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Abstract. The physical environment both above and below
the ocean surface has changed dramatically during the last
century. Changes in the marine environment induced by in-
creased release of greenhouse gases and direct exploitation
of resources include increased ocean temperature, decreased
salinity and pH, and removal of apex predators. The risk of
ecological regime shifts occurring has similarly increased. A
variety of methodologies to identify regime shifts have al-
ready been used in the North Sea, which has become an im-
portant case study for the analysis of regime shifts in a semi-
enclosed waterbody. The North Sea is regarded as a case
study in part due to the operation of the continuous plankton
recorder, which has provided detailed abundance records of
phyto- and zooplankton for over 60 years. Here, we propose
a new methodology to calculate regime shift likelihood for
every month between 1958 and 2020. This unique model pro-
duces a single time series of regime shift likelihood, using se-
quential abundance data of more than 300 plankton species.
We show the model’s ability to identify when regime shifts
occurred in the past by comparing it to previous less auto-
mated methodologies. We have validated the model for use
in the North Sea by estimating how often false positives and
false negatives are generated. Results from the model indi-
cate evidence for three periods of high regime shift likelihood
in various parts of the North Sea: between 1962 and 1972,
between 1989 and 1999, and from 2002 until 2015. We show
that these periods are consistent with previous estimates of
North Sea regime shifts, and discuss possible applications of
the model’s output of a single time series.

1 Introduction

The global ocean plays a critical role in regulating climate on
Earth through heat and carbon redistribution. Global mean
ocean temperature has increased since the Industrial Rev-
olution, potentially inducing extreme events (IPCC, 2019).
Changes in the oceanic environment associated with long-
term temperature increase include more frequent marine
heatwaves (Oliver et al., 2018, 2019), decreased pH (Doney
et al., 2009), loss of oxygen concentration (Heinze et al.,
2021; IPCC, 2019), and changes to large-scale circulation
patterns such as the Atlantic Meridional Overturning Circu-
lation (AMOC) (Johnson et al., 2020; Robson et al., 2014),
salinity (Curry et al., 2009; Skliris et al., 2014), and stratifica-
tion stability in the upper ocean (Hallegraeff, 2010; Sharples
et al., 2006; Wells et al., 2020). The projected rates of
ocean warming, acidification, and oxygen concentration are
strongly dependent on the rate of greenhouse gas emissions
(Kwiatkowski et al., 2020; Schmidtko et al., 2017). In 2017,
signatories to the Paris Climate Agreement agreed therefore
to limit global temperature increase to less than 2 °C by the
end of the 21st century (Fox-Kemper et al., 2021). At current
emission rates, it is likely that we will exceed these limits by
2050 (Fox-Kemper et al., 2021), which will potentially lead
to the crossing of planetary boundaries, tipping points, and
ecological regime shifts (Heinze et al., 2021; Rocha, 2022).

Regime shifts are characterized by large, abrupt, and per-
sistent changes in the function and structure of an ecosystem
that are not easily reversible (Scheffer et al., 2001; Reid et al.,
2016). Such reorganizations of the ecological system can be,
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but are not always, preceded by dynamics such as critical
slowing down (Scheffer et al., 2001; Scheffer, 2009; Wouters
et al., 2015). Regime shifts preceded by critical slowing
down are associated with an erosion of dominant feedback
mechanisms until a critical threshold, the so-called tipping
point, is crossed (Biggs et al., 2018). Regime shifts are eco-
logically important, in part due to the possible presence
of hysteresis or non-reversibility of changes (Sguotti et al.,
2022). In open ocean systems regime shifts are notoriously
difficult to identify (Haines et al., 2024; Rudnick and Davis,
2003; Beaugrand, 2004b; Scheffer et al., 2001), because sta-
tistically significant estimates of biodiversity changes require
sufficiently long time series. For example, it is thought that
at least 50 years of measurements are needed to detect eco-
logical changes driven by changing climate conditions, in-
cluding regime shifts (Edwards et al., 2010), though there
are studies which have used a shorter time frame (Hare and
Mantua, 2000). Regime shifts in marine systems have there-
fore been documented most often in regions where in situ
measurements and remote sensing data are relatively abun-
dant, such as the northeast Pacific Ocean (Hare and Mantua,
2000), along the Norwegian coast (Vollset et al., 2022), and
the North Sea (Beaugrand, 2014; Djeghri et al., 2023; Beau-
grand and Reid, 2003; Edwards et al., 2001; Sguotti et al.,
2022). In fact, the North Sea has become a case study for
detecting regime shifts in marine environments. The North
Sea has undergone monitoring by the continuous plankton
recorder (CPR), which constitutes one of the longest marine
ecological time series, and diligent fishery records. Despite
this, considerable controversy remains around the identifica-
tion of regime shifts.

Abrupt changes in the abundance of a single species may
be indicative of either a regime shift, which may be seen
in multispecies communities and ecosystems, or represen-
tations of decadal variability. Different regime shift identi-
fication methods are often applied to ecological or physical
systems, but autocorrelation and critical slowing down sig-
nals have been detected in both systems (Overland et al.,
2006; Scheffer et al., 2001; Rudnick and Davis, 2003; Haines
et al., 2024). In order to differentiate the presence of multiple
climatic stable states from multidecadal fluctuations, Over-
land et al. (2006) applied different statistical signals, includ-
ing white and red noise, to the context of regime shift iden-
tification. Classical detection methods have been shown to
falsely identify regime shifts in simulated time series data of
species abundance, to which red noise had been introduced
(Haines et al., 2024; Rudnick and Davis, 2003). A correct
and simple identification of regime shifts is crucial for fu-
ture management of ecosystems. Previous studies have of-
ten focused on periods where specific species experienced
an abrupt shift (Alvarez-Fernandez et al., 2012; Beaugrand,
2014; Djeghri et al., 2023; Reid et al., 2001; Vollset et al.,
2022), which can be identified using split moving window
boundary analysis (Alvarez-Fernandez et al., 2012; Beau-

grand, 2014) or change-point analysis algorithms (Boulton
and Lenton, 2019; Arellano-Nava et al., 2022).

In our study, we apply a specific change-point analysis
algorithm to a group of species at once, in order to create
a single time series of regime shift likelihood. Producing a
single time series of regime shift likelihood must necessar-
ily remove context. This is a major difference from previ-
ous methods like the split moving window boundary anal-
ysis (Alvarez-Fernandez et al., 2012; Beaugrand, 2014) or
exploration of principle component analysis (Djeghri et al.,
2023), which are concerned with indicating which species or
functional groups were changed with apparent regime shifts.
An advantage of new approach over previous methods is that
construction of a single time series of regime shift likeli-
hood can be the first step towards exploring potential drivers
through linear analysis.

Knowledge of ecosystems requires reliable time series
from preferably more than one trophic level, for as many
years as possible (Edwards et al., 2010; Wouters et al., 2015).
Regime shifts in plankton are often detected in higher trophic
levels first despite signals possibly previously being present
in lower trophic levels (Reid et al., 2001; Vollset et al., 2022;
Beaugrand, 2014). More data from higher trophic levels can
be used to identify whether a system is controlled from the
bottom up or through other means (Di Pane et al., 2022;
Fauchald et al., 2011). Due to their relatively short lifespans
and rapid generation time, planktonic organisms are espe-
cially useful for studying ecological responses to changing
conditions in both the recent (Bowler et al., 2010; Beau-
grand, 2004b; Djeghri et al., 2023) and ancient past (Strack
et al., 2022; Lowery et al., 2020). The idea of using plank-
ton as a “canary in the coal mine” to provide early warnings
of wider regime shifts is not unique (Bowler et al., 2010).
For example, it has been well documented using CPR data
that a regime shift occurred in the North Sea between the
years of approximately 1982 and 1988, evidenced by the sud-
den change in abundance of calanoid copepods Calanus fin-
marchicus and Calanus helgolandicus (Beaugrand and Reid,
2003; Reid et al., 2016, 2001). Some studies have suggested
a change in the plankton community impacted higher trophic
levels or ecosystem function, but not all agree (Djeghri et al.,
2023; Reid et al., 2001).

In our study, we have analyzed multiple time series of
plankton abundance simultaneously. We here describe the
process of generating a single time series representing the
likelihood of a regime shift occurring at any point repre-
sented by the time series. The aim of designing a new au-
tomated methodology for detecting regime shifts was not
simply to add to the growing list of statistical methods and
models already in use (see Alvarez-Fernandez et al., 2012;
Beaugrand et al., 2014; Djeghri et al., 2023; Haines et al.,
2024). The method described here does not require the user
to identify particular species of interest before analyzing a
dataset but rather uses all species in a dataset to estimate
the likelihood of a regime shift occurring. Figures can be
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Figure 1. The North Sea study area with sampling points displayed
in green, and CPR areas C1, C2, D1 and D2 denoted by dashed lines
and area names in red. Map was built using Elson et al. (2024).

made showing the time series of species abundance with the
greatest difference in abundance over time and which there-
fore likely contributed most to regime shift probability being
high. These features are particularly valuable if the plank-
tonic ecological history of the study area is not well known.
We applied the new regime shift identification method to four
areas of the North Sea. The method indicated regime shifts
during periods and showed causative species were likely con-
sistent with those found by previous methods. We discuss ad-
vantages and limitations of the new method, as well as pos-
sible future uses.

2 Methods

2.1 Study area

The study area is comprised of the marine environment
within 50 and 65° N and 10° W and 8° E (Fig. 1). Using
CPR sampling areas (also utilized by Montero et al., 2021;
Alvarez-Fernandez et al., 2012; Djeghri et al., 2023) to
search for evidence of regime shifts has been done previously
and allows for the results of our approach to be compared to
other previous results.

2.2 Ecological data

Abundance data concerning phytoplankton and zooplank-
ton from 1958 until 2019 were obtained from the CPR (see
Reid et al., 2003 for detailed methodology). Abundance data

from the CPR for the over 200 phytoplankton species and
80 zooplankton species are given in captured organisms per
18 520 m (equivalent to 10 nautical miles) of towing (Reid
et al., 2003). Removing the seasonality trends of these data
was accomplished by converting abundances into monthly
anomalies for each year using Eqs. (1) and (2).

Because the CPR survey is conducted by ships of op-
portunity, data from the CPR are highly variable in spatial
and temporal resolution (Reid et al., 2003; Richardson et al.,
2006). Sampling devices are towed behind ships at an aver-
age depth of 7 m, but this is also variable. There are some
groups of plankton which are not routinely collected by the
CPR survey, primarily large zooplankton (Marques et al.,
2024) and some smaller species of phytoplankton (Richard-
son et al., 2006; Mengs et al., 2024). However, the distance
covered and the period of operation provided by the CPR
survey is unmatched by other plankton datasets and is thus a
highly valuable source of ecological data (Beaugrand, 2004a;
Beaugrand et al., 2014; Djeghri et al., 2023).

The Phytoplankton Color Index (PCI) is a logarithmic
graded color scale estimated by the CPR Survey Group,
and has been used as a proxy for chlorophyll concentration
(Beaugrand, 2014; Reid et al., 2003). The PCI is a color scale
completely separate from phytoplankton cells counted per
sample, although high cell counts are likely correlated with
high PCI. A logarithmic transformation was also applied to
phytoplankton and zooplankton species captured by the CPR
(Eq. 1), before mean abundance was calculated (Eq. 2):

x′ = log10

(
xi +

LOQ
2

)
, (1)

where x is the species abundance as measured by the CPR
at time point i and LOQ is the CPR limit of quantification,
a constant of 20 cells per 10 nautical mile sample. The loga-
rithmic transformation was applied to reduce the strong sea-
sonal contrasts in abundance, particularly during bloom pe-
riods, and to stabilize variance across time series. This ap-
proach is commonly used for plankton data, where values can
span several orders of magnitude (Djeghri et al., 2023; Beau-
grand et al., 2014; Bedford et al., 2020a). Logarithmic trans-
formation necessitates the additional manipulation of adding
half the limit of quantification to avoid calculating logs of
zero. Changing original data in two ways instead of one, such
as in square root transformations, is not ideal, but logarith-
mic transformations were chosen because of the exponential
difference in seasonal range observed in plankton abundance
data and due to its use in previous studies (Beaugrand et al.,
2014; Dees et al., 2017).

Mean abundance at each time step was calculated using
Eq. (2), which also removed the seasonality signal from
abundance time series:

1x(t)= x(t)− xm, (2)

where 1x(t) is the mean abundance anomaly at year-month
t which includes every month of every year between 1958
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and 2019. x(t) is the mean abundance of each species after
the transformation detailed in Eq. (1) has been applied, cal-
culated over time step t . xm represents the mean abundance
when the month m is the same as t but calculated over all
years.

2.3 Detection and identification of regime shifts

The regime shift detection algorithm implemented here fol-
lows the method described by Boulton and Lenton (2019).
The method of Boulton and Lenton (2019) was designed for
use on detrended data, which required the removal of a sea-
sonal signal from abundance time series (see Eq. 2). Con-
verting raw data into logarithmically transformed anomalous
means using Eqs. (1)–(2) is a necessary step before detect-
ing abrupt shifts, as described in the following section. There
is a risk that important features of the dataset, such as max-
ima and minima, are removed with this transformation. This
is likely to result in more conservative estimates of abrupt
changes in abundance. The largest driving force of plankton
abundance throughout the year in temperate oceans is sea-
sonality, but this was not the primary concern of this study.
This model may not be suitable for identification of regime
shifts exhibiting as changes to phenology or the timing of
phytoplankton blooms.

The core idea behind this approach is to detect anoma-
lous rates of change in a time series, based on the premise
that regime shifts correspond to unusually steep increases or
decreases in the gradient over short periods. The algorithm
begins by dividing the time series into fixed-length, non-
overlapping segments. Within each segment, a simple linear
regression is applied to estimate the slope, representing the
local rate of change. These slopes are then compared across
all segments. To identify anomalous trends, the algorithm
calculates the median slope and the median absolute devi-
ation (MAD). Slopes that deviate from the median by more
than three MADs are flagged as anomalous. In this context,
linear regression is used solely to quantify rates of change:
since no statistical inference is involved, assumptions such
as normality and homoscedasticity are not required (Schmidt
and Finan, 2018). We adapted and refined the Python ver-
sion (Arellano-Nava et al., 2022) of this method to estimate
the likelihood of a regime shift across multiple species and
trophic levels, presenting the results as a single time series.
Our approach is referred to as the RST (Regime Shift Time-
series) model throughout this paper (Dees, 2025).

To track these anomalies, a regime shift indicator time se-
ries is initialized with zeros. At each time step corresponding
to the center of an anomalous segment, the indicator is up-
dated with +1 (for a steep positive slope) or −1 (for a steep
negative slope). This process is repeated across a range of
segment lengths, from a user-defined minimum to a maxi-
mum of one-third of the total series length. The cumulative
indicator values are then divided by the number of segment
lengths used, yielding a continuous regime shift likelihood

index ranging from −1 to 1. Values near 0 suggest a low
likelihood of abrupt change, while values approaching−1 or
1 indicate a high likelihood of a regime shift, with the sign
reflecting the direction of change.

We applied this single-series regime-shift detection algo-
rithm to identify abrupt changes in each species across the
entire plankton community from the CPR dataset. The RST
model is able to identify abrupt changes when assessing time
series with regular time steps. This required the CPR dataset
to be converted to a time series of mean anomaly abundances
for each month in every year that the CPR has been in op-
eration (see Sect. 2.2). Regime shift likelihood time series
were generated for the logarithmically transformed time se-
ries of mean abundance per month per year (1x(t)) and the
logarithmically transformed time series of zooplankton abun-
dance anomaly. The resulting time series indicates the like-
lihood of an abrupt change occurring at each time step for
each species of zooplankton and phytoplankton captured by
the CPR.

A low-pass filter was applied to abrupt change likeli-
hood time series of each species. Distinct abrupt changes for
species were determined by the abrupt shift likelihood ex-
ceeding the mean and standard deviation of the entire abrupt
change likelihood time series. After an abrupt change was
identified, Eq. (3) was used to check if the mean abundance
of the species was different after the abrupt shift:

−2σA < (x0− x1) < 2σA, (3)

where x0 and x1 are the mean abundance of species before
and after an abrupt change, respectively, as determined by
the algorithm of Boulton and Lenton (2019). The low-pass
filter removed abrupt changes from the results if the mean
abundance before and after a supposed abrupt shift did not
differ by at least 2 standard deviations.

Next, we constructed a probability table to estimate the
probability of an abrupt change for the entire sampled plank-
ton community at each time point. For each species analyzed,
the standard deviation of the regime shift likelihood time se-
ries was calculated. We then applied a series of weights to
the likelihood of a regime shift occurring at every time step
throughout the study period.

A rolling mean with a window length of 24 months was
applied to the time series of abrupt shift likelihood, for each
species. The length of this rolling window was chosen be-
cause changes in the phytoplankton community are assumed
to influence the zooplankton community (Capuzzo et al.,
2018; Marques et al., 2024), and we assumed that two annual
cycles would be long enough to capture this influence. After
making this assumption, a series of figures were made to test
the effect of iteratively changing the number of months in the
rolling window. The code provided here allows the user to ex-
plore alternative rolling window lengths, and we encourage
future studies to do so (see Supplement).

Weights, based on the duration of sustained anomalies,
were added to the relative importance of the time series of the
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likelihood of abrupt change if the time series exceeded one
absolute standard deviation for an extended period (Eq. 4).
This meant the added weight grew exponentially for species
where standard deviation was exceeded for a longer time over
the course of a 24-month rolling window. Sustained deviation
away from a beginning point therefore had a greater effect
than sudden changes which did not last longer than 5 months:

w =


1 if n < 5

2 if 5≤ n < 10
4 if 10≤ n < 20
10 if n≥ 20

. (4)

Here, n is equal to the number of times the probability of an
abrupt change was greater than 1 standard deviation away
from 0, and w is the weight added to the total probabil-
ity of a regime shift occurring. Again, the weights added in
this study assume bottom-up control of North Sea plankton
populations, as found by previous studies (Marques et al.,
2024; Capuzzo et al., 2018). Not all plankton populations
are bottom-up controlled. Regime shifts may sometimes be
caused by removal of predators (Eklöf et al., 2020), and we
encourage future studies to explore modifying the weights
described here.

These weighted series were then summed across species to
generate community-level indices for zooplankton (Pzoo(t))
and phytoplankton (Pphy(t)). The total probability of a
regime shift in the plankton community was then calculated
by adding the probability of an abrupt change in phytoplank-
ton and zooplankton together.

PRS(t)= Pzoo(t)+ 2
t∑

t−23
Pphy(t) ·Pzoo(t) (5)

Here, PRS(t) is the total probability of a regime shift in the
plankton community at time t , Pzoo(t) is the summed abrupt
change likelihood for all zooplankton species at time t , and∑t
t−23Pphy(t) is the summed abrupt change likelihood for

all phytoplankton species between time t and the previous 23
months. The product Pphy(t) ·Pzoo(t) captures co-occurring
abrupt changes in both phytoplankton and zooplankton, re-
flecting potential bottom-up propagation of regime shifts.
Doubling this interaction term emphasizes the influence of
phytoplankton variability on zooplankton dynamics within
a 24-month window. We reiterate that the relative strength
of bottom-up controls (Di Pane et al., 2022) and wasp-waist
controls (Fauchald et al., 2011) on zooplankton in the North
Sea is debated. However, we here assume a change in phy-
toplankton could induce sustained changes in zooplankton,
which allowed us to quantify PRS(t).

Adding the chosen weights (Eq. 4), and including results
from the previous 24 months of the phytoplankton probabil-
ity time series means that results from the first 2 years of the
RST time series will be inaccurate (see Supplement). We en-
courage future studies to explore different ways of calculat-

ing PRS(t) and how PRS(t) changes under greater top-down
control.

The time series of regime shift likelihood for all species
was then converted into a percentage, so as to force the
weighted scores for regime shift likelihood into a comparable
estimate. Making RST model output a percentage means the
estimated likelihood of a regime shift always reaches 100,
even if the pre-percentage likelihood remains relatively low.
This is an important limitation of the RST model, and must
be taken into account when interpreting output which does
not appear to vary for extended periods of time. In order to
allow for a degree of uncertainty around the estimated per-
centage likelihood of a regime shift, the absolute deviation
around the mean percentage was also calculated at each time
step. The results of this time series were plotted with the PCI,
used as a proxy for chlorophyll concentration, and the two
most abundant phytoplankton and zooplankton species.

The model code allows the user to choose whether regime
shifts are indicated when the percentage change in a regime
shift occurring rises above a chosen threshold, or when the
rate of change in percentage likelihood increases above a
chosen threshold in too short of a time period. In the present
study, we opted to indicate possible regime shifts using the
critical gradient of 20 %. We here define a critical gradient
as the change in percentage likelihood of a regime shift oc-
curring between months. The choice to use a critical gradient
to identify regime shifts was made because the percentage
likelihood of a regime shift can remain above 50 %–60 % for
prolonged periods when abrupt changes are induced in only
a small percentage of species (see Fig. 2). Large changes in
regime shift likelihood are more indicative of abrupt changes
occurring in multiple species simultaneously. We chose to
use the critical gradient of 20 % in the present study as val-
idation tests indicated this resulted in an acceptable balance
between false positive and false negative rates (Fig. 8). The
limitation of the RST model producing time series that al-
ways reach 100 % has thus been mitigated somewhat.

3 Validation of the model

In order to validate the RST model for its ability to detect
regime shifts, a series of realistic data frames was constructed
and subsequently analyzed. The RST model was designed
to convert time series data into monthly mean anomalies. In
validation tests this function was removed, and anomalous
monthly means of species abundance were simulated using
Eq. (6):

x(t)= α(x(t − 1) ·AR)+ σz, (6)

where x(t) represents the abundance of each simulated
species at time step t , α is an auto-regressive coefficient used
to prevent the series from moving too far from 0, kept at
α = 0.99, AR is the strength of autocorrelation in the time
series, σ is a constant standard deviation, set to σ = 0.1, and
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Figure 2. Output of the RST model applied to simulated data, in
which a regime shift was induced in 10 % of 220 simulated phy-
toplankton species and 10 % of 80 simulated zooplankton species.
(a) Time series of the percentage chance of a regime shift occurring,
with shaded areas showing the mean absolute deviation, (b) anoma-
lies in the simulated Phytoplankton Color Index (PCI), and (c) its
cumulative sum. (d–k) Cell abundance anomalies and correspond-
ing cumulative sums in log-transformed abundances for the (d–
g) phytoplankton and (h–k) zooplankton species showing the great-
est ranges in anomalies. Vertical dashed lines indicate months when
the estimated regime shift likelihood changed by over 20 %. Shaded
areas in (b), (d), (f), (h), and (j) represent the standard deviation
around the 12-month rolling mean.

z is a random number between −1 and 1, generated at each
time step.

Regime shifts were induced into a chosen proportion of
the simulated data frame using Eq. 7:

x(t + 1)= (x(t)AR)+
−x(t)3+ x(t)+mt

2
+ σz, (7)

where x(t+1) is the simulated abundance at time step t+1,
mt is a time-varying parameter that controls the regime shift
dynamics, which is defined by one of three separate equa-
tions, depending on the time period, σ is a constant standard
deviation, set to σ = 0.2, and z is a random number between
−1 and 1, generated at each time step.

The standard deviation for species in which abrupt shifts
were induced was larger than for species in which shifts
were not induced. The original reason for adding this effect
was because it has been shown that variation increases be-
fore regime shifts caused by critical slowing down (Schef-
fer et al., 2001; Scheffer, 2009). It became clear that our
interest should not be limited to regime shifts preceded by
critical slowing down, but increasing variation for simulated
species experiencing abrupt shifts resulted in increased range
and a greater chance of their time series appearing in graphs
(Figs. 2–7). Before any abrupt shift impacts x, mt is equal
to zero. From the beginning of the period when abrupt shifts
are induced until the end of the shift, mt gradually increases
from zero until it reaches the bifurcation parameter µ:

µ=
2
√

3
9
. (8)

The bifurcation parameter (Eq. 8) was taken from Arellano-
Nava et al. (2022) in order to obtain greater control over the
timing of abrupt changes. From the end of the shift until sim-
ulated abundance x returns to previous levels, m is equal to
µ. In examples where x has a different behavior or abun-
dance after an abrupt shift has taken place,m decreases grad-
ually from the bifurcation parameter µ until −5. When mt is
equal to µ, an abrupt shift in simulated abundance is likely
to occur. When mt is decreased, abrupt shifts are unlikely.

These formulae were adapted from the original
regimeshifts Python package by Arellano-Nava et al.
(2022). Changes were made in Eq. (6) to allow the strength
of autocorrelation to be modified, to remove the bifurcation
parameter, and to allow for realistic time series that do not
show a regime shift. The changes added to Eq. (7) allow for
greater control of when and how long induced regime shifts
take place. We performed different experiments to validate
the model.

3.1 Number of species experiencing regime shifts

First, the model was tested with respect to the percentage
of species experiencing a regime shift. While autocorrelation
was kept at a constant level of 0.6, the proportion of sim-
ulated phytoplankton and zooplankton species in which an
abrupt shift was induced was changed incrementally to show
the effect of this on the percentage likelihood that a regime
shift took place.

When 10 % of simulated phytoplankton and zooplank-
ton species experienced an abrupt transition, the percentage
likelihood of a regime shift remained around 50 % with lit-
tle variation for the majority of the time series (Fig. 2). A
regime shift was still identified just after modeled month 361,
when the percentage likelihood of a regime shift occurring
increased from approximately 50 % to 75 % before continu-
ing to increase more slowly (Fig. 2).

When an abrupt shift was induced in approximately 70 %
of simulated phytoplankton and zooplankton species, more
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Figure 3. As for Fig. 2, except the regime shifts were induced
in 70 % of simulated phytoplankton species and 90 % of simu-
lated zooplankton species. The percentage likelihood of a predicted
regime shift increased by greater than the critical gradient after sim-
ulated month 360 and continued to increase until approximately
month 420. Abrupt shifts in the simulated PCI anomaly and sim-
ulated phytoplankton and zooplankton species can be observed be-
tween simulated months 0 and 150 and after 360.

dramatic increases in percentage regime shift likelihood were
observed (Fig. 3). A regime shift was identified by the RST
model just before the abundance of simulated PCI, phyto-
plankton, and zooplankton decreased (Fig. 3). The regime
shift percentage likelihood increased soon after time step 361
of the simulated time series and decreased during approxi-
mately time step 460–500 (Fig. 3).

3.2 Time period between induced regime shifts

Second, the effect that changing the time between induced
abrupt shifts had on the percentage likelihood of a regime
shift was tested. Here, the amount of autocorrelation was
constantly high (0.6), and the proportion of species which ex-
perienced a regime shift was kept at a constant 0.4 while the
length of time between the first and second induced abrupt
changes was changed incrementally.

When the period between the first and last induced
changes to simulated species abundance was restricted to
lasting a maximum of 20 % of the time series, or 12.4 simu-

Figure 4. As for Fig. 2, except the period between first and last
induced abrupt changes was restricted to last 20 % of the time series,
or nearly 150 simulated months.

lated years, the model was barely able to detect two separate
regime shifts (Fig. 4). The percentage likelihood of a regime
shift occurring did not decrease by more than 10 % between
induced abrupt shifts (Fig. 4). When the period between the
first and last induced abrupt changes was increased to being
at least 22.5 % of the time series, or just less than 14 mod-
eled years, two distinct regime shifts could be observed as
the percentage likelihood fell by more than 20 % between
the two induced shifts (Fig. 5).

3.3 Lag-1 autocorrelation strength

In a final validation experiment, we tested the effect of lag-
1 autocorrelation strength on regime shift detectability. The
proportion of species which experienced a regime shift was
kept at a constant 0.4 and the time period between induced
abrupt changes was also kept consistent, while autocorrela-
tion strength was increased incrementally from 0.1 to 1.0 in
steps of 0.1.

The percentage likelihood of a regime shift occurring was
less variable when the strength of lag-1 autocorrelation was
restricted to AR= 0.1 (Fig. 6). This is especially visible at
the beginning of the time series when the first abrupt change
was induced, as the percentage likelihood did not increase
dramatically before approximately year 25 (or month 300)
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Figure 5. As for Fig. 2, except the period between first and last in-
duced abrupt changes was restricted to 22.5 % of the time series, or
162 simulated months. The percentage likelihood of a regime shift
can be observed in (a) to increase from month 150 until decreasing
after approximately month 300.

of the simulation (Fig. 6). The regime shift percentage likeli-
hood increased most dramatically after modeled month 361,
when abrupt changes were induced in 40 % of phytoplankton
and zooplankton species (Fig. 6).

When strength of lag-1 autocorrelation was increased to
AR= 0.725, the earlier regime shift which began after mod-
eled month 361 was detected, as the critical gradient thresh-
old was exceeded (Fig. 7). The maximum percentage change
in a regime shift was still detected at approximately the same
time as when lag-1 autocorrelation was lower, before month
481 (Figs. 6–7). A greater variation is shown throughout the
time series, as the percentage likelihood was lower during
periods with no induced regime shifts (Fig. 7).

3.4 Determination of type I and type II errors

Additional tests to determine the likely number of type I er-
rors, or false positives, were completed using a bootstrapping
model. Simulated datasets exhibiting different levels of red
noise were made. This was accomplished using 100 repeti-
tions of Eq. (6) using the same value of AR and σ but dif-
ferent values of the random variable z. After every 100 rep-

Figure 6. As for Fig. 2, except the strength of lag-1 autocorrelation
was equal to 0.1. An abrupt change was not induced in the PCI
anomaly (b–c), but changes were induced in species represented
in (d)–(k).

etitions of Eq. (6), AR and σ were incrementally changed.
AR and σ ranged between 0 and 1 and changed by steps of
0.1 and 0.2, respectively. The redness of noise was calculated
using Eq. (9):

redness=
AR
σ
, (9)

and the redness of noise thus varied between 0.0 and 5.0.
A similar test was carried out to approximate the percent-

age of type II errors, or false negatives. In this example, the
same bootstrapping method was used, but abrupt shifts were
induced in 40 % of phytoplankton and zooplankton species
using Eq. (7). To test the effect of different dataset sizes on
false positive and false negative rates, experiments were re-
peated for datasets of 220 phytoplankton and 80 zooplank-
ton species, 110 phytoplankton and 40 zooplankton species,
and 55 phytoplankton and 20 zooplankton species. The effect
of type I and type II error generation under different critical
gradients was assessed by repeating these tests using critical
gradients of 18 % and 20 % (Fig. 8).

Validation tests showed that the percentage likelihood of
a regime shift remained high throughout nearly the whole
time series when fewer species experienced abrupt shifts to
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Figure 7. As for Fig. 2, except the strength of lag-1 autocorrelation
was equal to 0.725. A regime shift can be seen in (a) when abrupt
changes can be observed in (d)–(k), just after simulated month 360.

their abundance (Fig. 2 compared to Fig. 3). Therefore, we
chose to identify regime shifts using critical gradients instead
of finding times when the percentage likelihood of a regime
shift exceeded a threshold. The assumption was made that
using critical gradients to identify regime shifts would result
in fewer type I errors. Normalizing the results of the RST
model to between 0 and 100 made the time series of regime
shift likelihood in different North Sea regions more compa-
rable but resulted in the time series being less variable and
remaining high for a long time when fewer species experi-
enced an abrupt shift (Figs. 2–3). Therefore, if the number
of species in a community or ecosystem which have experi-
enced an abrupt shift is unknown or when there is a suspi-
cion that relatively few species have changed suddenly, it is
more appropriate to use critical gradient thresholds to iden-
tify regime shifts.

We show that for datasets of 220 simulated phytoplankton
species and 80 simulated zooplankton species the false posi-
tive rate is less than 5 % (Fig. 8a). The rate of false positives
for datasets with fewer species is significantly higher than for
larger datasets (Fig. 8). For datasets of only 55 phytoplank-
ton and 20 zooplankton species, the choice of critical gradi-
ent results in significantly different false positive rates and
false negative rates (Fig. 8). Box plots notches suggest that

Figure 8. (a) Box plots showing the percentage of datasets of vary-
ing levels of red noise where regime shifts were identified where
no abrupt changes were induced. A dashed line has been drawn at
5 %. Notches on box plots which do not overlap indicate a signifi-
cant difference. Different plots show datasets of 55 phytoplankton
and 20 zooplankton species where critical gradients of A 20 % and
B 18 % were used to identify regime shifts, 110 phytoplankton and
40 zooplankton species where critical gradients of C 20 % and D
18 % were used to identify regime shifts, and 220 phytoplankton
and 80 zooplankton species where critical gradients of E 20 % and
F 18 % were used to identify regime shifts. (b) Abrupt changes were
induced in 40 % of species.

for smaller datasets, when a critical gradient of 20 % is used
the rates of false negatives are significantly higher while false
positive rates are significantly lower (Fig. 8). Differences be-
tween critical gradients of 18 % or 20 % do not appear to be
significant for sample sizes of 110 phytoplankton species and
40 zooplankton species or larger (Fig. 8).

Estimates of false positive rate production demonstrates
that using time series from fewer species will yield less ro-
bust results (Fig. 8). In the current example, we use time se-
ries of approximately 110 phytoplankton and 40 zooplankton
species, which proved to be a sufficiently large dataset. This
should be taken as an indication of the robustness of the RST
model when used in the current study rather than an absolute
minimum limit of the number of time series which should be
used.

The original regimeshifts function by Boulton and Lenton
(2019) was designed to be used by non-expert users, and
we have tried to keep the same rationale. Without knowing
anything about a particular community of plankton, a non-
expert user could potentially input many time series into the
RST model in order to identify the two most abundant phy-
toplankton species and whether there is a high probability of
any regime shifts having taken place during the time period
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the dataset exists in. Apart from allowing for this process to
be used by non-experts, another advantage to including all
possible species is minimizing the risk of type I and type II
errors by keeping sample sizes as large as possible (Fig. 8).
We now show an example of using the RST model on phyto-
plankton and zooplankton abundance data from the CPR.

4 Case study: North Sea

After validation, the RST model was used to generate time
series showing likelihood of regime shifts occurring for each
of the four areas in the North Sea (Fig. 1). Abundance anoma-
lies for each month of the time series between 1958 and 2020
were also plotted, and indications of regime shifts were plot-
ted in each graph (Figs. 9–13). The threshold of a higher gra-
dient change than 20 % was chosen to show when regime
shifts occurred.

4.1 Identified regime shifts in area C1

A total of four regime shifts were identified in area C1, lo-
cated in the center east North Sea (Fig. 1), by the RST model
(Fig. 9a). These were also periods when the percentage like-
lihood of a regime shift occurring increased above 50 %
(Fig. 9a). The four regime shifts identified were in 1989,
1997, 2002, and 2013, although of these only the identified
regime shifts in 1989 and 2002 were associated with an in-
creasing percentage chance (Fig. 9a).

No large variations in the PCI anomaly were detected
over the study period. However, before 1990 the mean PCI
anomaly was mostly just below zero (Fig. 9b–c). After 1990,
the PCI anomaly was more positive (Fig. 9b–c).

Larger variations over time were detected in the abun-
dances of the most variable phytoplankton groups, Ceratium
furca and Ceratium fusus (Fig. 9d–g). Abundances of both
these Ceratium species were largely above zero until 2002,
when the second regime shift was identified (Fig. 9). After
2002, mean abundance of these species was below the mean
abundance of the study period (Fig. 9d–g).

In contrast, the mean anomalous abundance of C. fin-
marchicus decreased from being mostly positive to being
mostly negative in 1989, when the first regime shift was iden-
tified (Fig. 9). After 1989, the mean anomalous abundance of
C. finmarchicus remained below zero (Fig. 9). At the same
time, the mean anomalous abundance of C. helgolandicus
increased from below zero to approximately zero in 1989
(Fig. 9). The anomalous abundance of C. helgolandicus be-
came positive after the second regime shift began in 2003
(Fig. 9).

4.2 Identified regime shifts in area C2

Six regime shifts were detected by the RST model in area C2,
located in the center west North Sea (Fig. 1): in 1963, 1980,
1989, twice in 1992, and 2003 (Fig. 10a). Of these, three

Figure 9. (a) Time series of the percentage chance of a regime shift
occurring as estimated by the RST model for area C1 (see Fig. 1),
located between 54 and 58° N and 3 and 12° E, (b) monthly mean
anomaly, and (c) cumulative sum of PCI. (d–k) Cell abundance
anomalies and corresponding cumulative sums in log-transformed
abundances for the (d–g) phytoplankton species showing the great-
est ranges, (h–i) Calanus finmarchicus, and (j–k) C. helgolandicus.
Vertical dashed lines indicate months when the estimated regime
shift likelihood changed by over 20 %. The sample size for the en-
tire study period in this area is 11 976 (see Sect. 2).

were identified when the gradient of the percentage chance
of a regime shifts occurring was positive: 1963, 1989, and
1992 (Fig. 10a). The percentage chance of a regime shift oc-
curring was highest in the period between 1991 and 2003, as
it remained above 75 % for most of the time (Fig. 10a).

The PCI anomaly remained below zero for most of the
time before 1990, after which it stayed approximately equal
to zero (Fig. 10b–c). The two most variable phytoplankton
species were Ceratium macroceros and C. furca (Fig. 10d–
g). The mean abundance anomaly of C. macroceros was pos-
itive until the mid-1970s, after which it remained mostly
negative until approximately 2003 (Fig. 10d–e). The only
change in anomalous C. macroceros abundance associated
with an identified regime shift occurred in 2003 (Fig. 10e).
The anomalous abundance of C. furca remained around zero
for most of the time series until 2003 (Fig. 10f–g). After
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Figure 10. As for Fig. 9, but the region of interest here is area C2
(see Fig. 1), between 54 and 58° N and between −2 and 3° E. The
sample size for the entire study period in this area is 8737.

2003, the mean anomalous abundance of C. furca was largely
below zero (Fig. 10f–g).

From the beginning of the study period until 1989, the
mean anomaly of C. finmarchicus was above zero (Fig. 10h–
i). After 1989, mean anomalous C. finmarchicus abundance
was mostly below zero for the remainder of the time series
(Fig. 10h–i). The opposite pattern was observed in the mean
anomalous abundance of C. helgolandicus: from the begin-
ning of the study period until 1980 the abundance anomaly
was below zero (Fig. 10j–k). Between 1980 and 2001, the
mean anomalous abundance of C. helgolandicus and the vari-
ation around it became larger (Fig. 10j–k). After 2001, the
mean anomalous abundance of C. helgolandicus increased
further and was almost always above zero (Fig. 10j–k).

4.3 Identified regime shifts in area D1

Two regime shifts were identified in area D1, in the south-
east of the North Sea (Fig. 1). These regime shifts occurred
in 1997, when there was a positive gradient, and in 2008,
when there was a negative gradient (Fig. 11a). The percent-
age likelihood between these regime shifts remained above
50 % and was below 40 % for the remainder of the time se-
ries (Fig. 11a).

Figure 11. As for Fig. 9, but the region of interest here is area D1
(see Fig. 1), south of 54° N and between 3 and 12° E. The sample
size for the entire study period in this area is 5566.

The PCI anomaly was less than zero for much of the
time series until 1997 (Fig. 11b). After 2008, the mean PCI
anomaly increased to above zero for the rest of the time
series (Fig. 11b–c). The two most variable phytoplankton
species, C. furca and C. macroceros, show positive anoma-
lous abundance at the start of the time series until the mid-
1970s (Fig. 11d–g). The mean abundance anomaly of C.
furca then remained around zero until 2000, after which it
decreased (Fig. 11d–e). The mean abundance of C. macro-
ceros remained below zero from the mid-1970s until the end
of the time series (Fig. 11f–g).

The anomalous abundance of C. finmarchicus was largely
above zero until approximately 1988, after which it remained
below zero until the end of the time series (Fig. 11h–i). The
anomalous abundance of C. helgolandicus followed the op-
posite trend, as it stayed below zero until approximately 1988
and subsequently remained around zero until 1997 (Fig. 11j–
k). After 1997, the mean anomalous abundance of C. hel-
golandicus increased to being mostly above zero for the re-
mainder of the time series (Fig. 11j–k).
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Figure 12. As for Fig. 9, but the region of interest here is area D2
(see Fig. 1), south of 54° N and between −2 and 3° E. The sample
size for the entire study period in this area is 9743.

4.4 Identified regime shifts in area D2

Many of the patterns seen in area D1 were also seen in area
D2, situated in the southwest region of the North Sea (Fig. 1).
Two regime shifts were detected: during 1994, when the per-
centage chance gradient was positive, and 2005, when the
gradient was negative (Fig. 12a). Between these identified
regime shifts, the percentage likelihood of a regime shift oc-
curring remained above 50 %, whilst it remained below 50 %
for most of the rest of the time series (Fig. 12a).

The PCI anomaly was less than zero for much of the
time series until 1994 (Fig. 12b). After 1994, the mean PCI
anomaly increased to above zero for the rest of the time se-
ries (Fig. 12b–c). The anomalous abundance of C. macro-
ceros was positive at the start of the time series until the mid-
1970s (Fig. 12d–e). The mean abundance of C. macroceros
remained below zero until nearly the end of the time series
(Fig. 12f–g). The mean abundance anomaly of C. furca re-
mained above zero until 2005, after which it decreased to
below zero (Fig. 12d–e).

The anomalous abundance of C. finmarchicus was largely
above zero until the mid-1980s, after which it remained be-
low zero until the end of the time series (Fig. 12h–i). The
anomalous abundance of C. helgolandicus followed the op-

Figure 13. As for Fig. 9 but showing results of the entire North Sea
(Fig. 1). The sample size for the entire study period in this area is
56745.

posite trend as it stayed below zero until approximately 1994,
after which it increased to being mostly above zero for the re-
mainder of the time series (Fig. 12j–k).

4.5 Entire North Sea

Seven regime shifts were identified for the entire North Sea
(Fig. 1) by the RST model if the first is omitted for happen-
ing at the beginning. These were detected during 1962, 1972,
1979, 1998, 2003, 2008, and 2015 (Fig. 13a). Of these iden-
tified regime shifts, four of them occurred while the percent-
age likelihood gradient was positive: 1962, 1972, 1998, and
2003 (Fig. 13a). The percentage chance of a regime shift oc-
curring between regime shifts was not noticeably higher or
lower compared to other periods in the time series (Fig. 13a).
The RST model indicated that the likelihood of a regime shift
having occurred in the North Sea remained above 50 % for
the majority of the time series (Fig. 13).

The mean PCI anomaly in the North Sea began to in-
crease above zero in approximately 1980 (Fig. 13). From ap-
proximately 1990 until the end of the study period, the PCI
anomaly remained relatively steady.

The two most variable phytoplankton species, C. furca and
C. macroceros, exhibited more dramatic changes in abun-
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dance. These changes occurred just after 2000 for C. furca,
and between 1970 and 1980 for C. macroceros (Fig. 13d–g).
Each of these abrupt shifts were associated with regime shifts
identified by the RST model (Fig. 13d–g).

The abundance of C. finmarchicus began to decrease be-
tween 1980 and 1990, at approximately the same time that
the PCI anomaly started to increase (Fig. 13). The decrease
in C. finmarchicus was preceded by the abundance of C. hel-
golandicus starting to increase (Fig. 13). It is difficult to at-
tribute any of these changes to regime shifts identified by
RST, but when C. helgolandicus started to increase from just
before 2000, the probability of a regime shift occurring in-
creased by more than 20 % per month several times (Fig. 13).

4.6 Summary of North Sea results

The RST model successfully identified regime shifts in
the North Sea, and their variance over time, space, and
species involved (Tables 1–2). Regime shifts identified by
the RST model in the beginning of the study period ap-
pear to have been accompanied by changes in phytoplankton
species abundance, though not necessarily the PCI anomaly
(Table 1). Regime shifts in the 1980s and 1990s appear
to have been accompanied by changes in copepods C. fin-
marchicus and C. helgolandicus and in the PCI anomaly (Ta-
ble 1). Regime shifts after 2000 appear to be associated with
changes in phytoplankton species abundance (Table 1).

In the south of the North Sea, identified regime shifts were
first observed in the west in area D2 before the east in area
D1 (Tables 1–2). In the center of the North Sea, it is more
difficult to determine whether the same regime shifts were
detected at similar times, as more were detected by the RST
model than in the south (Table 2).

Abrupt changes in the PCI anomaly, the abundance
anomaly of either of the two most variable phytoplankton
species, or at least one of C. finmarchicus or C. helgolandi-
cus were detected when the majority of regime shifts were
identified if the gradient of regime shift likelihood was posi-
tive (Table 2). Exceptions occurred in D2 during 1994 and in
the North Sea during 1962 and 1972 (Figs. 12–13; Table 2).
Similarly, regime shifts were identified when the likelihood
time series gradient was negative, which were not accompa-
nied by abrupt changes in the PCI anomaly or the other four
time series shown. An example of this was in area C2 dur-
ing 1989 (Fig. 10). Exceptions appear to occur regardless of
whether the RST gradient is positive or negative; so, all times
when the critical gradient was exceeded have been noted (Ta-
bles 1–2).

5 Discussion

Our analysis presents a novel multispecies approach to quan-
tify the likelihood of a regime shift occurring in marine
plankton communities. We find that by constructing a sin-

gle time series of regime shift likelihood from abundance
data of different phytoplankton and zooplankton species, our
model is able to reliably detect previous regime shifts in the
North Sea (Table 1). Distinguishing regime shifts in North
Sea plankton from changes in abundance due to advection is
a limitation of this approach. Future work could address this
limitation by incorporating spatial patterns from hydrody-
namic models, helping to separate genuine ecological shifts
from transport-driven variability. A step towards this would
be to divide the North Sea into hydrodynamically appropri-
ate regions (van Leeuwen et al., 2015), but this is beyond
the scope of the present study. A single time series of regime
shift likelihood may lead to the future development of auto-
mated detection algorithms. Comparison of regime shift like-
lihood to potential drivers in a single-variate model is likely
to be less challenging to implement than multivariate models
or principal component analyses.

5.1 Proof of concept

As noted by multiple ecological studies, validation of new
methods and models is a necessary first step (Dees et al.,
2023; Mateus et al., 2019; Groesser and Schwaninger, 2012).
We therefore constructed artificial abundance data that mimic
the characteristics of observed CPR data, which allowed for
extensive validation of our model, an approach successfully
applied in the multi-scale multivariate split moving window
methodology to identify North Sea regime shifts (Beaugrand
et al., 2014). Further, we estimated the probability of our
model producing type I and II errors in order to quantify
the robustness of our model’s ability to detect regime shifts,
which Haines et al. (2024) have identified as a frequent limi-
tation of regime shift detection models.

Validation tests showed that regime shift likelihood vari-
ation during induced regime shifts was much larger when a
greater proportion of species experienced an abrupt change.
When only a small proportion of species experience an
abrupt abundance shift, the percentage of regime shift like-
lihood remained high for a large part of the time range and
only deviated by just over 20 %. This is important to know for
interpretation of RST output when ecological data are used.
Previous studies have shown that for plankton populations in
the North Sea, approximately 40 % of species were involved
in identified regime shifts (Beaugrand et al., 2014). We have
shown that the model can detect regime shifts when fewer
species are involved, but care must be taken when interpret-
ing model output as the 20 % critical gradient is not always
exceeded.

The minimum amount of time between abrupt shifts that
the RST model was able to distinguish was between 12 and
14 years. The time period between abrupt changes was there-
fore kept at 40 % of the time series, or just under 25 years,
to remove all possibility of the time taken for the community
to be established having an impact on model performance.
It is likely that for abrupt changes with a time period be-
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Table 1. Regime shifts identified by RST model, divided into 20-year periods. The species involved column indicates whether the PCI
anomaly, the two most variable phytoplankton species, or either C. finmarchicus or C. helgolandicus experienced noticeable changes associ-
ated with the identified regime shift.

Period Species involved C1 C2 D1 D2 North Sea

1960–1979 C. macroceros, C. furca 1963 1962, 1972, 1979
1980–1999 PCI C. helgolandicus, C. finmarchicus 1989, 1997 1980, 1989, 1992 1997 1994 1998
2000–2019 C. furca, C. fusus, C. macroceros 2002, 2013 2003 2008 2005 2003, 2008, 2015

Table 2. Comparison of regime shifts found in North Sea areas dur-
ing the present study.

Area Regime shifts detected by RST model

(positive gradient) (negative gradient)

C1 1989, 2002 1997, 2013
C2 1963, 1989, 1992 1980, 1992, 2003
D1 1997 2008
D2 1994 2005
North Sea 1962, 1972, 1998, 2003 1979, 2008, 2015

tween them of less than 12 years, the predicted likelihood
of a regime shift will be elevated over an extended time pe-
riod. Another observed limitation of the model is the length
of time between the start of the time series and when the ear-
liest regime shift can be detected. In Fig. 7, abrupt changes to
the abundance of two phytoplankton species can be observed
but were not accompanied by an increase in the regime shift
probability time series above the critical gradient. This is
similar to Beaugrand et al. (2014), where results suggested
a regime shift near the beginning of their study period which
could not be confirmed.

Autocorrelation in time series data can lead to increased
false positive rates (Haines et al., 2024). Removal of the ef-
fect of autocorrelation has previously been accomplished us-
ing statistical means such as the modified Chelton method,
which reduces the number of degrees of freedom (Pyper and
Peterman, 1998; Hinder et al., 2014; Bedford et al., 2020a;
Dees et al., 2017), or by applying an auto-regressive-moving
average (ARMA) model to the data (Alvarez-Fernandez
et al., 2012). The original regimeshifts model, incorporated
within the RST model described here, does not remove au-
tocorrelation but instead detects anomalous rates of change
(Boulton and Lenton, 2019; Arellano-Nava et al., 2022).
Similar to tipping points, regime shifts can be preceded by
increasing autocorrelation and variance (Dakos et al., 2015;
Scheffer et al., 2001). Preserving autocorrelation within the
analyzed dataset is therefore preferential when looking for
early warning signals for regime shifts. Regime shift detec-
tion by the RST model is improved when autocorrelation
is stronger, although in silico validation tests have shown
that regime shifts are still identified when the autocorrelation
before abrupt shifts is weak or absent. Preserving more of

the dataset’s original structure appears to allow for the RST
model to identify regime shifts with a low false positive rate
relative to other methods (Fig. 8) (Haines et al., 2024; Rud-
nick and Davis, 2003).

The in silico experiments described here show that the
RST model is capable of identifying regime shifts with sim-
ilar numbers of species as is collected by the CPR, but care
should be taken if the time series of regime shift likelihood
does not deviate dramatically. Changes in regime shift likeli-
hood of approximately 20 % should be investigated individu-
ally by looking at accompanying time series and cumulative
sum graphs, as it is possible that these are false positives or
false negatives.

The RST model identified likely regime shifts in different
regions of the North Sea, which can be grouped by species
and timing. Regime shifts observed at the beginning and end
of the study period appear to have been caused primarily
by changes in the most abundant species of phytoplankton.
Regime shifts in the 1980s and 1990s appear to have been
driven by changes in the PCI and copepods C. finmarchi-
cus and C. helgolandicus. These results are consistent with
previously identified regime shifts in the North Sea (Beau-
grand et al., 2014; Djeghri et al., 2023; Bedford et al., 2020a;
McQuatters-Gollop et al., 2007), although it is difficult to
make a direct comparison due to differences in spatial areas
chosen.

The North Sea and the distribution of any plankton within
it are influenced by advection (Hjøllo et al., 2009; Fransz
et al., 1991; Bartsch et al., 1989), and it is premature to con-
clusively identify a particular date when a regime shift oc-
curred without comparing neighboring areas. For example,
results from the RST model show an apparent regime shift
involving C. finmarchicus and PCI occurred in the mid-west
of the North Sea (area C2) during 1992, subsequently in the
southwest of the North Sea (area D2) during 1994, and then
in the southeast North Sea (area D1) during 1997. Again, a
regime shift involving C. macroceros, C. furca, and C. fusus
was identified in area C2 in 2003, then in D2 during 2005,
before being detected in D1 in 2008. An important limitation
of the RST model is that it is difficult to confirm whether
regime shifts have taken place at different times or rather
abrupt changes in plankton were due to advection around the
North Sea system.
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One of the first investigations of ecological regime shifts
in the North Sea focused on the shift from a zooplank-
ton community dominated by C. finmarchicus to one where
C. helgolandicus was more dominant in the North Sea be-
tween 1982 and 1989 (Beaugrand and Reid, 2003; Reid
et al., 2016, 2001). Other studies have suggested this regime
shift began later in the 1980s (Wouters et al., 2015; Beau-
grand, 2014; Alvarez-Fernandez et al., 2012). More inves-
tigations into North Sea plankton communities revealed an-
other likely regime shift which ended in 1968, though as this
was the near the beginning of the ecological time series used
there is less confidence (Beaugrand, 2014). A final ecological
regime shift was identified between 1996 and 2003, though
whether there was an impact on ecosystem function is uncer-
tain (Beaugrand et al., 2014; Djeghri et al., 2023; Alvarez-
Fernandez et al., 2012). When analysis into separate north-
ern and southern North Sea areas took place, a regime shift
was detected around 1978 (Alvarez-Fernandez et al., 2012).
Using the RST method we have shown three periods of in-
creased regime shift likelihood, though likelihood differs by
North Sea area.

For the entire North Sea, the RST model detected regime
shifts at similar times to Beaugrand et al. (2014). How-
ever, the split moving window method did not detect regime
shifts after 2003 (Beaugrand et al., 2014). When just area
C1 of the North Sea was considered, the RST model de-
tected the regime shifts in the late 1980s, and between the late
1990s and early 2000s. Again, a later regime shift after 2010
was also identified. The RST model also detected the late
1980s shift in area C2. Interestingly, Alvarez-Fernandez et al.
(2012) detected regime shifts in approximately 1978 which
appear consistent with those detected by the RST model in
the entire North Sea in 1979 and area C2 during 1980. The
shift from C. finmarchicus to C. helgolandicus appears to
have occurred later in areas D1 and D2. Further study of
the plankton community and the apparent regime shifts sug-
gested in many areas after 2003 is recommended.

5.2 RST model output

The nature of the CPR database and the RST model’s
ability to detect regime shifts in multispecies communities
means that abrupt changes in phytoplankton and zooplankton
species that were not displayed in the output’s graphs can be
identified. Equation (7) induces regime shifts in simulated
time series, but the stochastic term m incorporated within
Eq. (7) gradually increases the likelihood of a simulated time
series to experience an abrupt change. For example, minor
differences in the timing of abrupt shifts in phytoplankton
species 1 and 129 and zooplankton species 15 and 44 can be
observed. In this case, abrupt changes began to be induced in
40 % of species just before 1990, which caused the percent-
age likelihood of a regime shift to increase. The RST time
series shows the probability of the entire plankton commu-
nity captured by the CPR experiencing a regime shift and is

influenced by abrupt shifts in individual species. The ability
to calculate the risk of regime shifts in the community by
analyzing all species, instead of those assumed to be most
important, exhibits the importance of the RST model.

Large and dramatic changes in species abundance can oc-
cur without an accompanying change in regime shift likeli-
hood, as observed in C. finmarchicus abundance in the entire
North Sea, and either Ceratium spp. or PCI in area D1. The
RST model is designed to predict regime shift likelihood for
all species that are input, and changes to single species do not
always affect the entire community (Fauchald et al., 2011;
Djeghri et al., 2023). This is an important difference from
other regime shift detection algorithms used in the North Sea
(Beaugrand et al., 2014; Bedford et al., 2020a, b). Output
from the original regimeshifts function was multiplied by the
mean abundance of species for that month, resulting in the
RST model estimating regime shift likelihood for all species
in a particular database rather than simply measuring the
number of species exhibiting abrupt changes. In this way,
the RST model was kept appropriate for non-expert users
while scaling the proportion that each species contributes to
the percentage likelihood of a regime shift. Applying more
specific weights to keystone species such as C. finmarchicus
or C. helgolandicus may be an interesting avenue for future
research.

In contrast to the present study, which used abundance
records from every species recorded in the CPR dataset, pre-
vious studies identifying regime shifts in marine plankton
datasets have looked at small groups of individual species.
Example studies include those analyzing the 1980s regime
shift involving C. finmarchicus and C. helgolandicus (Beau-
grand and Reid, 2003; Edwards et al., 2001; Reid et al., 2016)
and those studies grouping species into functional groups
of phyto- and zooplankton (Beaugrand et al., 2014; Bed-
ford et al., 2020a; Hinder et al., 2012; McQuatters-Gollop
et al., 2007; Haines et al., 2024). The advantage of this ap-
proach is the ability to show how certain groups of species
have changed over time, possibly as a response to increased
temperature or increases in other anthropogenic input (Bed-
ford et al., 2020a; Beaugrand and Reid, 2003; Edwards et al.,
2001). However, by looking at only a limited number of
species or groups, studies can miss changes to other species
groups which were not specifically checked. It is particularly
difficult to calculate major changes across multiple trophic
levels in the marine environment because different sampling
methodologies are used for plankton and fish and data have
often been collected over different scales of time and space
(Haines et al., 2024; Beaugrand and Reid, 2003; Reid et al.,
2001). Studies of ecological regime shifts have therefore tra-
ditionally been more common in closed systems like lakes,
where regular monitoring of across multiple regime shifts is
easier (Bertani et al., 2016). Ecological regime shifts in ma-
rine ecosystems should be observed at more than one trophic
level at a time (Beaulieu et al., 2016; Yletyinen et al., 2016;
Haines et al., 2024).
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Assessing how many trophic levels are represented in a
database of phytoplankton and zooplankton is challenging,
as heterotrophic dinoflagellates can be an ecologically sig-
nificant consumer of ciliates, diatoms, and some smaller zoo-
plankton species (Sherr and Sherr, 2007; Park et al., 2006).
Accordingly, zooplankton can operate over a range of trophic
levels depending on species, season, and region (Kürten
et al., 2013; Décima, 2022). The methodology of Ibanez
and Dauvin (1998) to select species from the CPR dataset
focused on choosing representative species and avoiding
zero inflated presence–absence counts. Use of this selection
methodology meant that only 44 phytoplankton species and
29 zooplankton species were analyzed using the method of
Beaugrand et al. (2014). In contrast, the present method used
data from all species collected by the CPR. At least three
trophic levels were thus included: phytoplankton, zooplank-
ton, and fish larvae and eggs.

In order to take greater advantage of the valuable CPR
dataset and all trophic levels included, the RST model
used in this analysis explicitly placed exponentially greater
weight on the percentage likelihood of a regime shift if
abrupt changes were detected in both phyto- and zooplankton
species within the window length of 24 months (see Meth-
ods). When data for the entire study area were analyzed by
the RST, the percentage likelihood of a regime shift taking
place was highest in approximately 1968, the late 1980s, and
between 1996 and 2003. These periods compare favorably
with those identified by Beaugrand et al. (2014) and provide
some validation of the RST model described here. Explicitly
adding differing weights to meroplanktonic organisms may
be an interesting avenue of future research.

5.3 Robustness of regime shift detection

A recent paper looking at various different methodologies
for detecting regime shifts in marine ecosystems showed that
most methods generate false positives at such a high rate that
it is impossible to determine whether regime shifts in the
North Sea and along the west coast of Norway have really
taken place (Haines et al., 2024). Some regime shift detec-
tion methods produce false positive rates of 100 %, though
the majority are closer to around 20 % (Haines et al., 2024).
Although the present model does not always have a false pos-
itive rate below 5 %, the false positive rate when using the
RST model is lower than those reported by a range of previ-
ous studies (Haines et al., 2024; Rudnick and Davis, 2003).
Results presented in the present study suggest when more
species are analyzed, there is a reduced likelihood of gen-
erating false positives or negatives. The lower false positive
rate shows the value of including all species collected by the
CPR.

It has been assumed that the production of type II errors
detracts from model usefulness more than type I error pro-
duction does, particularly as false positives have been re-
ported more commonly (Haines et al., 2024; Rudnick and

Davis, 2003). The rate of false negatives in the present study
is higher than those for false positives. Decreasing the value
of the critical gradient used to identify regime shifts in this
study will likely decrease false positive production, but val-
idation tests performed in this study indicate doing so will
increase the rate of false negatives. Having a conservative
estimate of regime shift likelihood should increase the cer-
tainty in identified regime shifts. If this method is used to pre-
dict regime shifts in future scenarios or management situa-
tions, further reducing false positives could lead policy mak-
ers to perhaps wrongly assume a regime shift is not imminent
when one could occur in the near future. We therefore advise
RST model users to thoughtfully explore the use of different
window lengths and critical gradients, especially if using the
model to advise management.

Thoughtfully interpreting graphs generated by the RST
model alongside species abundance data, instead of only not-
ing times when the critical gradient indicates that a regime
shift is likely, will also help identify false positives and neg-
atives. The resultant time series generated by the RST of
a dataset with no induced abrupt changes shows much less
variation and fewer large changes over a study period com-
pared to a dataset with more species experiencing abrupt
changes. Using examples like this as a comparison can help
users of the RST model to identify spurious regime shifts
identified using gradients or thresholds.

6 Conclusion

The RST model described here has shown success at identi-
fying regime shift probability in a single time series based on
patterns of species abundance, and whether abrupt changes
in abundance are observed in more than one trophic level.
Validation tests have demonstrated the robustness of the RST
model and its ability to identify regime shifts with a relatively
low error rate. Recent advances in machine learning and deep
learning algorithms mean that forecasting single time series
into the future is a possibility which should be explored in
future studies (Hewamalage et al., 2023). Success in this en-
deavor will show the RST model described here as a first
step to designing a regime shift forecasting model for the
21st century.

Although there are several advantages to condensing an
estimate of regime shift likelihood into a single time series,
limitations of this approach have also been discussed. These
limitations include needing approximately 14 years between
abrupt changes for the algorithm to detect regime shifts and
the inability to distinguish between apparent regime shifts
caused by advection. Another potential disadvantage of re-
ducing the rich data collected by the CPR into one time se-
ries is removal of context, which can potentially introduce
more uncertainty and biases into the estimation of whether
a regime shift occurred (Nguyen, 2024). For example, a re-
cent study on the northwest European shelf found no change
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in functional groups associated with past identified regime
shifts (Djeghri et al., 2023). Another study has found evi-
dence that functional groups have changed but did not link
this to abrupt regime shifts (Bedford et al., 2020a). Links be-
tween regime shifts in plankton and fish do exist (Reid et al.,
2001; Vollset et al., 2022) and there is even evidence to sug-
gest regime shifts have affected the abundance of organisms
from higher trophic levels, such as whales (Meyer-Gutbrod
et al., 2021). Further studies of regime shifts in plankton
communities should elucidate whether such regime shifts are
drivers of regime shifts in higher trophic levels or rather that
abrupt changes seen in more than one trophic level are caused
by the same biotic or abiotic drivers.

The relatively low variability observed in regime shift like-
lihood for the entire North Sea when compared to the smaller
subregions, which have much smaller sample sizes, is likely
to be due to regime shifts occurring in different parts of
the North Sea at different times. The North Sea is a semi-
enclosed body of water where the distribution of plankton is
influenced by water advection (Hjøllo et al., 2009; Bartsch
et al., 1989; Fransz et al., 1991). There is also a diverse range
of hydrodynamic regimes in the North Sea, distinguished by
stratification patterns and freshwater influence (van Leeuwen
et al., 2015). The standard regions used in most studies of
CPR data (Djeghri et al., 2023; Beaugrand, 2014; Beaugrand
et al., 2010; Bedford et al., 2020a), including the present
study, are likely not as ecologically meaningful in compar-
ison to regions divided based on similar ecohydrology or
distance from inflow channels. A 21st century early warn-
ing system for regime shifts should make use of subareas
divided by hydrology and distance from north or south en-
trances to the North Sea. This would improve our under-
standing of physical drivers of regime shifts and contribute
to more advanced regime shift prediction.
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