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Abstract. Internal tides are known to contain a substantial
component that cannot be explained by (deterministic) har-
monic analysis, and the remaining nonharmonic component
is considered to be caused by random oceanic variability.
For nonharmonic internal tides originating from distributed
sources, the superposition of many waves with different de-
grees of randomness unfortunately makes process investi-
gation difficult. This paper develops a new framework for
process-based modelling of nonharmonic internal tides by
combining adjoint, statistical, and stochastic approaches and
uses its implementation to investigate important processes
and parameters controlling nonharmonic internal-tide vari-
ance. A combination of adjoint sensitivity modelling and the
frequency response analysis from Fourier theory is used to
calculate distributed deterministic sources of internal tides
observed at a fixed location, which enables assignment of
different degrees of randomness to waves from different
sources. The wave phases are randomized by the statistical
model from Part 1 using horizontally varying phase statis-
tics calculated by stochastic models. Essential inputs of the
model suite are barotropic tidal currents, background strati-
fication, and the variance and spatial correlation of internal-
tide phase speed. An example application to nonharmonic
vertical-mode-one semidiurnal internal tides on the Aus-
tralian North West Shelf shows that (i) phase-speed vari-
ability primarily makes internal tides nonharmonic through
phase modulation, and (ii) important controlling parameters
include the variance and correlation length of phase speed,
as well as anisotropy of the horizontal correlation of phase
modulation. The model suite also provides a map of nonhar-
monic internal-tide sources, which is convenient for identi-
fying important remote sources, such as the Lombok Strait

in Indonesia. The proposed modelling framework and model
suite provide a new tool for process-based studies of nonhar-
monic internal tides from distributed sources.

1 Introduction

Internal tides are known to contain a substantial component
that cannot be explained by harmonic analysis (based on the
superposition of sinusoids at tidal frequencies with constant
amplitudes and phases). The remaining nonharmonic com-
ponent is considered to be caused by the random variability
of stratification and background currents. For nonharmonic
internal tides originating from distributed sources, the ma-
jor difficulties for understanding the physics include the fol-
lowing two factors: (i) statistical principles tend to make the
observed variability insensitive to the underlying physical
processes, and (ii) observed nonharmonic internal tides of-
ten consist of many waves propagating towards different di-
rections with different degrees of randomness. To tackle the
problem (ii) considering the difficulty (i), this study devel-
ops a new framework for process-based modelling of non-
harmonic internal tides observed at a fixed location by com-
bining adjoint, statistical, and stochastic approaches and uses
its implementation to investigate important processes and pa-
rameters controlling nonharmonic internal-tide variance.
Internal tides are internal waves with tidal frequencies,
primarily in the diurnal (=& 24h period) and semidiurnal
(~ 12 h period) bands. They have different vertical structures,
or modes, and lower modes have larger propagation speeds
and usually larger energies. (The internal-tide modes are re-
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ferred to as “baroclinic” modes to distinguish them from the
usual tides, or the “barotropic” mode. It is customary to count
the first baroclinic mode as mode one, or vertical mode one.)
Internal tides are generated by the interaction of tidal currents
with topographic slopes, which implies their coherence with
the tide-generating forces at the generation sites. However,
they gradually become incoherent (or non-phase-locked) as
they propagate away from the generation sites (e.g. Rainville
and Pinkel, 2006; Buijsman et al., 2017; Alford et al., 2019).
This process is considered to be caused primarily by phase
modulation through the variability of the wave propagation
speed (Park and Watts, 2006; Rainville and Pinkel, 2006),
which is in turn caused by temporally and spatially varying
pycnocline heaving and advection (Zaron and Egbert, 2014;
Buijsman et al., 2017). Although the variability of internal-
tide generation can be substantial (Kerry et al., 2016), the am-
plitude variability is overall considered to be less important
than the phase variability (Colosi and Munk, 2006; Zaron and
Egbert, 2014).

Part 1 of this study (Shimizu, 2025, hereafter referred to
as Part 1) developed a statistical model of nonharmonic in-
ternal tides, which is the basis of the modelling framework
proposed in this study. (Following Part 1, the term “non-
harmonic” internal tide is used for the random component
of internal tides, which is also referred to as “incoherent”,
“nonstationary”, or “non-phase-locked” internal tides in pre-
vious studies.) The statistical model shows that the enve-
lope amplitude distribution observed at a fixed location ap-
proaches a universal form given by a generalization of the
Rayleigh distribution when the number of independent wave
sources is sufficiently large (or when the central limit theo-
rem in statistics is applicable). The comparisons of modelled
and observed probability density functions (PDFs) showed
the applicability of the limiting distribution to vertical-mode-
one (VM1) to vertical-mode-four (VM4) internal tides in the
diurnal, semidiurnal, and quarter-diurnal (= 6 h period) fre-
quency bands on a continental shelf, provided that the spectra
showed the corresponding tidal peaks clearly. Because the
(co)variance controls the PDFs (and the associated higher-
order statistics) in the “many source’ limit, this suggests that
one of the most important questions is the following: “what
determines the variance?”

The above statistical study is an important step forward;
however, it also suggests difficulty in investigating the phys-
ical processes of nonharmonic internal tides based on their
variability at an observation location. This is because the
PDFs tend to approach the universal form by statistical prin-
ciples, regardless of the details of individual wave compo-
nents. For example, the phase of observed nonharmonic in-
ternal tides can be nearly uniformly distributed when the
phases of individual wave components vary less than 5 %
(of the total 2m), and the observed amplitude tends to show
large variability when the amplitudes of individual compo-
nents do not vary at all. Furthermore, nonharmonic internal
tides often result from the superposition of many waves prop-
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agating towards different directions with different degrees of
randomness. So, even when complete spatial and temporal
information is available, for example, from the outputs of
hydrodynamic modelling, it is often not straightforward to
identify wave components from a particular source region or
a particular process. It appears that process-based studies are
most straightforward when internal tides originate from a lo-
calized source or a small number of adjacent sources so that
the evolution of internal tides can be analysed based on the
distance (or travel time) from the source(s) without interfer-
ence (e.g. Zaron and Egbert, 2014; Buijsman et al., 2017).
However, this approach is applicable only to a small frac-
tion of the world ocean and not suitable for regions affected
by distributed sources, including continental shelves facing
open ocean. In addition, although a comprehensive literature
survey is difficult, the results for wave propagation in random
media in other fields of physics and engineering do not ap-
pear to be directly applicable to distributed sources because
they usually consider a signal from a small number of sources
(e.g. Ishimaru, 1997; Colosi, 2016; Born and Wolf, 2019).

An alternative approach for process-based studies with
wider applicability is a kind of inverse modelling of inter-
nal tides observed at a fixed location. By limiting the loca-
tions of interest, the adjoint of a hydrodynamic model can be
used to trace internal tides arriving at a fixed observation lo-
cation back to the distributed sources (Shimizu, 2024a). This
information in turn enables assignment of different degrees
of randomness to waves arriving from different sources. If
the degrees of randomness are calculated based on process
understanding, it would be possible to calculate nonharmonic
internal-tide variance, compare it with observations, and in-
vestigate the dependence of the modelled variance on dif-
ferent processes and/or parameters. This “inverse” approach
would also provide useful information such as a map of non-
harmonic internal-tide sources and integrated regional con-
tributions. This type of modelling can also be viewed as a
“synthesis” approach because the model can be built up from
process understanding, and the results can be used to check
whether the current understanding “adds up” to explain the
observed variance.

This study aims to develop a new framework for process-
based modelling of nonharmonic internal tides by combining
the statistical model from Part 1 with adjoint and stochas-
tic models and then to use its implementation to investigate
processes and parameters controlling nonharmonic internal-
tide variance. As an example application, the resultant model
suite is applied to VM1 semidiurnal internal tides observed
at a mooring site on the Australian North West Shelf, and the
results are compared to the observed variance. Since this is
the first application of the proposed modelling framework,
the application is intended to be a feasibility test. The mod-
els are intentionally simplified to be linear and used to un-
derstand the dependence of modelled variance on the model
parameters, rather than attempting to provide a single best es-
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timate. Justification for using a combination of linear models
is provided in Appendix A.

This paper is organized as follows. Section 2 presents an
overview of the proposed modelling framework and model
suite, and Sect. 3 presents the theoretical background of in-
dividual model components, including a short summary of
the statistical model developed in Part 1. Section 4 presents
methodology, particularly the details of numerical methods.
The results of an example application to the Australian North
West Shelf are shown in Sect. 5, followed by discussion in
Sect. 6. This paper ends with a list of conclusions in Sect. 7.
Appendix B provides the description of internal-tide dynam-
ics in terms of vertical-mode amplitudes, which is used in
various parts of this paper.

2 Modelling framework and its implementation

An overview of the proposed modelling framework is shown
in Fig. 1. The key component is the statistical model devel-
oped in Part 1. It calculates the statistics of nonharmonic in-
ternal tides by randomizing the phases (and optionally am-
plitudes) of individual internal-tide components arriving at
an observation location from deterministic sources. For re-
alistic oceanic applications, horizontal distributions of the
sources and phase statistics are necessary. The source dis-
tribution can be modelled using an adjoint sensitivity model
and barotropic tidal forcing. The implementation in this
study uses a combination of numerical adjoint sensitivity
modelling and the frequency response analysis from Fourier
theory, referred to as “adjoint frequency response analysis”.
Currently, there appears to be no standard method to model
the distribution of phase statistics. Since phase statistics vary
with wave propagation (i.e. nonstationary), its process-based
modelling appears to require a stochastic approach. The im-
plementation in this study uses two stochastic models to
model the spread of wave phases and the horizontal (two-
dimensional) correlation of phase modulation, both of which
are assumed to be caused by random variability of the phase
speed. The final result is the statistics of nonharmonic inter-
nal tides, such as their PDFs (not shown in this paper) and
the horizontally distributed sources of their variance.

3 Theoretical background
3.1 Statistical model

The basis of the modelling framework proposed in this study
is the statistical model developed in Part 1. Only a fraction
of the model is needed in Part 2, which primarily considers
the variance of nonharmonic internal tides. This section in-
troduces relevant relationships from Part 1 for independent
waves and then extends them to correlated waves.

The statistical model in Part 1 considers internal tides with
a single vertical-mode structure in a narrow frequency band
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observed at a fixed observation location and approximates
them as a sinusoidal time series that has the deterministic
angular frequency o, the deterministic mean phase lag ¢, a
random amplitude A, and a random phase-lag deviation ®.
Furthermore, it is assumed that this signal results from the
superposition of independent and non-identically distributed
N sinusoidal wave components, each of which has the de-
terministic mean phase lag ¢;, a random amplitude A ;, and
a random phase-lag deviation ® ;. Then, the signal can be
expressed as

N
Ae_i(W+®)€iwt — ZAje—i(qoj-i-@j)eiwl’ (1)

J=1

where ¢ is time. Unlike Part 1, the mean phase lags are sub-
tracted from the total phase lags to make ® and ®; random
variables with zero mean, and only deterministic amplitudes
A = a; are hereafter considered for individual wave compo-
nents. The phase PDF is assumed to be the wrapped normal
(or Gaussian) distribution as in Part 1:

o , 2
1 3 exp (_ (0 +2mk) ) .

B V2moj S0 201.2

where o is the standard deviation of the phase. The wrapped
normal distribution is a circular analogue of the Gaussian dis-
tribution and defined for any one period of 2. It approaches
the Gaussian distribution in the limit 0; — 0 but approaches
the uniform distribution in the limit o; — co. Since har-
monic analysis determines harmonic amplitudes and phase
lags using the method of least squares, the complex-valued
amplitudes (i.e. their magnitudes represent wave amplitudes
and their angles represent wave phases as the coefficients of
a complex Fourier series) are further decomposed into the
expected values and deviations from them:

fo; (91')

AeTi0TO) — pomiv | plemilp+E)
N _ ’
Bt o
=1

Here, r; is the magnitude of the expected complex-valued
amplitude on the complex plane, and A’; and @', are the
amplitude and phase lag of the deviation, respectively (see
Fig. 2). Note that (r, ¢) and (A’, ¢ +®’) correspond to
harmonic and nonharmonic internal tides, respectively. Note
also that ®' and G); are random variables with zero mean un-
like Part 1 and that A, A’, and A’. are random variables even
though a; is deterministic (see Fig. 2 and Part 1). Assuming
tentatively that o; in Eq. (2) is known and that all the wave
components are independent, the expectation and variance
of the complex-valued random amplitudes a je_i(‘/’f+®-/) are
(see Part 1)

E (aje_i((p./+®j)) = rje_i(pj = aj,uje_i‘pf , (43.)
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(a) Proposed modelling framework

Barotropic
tidal forcing
Deterministic wave sources
for location of interest

Adjoint sensitivity model

Stochastic models for random
phase (and amplitude) modulation

Statistical model

Statistics of nonharmonic internal tides

(b) Implementation in this study
Forcing function Adjoint sensitivity model Ray tracing
(Fig. 3) (Fig. 6) (Fig. 4a, Fig. 8a,d)
Adjoint frequency l

response analysis . .
P y Horizontal correlation model

(Fig. 8c,f)

Phase spread model

Source function (Fig. 8b,e)

(Fig. 7)
\

Statistical model

Nonharmonic variance source function (Fig. 10)
Variance (Fig. 11)
Probability density function (not shown)

Figure 1. Overview of proposed modelling framework and its implementation in this study. The entire process applies two “filters”: (i) to
transform global and deterministic forcing from barotropic to individual baroclinic modes (forcing function) to the corresponding forcing
relevant only to a particular observation location (source function) and then (ii) to transform this forcing to a response relevant only to the
random component of internal tides (nonharmonic variance source function).

Var (a je_i(“’f +@f')> =E <A;2) = a? g]z, (4b) the correlation of wave components arriving from individual

P sources. To consider the horizontal correlation, we remove
nj=e J°, (4¢) the assumption of independent wave components in Egs. (1)
gg 1 e—o'f' (4d) and (3) and calculate the covariance of the ith and jth wave

J

Hereafter, E(-) and Var(-) denote the expectation and vari-
ance, respectively. For complex-valued variables, the vari-
ance is defined as Var(X) = E((X — E(X))(X — E(X))*).
Hereafter, the superscript * denotes complex conjugate.
Then, because of the independence of individual wave com-
ponents, E(A’ 2) is given by (see Part 1 for justification)

E (A’z) - ,2: E (Af,z) . (5)

Note that E (A’z) is the variance of the envelope amplitude
of nonharmonic internal tides and is twice the nonharmonic
internal-tide variance because the sinusoidal “carrier” wave
(i.e. ¢/ in Eq. 1) has the variance of 1/2.

The above argument assumes the independence of indi-
vidual wave components; however, the horizontal correlation
of phase modulation along the propagation paths introduces
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components. Using Egs. (1), (3), and (4a)—(4d), we get
Cov (Age*"‘”ief"@’/' : A/je*i“’f'e_i@f) =sisiRijs;s}, (6)

where s;=a je’i“’j represents complex-valued pre-
modulation wave amplitudes from individual sources
(hereafter referred to as “sources”), R;; is the correlation
coefficient of e~ and e~'®J, and the covariance is defined
as Cov(X,Y)=E((X—-EX)(Y —E(Y))*). Note that
®; does not follow the wrapped normal distribution in

Eq. (2), but A’je_i@/i can be expressed in terms of aje_i(“)-/,
wj,and ¢; using Egs. (1), (3), and (4a)—(4d). This yields

R 1 5 .
e Gl e G| ) IR

where A® =0; —0;. Since the difference of correlated
wrapped normal variables is a wrapped normal variable, the
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Y

T .
0 0.5 1.0
Normalized probability density

Figure 2. Schematics of variables used in the statistical model
and probability density function for individual wave components.
xj +1iyj is the (total) complex-valued amplitude (i.e. its magnitude
represents wave amplitude and its angle represents wave phase as
the coefficients of complex Fourier series), x} +i y} is that with zero
mean, and angles are positive clockwise because harmonic analysis
conventionally uses phase lags. Shading shows the probability den-
sity function of a wrapped normal distribution, with a narrow Gaus-
sian amplitude spread to make the shading discernible. Note that
aj is assumed to be constant, but a; varies because of phase distri-
bution. Note also that (a;, 6;) and (a;., 0}) are realizations of (A,
©;) and (A’j, G)’j) in Egs. (1) and (3), respectively. For illustration
purposes, ¢ ; = /4 and o; = 0.37 are used.

expectation in the above equation is obtained using
—iA® 1 2
E(e ):exp —EE(AG) , 8)

which is the same relationship as for the normally dis-
tributed phase (Colosi and Munk, 2006; Geoffroy and Ny-
cander, 2022). Note that this relationship makes the correla-
tion coefficients R;; real-valued, although the original vari-
able, e 29 is complex-valued. To derive this convenient re-
lationship, the definition of ® ; is changed from Part 1 to have
zero mean. To proceed, Colosi and Munk (2006) and Geof-
froy and Nycander (2022) assumed the correlation functions
of ®; and ©;, but we aim to express E(A®?) as a function
of the variance and correlation length of phase speed. This is
done by stochastic modelling, as described in Sect. 3.5.

The correlation coefficients in Eq. (7) can be used to con-
vert correlated sources (e.g. from hydrodynamic modelling)
to effectively independent sources that can be used in the sta-
tistical model. To do so, we write the complex-valued ampli-
tude of nonharmonic internal tides A’e~'@+©" in Eg. 3) in

https://doi.org/10.5194/0s-21-2255-2025

two ways. On the one hand, we assume that the waves from
individual sources s; = a;e™'?/ are later modulated by hori-
zontally correlated random phase shifts, yielding

Ae—i@+0) _ (T

phys Yncorr 9)

Here, s is the vector containing s;, and X is a diagonal ma-
trix whose diagonal components are ¢; defined in Eq. (4d).
Hereafter, the superscript 7 denotes transpose. The above
form is chosen so that the vector n, with its components
gj_l (e71®i — E(e71©1)), is a vector containing random vari-
ables with zero mean and unit variance (but not Gaussian) on
the complex plane. The subscript “phys” emphasizes that the
variable is calculated based on physics (in this study, by the
adjoint frequency response analysis introduced in Sect. 3.2),
and the subscript “corr” emphasizes horizontally correlated
random variables. The statistical model, on the other hand,
requires independent random variables:

Ale—il0+0) _ ssTtatEn’ (10)

where the vector sg; contains the amplitudes of independent
sources. Now, we may assume that two random vectors are
related as neor = RY/2n, where R = RY/2R7/2 is the hori-
zontal correlation coefficient matrix whose components are
given by Eq. (7). Note that n is complex-valued, but R is real-
valued because of Eq. (8). Assuming tentatively that R!/? is
known, the comparison of the above two equations shows

Ssat = Z 7RI Zisppys. (11)

We use this relationship to convert horizontally correlated
sources calculated based on physics to effectively inde-
pendent sources that can be used in the statistical model.
Then, considering Egs. (4b) and (5) in a matrix form and
Em*nT) =1, we get
E (A/z) = SH Zzssm

stat
H
= (R72Zspnys ) RTZEspys. (12)

Hereafter, the superscript H denotes conjugate transpose.
Note that the (i, j) component in the summation corresponds
to Eq. (6). Appendix C provides detailed points regarding the
above treatment of horizontal correlation using R!/2.

The continuous version of Eq. (12) is useful in this study.
The equation divided by 2 can be written as

1
EE(A’Q) — / san (X)X

= %/(/Rl/z(?’,?)g(?’)s(?’)d?’)
x (/R‘/z(?,?)g(?’)s(?/)d?/) dx. (13)

. — —
The variables s(xX) and sy,,( X ) are hereafter referred
to as the “source function” and “nonharmonic variance
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source function” (more correctly source density function),
and s(?), g(?), and Rl/z(?’, ?) are the continuous ver-
sions of Sphys, X, and R7/2, respectively. (Note that X is a
diagonal matrix.) The factor 1/2 is multiplied in the above
equation so that the integral of sy corresponds to the vari-
ance of a nonharmonic internal-tide time series from obser-
vations or numerical modelling, rather than the variance of
the envelope amplitude. The above expression shows that,
because the horizontal integral of sy, yields the total nonhar-
monic internal-tide variance, sy, can be mapped to identify
their important source regions. Also, a regional integral of
snh yields the contribution of that region to the total variance.
Although not shown in this paper, syn can also be used to cal-
culate PDFs using the theory in Part 1. (However, note that
Snh 1 nonunique within the correlation length of phase mod-
ulation because R7/2 in Eq. (12) or R2(R’, 7)) in Eq. (13)
is nonunique, as explained in Appendix C.)

3.2 Adjoint sensitivity modelling and calculation of
deterministic internal-tide sources

In order to calculate the deterministic sources of internal
tides for a fixed observation location, we use a combina-
tion of adjoint sensitivity modelling and the frequency re-
sponse analysis from Fourier theory, referred to as “adjoint
frequency response analysis” in this study. A brief summary
and the major output of the method are described below. Ap-
pendix D provides an overview of the adjoint method, which
is often used in inverse problems, and the details of the ad-
joint frequency response analysis.

The basic idea of the adjoint frequency response analysis
is as follows. Since internal tides are linear waves and their
major generation forces are deterministic as a first approxi-
mation, the forcing and so-called impulse response function
can be used to obtain spatially and temporally varying in-
ternal waves excited by forcing at a particular location and
time. A problem converse to this yields spatially and tem-
porally varying sources of internal waves at a particular lo-
cation and time (including both harmonic and nonharmonic
components) by considering the forcing and the so-called ad-
joint sensitivity (or the Green’s function; e.g. Bennett, 2002).
These methods can be extended to sinusoidal internal tides
using the Fourier transform.

The application of the adjoint frequency response analysis
to internal tides under realistic stratification and bathymetry
requires a linear numerical hydrodynamic model and its ad-
joint. In this paper, we use a linear hydrodynamic model
based on vertical-mode decomposition in Shimizu (2011)
and Shimizu (2019). The formulation employs horizontally
varying vertical modes that are calculated using local wa-
ter depths and stratification in order to include the effects of
steep slopes (for approximately linear waves). More details
are described in Appendix B. An advantage of this formula-
tion is that it yields the evolutionary equations analogous to
the shallow water equations with explicit forcing functions
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from barotropic tides to individual baroclinic modes. As an
example, the forcing function from the barotropic to VM1
M tide is shown in Fig. 3.

If only one baroclinic mode is considered in the hydrody-
namic model, the adjoint frequency response analysis allows
us to write the complex-valued internal-tide amplitude as

ae=i :/S(Y)ﬁ’ =f2?\*(7)f(7)d7v 14)

where a and ¢ are the pre-modulation amplitude and phase
of isopycnal displacement due to the baroclinic mode of in-
terest at the location of interest, respectively. The variable f
is the forcing function from the barotropic tidal currents to
the baroclinic mode, and  is the adjoint frequency response
function of ae™? to f at other locations, calculated by the
adjoint of the linear hydrodynamic model. These variables
are defined in Appendix D. The function s(X) is the source
function appearing in Eq. (13). The middle expression shows
that, because the horizontal integral of the source function
yields the complex-valued amplitude ae~'¢, s can be mapped
to identify important source regions. The right expression
shows that the adjoint frequency response function A acts as a
transfer function from the forcing function f , which provides
forcing in a global sense, to the source function s; this pro-
vides forcing relevant to the location of interest. The maps
of f and A can be used to identify regions where forcing
and dynamic response are large. The important advantage of
the source function in this study is that it provides horizon-
tally distributed sources of internal tides observed at a fixed
location so that different phase statistics can be assigned to
different sources.

It is also convenient to write Eq. (14) in a discretized form.
The equation can be written as

N N
ae_”p=2sj:Zaje_”"f, (15)
Jj=1 Jj=1

where s; represents the discretized version of s(%). The
variables s; = aje™'%/ are sought-after wave sources corre-
sponding to sphys in Eq. (11).

3.3 Stochastic differential equations for phase
modelling

To develop stochastic models of phase statistics, we con-
sider waves with a constant frequency that arrive at an ob-
servation location after travelling through regions of random
phase-speed variability. Following Zaron and Egbert (2014)
and the analysis in Appendix A, the random phase deviation
along the wave propagation path between a source located
at ¥ j and the observation location (say, jth path) can be
calculated considering the variation of the total wave phase
d(phase) = w(dt —c;ldé‘j) —d(g;+6;) and that of the phase
speed ¢, where & is the coordinate along the path. (Note that
0; is the stochastic version of ®; in Eq. 1.) Some examples
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Figure 3. Forcing function from the barotropic-mode (VMO) to vertical-mode-one (VM1) Mj tide (at zero Greenwich phase lag). It corre-
sponds to f in Eq. (14). Panel (a) shows the whole model domain, and panels (b)—(d) show zoomed views of the green boxes in (a). Grey

shading shows regions where VM1 celerity is less than 0.1 m s7L

of wave propagation paths are shown in Fig. 4a. To intro-
duce random components in the phase lag and phase speed,
we write ¢; =¢C; + c;. and assume that ¢; and ¢; are the re-
spective mean components, and ¢; and c/j are the respective
stochastic components with zero mean. Assuming |c;.| < ¢Cj
and following the constant mean phase (dé; =<c;dt), the de-
viation of total phase due to ¢’; or 6; is given by ¢’ .Efzwdéj
and —d6;, respectively. This yields (see Appendix A for al-
ternative derivation)
wc’;
do; = ——Ldr, (16)
€j

where time ¢ is used as the independent variable because it is
a convenient common coordinate variable for multiple paths.

Since 6; and ¢’; are stochastic variables, Eq. (16) is a
stochastic differential equation. Stochastic differential equa-
tions are commonly forced by white Gaussian noise, but it is
undesirable to assume ¢’; is white noise because ¢’; certainly
has spatial correlation. A common “trick” used to deal with
correlated noise is to introduce an additional stochastic equa-
tion driven by white noise, which yields the desired correla-
tion function (see e.g. Sdrkkd and Solin, 2019, chap. 12.3).
For example, we may assume that c} follows

dc’-:—ic’-dt—i— idb< (17)
J Le / Lc )

where L is the e-folding correlation length of c;.. The vari-
able b; is a random variable called Brownian motion (see

https://doi.org/10.5194/0s-21-2255-2025

e.g. Sdarkkd and Solin, 2019, chap. 4.1). Intuitively, the above
equation can be formally divided by dr and db;/dt regarded
as white noise, although this view is mathematically incor-
rect in general.

The stochastic phase models used in this study are devel-
oped by considering covariance equations associated with
the above two stochastic differential equations. The details
of the derivation are given in Appendix E, and only the final
equations used for the modelling are provided in the follow-
ing two sections. Note that we need to integrate only ordi-
nary differential equations in this study because the covari-
ance equations are ordinary differential equations, although
the formulation is based on stochastic differential equations.

3.4 Stochastic phase spread model
To model the phase variance crjg in Egs. (4c)—(4d), we

consider Egs. (16) and (17) along a single wave propaga-
tion path. The evolutionary equations of the covariance be-

tween c/j and 6;, Py, and that between 6; and 0;, Pyg, are
given by
=——Pyg— —0F, 18a
d Le @7 3F%¢ (182)
dP,
=0 _2%p,, (18b)
dr c

where U% is the phase-speed variance, and the subscript j
is suppressed for brevity. If ¢ and L¢ remain constant, the
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Figure 4. An example of ray paths for the vertical-mode-one (VM1) M, internal tide and schematics of variables used in cross-path phase
difference modelling. Pink lines indicate ray paths. Panel (a) shows the whole model domain, and panel (b) shows a zoomed view of the

green box in (a) for two example ray paths. Grey shading shows regions where VM1 celerity is less than 0.1 ms™".

solution under the initial condition P.g = Pyg =0atr =01is

2 2 -
o, L t -
Pyy = _—§<‘”-C) (c— .y +e”/LC>. (19)
C

This agrees with Eq. (12) in Zaron and Egbert (2014) if
the correlation function of ¢’ is assumed to be exponential
(Eq. ES). Note that it is essential to consider the phase-speed
correlation length Lc because a small correlation length
makes phase-speed variability less efficient in inducing phase
variance.

The straightforward approach for solving Eqs. (18a)—(18b)
is to integrate the equations from a source location to the ob-
servation location; however, this approach is computationally
inefficient because it needs separate (forward) integration
from each source location along the same path. Alternatively,
we can exploit the adjoint method described in Appendix D.
The adjoint sensitivity of Pgg at the observation location to
[P.o Pog]T at other locations can be calculated by integrating
the equations adjoint to Egs. (18a)—(18b) once, backwards
in time from the observation location. Then, Pyy can be cal-
culated as the convolution of the adjoint sensitivity and the
forcing (i.e. the Ug term in Eq. 18a) along the path. The re-
sultant phase variance Ppg, which grows with distance from
the observation location, is used as the phase variance ol.z in
the statistical model. Note that Pyg can grow without a limit,
but this does not cause any problem because the wrapped nor-
mal distribution in Eq. (2) can be used with arbitrarily large
phase spread o;.

3.5 Stochastic cross-path phase difference model

We now consider the calculation of the variance of the phase
difference E(A®?) in Eq. (7). Note that full evaluation
of E(A®?) is difficult for relatively large problems because
E(A®?) depends on pairs of two source locations, which
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vary over the area considered (e.g. model domain). For this
reason, a number of approximations are introduced in the the-
ory in this section and in numerical methods later in Sect. 4.4.
To simplify the calculation of phase difference A®, we con-
sider A® only in the cross-path direction in this section.

The modelling of cross-path phase difference A® is done
by considering Egs. (16) and (17) along two wave propaga-
tion paths passing through the same observation location and
by calculating the phase difference A0 = 60; —0; (A0 is the
stochastic version of A® in Eq. 7). In this section and Ap-
pendix E, the subscripts i and j indicate variables along the
ith and jth paths, respectively. We take into account the vari-
ability of the mean phase speed ¢ and the phase-speed corre-
lation length L along the propagation paths but neglect their
cross-path variability. The evolutionary equations of the co-
variance between ¢/ and AG, P, g, that of c;. and A0, Pe;n6s
and that of A6 and A6, Pagag, are given by

dPe; as c ® 5 [An|
Tt € p e —Z62(1-r, (21)), (0
dr Lo as0 ™o A (202)
dPc;no c o , |An|
R A —— — 1—-R, | — , 20b
dr L¢ "A9+EGC( "( l )) (200
dPagae 1)
e —25 (Pe;ao — Pe;an) » (20c)
where
|An| F(lAnl/h)
R,7< = . / Q1)
l 1+ F=(lAnl/D

is the cross-path correlation function of phase speed, An is
the cross-path distance,

F(lAn|/1) =e 1801,
I=2n""Lc,

(22a)
(22b)
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and [ is the cross-path correlation length. Generally,
Pao ap needs to be calculated numerically. However, if ¢, Lc,
and |Anl|/! remain constant, the comparison of Egs. (20a)—
(20c) and (18a)—(18b) leads to the explicit solution

Paono =2Ppo (1 — Ry(1AnI/ D)., (23)

where Pgg is given by Eq. (19). (It may appear odd to as-
sume constant |An|/l because |An| certainly varies; how-
ever, an empirical relationship is introduced later in Sect. 4.4
to account for the variation.) This shows that the cross-path
correlation length of A8 depends on the phase-speed corre-
lation length L¢ through Eqs. (22a)—(22b). This is important
because L can be estimated from observations or hydrody-
namic modelling more easily than the correlation length of
phase difference A6.

Similar to Egs. (18a)—(18b), Egs. (20a)-(20c) can be
solved using the adjoint method explained in Appendix D,
and the resultant variance Pagag corresponds to E(A®2) in
Eq. (7). However, note that the analysis has been simplified
substantially by the assumptions introduced above. In partic-
ular, note that Pagap =0 at An =0, which implies R;; =1
in Eq. (7) because Egs. (20a)—(20c) neglect along-path corre-
lation. To take into account the effects of along-path correla-
tion, an empirical adjustment is introduced later in Sect. 4.4.

4 Methods

4.1 Application to VM1 semidiurnal internal tides at
PIL200 location

To illustrate application of the proposed model suite, we took
vertical-mode-one (VM1) semidiurnal internal tides at the
PIL200 mooring site (115.915°E, 19.435° S, & 200 m deep)
of the Australian Integrated Marine Observing System on
the Australian North West Shelf (Figs. 3 and 4) as an exam-
ple. Part 1 analysed the nonharmonic VM1 to vertical-mode-
four (VM4) diurnal, semidiurnal, and quarter-diurnal internal
tides in the observations.

In the model suite, we included the four major semidiurnal
tidal constituents (M, S», K5, and N») and four lowest baro-
clinic modes (VM1-VM4). Figure 5 shows a flowchart for
the application of the proposed model suite to multiple tidal
constituents and vertical modes. Forcings from the major
constituents were considered separately, assuming that the
nonharmonic internal-tide variance (and the associated statis-
tics) is calculated for a sufficiently long time series. Since it
was impractical to separate nonharmonic internal tides into
constituents in the PIL200 observations (Part 1), the resul-
tant variance, E (A’z) /2 in Eq. (13), and the nonharmonic
variance source functions from individual constituents were
summed to obtain the total for semidiurnal internal tides. It
may sound confusing to include multiple baroclinic modes
for modelling VM1 internal tides at the PIL200 location. This
is required because barotropic forcing excites not only VM1
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but also higher modes, which can be converted to VM1 by to-
pographic interaction before arriving at the PIL200 location
(see Fig. 5). To distinguish overall barotropic forcing to VM1
internal tides at the PIL200 location from barotropic forcing
to individual baroclinic modes in the intermediate process,
the latter is hereafter referred to as, for example, “barotropic-
to-VM2” or “VMO-to-VM?2” forcing.

4.2 Adjoint frequency response function and source
function modelling

In the hydrodynamic modelling, we considered linear hydro-
static internal tides under climatological stratification with-
out background currents. Note that mesoscale oceanic vari-
ability is intentionally omitted because its effects are repre-
sented by random phase-speed variability in the stochastic
models (see Appendix A for the justification of this treat-
ment). A sinusoidal periodic motion was assumed (as in
Eq. D7) in the governing equations (Eqs. B3a-B3c in with-
out the nonlinear terms) so that the hydrodynamic model
directly calculates the adjoint frequency response function
(% in Eq. 14). The frequency response function was calcu-
lated for complex-valued VM1 isopycnal displacement am-
plitude at the PIL200 location (i.e. ae”'% in Eq. 14), whose
magnitude is scaled to have the value of extreme (maximum
or minimum) displacement within the water column.

Details of the hydrodynamic model set-up are as follows.
The model grid encompass most of the Australian North
West Shelf and part of the Lesser Sunda Islands in Indone-
sia (Fig. 3a). The horizontal coordinates are oriented in the
cross-shelf (NNW-SSE) and along-shelf (SSW-NNE) direc-
tions at the PIL200 location. The horizontal grid size is 0.01°.
The model extent and grid resolution are not ideal but were
limited by available computational resources. The four low-
est baroclinic modes (VM1-VM4) are included in the cal-
culation. Vertical modes are calculated using the 2019 ver-
sion of GEBCO bathymetry (GEBCO, 2019) and stratifica-
tion from the 2018 version of World Ocean Atlas annual cli-
matology over the 2005-2017 period (Locarnini et al., 2018;
Zweng et al., 2018). TEOS-10 (McDougall and Barker,
2011) is used to calculate density. The model includes hori-
zontally varying linear bottom friction, which is calculated
using the (nondimensional) quadratic bottom drag coeffi-
cient of 10™3 and the barotropic tidal current speed from the
TPXO9-atlas version 5 (updated from Egbert and Erofeeva,
2002). Since the grid resolution is not sufficiently high to
resolve internal tides in regions with shallow water depths
or weak stratification, we exclude regions where the celerity
of each (nth) vertical mode ¢, is less than 0.1 ms~!, which
roughly corresponds to four grid points per wavelength for
semidiurnal tides. (In this study, the term “celerity” is delib-
erately used for the propagation speed of non-rotating, long,
linear gravity waves with one of the vertical-mode struc-
tures, which differs from the phase speed of internal tides.)
The Flather open boundary condition (Flather, 1976; see also
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Figure 5. Flowchart for application of the proposed model suite to multiple tidal constituents and vertical modes. Abbreviations are
PDF: probability density function, VMO: barotropic mode, VM1: vertical mode one, and VM2: vertical mode two.

Blayo and Debreu, 2005) is applied to individual vertical
modes at the open boundaries. The adjoint frequency re-
sponse function was calculated separately for the M», S», K»,
and N tidal frequencies.

The source function (s(?) in Eq. 14) was calculated from
the adjoint frequency response function for the four lowest
baroclinic modes and barotropic currents from the TPXO9-
atlas for the four major semidiurnal constituents. This pro-
vided 16 source functions in total.

4.3 Ray tracing and phase spread modelling

The phase variance Pyg was calculated based on Eqgs. (18a)—
(18b), but it required finding wave propagation paths from
the PIL200 location. We took the simplest approach and cal-
culated the propagation paths by standard ray theory (e.g.
Lighthill, 1978, chap. 4.5), but applying it backwards in time.
The initial location is the PIL200 location and the initial an-
gles are in 0.1 and 1° intervals for rays propagating towards
offshore and onshore, respectively. Additional rays are used
to ensure that some rays propagate into the southern part of
the major straits in the Lesser Sunda Islands, such as the
Lombok Strait. Figure 4a shows about 1/30 of the calculated
ray paths as examples.

The standard ray equations and the equations adjoint to
Egs. (18a)—(18b) were integrated backwards in time using the
fourth-order Runge—Kutta method for VM1 to VM4 semid-
iurnal internal tides. The time steps are 300, 450, 600, and
900 s for VM1, VM2, VM3, and VM4, respectively. In the
calculation, the along-path variability of water depth, phase
speed, and Coriolis parameter are taken into account. Since
the results were insensitive to small frequency differences
among the major semidiurnal constituents, the M, frequency
was used in the modelling.
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The phase-speed variance aé in the model was chosen
based on the PIL200 observations, which yielded aémuoo o

12,9.5,8.2,and 8.2x 107> m? s=2 for VM1, VM2, VM3, and
VM4 semidiurnal internal tides, respectively (Appendix F).
Although the observations were made on the continental
shelf at ~200m water depth, the phase-speed variance of
VM1 is not unreasonable for deep ocean. For example, pre-
vious numerical modelling (Zaron and Egbert, 2014; Buijs-
man et al., 2017) suggests oc/c=1%-3 % in deep ocean
for VM1 semidiurnal internal tides. Since these values in-
clude only low-frequency components, they are likely to
be underestimates for aé, which needs to include all fre-
quency components as explained in Appendix F. So, of ~
1.2 1072 m2 s~2, which yields o¢ /¢ ~ 3.6 % assuming ¢ =
3ms~!, appears to be roughly the upper limit of the cur-
rent estimate of 0% for deep ocean. For higher modes,
phase-speed variance appeared to be unavailable except those
from Appendix F. These facts suggest that horizontally con-
stant phase-speed variance is not a bad assumption, so we
chose O’é by scaling GCZ‘,PILZOO as

2 _ 2
Oc = @COc p1L.200 (24

where oc is a model parameter. This choice is also a sim-
ple and convenient way to show the dependence of the re-
sults on aé. We used ¢ varying between 0.4 and 1.0. As
already explained, ¢ = 1.0 is the estimate for the PIL200
location and appears to be roughly the current upper limit for
deep ocean. The choice ¢ =0.4 (o¢/c = 2.3 %) is about
the middle range of the current estimate for deep ocean, but
it would be a substantial underestimate for shallow water.
We chose the middle of these likely upper and lower limits,
ac = 0.7, as a reference value.

Regarding the correlation length of phase speed Lc, we
assumed L to be proportional to the Rossby radius of de-
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formation Ry =c¢1/f:
Lc=arRy, (25)

where f is the Coriolis parameter, and o, is a model param-
eter. This choice was made for two reasons. First, R; is a
common length scale used for mesoscale oceanic variability.
Second, L¢ is expected to vary substantially between con-
tinental shelves and deep ocean, and the mean VM1 celer-
ity ¢1 in the expression of R; conveniently reflects at least
some part of this variability. Note that the same ¢ is used
to calculate L¢ for all the higher modes, considering that
the phase-speed modulations of all vertical modes are caused
by the same oceanic variability. The phase-speed correlation
length appears to be rarely evaluated, but Zaron and Eg-
bert (2014) showed that the correlation length was about 3
times R; around Hawaii. This value might be affected by
the smoothing scale of the reanalysis product used in their
study and is larger than the typical radius of mesoscale eddies
for the latitude (e.g. Klocker and Abernathey, 2014). How-
ever, phase-speed correlation could be affected by processes
that have a length scale larger than eddies (e.g. Buijsman
et al., 2017). Since the typical eddy radius is roughly R; for
the latitude range of the model domain (e.g. Klocker and
Abernathey, 2014), the realistic parameter range is oz 2 1.
We chose the middle-ground value of «;, =2 as a reference
value. Note that the wavelength of VM1 semidiurnal internal
tides is about 1-2 times R, in the modelled region.

After the ray-based calculation, the travel time and phase
variance Pyp along the ray paths were horizontally interpo-
lated to obtain gridded results using a Gaussian kernel. This
interpolated Pyy was used as 01_2 in the statistical model.

4.4 Horizontal phase correlation modelling

The horizontal correlation coefficient matrix R was im-
plemented as a diffusion operator following Weaver and
Courtier (2001), which is a numerical technique com-
monly used in data assimilation (see e.g. Bennett, 2002,
chap. 3.1.6). This is because, although R could be calcu-
lated in principle using Eqgs. (7) and (20a)—(20c), it was
prohibitive to store the whole R on computer memory in
practice. The method approximates the correlation function
as Gaussian and requires the correlation lengths at individ-
ual grid points, which are equivalent to the standard devia-
tion of the Gaussian function (i.e. impulse response solution
to the diffusion equation). Since Egs. (20a)—(20c) calculate
the variance of the cross-path phase difference for different
cross-path distance |An|, Egs. (7) and (20a)—(20c) yield only
the cross-path correlation length o, and the along-path cor-
relation length o is still missing. In this study, an empirical
relationship between o, and oz was introduced, and equiva-
lent isotropic diffusion was assumed for simplicity. Then, the
phase correlation modelling requires the equivalent isotropic
correlation length of phase modulation at each grid point o,
calculated from Pagag in Egs. (20a)—(20c).
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To determine o,, we assume
A =a ' Ar (26)

in Eqgs. (20a)-(20c), where Ar is the distance between the
sources, and o is an empirical parameter whose meaning
is explained shortly. This assumption has the advantage that
Proag could be integrated (backwards in time) for various
values of Ar together with the ray tracing and integration
of Pyg, and the results can be gridded in the same way. Sub-
stituting the resultant Pagag into E(A®?) in Eq. (7) yields
the horizontal correlation function at each grid point R(Ar).
(In Eq. 7, u; = nj and g; = ¢; are assumed.) Then, by ap-
proximating the first peak of R(Ar) as Gaussian, we get

A 2
R(Ar) ~exp | ———— ). @7)
20207

The empirical factor o, represents two effects: anisotropy of
the horizontal correlation of phase modulation and the along-
path variation of cross-path distance. Typical values of «, for
these effects are considered in the following.

To estimate «, for anisotropic phase correlation, we
tentatively regard R;; in Eq. (7) as the correlation func-
tion R(A&, An) (A€ is alag distance in the along-path direc-
tion) and compare its integral scale with that of the equiva-
lent isotropic correlation function R(Ar). Assuming that the
correlation functions are Gaussian and equating the integrals,
we get

2 2
(—ﬁ - A—") dAEdAY

2%2 20,,2

o0
Ar?
~2r | Arexp| ——= | dAr, (28)
202
0

r

where o is the unknown standard deviation in the along-path
direction. This yields the relationship of the integral scales,

050y X a2 (29)

The comparison of Eqgs. (27)—(29) shows that o, = /0% /0y,
and «, =1 for the isotropic correlation function (0z = oy).
Note the relatively weak dependence of o, on o¢. For exam-
ple, the correlation function is highly anisotropic for of =
90y, but it yields o, = 3.

To estimate «, for the along-path variation of cross-path
distance, we consider the linear variation of cross-path dis-
tance |An| between the observation location and source lo-
cations. Since the distance between the sources is Ar, an in-
tuitive value for average | An| over the paths is o, = 2. How-
ever, note that ray tracing suggests large along-path variabil-
ity of |An| (Fig. 4a).

Based on the above consideration, the equivalent isotropic
correlation length of phase modulation o, was calculated
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from Egs. (7) and (20a)-(20c), and (26) as follows. Consid-
ering both the anisotropy of the phase correlation and the
along-path variation of cross-path distance, o, between 1
and 5 appears to be reasonable. We chose the middle of these
likely upper and lower limits, o, = 3, as a reference value.
Using Eq. (26) with a chosen «,, Pagag from Egs. (20a)—
(20c) was substituted into Eq. (7) to calculate the correlation
coefficient for a different source distance Ar. This yielded
the isotropic correlation function R(Ar). Since o, is re-
quired for the diffusion operator method, the Gaussian shape
was fitted to the first peak of the correlation function where
R(Ar) > 0.5 by the least-squares method, and the resultant
standard deviation is used as o, in the diffusion operator
method.

In addition to o,, the diffusion operator method also re-
quires normalization factors that impose R;; ~ 1 after ap-
plying the diffusion operator (i.e. the matrix A in Weaver
and Courtier, 2001). The normalization factors are calculated
by the ensemble method explained in Weaver and Courtier
(2001). We used 200 ensemble members, which correspond
to the standard error of 5 % in the normalization of R.

As in the ray tracing and phase spread modelling, o, and
the normalization factors were calculated separately for the
four lowest baroclinic modes using the M, frequency. The
frequency differences among semidiurnal constituents were
neglected.

4.5 Calculation of nonharmonic variance source
function

The nonharmonic variance source function was calculated
for each constituent from Eq. (12) using sphys from the source
function, ¥ calculated from the phase variance Pyg = cr‘]z,
and R implemented as a diffusion operator with the equiv-
alent isotropic correlation length of phase modulation o;
however, it required one more assumption because it was
not obvious which phase spread and phase correlation should
be applied to each source function. For example, if higher
modes are directly excited by barotropic forcing and con-
verted to VM1 near the sources, and then the VM1 internal
tides propagate to the observation location (follow VMO-to-
VM2 forcing, left-hand-side “Topographic interaction”, and
then VM1 propagation in Fig. 5), the phase spread and corre-
lation lengths for VM1 should be applied to the source func-
tions for higher modes because the phases are modulated as
VMI internal tides. However, if higher modes are directly
excited by barotropic forcing, propagate as higher modes,
and are then converted to VM1 near the observation loca-
tion (follow VMO-to-VM2 forcing, VM2 propagation, right-
hand-side “Topographic interaction”, and then VM1 propa-
gation in Fig. 5), the phase spread and correlation lengths for
higher modes should be applied to the source functions of
respective higher modes. The latter scenario is assumed in
this study because the continental slope near the PIL200 lo-
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cation induces strong topographic interaction between VM1
and higher modes, as shown later.

5 Results
5.1 Adjoint frequency response function

The adjoint frequency response function (A in Eq. 14) of
VM 1-induced isopycnal displacement at the PIL200 location
to the barotropic (VMO0)-to-VM1 forcing qualitatively shows
a pattern of internal waves spreading from a point source
but affected by topography-induced variation of the propa-
gation speed (Fig. 6a). For internal-wave signals propagating
offshore, wave spreading gradually reduces the magnitudes.
By the time the signals reach the Indonesian archipelago,
the magnitudes are reduced by a factor of more than 10.
For internal-wave signals propagating towards the Australian
coast, the wavelengths decrease rapidly because shallower
water depths and weaker stratification reduce the propaga-
tion speed. The signals disappear on the shelf shallower than
100 m, partly because of bottom friction and partly because
the grid resolution gradually becomes insufficient to ade-
quately resolve internal tides there. This numerical dissipa-
tion does not change the overall results of this study because
the shallow shelf has mild slopes and hence no important
sources of internal tides at the PIL200 location.

The adjoint frequency response function to the VMO-to-
VM2 forcing also shows a pattern of internal waves spread-
ing from a point source (Fig. 6b). The magnitudes are smaller
than the VM1 signals because the VM2 (and other higher-
mode) signals result from the topographic conversion of
VM1 signals on the continental slope. The shorter wave-
length shows that the signals are propagating as a free VM2
internal-wave signal, at least as a first approximation. These
features justify our choice of applying the phase spread and
horizontal phase correlation for VM2 to the VM2 source
function (Sect. 4.5). This observation is significant because
the spatial pattern would be very different if the topographic
conversion occurred near the sources or if VM2 signals re-
sulted from a directly forced response rather than a free-wave
response. Additionally, these different scenarios affect which
phase spread and horizontal phase correlation should be ap-
plied to the VM2 (and higher-mode) source function.

5.2 Source function

The source function (s(?) in Eq. 14) was calculated simply
by multiplying the forcing function (Fig. 3) and the complex
conjugate of the adjoint frequency response function (Fig. 6).
Figure 7 shows the source function of the VM1 M inter-
nal tide at the PIL200 location as an example. It shows al-
ternating signs at the wavelength of the VM1 M, internal
tide. Physically, it means, for example, that the internal tides
generated at half a wavelength away from the PIL200 lo-
cation and then propagated there have the opposite phase
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Figure 7. Source function of vertical-mode-one (VM1)-induced isopycnal displacement at the PIL200 location for barotropic (VMO)-to-
VM1 M, forcing (at zero Greenwich phase lag). It corresponds to s in Eq. (14). Panel (a) shows the whole model domain, and panels (b)—(d)

show zoomed views of the green boxes in (a). Grey shading shows regions where VM1 celerity is less than 0.1 ms™".

from those locally and currently generated at the location.
So, these waves tend to cancel each other, and the opposite
signs in the source function reflect this wave cancelling. Al-
though the adjoint frequency response function decays with
distance (Fig. 6a), remote locations with strong barotropic
tides and/or steep bottom slopes can be sources as strong as
those near the observation location. For example, the magni-
tudes of the source function in the straits of the Indonesian
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archipelago, which are well-known source regions of internal
tides, are comparable to those on the Australian shelf.

5.3 Phase spread

VM1 internal tides from most of the model domain except
the Australian shelf are only partially random (Fig. 8b). The
travel time 7 for VM1 semidiurnal internal tides calculated
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by ray theory increases roughly radially from the PIL200
location (Fig. 8a), which agrees with the adjoint sensitivity
(Fig. 6a). A clear exception is the Australian shelf where
T grows quickly because of small group velocity. The phase
variance Pgy = ojz also increases roughly radially, but the
rate of increase is faster on the shelf because the phase-speed
variance aé relative to the squared mean phase speed ¢ is
much larger there (Fig. 8b). Note that o; > 1 is a convenient
threshold for random sources (see Eq. 4d; also Fig. 2d in
Part 1 for illustration).

Unlike VM1, VM2 internal tides are mostly random
(Fig. 8e). This is partly because the phase-speed variance aé
relative to the squared mean phase speed ¢ is larger for VM2
than VML, so the rate of increase of phase variance is higher.
Another reason is that VM2 internal tides have about twice
the travel time compare to VM1, and hence VM2 has more
time to be affected by random oceanic variability (Fig. 8d).

Ocean Sci., 21, 2255-2282, 2025

5.4 Horizontal correlation of phase modulation

Since the diffusion operator method by Weaver and Courtier
(2001) was used to represent the horizontal correlation of
phase modulation, the equivalent isotropic phase correlation
length o, characterizes the horizontal correlation. It shows
an order-of-magnitude variability between the deep ocean
and continental shelf for VM1 (Fig. 8c) and tends to have
a magnitude comparable to but smaller than «.Lc over a
large part of the model domain. The reason for this can be
seen by considering Eqgs. (7) and (23) in the limit of small
Pyy = crjz, which suggests the length scale 27 la,L¢. For
example, the gradual increase in o, towards north reflects
the latitudinal variation of the Rossby radius of deformation,
which is assumed to be proportional to L. The small o, on
the continental shelf results from small celerity (and hence
small Rossby radius of deformation). The modelled equiva-
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Figure 9. Examples of the equivalent isotropic correlation function of phase modulation at locations I, II, and III indicated in Fig. 8c and f.
(a) Vertical mode 1 (VM1) and (b) mode 2 (VM2). Dotted vertical lines indicate standard deviations determined by a least-squares fit of the
Gaussian function, which is used as the correlation length o for the diffusion operator method by Weaver and Courtier (2001).

lent isotropic correlation functions at three contrasting loca-
tions are shown in Fig. 9a. The correlation function generally
has a broader tail than the Gaussian function. The modelled
and fitted correlation functions agree around the correlation
value of 0.6, which corresponds to o, (standard deviation of
the Gaussian function).

The equivalent isotropic correlation length o, for VM2 is
substantially smaller than VM1 (Fig. 8f) and does not have
the rough relationship with L¢, although the same L is used
for VM1 and VM2. This is because the phase variance Pgy =
ojz is much larger for VM2 than VM1 (Fig. 8b and e), which
makes the gradient of Pagag around |An|/l < 1 larger (see
Eq. 23) and the decay of the exponential function in Eq. (7)
faster. As a result, the latitudinal variation does not exist
for VM2, but the order-of-magnitude variability between the
deep ocean and continental shelf remains. Figure 9b shows
that the modelled and fitted correlation functions agree well
for correlation values larger than 0.6 for VM2.

5.5 Contributions of different source regions, vertical
modes, and tidal constituents

The results of the model suite provide the contributions
of different source regions, vertical modes, and tidal con-
stituents to the modelled nonharmonic internal tides and their
dependence on the model parameters. We look at different
contributions using the reference case (ac, oy, o) = (0.7, 2,
3) as an example in this section and then the parameter de-
pendence in the next section.

The total modelled nonharmonic VMI semidiurnal
internal-tide variance is 38 m? in the reference case com-
pared to the observed variance of 45 + 12 m? (confidence in-
terval based on twice the standard error). As explained in
Sect. 4.2, the variance is calculated based on VM1-induced
extreme (maximum or minimum) isopycnal displacements
within the water column. The modelled variance can be con-
verted to vertically integrated potential energies in Jm~2 by
multiplying by 7.6 and the variance of surface displacements
in m? by multiplying by 7.1 x 10~/ (without seasonal varia-
tion).
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Table 1. Contributions of different regions to nonharmonic vertical-
mode-one (VM1) semidiurnal internal-tide variance (in mz) at the
PIL200 location in the reference case: (ac, oy, ar)=(0.7, 2, 3).
Variance is based on time series of extreme (maximum or mini-
mum) isopycnal displacement within the water column. Abbrevia-
tions for the regions are LOC: local region near the PIL200 location
shallower than 1500 m, NWS: Australian North West Shelf region
excluding the LOC region, LAS: region around Lombok and Alas
straits, SS: region around Sape Strait, and IND: the rest of the model
domain, mostly the deep Indian Ocean. These regions are shown in
Fig. 10.

Region VMI1 M;only VMI-4, Mj, Sy, Ky, Ny
LOC 32 6.0
NWS 4.9 8.2
LAS 7.9 135
SS 0.4 2.6
IND 29 7.5
Total 19.4 37.8

The contributions of different regions are shown in Fig. 10
as a map of nonharmonic variance source function and in Ta-
ble 1 as regionally integrated contributions. The following
regions are arbitrarily chosen for illustration purposes. The
LOC region is the local region near the PIL200 location on
the Australian North West Shelf shallower than 1500 m, and
the NWS region is the Australian shelf region excluding the
LOC region. The LAS and SS regions cover the Lombok and
Alas straits and Sape Strait, respectively. The IND region is
the rest of the model domain, mostly the deep Indian Ocean.
These regions are indicated by dashed blue lines in Fig. 10.
Figure 10 shows that important source regions are the Aus-
tralian shelf and the straits in the Indonesian archipelago.
The nonharmonic variance source function appears much
smoother than the source function in Fig. 7 because the dif-
fusion operator that approximates the correlation coefficient
matrix R is applied, and the phase correlation lengths are rel-
atively large (Fig. 8c and f). The horizontal scale of the non-
harmonic variance source function is smaller than the corre-
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Figure 10. Nonharmonic variance source function of isopycnal displacement induced by the nonharmonic vertical-mode-one (VM1) semid-
iurnal (SD) internal tide at the PIL200 location in the reference case: (¢, oy, o) = (0.7, 2, 3). The lowest four baroclinic modes and four
major semidiurnal constituents are included. Panel (a) shows the whole model domain, and panels (b)—(d) show zoomed views of the green

boxes in (a). Grey shading shows regions where VM1 celerity is less than 0.1 ms™".

lation length for VM1 (Fig. 8c). This is partly because higher
modes have smaller correlation lengths (Fig. 8f) and partly
because the diffusion operator averages the opposing contri-
butions from the source function (e.g. red and blue patches
in Fig. 7) when the correlation length is comparable to or
larger than the wavelength. However, note that the locations
of sources in the nonharmonic variance source function are
uncertain within the phase correlation length in the current
approach, as explained in Appendix C. This is why contribu-
tions from relatively large regions are compared in Table 1.
Table 1 shows that remote regions are more important
sources of the nonharmonic internal tides than local sources.
For example, the contributions of the Australian shelf are
smaller than those of the Indonesian straits, and the local con-
tribution on the Australian shelf is smaller than the rest of the
shelf. This is because remote sources can be as strong as local
sources before phase modulation (Fig. 7), and it takes time
for random phase-speed variability to make internal tides
nonharmonic (Fig. 8b and e). Although the magnitude of
the nonharmonic variance source function in the deep ocean
(IND region) is nearly 2 orders of magnitude smaller than
the peak values in the major sources (Fig. 10), Table 1 shows
that the overall contribution is substantial because it occupies
a much larger area than the other regions. Figure 10 also sug-
gests that, although we used a relatively large model domain
for available computational resources, the current modelling
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is likely to have missed remote sources. It is likely that at
least a few m? of variance is missing from the deep Indian
Ocean to the west of the model domain.

Table 2 shows the contributions of different vertical modes
and tidal constituents to the modelled variance. The tabu-
lar entry for VM2 and M represents, for example, the con-
tribution of the VM2 internal tide that is excited by the
M, barotropic forcing and then converted to VM1 before ar-
riving at the PIL200 location. Regarding the contributions of
different vertical modes, the model results show that VM1
contributes about 3/4 of the total variance, and the con-
tributions decrease with increasing mode number. Regard-
ing the contributions of different tidal constituents, M, and
S, forcings contribute roughly 3/4 and 1/4 of the total vari-
ance, respectively. The contributions of K, and N5 are small
(1.8 m?). The VM1 directly forced by M5 alone contributes
roughly half of the total variance. So, VM1 and M, are
dominant, but focusing only on VM1 and M; would cause
substantial underestimation of the nonharmonic semidiurnal
internal-tide variance in this case.

5.6 Dependence on model parameters and comparisons
with observations

The results shown in the previous section are based on the
reference model parameters, but the parameters have rela-
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Figure 11. Parameter dependence of the nonharmonic vertical-mode-one (VM1) semidiurnal (SD) internal tide at the PIL200 location.
(a) Dependence of internal-tide variance on normalized phase-speed variance a¢ and the ratio of phase-speed correlation length to the Rossby
radius of deformation oy, as well as (b) dependence on ¢ and the empirical parameter for horizontal correlation of phase modulation «;-.
Panels (a) and (b) show results for o, = 3 and a7, = 2, respectively. Dotted vertical lines indicate values used in the reference case.

Table 2. Contributions of different vertical modes (VMs) and tidal
constituents to nonharmonic VM1 semidiurnal internal-tide vari-
ance (in mz) at the PIL200 location in the reference case: («c,
ar, ar)=(0.7, 2, 3). Variance is based on time series of extreme
(maximum or minimum) isopycnal displacement within the water
column.

M, S, K; N Total
VM1 194 68 08 05 275
VM2 47 16 02 0.1 6.6
VM3 19 04 0.1 00 2.4
VM4 09 02 00 00 1.2
Total 269 90 1.1 0.7 378

tively large uncertainty. In this section, we investigate the
dependence of the results on the model parameters and com-
pare the results with observations at the PIL200 location. The
model parameters are varied beyond the realistic range for
process understanding.

The results show that the modelled nonharmonic internal-
tide variance strongly depends on the variance (x¢ or oé)
and correlation length (ay, or L¢) of phase speed (Fig. 11a).
These parameters affect the nonharmonic internal-tide vari-
ance in two ways. First, they determine the partitioning of
the variance into harmonic and nonharmonic components
through the phase variance ajz (see Eqgs. 4b and 4d). Second,
they affect the phase correlation length o, through 1 ; and
¢j in Eq. (7), as well as the variance of horizontal phase dif-
ference Pagap in Egs. (20a)—-(20c). The dependence on o,
shows that it is essential to consider the phase-speed correla-
tion length (see the small variance at 7 = 0 in Fig. 11a) be-
cause phase-speed variability with a small correlation length
is inefficient in producing phase variance (see Eq. 19). The
dependence on « gradually decreases with increasing o,
for a few reasons. First, the ratio of the variance partitioned
to nonharmonic component ( g]z in Eq. 4d) increases with the

phase variance ajz, but the rate of increase becomes much
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slower for 02 > 1 (see also Fig. 2d in Part 1 for illustra-
tion). Second, the horizontal phase correlation tends to in-
crease nonharmonic internal-tide variance as explained in
Appendix C, but the increase ceases when the equivalent
isotropic phase correlation length o, becomes comparable
to the internal-tide wavelength. This is because regions sep-
arated by half a wavelength tend to have opposing contri-
butions to internal-tide amplitude (see blue and red patches
in Fig. 7), and the opposing contributions are averaged in
Eq. (11) when the correlation length is larger than half the
wavelength.

The nonharmonic internal-tide variance also strongly de-
pends on ¢, (Fig. 11b). The dependence illustrates the afore-
mentioned roles played by the phase correlation length o,
and internal-tide wavelength more clearly because o, is
roughly proportional to «,. The phase correlation increases
the nonharmonic internal-tide variance when «;,- is small. Al-
though o, <« 1 (negligible horizontal correlation) is unreal-
istic, small variance in this limit shows that it is essential to
consider horizontal phase correlation for gridded sources, as
explained in Appendix C. When o, becomes larger, the non-
harmonic internal-tide variance decreases gradually with in-
creasing «, by the averaging of sources with opposite phases.
The peak of the variance should occur when o, is around
a quarter of the wavelength. Considering that the internal-
tide wavelength is 1-2 times the Rossby radius of deforma-
tion in the modelled region and o, tends to be comparable
to but smaller than «,L¢ for VML, this suggests oy, is
roughly 1/2 at the peak. Figure 11b shows the peak around
ar & 1/2 for ey, = 2. This shows that anisotropy of the hor-
izontal correlation of phase is an important controlling pa-
rameter for a realistic parameter range («z 2 1,a, 2 1), es-
pecially if oy ~ 1. More generally, the result shows that the
ratio of the phase correlation length and internal-tide wave-
length is important for nonharmonic internal-tide variance.

The comparison of the model results and the PIL200 ob-
servations shows that the model results are not inconsistent
with the observations for a realistic parameter range (o 2 1,
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ay 2 1), although the modelled variance tends to be smaller
than the observed mean. The larger phase-speed variance
case (o¢c = 1.0) used phase-speed variance from the PIL200
location on the continental shelf, which provides phase-speed
variance that appeared to be roughly the upper limit of previ-
ous estimates for deep ocean. In this case, the model results
are around the observed mean for oy > 1. The smaller phase-
speed variance case (cc = 0.4) used phase-speed variance
that is about the middle of previous estimates for deep ocean
but is an underestimate for shallow water. So, it is reasonable
that the modelled variance is around or below the approxi-
mate 95 % confidence interval for o7 > 1. In the reference
case for phase-speed variance («¢c = 0.7), the model results
are between the observed mean and the lower bound of the
approximate 95 % confidence interval for oy, > 1. Consider-
ing the number of assumptions and simplifications used in
the model suite, the results are encouraging. This demon-
strates the feasibility of the proposed modelling framework
and model suite.

6 Discussion

This paper developed a new framework and model suite
for process-based modelling of nonharmonic internal tides
by combining adjoint, statistical, and stochastic approaches.
This required the development of a new method called ad-
joint frequency response analysis and new stochastic models
based on stochastic differential equations. (The adjoint fre-
quency response analysis is new in physical oceanography
to my knowledge, although the use of the adjoint method
in many fields makes a more comprehensive literature sur-
vey difficult.) The application of the model suite to nonhar-
monic vertical-mode-one (VM1) semidiurnal internal tides
at the PIL200 location on the Australian North West Shelf
added further support that the phase modulation process is
caused by phase-speed variability along deterministic (or
mean) propagation paths (Zaron and Egbert, 2014) as a first
approximation. The correlation length of phase speed and
anisotropy of the horizontal correlation of phase modulation
were found to be important parameters controlling the non-
harmonic internal-tide variance, in addition to phase-speed
variance which has been identified in previous studies (Zaron
and Egbert, 2014; Buijsman et al., 2017). Furthermore, the
nonharmonic variance source function was shown to be a
new convenient tool to identify important source regions of
nonharmonic internal tides. These are the major novel con-
tributions of this paper.

In the proposed stochastic models, it was aimed to model
stochastic wave-phase variables based on the variance and
correlation length of phase speed as much as possible. This
is because these parameters can be obtained more easily than
the phase statistics of nonharmonic internal tides, for exam-
ple, from reanalysis products that do not include tides. How-
ever, since such a study has not been conducted in the mod-
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elled region, this study assumed that the phase-speed vari-
ance and correlation length were proportional to the observed
variance at the PIL200 location and the Rossby radius of
deformation, respectively. The use of more realistic phase-
speed variance and correlation length would be beneficial for
comparing modelled and observed variance in the future.

Since the analysis in Appendix A suggests that nonlinear
effects do not have leading-order effects, the most impor-
tant caveat of the proposed approach appears to be the use
of ray tracing and mean stratification to calculate wave prop-
agation paths. The use of ray tracing may be questioned be-
cause, when phase-speed variability is included in ray trac-
ing, the length scale of phase-speed variability can be com-
parable to or shorter than the wavelength (invalidating the
slowly varying assumption), and ray paths could vary widely
(Park and Watts, 2006; Rainville and Pinkel, 2006). However,
studies on wave propagation in random media in other fields
(e.g. Ishimaru, 1997; Colosi, 2016) suggest that ray tracing
may have wider applicability than it seems. For example,
observed phase tends to be insensitive to small-scale phase-
speed variability (consistent with Fig. 11a). Even when ray
paths diverge widely, the contributions to the observed phase
lag may come only from paths around the mean (unperturbed
by phase-speed variability) propagation path, called a Fres-
nel zone. This is because waves arriving through widely per-
turbed paths tend to have different phases and hence tend
to average out through interference. They suggest that phase
statistics have relatively weak dependence on the details of
ray paths and small-scale phase-speed variability, which ap-
pears to be consistent with Buijsman et al. (2017). Ray trac-
ing and mean stratification are used in this study as a com-
promise among these factors and their simplicity. It would be
worth investigating the impact of different methodologies for
calculating wave propagation paths in the future.

The proposed model suite aimed to be simple enough
to include essential processes only, and this study appears
to have achieved the aim; however, the modelled variance
tended to be smaller than the observed mean for a realis-
tic range of the model parameters (Fig. 11). The underesti-
mation could have been caused simply by numerical factors
(or available computational resources), including insufficient
model domain size and grid resolution. It appears likely that
at least a few to half a dozen m? of variance were missing
for numerical reasons. But the underestimation might also
be caused by missing processes of secondary importance,
and it would be worth mentioning three potential causes
here. First, the amplitude variability of wave sources was ne-
glected. Part 1 showed that the amplitude variability tends
to increase nonharmonic internal-tide variance (see Shimizu,
2025, Eq. 14b), although it is less important than the phase
variability. Second, the variability of propagation paths was
neglected in the model. It might increase phase modula-
tion and make its horizontal correlation more isotropic (ef-
fectively larger oy, and smaller «, ), both of which increase
nonharmonic internal-tide variance (Fig. 11). Third, Shimizu
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(2024a) recently showed that the use of the vertical-mode
amplitude of surface or isopycnal displacement as an objec-
tive function implicitly assumes omnidirectional propagation
of internal-wave signals in adjoint models. This implicit as-
sumption might be relevant because the PIL200 observations
show that roughly half of the VM1 internal-tide energy is as-
sociated with directional waves (but with large uncertainty;
see Part 1). Compared to omnidirectional internal tides, inter-
nal tides propagating offshore would have higher sensitivity
to remote sources in the straits between the Lesser Sunda Is-
lands in Indonesia, although it would have lower sensitivity
to remote sources on the Australian shelf.

This study is the first study that took an “inverse” ap-
proach to the modelling of nonharmonic internal tides, and
the results are promising. Since this is a feasibility study of
the new modelling framework, there are many aspects of the
model suite that can evolve in the future. For example, the
adjoint frequency response analysis assumed linear dynam-
ics, the standard ray theory was used despite potential inad-
equacies, only phase variability from phase-speed variability
along deterministic propagation paths was considered, and
the stochastic model for the horizontal phase correlation was
highly simplified. Compared to the usual (forward) hydro-
dynamic modelling, the proposed model suite has comple-
mentary characteristics. The model suite focuses on a spe-
cific observation location and the statistics of nonharmonic
internal tides. It does not yield information for the whole
model domain or for a specific time; however, it yields in-
formation that is not straightforward to obtain from the usual
hydrodynamic modelling, such as the contributions of dif-
ferent source regions (Fig. 10, Table 1) and the dependence
on different processes and/or parameters (Fig. 11a and b) for
nonharmonic internal tides from distributed sources. For in-
vestigating the predictability of nonharmonic internal tides,
the locations and quantitative contributions of internal-tide
sources, such as in Fig. 10, would provide useful baseline
information. It is hoped that the proposed modelling frame-
work provides a useful tool for studying nonharmonic inter-
nal tides in the future.

7 Conclusions

Together with Part 1, this study developed a new framework
and its implementation for process-based modelling of non-
harmonic internal tides by combining adjoint, statistical, and
stochastic approaches and applied the resultant model suite
to nonharmonic vertical-mode-one (VM1) semidiurnal in-
ternal tides at the PIL200 location on the Australian North
West Shelf. The proposed modelling framework provides a
new tool for process-based studies of nonharmonic internal
tides when the superposition of many waves with different
degrees of randomness makes process investigation difficult.
Also, the combination of adjoint sensitivity modelling and
the frequency response analysis from Fourier theory provides
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a new convenient way to calculate the deterministic sources
of internal tides observed at a fixed location. The use of these
methods led to the following new findings.

— The modelled nonharmonic internal-tide variance was
not inconsistent with the observed variance for a re-
alistic range of the model parameters. This demon-
strates the feasibility of the proposed modelling frame-
work and model suite. This also means that, as a first
approximation, nonharmonic internal tides are caused
by phase-speed variability along the deterministic (or
mean) propagation paths.

— Important parameters controlling nonharmonic internal-
tide variance include the correlation length of phase
speed and anisotropy of the horizontal correlation of
phase modulation, in addition to phase-speed variance
which has been identified in previous studies.

— A map of the nonharmonic variance source function
and its regional integrals provide a new convenient tool
to identify important sources of nonharmonic internal
tides. For the PIL200 location, important sources in-
clude the Australian North West Shelf away from the
observation location and the straits between the Lesser
Sunda Islands in Indonesia, such as the Lombok Strait.

— Higher vertical modes can be important even when a
VM1 internal tide is analysed. In the example appli-
cation, the highest three of the four lowest baroclinic
modes contribute roughly 1/4 of the total variance.

— In addition to the above point, focusing only on VM1
and the M, tidal constituent can lead to substan-
tial underestimation of nonharmonic VM1 semidiurnal
internal-tide variance, even when they are dominant.
In the example application, VM1 and M account for
roughly half of the total variance for the four lowest
baroclinic modes and the four major semidiurnal con-
stituents.

Appendix A: Nonlinear wave interactions and
justification for using linear models

This Appendix provides justification for using a combination
of linear models as a first approximation in this study. We do
so by deriving the governing equation of approximately lin-
ear plane gravity waves affected by nonlinear resonant wave
interactions and the variability of background conditions and
then considering the order of magnitude of the terms for in-
ternal tides. Before the derivation, however, it is worth not-
ing that the cumulative effects of wave modulation caused
by strongly nonlinear processes are not necessarily nonlin-
ear in general. This is known in the study field called “wave
propagation in random media”. For example, turbulence and
short stochastic internal waves (approximately represented
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by the well-known Garrett—Munk spectrum) are nonlinear,
but a signal modulated by these processes can be modelled
well by linear methods (e.g. Ishimaru, 1997; Colosi, 2016).

The following derivation has two major differences from
many studies of resonant internal-wave interactions in
oceanography (see e.g. Miiller et al., 1986, for a review).
First, we assume modal structure in the vertical instead of
vertically propagating internal waves because internal tides
are long waves. Second, we consider phase-resolving equa-
tions instead of energy or action density equations because
we are interested in the phase modulation of internal tides.
These approaches were taken in early studies of the reso-
nant wave interactions (e.g. Ball, 1964; Hasselmann, 1966;
Thorpe, 1966; see also Olbers and Herterich, 1979, for for-
mulation with the Coriolis effects).

For brevity, the following derivation employs the shal-
low water equations over a flat bottom under Coriolis ef-
fects. This is because the results can be translated to a single
baroclinic mode using the vertical-mode formulation in Ap-
pendix B in a relatively straightforward manner. The shallow
water equations can be written as

an 3 3

L __((h — —((h , Al
a7 Bx(( +nu) 8y(( +nv) (Ala)
ou 3 (b du ou

u__9 (%, )_,om_,ou , Alb
” ax(hn> Uz v8y+fv (Alb)
3 a [c2 9 9

LA (T L (Alc)
ot ay \ h ox ay

where & is the constant water depth, c(z) = gh is the squared
celerity, and g is the acceleration due to gravity. Al-
though c%h_l = g, the above expression is used for analogy
with the evolutionary equations of vertical-mode amplitudes
(Egs. B3a-B3c). We assume that the prognostic variables
consist of spatially and temporally varying wave components
and spatially uniform random components that are slowly
varying in time compared to the wave components (repre-
senting mesoscale variability). We also assume that celer-
ity co has a spatially uniform random component (represent-
ing, for example, interannual variability of the background
conditions), which is assumed to be much smaller than the
nonrandom component. Then, we replace the variables in the
shallow water equations as

co co Co 0
n(x,y, 0 0 H n(x,y, 1
uee,vy | 7o | Tlu ue,y,n [ A2
v(x,y,t) 0 % v(x,y,t)

where Co, H, U, and V are the random components with
zero mean (which may result from strongly nonlinear pro-
cesses), and n, u, and v are the wave components includ-
ing harmonic and nonharmonic components. Furthermore,
we assume that the wave components can be expressed as
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the superposition of linear plane waves:

p= Zl‘jaj (t)e—ie}/(f)efi(lcjx cos xj+kjysinyj—wjt)
J

+ (complex conjugate), (A3a)
n 1 ! .
p= |:u ] crj=|w (; cos x; = if sin XJ) (A3b)
v m(sz1nxj+zfcosxj)

where 0}’ =¢@; +0; is the total phase lag, w; is the angu-
lar frequency (assumed positive to be consistent with the rest
of this study), and «; and y; are the magnitude and angle
of wavenumber vector of the jth wave. Their (real-valued)
amplitudes and phases, a;(t) and 0; () = 91’.’(t) — (1), cor-
respond to the realization of A; and ®; in Eq. (1). The vec-
tors r; are right eigenvectors of the linear operator of the
shallow water equations:

0 khcosy «hsiny
Lk, x) = | kcZh ™ cos x 0 —if . (Ad)
kcgh™!siny if 0

which depends on the wavenumber vector. The right eigen-
vector r; satisfies the eigenvalue problem:

wjrj=L(cj x;)r;- (AS)

This eigenvalue problem also yields the dispersion relation-
ship wf =24 chf.. We substitute Eq. (A3) into Eq. (A1)
with Eq. (A2), muluply the equations by exp(i («jx cos x; +
kjysinx; —w;jt)), and integrate the equations over an area
whose size is much larger than the wavelength and over
time much longer than the wave period but shorter than the
timescale of the random components. The result can be writ-
ten as

. 0 —ig"
r; le—}_a (aje f)

=i (L (7, 25) +1;M () rjaje "
+i Y kNG reaae” @0 (A6)

resonantk,/

where the sum in the last term is taken for combinations
that satisfy the resonant triad conditions (Ball, 1964; Has-
selmann, 1966; Thorpe, 1966):
wjxwyEtw =0,

—_
KiEXr+®¥,=0,

(A7a)
(A7b)

and © = k(cos X, sin x) is the wavenumber vector. The ma-
trix operators are defined as

M(x) =
Ucosx + Vsiny Hcos x H sin
2c0Coh~lcosy  Ucosy + Vsiny 0 , (A8a)
2¢0Coh~'sin 0 Ucosx + Vsiny
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N(p.x) =
ucos x +vsiny 1 cos X nsin
0 ucosx +vsiny 0 , (A8b)
0 0 ucos x +vsiny

where the argument p of N corresponds to (1, u, v) in the
matrix, and |Co| < c¢g is assumed in M. It is convenient to
reduce Eq. (A6) to a scalar differential equation. This can be
done by using the left eigenvectors of L:

2
)

3
l;= %(a)jcosxj—ifsinxj) , (A9)
% (@ sinx;j +if cosx;)

which forms a pair with r;. By left-multiplying Eq. (A6)
by 17 , we get

(iwj + %) (aje_iefv> =iwj (1 + %/ +nj) (aje_iof,/), (A10)

where ¢ = wj/k; is the phase speed of the “carrier” wave
(the exponential function in Eq. A3), ¢ is the (mean) phase
speed in the absence of the random components (Cy, H, U,
V), ¢’ is the phase-speed deviation due to modulation by the
random components, and n ; is defined shortly. The first term
on the right-hand side is obtained using Eq. (AS). The second
term is obtained using

H
o LM (x)r;

H
lj rj
coCo Ucosy + Vsiny C(Z)H

= ;) + — +T2_ (1)/'

C c 2¢c h

/

=S (A11)
c

The fact that ¢’ is the phase-speed deviation can be checked
by deriving the dispersion relationship including the ran-
dom components. The first two terms of ¢’ agree with
Zaron and Egbert (2014) (except for an error regard-
ing c%, and gD in the denominator in their Eq. A12). The
third term is the resonant wave interaction term, where
nj(aj,ak,al,e}’,eé’ﬁl’/, Xjs Xk> x1) is defined as

10} 1IN
0= e ot (';[Is Xk) Tk alakefi(elrurgli/)
ajwj resonantk,/ lj rj
2 G " _pgn
=3 (1+K*kf1fz)ﬂ—“’“}’l‘ ~1E=0)  (A12a)
2c resonantk,/ ki wj aj
fi=1+
(wjor + f2)cos (xj — xk) +if (oj +wk)sin(x; — xk) (A12b)
c(%/cj/ck ’
o S
J2=—cos(xi — xk) —i-—sin (X1 — x)- (Al2¢)
oy Wk

The first terms on both sides of Eq. (A10) obviously cancel
each other, but they are retained to show the magnitude of the

https://doi.org/10.5194/0s-21-2255-2025

unmodulated linear solution. Finally, by separating the real
and imaginary parts of Eq. (A10) and recalling 07 = ¢; +6;,
we get the evolutionary equations of wave amplitudes and
phases:

8(11'
at

Wort0) o (€4 retny)).

=—ajwjlm (n,) (Al3a)

Al3b
” (A13b)

The above analysis can be applied to internal tides using
the vertical-mode formulation in Appendix B. To simplify
the argument, we consider only vertical mode one (VM1),
although inter-mode interactions are required to satisfy the
resonant triad conditions in Eq. (A7) in general (Hasselmann,
1966). This is because (i) nonlinear wave excitation can also
occur at near-resonant conditions, (ii) the inclusion of verti-
cal mode two (VM2) does not change the following order-
of-magnitude argument for the PIL200 location, and (iii) it
appears that there is no previous study that investigated non-
harmonic internal-tide variance for higher modes in the deep
water within the model domain. To consider VM1, we re-
place cg and & by the celerity and normalization factor of
VM1, c¢; and h 1, and the prognostic variables (7, u, v) by the
corresponding VM1 amplitudes (71, &, 01). We also make
the corresponding changes to the random components (Co,
H, U, V) and multiply the matrix N by the nonlinear inter-
action coefficient N 111 defined in Eq. (B4c).

We now consider the order of magnitude of the unmodu-
lated linear (first), modulated linear (second), and nonlinear
(third) terms on the right-hand side of Eq. (A10) for VM1
semidiurnal internal tides. The ratio of the modulated term
to the unmodulated term is ¢’/¢, which is about 0.1 at the
PIL200 location on the Australian North West Shelf (approx-
imately 200 m water depth) and 0.01 to 0.03 in deep ocean
(see Appendix F and Sect, 4.3). For the nonlinear excita-
tion of semidiurnal internal tides, the major nonlinear contri-
butions come from diurnal-diurnal interactions (e.g. wk, =
K, +wx, ) and semidiurnal-quarter-diurnal interactions (e.g.
M, = wMm, — ®M,). (Note that the effects of low-frequency
variability are included in ¢’.) Neglecting O (1) factors c(z) /¢
and wi/w; in Eq. (Al12), the ratio of the nonlinear term
to the unmodulated linear term is 0(|N111|alak/(ﬁ1aj)).
For diurnal-diurnal and semidiurnal-quarter-diurnal interac-
tions, the ratios are about 0.002 and 0.01 at the PIL200 lo-
cation, respectively. (These values are obtained using hy =
40m, Nyj1=0.17, ap=1.5m, asp =6.4m, and agp =
2.2m for VMI from Part 1, where ap, asp, and agp are
the VM1 internal-tide amplitudes corresponding to half the
harmonic plus nonharmonic variance over diurnal, semidiur-
nal, and quarter-diurnal frequency bands, respectively.) For
the deep ocean within the model domain, VM1 semidiur-
nal (harmonic plus nonharmonic) internal-tide amplitudes
appear to have the same order of magnitude as the PIL200
location (e.g. compare the surface displacement variance of
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0.6 cm?2, from Table 2 in Part 1, with the “F-space” ap-
proach by Nelson et al., 2019). On the abyssal plain between
the Australian North West Shelf and Indonesia (i.e. Argo
Abyssal Plaln) for example we get h1 ~ 700 m, Nm
—0.9, and |N111|a1ak/(h1a/) = 0.0005 by normalizing the
vertical mode for isopycnal displacement by the maximum
value and by using ap and asp from the PIL200 location and
the climatological stratification used in the adjoint modelling
(Sect. 4.2). These values suggest that the nonlinear term is
an order of magnitude smaller than the modulation term both
in the deep ocean and on the Australian continental shelf,
probably excluding shallower parts of the shelf (say, approx-
imately or less than 100 m water depth). Note that the random
components are assumed to be spatially uniform for brevity
in the above analysis; however, the contributions of back-
ground currents and background vorticity to ¢’ (Zaron and
Egbert, 2014, Eq. A12) suggest that the assumption does not
change the order of magnitude of the terms provided that the
horizontal scale of the random variability is comparable to or
larger than the Rossby radius of deformation.

The above analysis suggests that the nonlinear reso-
nant wave interactions during wave propagation can be ne-
glected as a first approximation for VM1 semidiurnal internal
tides. Then, recalling that ¢; represents the expected (har-
monic) phase lags defined in the absence of ¢/, the mean
of Eq. (A13) shows that the pre-modulation amplitudes a;
and phase lags ¢; remain approximately constant. So, they
can be evaluated at the sources, as done in the adjoint fre-
quency response analysis. Also, by subtracting the mean
from Eq. (A13b), we get the evolutionary equations of 6;(t),
equivalent to Eq. (16), which is the basis of the proposed lin-
ear stochastic phase modelling. They provide justification for
using a combination of linear models as a first approximation
in this study. Also, Eq. (A13b) provides another justification
for calculating phase deviation from phase-speed deviation,
as suggested by Zaron and Egbert (2014).

Appendix B: Governing equations of vertical-mode
amplitudes and formulation of hydrodynamic model

This Appendix describes the evolutionary equations of
vertical-mode amplitudes over steep slopes, which are used
for three purposes in this paper: (i) the numerical hy-
drodynamic model used for adjoint sensitivity modelling
(Sect. 4.2), (ii) scaling of the modulation and nonlinear terms
to justify linear modelling (Appendix A), and (iii) the es-
timation of phase-speed variance from the PIL200 obser-
vations (Appendix F). The approach was originally pro-
posed by Griffiths and Grimshaw (2007) to my knowl-
edge and formulated in a more convenient form and ex-
tended to include full nonlinear and nonhydrostatic effects
by Shimizu (2011, 2017, 2019). The linear formulation by
Shimizu (2011) was adopted, for example, by Zaron and Eg-
bert (2014) and Kelly et al. (2016). These studies used hori-
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zontally variable vertical modes, which are calculated using
local water depth and background stratification. For example,
using the generalized isopycnal coordinate s that depends
only on density p and explicitly writing the horizontal vector
components (unlike the main body of this paper, X = (x, y))
for clarity, the isopycnal displacement 1 and the horizontal
velocity (u, v) can be decomposed as (Shimizu, 2019)

(X, Y,8,0 =D dalx,y,9)in(x,y,1), (Bla)
w(x,y,s,6) =Y Fu(x,y,8)iin(x,y.1), (B1b)
(Blc)

v(x,y,s,t)= Zﬁn(x,y,s)ﬁn(x, V. 1),
n

where the sum is taken over all available vertical modes, 7,
iin, and v, are the nth vertical-mode amplitudes of the corre-
sponding prognostic variable, and ¢A>n and 7, are the nth ver-
tical modes for isopycnal displacement and horizontal veloc-
ity, respectively. In this paper, the subscripts m and n denote
vertical mode indices, which are 0 for the barotropic mode,
1 for the first baroclinic mode, and so on. Each set of vertical
modes (¢3n, 7,) has the associated celerity (or the propaga-
tion speed of non-rotating linear long gravity waves) ¢, and
normalization factor &, with the unit of water depth. The nor-
malization factor is defined as

st

n dz
phy, :[nnpd ,ds,

b

(B2a)

N

where p is a reference density, and Z(x,y,s) is the back-
ground height of isopycnal. Hereafter, the superscripts ¢ and
b denote the values at the surface and bottom, respectively.
Since the choices of p and fzn are arbitrary, a hat is used to
denote variables whose magnitudes depend on these normal-
ization factors.

For approximately linear hydrostatic problems considered
in this study, the multi-layer formulation in Shimizu (2011)
and the continuous formulation in Shimizu (2019) become
equivalent after vertical-mode decomposition. We assume
¢ < ¢o for n > 0 and retain the nonlinear terms for scaling
purposes (but neglect mixed nonlinear—topographic terms).
Then, separating known barotropic (tidal) currents as exter-
nal forcing and neglecting other forcing and dissipation pro-
cesses except linear bottom friction, the governing equations
for 7y, iy, and v, for n > 0 are approximately given by

N d (A R S
s ax nln lm§>08x minMlUm

0 /[~ . o [~ ..
_5<hnvn> - Z E(lennlvm>

+Z<L h um+Lmnh Um)+ no

m>0

(B3a)
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ou a a ou
iy _ <A ) S N (ulﬂ_,_glﬂ)
at Cax hy, 120 ay

2
A 1 P
- Zan'\ﬂ + fo, — Tzrnmum7 (B3b)
m>0 B hy m>0
3y d (e,% . ) . ( m aﬁ,,,)
=—— = =M)— ZNlnm uj + v —
ot ay h [,m>0 dx ay
ca 1 —
- Zan Am fun - = Zrnmﬁm. (B3c)
m=>0 h" m=>0

Here, f,," represents the forcing function from the barotropic
to nth baroclinic mode (shown in Fig. 3 for VMI
M; tide), I:jl“m and iﬁm are topographic interaction coeffi-
cients, anm represents nonlinear interaction coefficients, and
fnm represents modal friction coefficients. These variables
are defined as

fr? = ignﬁoﬁo + I:gnil()f)(), (B4a)
St
. 1 RVAL:
£ =— / p e T ds, (Bdb)
phy, ds ox
Sb
. 1 (. dz
Nopim = — np ——TAmds, (B4c)
phy ds
Sb
£, = Labobab (B4d)
nm = <7, mo
0

where y is the linear friction coefficient. The variable i,}m, is
defined similarly by replacing x by y in Eq. (B4b).

For numerical hydrodynamic modelling, Egs. (B3a)-
(B3c) excluding the nonlinear terms (i.e. those with anm)
are discretized using the control volume (or finite-volume)
method on the staggered (or Arakawa-C) grid, assum-
ing a sinusoidal motion with angular frequency w. Then,
the matrix operator is set up for the model state vector
[ﬁlﬁz < Uy -+ D10 . ]T,andthematrixoper—
ator is transposed to obtain the operator for the adjoint model,
L in Eq. (D7).

Appendix C: Detailed points regarding the treatment of
horizontal correlation using R1/2

This Appendix describes three detailed points regarding the
treatment of horizontal correlation using R'/2 in Eqgs. (11)
and (12) in Sect. 3.1.

The first point is that R'/2 is not unique for the same R.
For example, if sources at two locations are perfectly corre-
lated with sppys = [s0 s0]7 and X = col, R is a matrix with
all the elements being unity. The Cholesky decomposition, a
common numerical method to calculate R!/2, yields

12 _ 1 0
R _[1 O]. 1)
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Then, Sgut = [250 0]7 from Eq. (11). This is reasonable in
that statistically independent sources consist of a single
source whose complex-valued amplitude is the sum of those
of two perfectly correlated sources. But it also has a prob-
lem that the ordering of vector elements in sphys determines
where this single source is located. An alternative choice
of R1/? is

111
12 _
R _ﬁ[l | ] (C2)

In this case, St = [ﬁsoﬁso]T. It is not intuitive to have
two supposedly independent sources for two perfectly cor-
related sources. However, it has an advantage that the re-
sult does not depend on the ordering of vector elements
in Sphys, and there is a numerical method to calculate this
type of R'/2 much more efficiently (the diffusion operator
method by Weaver and Courtier, 2001) than the Cholesky de-
composition for large problems. Importantly, in both cases,
E(A") = 4]s0|%2 from Eq. (12) because R = R'/2R7/2 is
the same. These examples suggest that s, provides effec-
tively independent sources that can be used in the statistical
model to calculate nonharmonic internal-tide variance, but
the horizontal distribution of the independent sources is un-
certain within the correlation length of phase modulation.

The second point is that the horizontal phase correlation
has a large impact on nonharmonic internal-tide variance.
As a simple example, consider the above two-source case
but in the absence of horizontal correlation. Then, R/2 =
I and E(A) =2|sol*s3 from Eq. (12), which is half of
the above perfectly correlated cases. It is important to re-
late this to grid resolution in a numerical hydrodynamic
model. If one source region is resolved by one grid point
with spnys = [2s9] and X = gp in a low-resolution model
and two grid points with sphys = [s0 5017 and T = ol in
the corresponding high-resolution model, the sum of sppys
(i.e. pre-modulation internal-tide amplitude) is the same (i.e.
2s0). However, if we neglect the honzontal correlation of
the sources, the variance 1s E (A’ )= 4|s0|2 in the low-
resolution case and 2|s0|2 in the high- resolutlon case. The
perfect correlation con51dered in the last paragraph is re-
quired to make the variance the same at the two resolutions.
This shows that the horizontal correlation has to be con-
sidered for gridded sources; otherwise, the results would be
highly dependent on grid resolution.

The third point is that, strictly speaking, the treatment of
horizontal correlation using R'/? cannot be used to inves-
tigate the details of the PDF or higher moments because
the statistical model uses a non-Gaussian distribution on the
complex plane for individual wave components. However,
the method based on R!/? works in the limit of many in-
dependent sources (or when the central limit theorem is ap-
plicable) because the limiting distribution is determined by
the (co)variance, regardless of the PDF of individual sources.
The results of Part 1 suggest that this “many source” limit is
common for internal tides.
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Appendix D: Adjoint method and adjoint frequency
response analysis

This Appendix describes the adjoint method and adjoint fre-
quency response analysis used to solve the covariance equa-
tions and to calculate the source function. We start from a
quick overview of the adjoint method, which is often used
in so-called four-dimensional variational data assimilation in
physical oceanography (e.g. Bennett, 2002; Wunsch, 2006).
The adjoint method is based on a so-called forward model
and an objective (or cost) function. We consider a linear
model,
dx =-Lx+ f, (D1
ot
where x (¢) is the model state vector containing the model’s
prognostic variables, L is the matrix operator representing
the linear dynamics, and f is the external forcing. Since the
model is linear, the solution can be written as

t
x(t) = /H(t—r)f(r)dr, (D2)

where each column of the matrix H contains the impulse re-
sponse function. Using the model solution, we consider a
linear function J = w' x, tentatively defined at a particular
time ¢;. The variable w is the time-independent weight vector
used to define J. There are various expressions for J:

1) = whx (1) 3
)

= / (B —r)w)Hf(r)dt (D3b)
D

= / Al (tj —7) f(v)dr. (D3c)

—00

This manipulation is a linear and continuous version of the
derivation by Marotzke et al. (1999). The variable A is so-
called adjoint sensitivity, or the sensitivity of J to x. It
can be calculated from the adjoint model associated with
Egs. (D1) and (D3a):

(D4a)

A=watt=1;. (D4b)

The above differential equations are integrated backwards in
time from the “initial” condition given at t =¢;.

For periodic or oscillatory problems, it is often convenient
to consider the above problems in the frequency domain.
Since Eq. (D2) is convolution in time, the convolution the-
orem in Fourier theory shows that its Fourier transform is

() = H(w) f (), (D5)
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where H contains the frequency response function. Hereafter,
a tilde is used for Fourier-transformed variables. If we now
allow ¢; to vary and consider time-dependent J, a similar
method can be used for J because Eq. (D3c) in the frequency
domain is

J(w) =2 (o) f (o). (D6)

In this study, X is referred to as the “adjoint frequency re-
sponse function” and analysis based on the above relation-
ship as “adjoint frequency response analysis”.

In the above derivation, the time-dependent adjoint model
(Eq. D4) and Fourier transform are used to calculate X how-
ever, for a linear forward model, it is more straightforward
to calculate X by assuming a periodic solution from the be-
ginning. Assuming x = ¥¢/" and f = fe'®" in Eq. (D), it
follows that the corresponding adjoint model is

—iwk =—-LYX +w. (D7)

This may appear inconsistent with Eq. (D4) but can be ob-
tained by considering the Fourier integral of Eq. (D4a) and
applying integration by parts to the left-hand-side and the
“initial” condition in Eq. (D4b), assuming A = 0 for ¢ > ¢;.

For the numerical computation of the adjoint frequency re-
sponse function, the evolutionary equations of vertical-mode
amplitudes, Eqs. (B3a)—(B3c), were used as Eq. (D1) after
spatial discretization. Then, Eq. (D7) was obtained by trans-
posing the matrix operator L and solved by matrix inversion.
Although J can be calculated as w” ¥, Eq. (D6) has an im-
portant advantage in that it provides horizontally distributed
sources of internal tides observed at a fixed location so that
different phase statistics can be assigned to different sources.
Eq. (14) is the continuous version of twice Eq. (D6) with
2J =ae~'%. (The factor 2 in Eq. (14) appears because the
convolution theorem in the derivation requires A and f to be
two-sided (the angular frequency w can be positive or nega-
tive), but harmonic analysis and the statistical model assume
one-sided spectra (positive w only).)

For the adjoint modelling of the covariance equations,
Egs. (182)—(18b) or Egs. (20a)—(20c), the equations were
written in a matrix form as Eq. (D1), and the associated ad-
joint model in Eq. (D4) was obtained by transposing the ma-
trix operator L and setting J = Pyg or J = Pagag at the ob-
servation location, respectively. After calculating the adjoint
sensitivity, Ppg or Papag was calculated by the convolution
of the adjoint sensitivity and forcing using Eq. (D3c).

Appendix E: Covariance equations for stochastic
variables and basis of stochastic phase models

This section briefly describes the basic relationships for
stochastic differential equations (e.g. Sdrkkd and Solin,
2019) and the basis of the stochastic phase models developed
in Sect. 3.4 and 3.5.

https://doi.org/10.5194/0s-21-2255-2025



K. Shimizu: Process-based modelling of nonharmonic internal tides — Part 2 2279

To deal with multiple stochastic differential equations,
such as Egs. (16) and (17), we may consider simultaneous
linear stochastic differential equations of the form

dx = Axdt + Bdb, (E1)

where x () is a vector containing the model prognostic vari-
ables, and b(¢) contains the Brownian motion. The increment
db is a vector containing white Gaussian noise with zero
mean and the covariance E(dbdb”) = Qdr, where Q is the
so-called “diffusion coefficient” matrix of the Brownian pro-
cess (see e.g. Sirkkd and Solin, 2019, chap. 4.1). The matri-
ces A and B may depend on ¢, but not on x in linear stochas-
tic differential equations. The matrix Q is independent of ¢
and x.

The covariance equations associated with Eq. (El) are
(Sarkkd and Solin, 2019, chap. 6.1)

dp
5= =AP+PA” + BQB, (E2)

where P(1) = E((x — E(x))(x — E(x))T) is the covariance
matrix. In this paper, the components of P and Q are denoted
by two subscripts corresponding to prognostic variables. For
example, if one of the components in x is the phase speed c,
then P, = crg is the phase-speed variance.

To model phase statistics, we put Eq. (16) and modified
Eq. (17) for the ith and jth paths in the form of Eq. (El)
and consider the associated covariance equations in Eq. (E2).
This requires the modification of Eq. (17) to include the
cross-path correlation of phase-speed variability. We choose

the vectors in Eq. (E1) to be x =[c] ¢} 6 6; ]T and
b= [bi b ]T and the cross-path correlation to be expo-
nential. We take into account the variability of the mean
phase speed ¢ and the phase-speed correlation length Lc¢
along the propagation paths but neglect their cross-path vari-
ability, effectively assuming that the two paths remain close
to each other. This appears to be a reasonable first approx-
imation, except for paths that are roughly parallel to steep
slopes, such as continental shelves. Then, the matrices in
Egs. (E1) and (E2) are given by

—eLg! 0 0 0
0 —eLz' 0 0
A=l_e1 0o oo |’ (E3a)
0 —wc ! 0 0
- F(An|/
B= c F(|A7?|/l) 1 (E3b)
V Le 1+F2(|An|/l) 0
Q=202 [0 1}, (E3¢)

where F' and [ are defined in Egs. (22a)—(22b). Note that,
since the distance between the two propagation paths An
(see Fig. 4b) and the correlation length / can vary along the
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paths, the cross-path correlation of random forcing needs to
be included in B instead of Q, which is assumed to be time-
independent. In this paper, we assume that the phase-speed
variance P,¢; is stationary in space and time as a first ap-
proximation (justified in Sect. 4.3). The matrices B and Q
are chosen so that

_ QCiCi _ QCjCj _ 2
6T T, T T, T

2

PC,-Cj = GCRn(|A77|/l)7

Pc,'c,-ZPc

(E4a)
(E4b)

where Rj, is defined in Eq. (21).

The cross-path correlation function of phase speed R;, has
a different form from the along-path correlation function as-
sociated with Eq. (17). Assuming that ¢ and L¢ remain lo-
cally constant, Eq. (17) implies that the along-path correla-
tion function is (Sérkké and Solin, 2019, chap. 6.5)

Rs = e CIA/Le  p—IAEl/Le (E5)

where At and A§ are lags in time and along-path distance,
respectively. It is undesirable to have an anisotropic corre-
lation function for phase speed; however, it appears unfor-
tunately difficult to have cross-path correlation of the expo-
nential form, when |An| and [ vary along the paths. To keep
the correlation as isotropic as possible, we set the integral
scales in the along- and cross-path directions the same, yield-
ing Eq. (22b).

We use the covariance equations (Eq. E2), with the matri-
ces in Egs. (E3a)—(E3c) as the basis to model phase spread
and cross-path phase difference (Sect. 3.4 and 3.5). Equa-
tions (18a)—(18b) for the phase spread modelling are ob-
tained from Egs. (E2) and (E3a)—(E3c) by neglecting the
rows and columns corresponding to the ith path and the
cross-path correlation (i.e. ' = 0) and by writing 6; = 6 and
c;. = ¢/. Equations (20a)—(20c) for the cross-path phase dif-
ference modelling are obtained from Eqs. (E2) and (E3a)-
(E3c) by modifying the definition of x in Eq. (E1) as x =
[c] C;» 0; —0; ]T and by subtracting the fourth row from
the third row in A and B. Note that the matrices A and B are
calculated for the background conditions and that ¢’ aggre-
gates the effects of interannual and mesoscale variabilities.
The processes inducing ¢’ can be strongly nonlinear, but the
wave modulation process under given ¢’ is approximately lin-
ear, as shown in Appendix A.

Appendix F: Calculation of phase-speed variance from
PIL200 data

This Appendix describes the calculation of phase-speed vari-
ance aé from the PIL200 data, which is used in the stochas-
tic phase modelling (Sec. 4.3; also see Part 1 for the PIL200
data).

To estimate 03, we consider the phase speed of inter-
nal tides with a single vertical-mode structure under ran-
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dom, non-tidal background isopycnal displacements and cur-
rents. The phase-speed deviation due to the random com-
ponents, ¢, is given in Eq. (A11) for the barotropic mode.
The result can be translated to a single baroclinic mode us-
ing the vertical-mode formulation in Appendix B. To do so,
we replace co and & by the celerity and normalization factor
of nth baroclinic mode, ¢, and fzn, and the prognostic vari-
ables (n,u,v) by the corresponding modal amplitudes (7,
iy, Uy). We also replace the random components (Co, H, U,

V) by the corresponding baroclinic components (Cy, 17:1,‘!1t
UM, VM), where the superscript “nt” is used to denote the
random non-tidal version of the vanable The variables H,
and V, = (U,,V,) are equivalent background conditions
for the nth mode in nonlinear terms, defined as

I:In = Zﬁnmnﬁmv (Fla)
m

— N A

V= ZNmnn_U)m’ (F1b)

m

where Nnmn and I\A/m,m are the nonlinear interaction coef-
ficients defined in Eq. (B4c). Considering that the phase-
speed deviation ¢’ is a sum of random variables with zero
mean, Eq. (A11) leads to the expression for phase-speed vari-
ance aé:

2
P— o 62

ot @’ 5, CVm 1" Ohp

2~ 1%, =) 14 7o (F2)

13 C c 4 ¢ hn

where ¢ is the mean phase speed, ¢, is the mean celer-

ity, and Oy and Gym are the standard deviation of

V(U2 + (VY2 and H Mt respectively. Theoretically, the
second term on the right-hand side should be based on back-
ground velocity in the direction of wave propagation; how-
ever, current speed without directionality is used for simplic-
1ty.

The phase-speed variance aé for VM1 at the PIL200 lo-
cation was estimated as follows. The variance of ¢; was cal-
culated after subtracting the annual and semi-annual cycles
(solid minus dashed black line in Fig. 3a of Part 1) because
the seasonal cycle is largely deterministic and presumably
leads to the excitation of annual and semi-annual harmon-
ics of the major harmonic constituents. This yielded O'él ~

2.7 x 1073 m2 s~2. The equivalent non-tidal background dis-
placement I-AI}lt was calculated from Eq. (Fla) as follows.
First, the variable f}1 was calculated using the observed non-
harmonic time series of the displacement amplitudes (with-
out band-pass filtering) as 7, and usmg N 1m1 Wwithout the
annual and semi-annual cycles. Since Hf“ is assumed to be
non-tidal but H] contained nonharmonic internal tides, the
variance associated with the cusps (if present) was estimated
from the spectrum of H by the least-squares fitting of the
double Lorentzian model as explained in Sect. 3.6 of Part 1,
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and the resultant vanance was subtracted from the variance

of H1 to obtain 0 on This yielded erm/h2 ~6.7x1073. The

equivalent non-tidal background current speed |V‘1“| was
calculated in the same way, except that the low-frequency
currents (less than =~ 62 h period) were also included. This
is because background currents were neglected in the calcu-

lation of cy. This yielded U|27"‘| ~84x103m2s 2. Then,
1
for VM1, oc~1.2x 1072 m? s72, or oc was 14 % of the

phase speed. Note that Kunze (1985) and Zaron and Egbert
(2014) did not include the contribution of background isopy-
cnal displacements to phase speed, but it has an 8 % contribu-
tion to the phase-speed variance in this example. Presumably,
the relatively large contributions of background currents and
isopycnal displacements result from the relatively shallow
water depth at the PIL200 location.

The phase-speed variance for higher modes was also
needed in the stochastic phase modelling. Applying the same
procedure to the PIL200 data yielded 0 ~9.5, 8.2, and
8.2x 1073 m? s~2 for semidiurnal VM2, VM3 and VM4, re-
spectively. The background current is the dominant (> 90 %)
contributor in these cases.

Note that o‘_> " and 6?1,,"‘ calculated above include con-
tributions from inertial and super-tidal frequencies. It was
impractical to exclude the inertial contribution because the
spectra did not show narrow inertial peaks, although the spec-
tral level was elevated near the inertial period (qualitatively
similar to Fig. 5 of Part 1). The inclusion of super-tidal fre-
quencies might appear questionable because the widths of the
cusps (Fig. 5 of Part 1) appear to suggest modulation by low-
frequency processes. However, this choice was made for the
following two reasons. The first reason is that aé is not only
the variance of ¢’ but also a half of the variance of formal
white noise db/dr in Eq. (E1) with Eq. (E3c). This means
that, to estimate aé from the time series of ¢’, all frequency
components of the non-tidal variability need to be included
even when low-frequency response is the interest. This is be-
cause, as seen in the well-known example of random walk or
Brownian motion, the accumulation of high-frequency ran-
dom fluctuation can produce low-frequency fluctuation. The
second reason is that statistical and stochastic models usually
use the variance of random variables without frequency cut-
off, even when the randomness has a clear timescale or length
scale. For example, the variance in the Lorentzian model
(Gi/ in Eq. 24 of Part 1) is the variance over all frequencies,
although the process has a decorrelation time. So, applying
a frequency cut-off could result in substantial underestima-
tion of random phase-speed variability and the ensuing phase
spread in statistical or stochastic analysis and modelling. For
example, the contributions of frequency components lower

and higher than ~ 62 h period to the total U|27"‘\ are about
1
60 % and 40 %, respectively. Neglecting this high-frequency
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component of O'|2—>n

o and 621"‘ would result in more than a
1 1

40 % underestimation of aé for VM1.
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