of different water masses. The depth
of the observations also affects their measured values, as in
the deeper layers, the ocean processes occur at a much larger
time scale. In contrast, in the upper layers, the time scales of
the oceanographic processes rapidly decrease, and the varia-
tion is greater. Finally, the observation time affects the mea-
surements at different scales, as both salinity and tempera-
ture present a seasonal cycle, so knowing at which time of

https://doi.org/10.5194/0s-21-2579-2025

the year the measurement was taken can give information on
those patterns.

The surface measurements include SSS, SST, sea surface
height (SSH), mixed-layer depth (MLD), and information
about the currents, which are represented as the zonal and
horizontal components of the velocity vectors (UO and VO,
respectively). The combination of SSS and SST defines the
sea surface density. These relations contribute to the strati-
fication and vertical mixing of the ocean, which in turn af-
fects MLD stability. Increased heating at the surface can
make the MLD shallower, while increased freshwater in-
put can make it deeper. SSH provides critical information
about the ocean’s dynamic topography and large-scale circu-
lation patterns. It reflects the integrated effect of temperature,
salinity, and pressure over the water column and is closely
linked to the geostrophic flow. Similarly, surface currents
(UO and VO) are essential indicators of advective processes

Ocean Sci., 21, 2579-2603, 2025
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Figure 2. Argo floats coverage at 1° x 1° (top-left) and 5° x 5° resolution (top-right). Intra-pixel standard deviation of the salinity (bottom-left)
and temperature (bottom-right) measurements as seen by the reanalysis model at 5° x 5° resolution.

and mesoscale dynamics that transport heat and salt laterally
across the ocean. These dynamic variables provide context
to the surface forcing and enhance the ability of statistical or
machine learning models to infer subsurface structures from
sparse observations.

The variables that we use in the training of the models
are a combination of the aforementioned ones. However, one
key aspect when selecting the model predictors is knowing
the limitations of the data. The number of input variables can
positively and negatively affect the model’s outputs. On the
one hand, if too few variables are used, we may not be able
to describe the oceanographic processes of interest. On the
other hand, if too many variables are used, the model will
not have enough data to describe all the possible combina-
tions, and its quality will rapidly degrade. Thus, the specific
selection of the variables used on each model will be further
discussed in Sect. 4.4.

4.2 Simulated profiles construction

To simulate the current observation system, we need to deter-
mine the positions in which an in-situ observation was taken
and retrieve the equivalent data from the reanalysis oceano-
graphic global circulation model dataset (daily 3D gridded
product in latitude, longitude, and depth), as described in
Fig. 3. First, we determine in which positions we had in-situ
measurements and need to be part of the simulated dataset.
Positions marked with an “Argo float” in Fig. 3 represent po-
sitions sampled by Argo floats that pass the following filter-
ing criterion. We select Argo profiles that measure at least
up to 1000 m depth to guarantee homogeneity in the input
dataset and to ensure that the profiles have measurements
in the complete interest range of the water column. Further-
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more, it removes the points close to the coast that typically
present different dynamics than the open ocean. To guarantee
the quality of the observations, we only use profiles that offer
the variables given in adjusted mode that have the best pos-
sible quality control (see “1: Good” in (Argo Data Manage-
ment Team, 2024), p. 105). Curated and calibrated profiles
give a more faithful representation of the measurements. Fi-
nally, we only use profiles contained in the 60° S—60° N lati-
tude range as the polar region’s dynamics greatly differ from
the open ocean ones.

Once we have the list of sampled positions, we take the
complete water column from the reanalysis up to 1000 m.
The ocean presents most changes in the first meters, and be-
comes more stable in deeper waters. We use the same vertical
sampling as the reanalysis model, which becomes coarser at
greater depths.

Then, for each date, we join the 10 d sliding window sim-
ulated profiles with the simulated surface data of the central
date (SST, SSS, currents, SSH, MLD) by adding to each pro-
file the values of the first layer of the reanalysis variables at
that same location. We used the reanalysis at 0.25° x 0.25°
resolution to match the coarser satellite data grid resolution,
so in this step, no interpolation or merging is required. Then,
in order to take into account the uncertainty of the current
observing systems, we add a Gaussian distribution with zero
mean and standard deviation equal to the estimated uncer-
tainty to each measurement (see Table 4). It must be noted
that in real-world measurements, the uncertainty values can
present more consistent geophysical patterns, having, for ex-
ample, higher values near the coast or in high latitudes. Thus,
modeling the uncertainties as Gaussian noise serves as a first
approach to quantifying the uncertainty propagation in our

https://doi.org/10.5194/0s-21-2579-2025
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analysis, though it may not capture the full complexity of
real-world error structures. However, for real data applica-
tions, further work would be needed to consider uncertainties
that might have spatially correlated structures, temporal de-
pendencies, or non-Gaussian distributions, and that are usu-
ally provided by the data producers (Merchant et al., 2019;
Olmedo et al., 2021). We store the datasets in daily files,
whose structure and uncertainty values are shown in Table 4.

Finally, we separate our datasets into a train/test split,
which will be common for all the trained models. This sepa-
ration is made using an 80/20 ratio, where 80 % of data will
be used for training and 20 % for validation as usual in ma-
chine learning models. We generate one dataset (or datafile)
for each day. As the objective of our study is to analyze the
feasibility of the reconstruction using current sampling of the
ocean (and not predicting future trends and events), the sepa-
ration is done by randomly separating the dates, but ensuring
that each month is represented equally in both datasets. This
avoids adding imbalances due to seasonal cycles that must be
accounted for.

4.3 Models selection

Two model architectures were chosen for this study: the Ran-
dom Forest Regressor (RFR) (Breiman, 2001) due to its algo-
rithmic simplicity and training cost and the Long-Short Term
Memory (LSTM) (Hochreiter and Schmidhuber, 1997) due
to its already demonstrated utility in oceanographic applica-
tions.

On one hand, the RFR can model non-linear relations be-
tween the variables, which is a key aspect when studying
oceanographic processes. Furthermore, it does not need large
datasets to produce good predictions. It works by construct-
ing multiple decision trees during training and outputting the
mean prediction of all trees for a more robust result, as illus-
trated in Fig. 4. Each tree is built using a random subset of
the training data and considers a random subset of features
at each split point. The randomness helps prevent overfitting
and the averaging of the predictions gives stability and accu-
racy in the results.

On the other hand, LSTM architectures have proved to
produce promising results in the field (Buongiorno Nardelli,
2020; Su et al., 2021). This type of architecture can handle
long-term dependencies while maintaining stable gradients
and mitigating the vanishing gradient problem. LSTMs can
remember important information and forget irrelevant details
through three main gates: the forget gate decides what infor-
mation to discard, the input gate determines what new infor-
mation to store, and the output gate controls what parts of the
cell state should be output. It is well-suited for tasks that gen-
erate data sequences, as in this case, where a vertical profile
is generated for each surface data point. By comparing these
two models, we can not only determine which one has better
performance but also discuss whether we have enough data
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to use deep learning mechanisms and if the improvement re-
garding simpler models is worth the cost.

4.4 Implementation and Training

We implemented different models using RFR and LSTM ar-
chitectures, varying the input variables and the configurable
parameters such as the number of trees, the number of lay-
ers, the number of units in each layer, etc. However, in this
work, we only present the two RFR and two LSTM config-
urations that are interesting for the discussion. In the case of
the RFR, we trained one model (RFRv1) with only the SSS
and the SST as surface variables to see to what extent the
interconnection of these variables could predict their verti-
cal profiles. Then, we trained another model (RFRv2) with
the complete set of surface variables to compare it with the
predictions made by the LSTM models.

In the case of the LSTM, we trained different models
varying their architecture configuration and hyperparame-
ters, shown in Fig. 5, such as the activation function, the
number of layers, the number of units, the learning rate,
etc. For the discussion, we selected the same configuration
used in Buongiorno Nardelli (2020) to check whether it
could be extrapolated to our problem (LSTMv1). We also se-
lected the best-performing salinity and temperature predictor
(LSTMv2). The exact set of predictors and tuning parameters
of each model are the ones as follows:

— RFRvl: Salinity and Temperature as surface variables.
Maximum of 100 decision trees, a minimum of 10 mea-
surements per leaf, and a maximum tree depth of 20.

— RFRv2: Salinity, Temperature, Currents, MLD, SSH,
and latitude as surface variables. Maximum of 100 de-
cision trees, a minimum of 10 measurements per leaf,
and a maximum tree depth of 20.

— LSTMvi: Salinity, Temperature, Currents, MLD, SSH,
day of the year, depth, longitude, and latitude as surface
variables. Two LSTM layers with 35 units, a dropout
value of 0.2, a learning rate of 1 x 107>, early stopping,
and the hyperbolic tangent (tanh) as the activation func-
tion. Trained with at least 100 epochs using Early Stop-
ping functions to avoid overfitting.

— LSTMv2: Salinity, Temperature, Currents, MLD, SSH,
day of the year, depth, longitude, and latitude as sur-
face variables. Three LSTM layers with 1024 units, a
dropout value of 0.2, a learning rate of 1 x 10_5, and
the Softsign as the activation function.

The models in this work are designed to conduct a recon-
struction task. We reflect this in the separation of the training
and test datasets. If the model had to predict future events, we
would need to divide some consecutive years for training and
the rest for testing. In this case, we aim to assess if the model
can reconstruct what it has already seen on the surface, so
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Table 4. Simulated OSSE dataset. The dimensions of the dataset are “id”, which corresponds to an index term to identify the profiler, and
“n_depth”, which corresponds to the depth level index. The vertical profiles are constructed using the 10d sliding window data, and the
surface data is from the central date of the window.

Variable name Type Dimensions Uncertainty
Predictors
Latitude Index Integer <id> -

Longitude Index  Integer <id> -
Day of the year Integer <id> -

Depth Decimal  <n_depth> -

SSS Decimal <id> 0.2 pss
SST Decimal <id> 0.5°C
SSH Decimal <id> 3cm
MLD Decimal <id> 1m

uo Decimal  <id> 0.05ms~!
VO Decimal <id> 0.05ms™!
Predicted

ASAL Decimal <id, n_depth>  0.01pss
CTEMP Decimal  <id, n_depth>  0.002°C

Synthetic Datasets Generation

1. Daily Synthetic Profiles creation 2. Daily Synthetic observation
system dataset

Synthetic Surfatce Positions where Argo floats
measurements exist in a 10d window
extracted from the
first layer of OGCM at / /
0.25° resolution to
match most satellite iyt -
surface datasets ——
ARGO Array of
FLoAT) synthetic
i profiles
£ —
»
a L y A
o
%5
; - | o
g | x 3. Train/Split dataset
o AR

\
Synthetic Salinity and Temperature profile.
(reinterpolated at increasing depths, color
indicates different day in the 10d window)

LILS LA

LALS LI

<YYYYMMDD_1>

2010-2022 period. The unsampled points
of the OGCM can be used for further
validation (apart from the test split).

<YYYYMMDD_n>
T

I
Test (20%)

T
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Figure 3. Observing system datasets generation from Copernicus Marine Service reanalysis data using Argo floats and surface satellite
measurements sampling. For each day, the 10d windowed simulated profiles are collocated with the central date data, generating a daily
array of synthetic profiles. The different colors indicate different days in the 10 d window of a specific central date.

the datasets are randomly divided on a daily frequency. The the same train/test splits for all the trained models to ensure
datasets are balanced monthly and yearly to avoid possible that the ingested data is the same. Both models are imple-
biases due to the division imbalance. Furthermore, we use mented in Python (Van Rossum and Drake, 2009) using stan-
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Figure 4. Random Forest Regressor structure. The final prediction is the average of all individual tree predictions, reducing overfitting and

variance compared to using a single decision tree.

‘ Input Layer
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Return Sequences: True
Activation: tanh

Y
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Rate: dropout_fraction

Y
‘ Time Distributed Dense

Output shape: None, n_var_out

Figure 5. Model architecture using LSTM layers. The model takes
as input a list of points to predict, where each point is a matrix of
n_depths x n_vars_in positions. Then, it connects with n_layers
groups of LSTM + Dropout layers. Finally, a Time distributed
Dense layer that produces the final predictions.
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dard libraries such as Tensorflow (Abadi et al., 2015) and
Scikit-learn (Pedregosa et al., 2011). The datasets are pre-
processed from the original netCDF (Rew and Davis, 1990)
files to Feather format, which is a column-oriented binary
disk-based format based on Apache Arrow and supported by
Python. This optimizes the data ingestion, which can be one
of the major bottlenecks in the training process.

5 Results

We ran the four models with the complete test dataset (which
is common for all models), both using training data with
Gaussian noise (matching uncertainty values) and without it.
Table 5 shows each model’s accuracy (R?) and error met-
rics (MSE, MAE), both in temperature and salinity predic-
tions. When not contemplating uncertainties estimates, we
obtain accuracies that range between [0.76-0.96], making the
RFRv2 and LSTMv?2 better than their v1 counterparts. When
the uncertainty error is accounted for, we observe a slight
degradation in the performance of the models, with an ac-
curacy ranging between [0.75-0.94]. The most sophisticated
models still perform better than their simpler counterparts. In
both cases, the salinity predictions are more accurate and less
prone to errors than the temperature ones. From now on, all
the results correspond to the models trained with uncertainty
estimates unless noted otherwise.

Figures 6 and 7 show the same metrics as in Table 5 but
as a function of the depth of the measurement. Salinity mod-
els display a robust prediction between depths, as the slope
of the functions/metrics with respect to depth is almost ver-
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Table 5. RZ, mean squared error, and mean absolute error metrics for salinity and temperature for the different models. The best-performing
model is highlighted in bold text for each metric. The asterisk indicates that the model does not account for uncertainties in the measurements.

Model RZ (SAL//TEMP) MSE (SAL/TEMP) MAE (SAL/TEMP)
RFRvI* 0.88/0.76 0.08/5.70 0.17/1.49
RFRv1 0.86/0.75 0.11/5.83 0.20/1.58
RFRv2* 0.95/0.85 0.04/3.16 0.11/0.86
RFRv2 0.94/0.84 0.11/3.43 0.14/1.01
LSTMvI* 0.87/0.82 0.08/4.03 0.20/1.17
LSTMv1 0.92/0.79 0.09/4.57 0.22/1.28
LSTMv2* 0.96/0.84 0.04/3.76 0.13/1.01
LSTMv2 0.94/0.79 0.06/4.58 0.17/1.16

tical. There, we can observe that RFRv2 provides a higher
R? and smaller errors than the rest of the models, closely fol-
lowed by the LSTMv?2 approach. In the case of temperature,
we can see that metrics decline at about 200 m depth, where
the predictions start to fail and errors grow larger. In salinity,
we can also observe the slope change to a lesser extent, but
the scores remain stable in the lower depths. Reconstructing
the temperature field proves more challenging and requires
further work to achieve the quality of the salinity reconstruc-
tion. In Appendix A, we provide the complete validation of
the temperature, but due to its lower quality when compared
to the salinity reconstruction, we decided to focus on the val-
idation of the salinity from now on.

5.1 Model explainability

Machine learning-based models, as opposed to physical
models, pose a problem when interpreting the results ob-
tained, as they are sometimes treated as black boxes where
we know the input information and the output produced. Still,
we do not understand the processes involved in obtaining
the results. Understanding how these outputs are made helps
us understand the causes and improve the models by focus-
ing on the essentials. Although Random Forest-based mod-
els are more transparent and interpretable than those based
on LSTM networks, a method of interpretability comparable
to both has been chosen to improve the analysis.

SHAP (SHapley Additive exPlanations) (Lundberg and
Lee, 2017) is a framework for interpreting machine learning
model predictions based on cooperative game theory prin-
ciples. It is based on the Shapley value concept from game
theory to allocate contributions of individual features to the
output of a model fairly and consistently. They quantify how
much each feature contributes to moving the model predic-
tion from a baseline (typically the mean prediction) to the
actual output for a specific data point.

The resilience to noise varies among model architectures.
This can result in some variables not being used if the model
is not able to extract information from them. In order to re-
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flect how the uncertainties affect the information the mod-
els can extract for each variable, we computed SHAP values
with and without uncertainties. In order to see how the contri-
bution of each variable changes in the vertical profile, SHAP
values are computed for each depth of the predictions. Fig-
ure 8 shows the percentage of each variable contribution for
the RFRv2 and LSTMv2 models, when uncertainties were
not accounted for in the training data. We only show these
two models because they are the most complex and should
be the “ideal case”. For the RFR (Fig. 9), we observe that the
SSS is the dominant predictor, which provides a climatolog-
ical reference. Then, variables like SST, latitude, and SSH
contribute by capturing temporal and regional variations in
the signal. The LSTM model (Fig. 10), however, shows a
different learning strategy as it does not rely on SSS. In-
stead, it derives from other variables such as longitude and
temperature. The latitude variable is also mostly accounted
for in the inherent temperature’s latitudinal structure. This
approach captures both the climatological baseline and dy-
namic components without depending directly on SSS mea-
surements.

We compare how the variable selection and importance
change when uncertainty is included in the training data.
SHAP results for the RFR models (with uncertainties) are
shown in Fig. 9. Both RFRv1 and RFRv2 use the SSS as the
primary predictor variable, followed by the SST. We do not
observe remarkable differences when compared to the results
obtained without accounting for the uncertainties (Fig. 8).
This is because the RFR is an ensemble model that has high
tolerance to noise. The SHAP values for the salinity LSTM
model are shown in Fig. 10. We observe a similar pattern in
the SSS, SST predictors. Both variables have more impact in
the first 100 m. After that, their weight decreases (substituted
by SSH) and becomes stable. Unlike in Fig. 8, the LSTM
models are not able to extract information from the MLD
and the currents. The latitude variable is also mostly erased
from the prediction. This can be due to the spatial rough-
ness induced by the randomness of the uncertainties, as the
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model faces problems when searching for a smooth relation-
ship with spatial patterns.

This analysis shows the fundamental differences between
traditional machine learning and deep learning approaches in
ocean reconstruction applications. While RFR excels at di-
rect variable relationships, LSTM infers complex spatiotem-
poral patterns from indirect indicators. This capability be-
comes particularly valuable in regions with sparse SSS mea-
surements or when reconstructing historical salinity patterns,
where direct observations may be limited. However, LSTM
is less resilient to noise, so errors in the input datasets should
be handled with care.

5.2 Validation with the test split dataset

To gain insights into the vertical reconstruction, we show in
Fig. 12 the reconstructed vertical profiles of the points shown
in Fig. 11 for the 29 October 2022, compared to the ground
truth. We can observe a better fit in the case of the RFRv2
and LSTMv2 as they present a good correspondence with
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the ground truth curve. The models present some difficul-
ties when predicting sharp transitions, as seen in the third
and fourth points, as they tend to smooth the vertical profile.
Sharp transitions, however, can be due to the quality of the
numerical model or a well-mixed layer that produces abrupt
changes. Further studies should be conducted in these dif-
ficult regions when using real in-situ data, and this metric
should be revisited.

We have used the test split dataset aggregated as daily
5° x 5° maps (to have complete coverage) to validate the
reconstruction’s spatial coherence. We aggregated the pre-
dicted profiles in each grid cell and subtracted the aggrega-
tion of the true values in the same cell. In Fig. 13 we can
see an example for the 29 October 2022. We can observe low
biases, which are about 0.2 gkg~! in the major part of the
map for all models except LSTMv1, which displays a lati-
tudinal pattern. In broad strokes, the bias patterns are similar
among the different model configurations and are in the range
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Figure 8. Feature importance percentage using SHAP values for RFv2 (left) and LSTMv?2 (right) salinity models without uncertainty values.
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Figure 9. Feature importance percentage using SHAP values for RFRv1 (left) and RFRv2 (right) salinity models. Both models are trained

with data that includes uncertainties.

of observed biases in satellite products of the same resolution
for this region as reported in Fig. 6 of Olmedo et al. (2021).

Through this first validation, we saw that the RFRvl
misses key surface variables that can potentially improve the
quality of the reconstruction. Variables such as SSH and lat-
itude have a high contribution to the predictions as seen in
the SHAP values of the RFRv2 (Fig. 9, right panel). We also
saw that the architecture presented in Buongiorno Nardelli
(2020) requires some fine-tuning to optimize its performance
to the given challenge. In Sect. 5.3, we conduct a more in-
depth validation of the best-performing models (RFRv2 and
LSTMv2).

5.3 Validation with the reanalysis dataset

We chose the region with longitudes ranging between 80 and
40°W and latitudes ranging between 25 and 44°N as it is
a highly dynamic area that comprises the Gulf Stream cur-
rent (see Fig. 2). Notice how the region’s sampling is non-
homogeneous and focuses on more dynamical regions, i.e.,
where the Gulf Stream is located. The validation is conducted
with the predictions of both RFRv2 and LSTMv2 for the
2008-2009 time period, as it does not overlap with the train-
ing dataset. Three different levels of depths are considered to
give an insight into the column variability: 5, 50, and 500 m
depths.

First, in Fig. 15, we assess the temporal biases of the 2-
year averaged regional maps by computing the difference be-
tween predicted values and the reanalysis (ground truth) for
the selected depths during both years. We can observe that
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the biases are in the 0.1-0.2 pss range at most. The high bi-
ases observed in the region close to the coast in Fig. 15 are
because the model predicted values outside of the training re-
gion (profilers did not reach the 1000 m specified in the data
preparation, as seen in Fig. 14).

Then, in Fig. 16 we show the temporal variability seen by
the numerical model (our ground truth) and we use it as a ref-
erence to assess the differences with our predictions. We per-
formed a significance test using a Fisher F-test for the differ-
ence of the variances at a 95 % confidence level. Areas with
significant differences are indicated as contours. The mod-
els are losing a variability range of about 0.1 gkg~! and dis-
play spatial patterns similar to the ones observed in Fig. 15.
The LSTMv2 model has more regions where the variability
differences are not significant, mostly in the first layer, but
overall, the differences are statistically too large. However,
the differences do not grow larger in highly dynamic areas,
implying that the models can capture the dynamical fluctu-
ations of the salinity through the time series (although with
less intensity), and thus, it separates from the climatological
value of the predicted variable.

The temporal mean squared error (MSE) helps to under-
stand which water masses the model has more difficulty rep-
resenting. A zone with a high MSE could indicate that the
model has not learned how to describe its dynamics, which
can be due to undersampling of that region or highly com-
plex dynamics that the model was not able to learn. Figure 17
shows the temporal MSE for both models, which have small
values up to 0.1 (gkg™!). This low value means that both
models have a good characterization of the dynamics. In the
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Figure 11. Mixed-Layer Depth as seen by the reanalysis on the 29 October 2022. Points used in the validation are shown in Figs. 12 and A4

are referenced here in white.

case of the RFRv2, the maps are more stable in terms of
MSE both horizontally and vertically, but the values are low
on both models. As also observed in Fig. 15, the high MSE
values observed in the region close to the coast are because
we are predicting values outside of the training region, and
should be discarded.

In Fig. 18, we compute the temporal correlation coeffi-
cient, computed as the Pearson correlation between the pro-
posed model and ground truth time series for each grid-
point. This metric provides information about the respective
models’ capability to describe the variables’ temporal cycles
properly. As shown before in Fig. 16, the models can capture
the same spatial pattern of temporal variability seen by the
reanalysis (ground truth). However, we further analyze the
temporal correlation to quantify the extent to which both the
reconstructed and the ground truth show the same temporal
variability evolution. As can be seen, both models properly
describe the temporal variability of the reconstructed salinity
for the shallower layers (5 and 50 m). For the deeper layer
considered here (500m), the reconstruction is degraded in
the southern part of the region, as we separate from the more
dynamic region of the Gulf Stream Current. We further ana-
lyzed the impact of MLD on the reconstruction to check to
what extent a deeper mixed layer provided better reconstruc-
tion, but no conclusive results were found (not shown).
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It is also important to remark on the artifact that we can
observe in Fig. 17 in the RFRv2 at a 5m depth (also visi-
ble in other plots). Horizontal lines appear due to the inclu-
sion of the latitude coordinate in the model. Although RFRv2
produces great statistics (the variability is well captured, the
MSE is low, and the correlation is high), it also produces arti-
facts in the latitudinal direction due to the binarization of the
decision trees. This should be further investigated if we want
to use this model architecture in the future.

Finally, we compute the temporal series of the spatial cor-
relation coefficient to understand if there is any temporal or
seasonality variation in the performance of our models. For
each studied depth, the time series is smoothed using a 30d
moving average. We can observe in Fig. 19 that both models
present a good correlation at all studied depths, with an R?
score higher than 0.85. In the case of the RFR, we do not
observe any tendency in the data or seasonal biases, meaning
that our model can capture both possible tendencies and sea-
sonal variability of the reconstructed variable. In the case of
the LSTM, we observe some peaks of lower correlation that
match the months in which the MLD is shallower, for this re-
gion during July. This result is consistent with the reconstruc-
tion of interior ocean variables using dynamical approaches.
Within the framework of Surface Quasi-Geostrophy (SQG),
it is possible to infer subsurface density and velocity anoma-
lies from surface buoyancy fields, under the assumption that
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Figure 12. Predicted salinity vertical profiles for four different points (see Fig. 11 for its location) and the different models: RFRv1 (blue),
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Figure 13. Predicted salinity minus Ground Truth (50 m depth) at a 5° x 5° grid (from top to bottom and left to right): RFv1, RFv2, LSTMvl,
LSTMv2. The date is 29 October 2022.

Reanalysis validation region these anomalies originate at the surface and decay exponen-

60°N 150 tially with depth (Held et al., 1995). The depth of the mixed
50°N 125 layer (MLD) plays a critical role in modulating the pene-
.g’ tration of surface-driven anomalies into the ocean interior.

40°N 100 S Studies by Isern-Fontanet et al. (2008) and Miracca-Lage
75 ° et al. (2022) demonstrated that SQG-based reconstructions

30°N = can effectively capture subsurface structures — such as eddies
3 50 g and fronts — using only surface observations, especially when
20°N the MLD is deep and the surface stratification is weak. Con-
25 versely, when the MLD shoals, the surface signal becomes
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70°W 50°W 30°wW less representative of interior dynamics, highlighting the im-
portance of accounting for MLD variability in data-driven

Figure 14. Number of Argo profiles at 1/100 region-size resolu- ; . .
ocean diagnostics and reconstruction methods.

tion from 2010 to 2022 in the region where the models have been
compared to the reanalysis product (black rectangle).
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Figure 15. Biases at different depths (from left to right: 5, 50, and 500 m) between predicted salinity and ground truth for the two proposed

models, RFRv2 (top row), LSTMv2 (bottom row).
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Figure 16. Temporal variability assessment between the predictions and the ground truth (reanalysis) salinities at different depths (from
left to right: 5, 50, and 500 m). The standard deviation of the reanalysis (taken as our ground truth) for the 2008-2009 period (first row).
Differences between the standard deviation of the ground truth and each model, RFRv2 (second row), and LSTMv2 (third row). Solid lines
delimit statistically significant areas at a 95 % confidence level using an F-test for the difference of variances.

5.4 Spatio-Structural Validation

As afinal test, we perform a singularity analysis (Turiel et al.,
2008) of our reconstruction to assess the extent to which
the different models keep the spatial coherence and the geo-
physical consistency of the ground truth. Singularity analy-
sis has previously been applied to evaluate the geophysical
consistency between different datasets (Hoareau et al., 2018;
Olmedo et al., 2021). Singularity exponents characterize the
rate of change in oceanographic variables — such as SST,
SSS, or surface velocity — across space. These exponents are
particularly useful for detecting and quantifying sharp gra-
dients, including features like fronts, eddies, and currents.

https://doi.org/10.5194/0s-21-2579-2025

In this context, the strongest fronts are associated with the
smallest singularity exponent values (white lines in Fig. 20),
and potentially represent the streamlines of the flow, provid-
ing information about ocean circulation (Turiel et al., 2009).
Here, we illustrate in a qualitative way how the LSTMv2
gives a better feature reconstruction than the RFRv2 when
comparing with the OGCM ground truth. For example, the
front meander located at 37.5°N and 63°W present in the
ground truth is well reconstructed for the LSTMv2, but the
RFRV2 gives a closed eddy.

Ocean Sci., 21, 2579-2603, 2025
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Figure 17. Mean Squared Error at different depths (from left to right: 5, 50, and 500 m) between predicted salinity and ground truth for the

two proposed models, RFRv2 (top row), LSTMv2 (bottom row).
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6 Discussion

We implemented two approaches to study the feasibility of
the 4D ocean reconstruction using the actual sampling ca-
pabilities provided by satellite and in-situ profilers, each of
them with their own challenges and insights. The RFR ex-
hibited artifacts due to the inclusion of latitude among in-
put variables, suggesting that alternative techniques, such as
incorporating neighboring region measurements instead of
geographical coordinates, might be more effective for spa-
tial contextualization. However, the representativeness of the
data might not be sufficient with the current ocean sampling,
as the high number of predictors relative to the limited spa-
tial and temporal coverage of marine observations could lead
to overfitting in the random forest model, potentially reduc-
ing its ability to generalize to undersampled regions or pe-
riods. In the LSTM approach, we explored various config-
urations by adjusting the number of layers, activation func-
tions, and units per layer. Both architectures demonstrated
particular strength in salinity reconstruction, achieving high
accuracy in the first and intermediate depths. However, cor-

Ocean Sci., 21, 2579-2603, 2025

relation decreased in deeper layers with minimal ocean vari-
ations (specially for the case of temperature profiles, see
Fig. 7), where climatological values might suffice. Temper-
ature reconstruction showed superior results with the RFR
compared to LSTM. Nevertheless, the artifacts produced by
input variables limit their application in 4D reconstruction.
The RFR might still be valuable in studies with less critical
horizontal dimensions. The dependence of the reconstruction
metrics with the depth has also been reported previously by
other authors that attempted to retrieve subsurface tempera-
ture anomalies using satellite-based data and gridded Argo
in situ observations (Su et al., 2018). They obtain a lower R?
metric (< 0.72) than in our study but in their case this value
is more homogeneous with depth until 500 m where it de-
creases to 0.5 for October (their worst case), similar values
than in our case (see Fig. 7). However, some considerations
need to be taken into account when comparing both works.
The studied region in Su et al. (2018) is the Indian Ocean,
and in our case, the training is done at a global scale. Another
difference is the spatial and temporal resolution of the train-

https://doi.org/10.5194/0s-21-2579-2025
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ing dataset; they used a monthly 1° gridded Argo dataset,
whereas we use individual profiles at the Argo buoy location.
It is also important to highlight that in our approach, the indi-
vidual profiles are only used for training the models, and the
reconstruction is performed using just surface observations.

https://doi.org/10.5194/0s-21-2579-2025

The validation with the test split dataset demonstrated that
an increased number of surface variables improved the re-
construction of the water column, as the vertical profiles ad-
justed more faithfully to the ones of our ground truth and
the spatial biases were smaller (Figs. 12 and 13). In the case
of the LSTM, it also demonstrated that each reconstructed

Ocean Sci., 21, 2579-2603, 2025
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variable (salinity and temperature) requires a different tun-
ing of the model. Overall, the RFR performed better than the
LSTM with the test split dataset, but when validating with
the complete reanalysis product, we observed better extrapo-
lation and representativity of the data with the LSTM model
in terms of correlation and variability assessment (Figs. 16,
18, and 19).

The contributions of each variable (SHAP values in Figs. 9
and 10) in the models have a geophysical meaning. The RFR
excels at direct data relationships; thus, it uses the SSS as a
base reference and modulates the variations with the rest of
the variables, such as SST, latitude, or SSH. In the case of the
LSTM, we can observe that it can derive those relationships
with the intrinsic patterns of the data, such as the latitudinal
dependence of the SST. Furthermore, it tries to balance the
weight of each of the input variables, giving enough weight
to each of them to make them important in the decision.

We observed some biases in the validation with the reanal-
ysis in Fig. 15. These biases can originate from the irregular
sampling of the ocean, as highly dynamic areas can attract
Argo floats, making those regions more sampled. Even if the
latitude and longitude coordinates are set as predictors, there
is no smooth spatial transition between high-dynamic areas
and calm waters. Another part of this bias is due to the well-
known Bias/Variance trade-off present in these methodolo-
gies (Geman et al., 1992), where, to capture the variability of
the data (which is what is interesting, as it is the dynamical
part of the data), one has to deal with higher biases. How-
ever, the bias appears to have smooth spatial gradients, mak-
ing it easy to study and correct in future works if needed.
The absence of seasonal variation in the spatial correlation
in the case of the RFR indicates that the model can represent
the seasonal cycles of the variables, and the lack of variation
(constant) of the time series indicates that the reconstruction
is not affected by unaccounted trends. However, the LSTM
model did not consider the MLD as an important variable for
the reconstruction (Fig. 10), which later affects on the cor-
relation of the reconstruction in months where the MLD is
shallower (Fig. 19).

Both models were able to reconstruct the spatial and tem-
poral variability patterns observed by the numerical model at
different depths, which is a key aspect of studying the ocean’s
dynamics. However, we observed in Fig. 16 that both models
tend to underestimate the variability range in the upper lay-
ers, losing part of the observed variability. The MSE values
across different depths (Fig. 17) show consistently low val-
ues for both models throughout the different studied depths.
This indicates that the model successfully captured differ-
ent temporal dynamics intensities (calm waters vs. dynam-
ical regions). This also suggests that the current sampling
of the ocean provides adequate coverage of different water
types for the model to learn the underlying patterns of their
variability. The spatial correlations seen in Fig. 19 were also
high in both models, achieving an R? score higher than 0.9
in both models in all the studied depths, indicating that the
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seasonal cycles and tendencies are well-captured by both of
our models.

Overall, both models can capture the spatial and tempo-
ral variability of the ocean as seen by the reanalysis, with
high correlations and accurate representations of seasonal cy-
cles. However, the variability range is underestimated and
should be improved in future work. The results obtained with
these models offer promising prospects for ocean reconstruc-
tion with the current observing system, and highlight the
potential application of future satellite missions measuring
SSS and SST simultaneously, such as the Copernicus Imag-
ing Microwave Radiometer (CIMR) of the European Space
Agency (ESA) (Donlon et al., 2023), to reconstruct, when
combined with in situ profiles, a 3D reconstruction of salinity
and temperature fields. However, some improvements in the
specific architectures can be made. For example, we could
integrate them with other architectures such as diffusion net-
works or encoders/decoders, which are specially used for
high-resolution image generation. Using these technologies
can provide a new perspective on how we observe and study
the ocean.

7 Conclusions

Our study successfully demonstrated the feasibility of 4D
ocean reconstruction using data-driven approaches and cur-
rent observing systems, although there is still room for im-
provement in future work. The complexity of ocean dy-
namics across multiple dimensions presents significant chal-
lenges, requiring careful treatment of the input data and
model architecture selection. While our models showed
promising results in capturing ocean dynamics, particularly
in vertical reconstruction, the horizontal dynamics recon-
struction can be further improved.

Future work should focus on several aspects: investigat-
ing how to improve the temporal variability characteriza-
tion, analyzing the evolution of biases to determine if con-
stant corrections can preserve reconstructed variability, ex-
ploring alternative deep learning architectures for improved
multi-dimensional reconstruction, and applying these mod-
els to real in-situ and satellite data. These findings contribute
to our understanding of ocean reconstruction methodologies
while highlighting the potential for further improvements in
capturing the complex dynamics of ocean systems across all
dimensions. This data-driven approach also contributes to
further exploiting the synergy of the different and comple-
mentary ocean observation systems.

https://doi.org/10.5194/0s-21-2579-2025
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Appendix A: Temperature Validation

RFv1 Feature importance using SHAP RFv2 Feature importance using SHAP

100 100
3 3
s 80 s 80 \//—\ = LATITUDE
g g =3 SSS
8 60] S 60 == ssT
2 g == SSH
E 40 E 20 /1 uo
g g / VO
2 2
3 20 T 20 CJ MLD
w w

0 0
200 400 600 800 200 400 600 800
Depth (m) Depth (m)

Figure A1l. Feature importance percentage using SHAP values for RFRv1 (left) and RFRv2 (right) temperature models. Both models are
trained with data that includes uncertainties.
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Figure A2. Feature importance percentage using SHAP values for LSTMv1 (left) and LSTMv?2 (right) temperature models. Both models are
trained with data that includes uncertainties.
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Figure A3. Feature importance percentage using SHAP values for RFv2 (left) and LSTMvl1 (right) temperature models without uncertainty
values.
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temperature for the two proposed models RFRv2 (top row), LSTMv2 (bottom row).
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dashed line, and 500 m black dotted line) for the two proposed models for RFRv2 (left) and LSTMv2 (right). The average mixed layer depth
is superposed in blue.

RFRv2

LSTMv2

Temperature
500 m

42.5°N 720
@ 3f§°ﬁ 15
m . Q -
= 35°N
c 32.5°N m
S 30°N[
o 27.5°Nf

25°N s L5
75°W  65°W  55°W  45°W

65°W 55°W  45°W  °

42.5°N 20
40°N
37.5°N 15
350N
32.5°N
30°N 710
27.5°N |
25°N 5

45°W

75°W

65°W  55°W

[eC]

Sing. Exponents

500 m

42.5°N
40°N
37.5°N
35°N
32.5°N
30°N
27.5°N
25N 2

75°W

75°W

42.5°N
40°N
37.5°N
35°N

25°N (25
75°W

65°W

65°W

65°W

55°W

55°W

45°W

45°W

1.0
0.5
=
00 *
—0.5
1.0
0.5
X
00 <
—0.5
1.0
0.5
X
00 <
U o5
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and LSTMv2 (third row).
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