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Abstract. A substantial fraction of internal tides cannot be
explained by (deterministic) harmonic analysis. The remain-
ing nonharmonic part is considered to be caused by random
oceanic variability, which modulates wave amplitudes and
phases. The statistical aspects of this stochastic process have
not been analysed in detail, although statistical models for
similar situations are available in other fields of physics and
engineering. This paper aims to develop a statistical model of
the nonharmonic, incoherent (or nonstationary) component
of internal tides observed at a fixed location and to check the
model’s applicability using observations. The model shows
that the envelope-amplitude distribution approaches a uni-
versal form given by a generalization of the Rayleigh distri-
bution, when waves with non-uniformly and non-identically
distributed amplitudes and phases from many independent
sources are superimposed. Mooring observations on the Aus-
tralian North West Shelf show the applicability of the gener-
alized Rayleigh distribution to nonharmonic vertical-mode-
one to mode-four internal tides in the diurnal, semidiurnal,
and quarter-diurnal frequency bands, provided that the power
spectra show the corresponding tidal peaks clearly. These re-
sults demonstrate the importance of viewing nonharmonic
internal tides as the superposition of many random waves.
The proposed distribution can be used for many purposes in
the future, such as investigating the statistical relationship be-
tween random internal-tide amplitude and the occurrence of
nonlinear internal waves, as well as assessing the risk of in-
frequent strong waves for offshore operations. The proposed
statistical model also provides the basis for investigating pro-
cesses and parameters controlling nonharmonic internal-tide
variance in Part 2.

1 Introduction

A substantial fraction of internal tides cannot be explained by
harmonic analysis (based on the superposition of sinusoids
at tidal frequencies with constant amplitudes and phases).
The remaining nonharmonic component is considered to be
caused by the random variability of stratification and back-
ground currents, which modulate the amplitudes and phases
of remotely generated internal tides. In other fields of physics
and engineering, statistical models for similar situations — the
superposition of waves with constant frequency modulated
by a random medium — have been developed. However, the
previous studies of nonharmonic, incoherent, or nonstation-
ary internal tides have focused on the temporal aspects of the
stochastic process, and the probabilistic or statistical aspects
have not been considered in detail. This paper develops a
statistical model of nonharmonic internal tides observed at a
fixed location by adapting previous statistical models in other
fields and then checks the model’s applicability to nonhar-
monic vertical-mode-one to mode-four internal tides in the
diurnal, semidiurnal, and quarter-diurnal frequency bands on
a continental shelf.

Internal tides are internal waves with tidal frequencies, pri-
marily in the diurnal (=& 24h period) and semidiurnal (*
12h period) bands. They have different vertical structures,
or modes, and lower modes have larger propagation speeds
and usually larger energies. (The internal-tide modes are re-
ferred to as “baroclinic” modes to distinguish them from the
usual tides, or the “barotropic” mode. It is customary to count
the first baroclinic mode as vertical mode one, or VM1.) In-
ternal tides are generated by the interaction of tidal currents
with topographic slopes, which implies their coherence with
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the tide-generating forces at the generation sites. However,
they gradually become incoherent (or non-phase-locked) as
they propagate away from the generation sites (e.g. Rainville
and Pinkel, 2006; Buijsman et al., 2017; Alford et al., 2019).
This process is considered to be caused primarily by phase
modulation through the variability of the wave propagation
speed (Park and Watts, 2006; Rainville and Pinkel, 2006),
which is in turn caused by temporally and spatially varying
pycnocline heaving and advection (Zaron and Egbert, 2014;
Buijsman et al., 2017). Higher modes are more susceptible
to this phase modulation because their lower propagation
speeds increase the relative importance of background cur-
rents (Rainville and Pinkel, 2006; Zaron and Egbert, 2014).
Although the variability of internal-tide generation can be
substantial (Kerry et al., 2016), the amplitude modulation is
overall considered to be less important than the phase mod-
ulation (Colosi and Munk, 2006; Zaron and Egbert, 2014).
However, the generation variability could be more important
for higher modes and quarter-diurnal (= 6 h period) internal
tides on continental shelves because they can be excited di-
rectly by the topographic conversion and nonlinear interac-
tion of incoherent VM1 internal tides, respectively.

Several terms are used to refer to internal tides not ex-
plained by harmonic analysis, including nonstationary inter-
nal tides (Ray and Zaron, 2011; Shriver et al., 2014; Water-
house et al., 2018; Nelson et al., 2019; Geoffroy and Ny-
cander, 2022), incoherent internal tides (Kerry et al., 2016;
Buijsman et al., 2017), and non-phase-locked internal tides
(Zaron, 2022; Kachelein et al., 2024). The term “nonstation-
ary” internal tides appears to be the most popular, but it is
problematic in this study because we aim to develop a model
for a time-independent (i.e. stationary) probability distribu-
tion of random internal tides at one location, although the
randomness of internal tides increases (i.e. nonstationary)
following the wave propagation. The terms “incoherent” and
“non-phase-locked” internal tides are not preferred in this
study for two reasons. First, the scope of this paper includes
cases with random amplitude and constant phase, although
it is not the main focus. Second, these terms assume forcing
or a reference state with fixed frequency and phase; however,
it may not be applicable to quarter-diurnal and higher-mode
internal tides considered in this paper because they can be di-
rectly excited by incoherent VM1 internal tides without the
modulation process. Accordingly, the term “nonharmonic”
internal tides is used in this study because it describes how
the random part of internal tides has been defined based on
in situ observations (Waterhouse et al., 2018; Geoffroy and
Nycander, 2022; Kachelein et al., 2024) and numerical mod-
elling (Kerry et al., 2016; Buijsman et al., 2017; Savage et al.,
2020) — by subtracting harmonic internal tides from the total.
(Note that satellite altimetry studies have relied on different
methodologies because of the coarse temporal sampling. See
Nelson et al., 2019, for details.)

Previous studies on nonharmonic internal tides have fo-
cused on the temporal aspects assuming a wave with
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Gaussian-distributed amplitude and phase (Colosi and Munk,
2006; Zaron, 2015; Geoffroy and Nycander, 2022) but, to my
knowledge, not on the probabilistic or statistical aspects. For
example, the probability density functions (PDFs) of nonhar-
monic internal tides have not been derived, although the PDF
of wave amplitude provides an important basis for many pur-
poses, as seen in the example of surface waves for engineer-
ing applications (e.g. Horikawa, 1978). (After preparing the
original manuscript of this paper and presenting the selected
results at the Ocean Sciences Meeting 2024 — Shimizu, K.,
Developing a statistical model of incoherent internal tides,
19-23 February 2024 — I became aware of Kachelein et al.,
2024, who showed the PDF of non-phase-locked internal
tides from high-frequency radar observations.) Furthermore,
it appears that the importance of the superposition of multi-
ple waves has not been taken into account. Since it is well-
known that internal tides at an observation location can con-
sist of waves arriving from multiple sources (e.g. Rainville
et al., 2010) and remote sources (e.g. Ponte and Cornuelle,
2013), it is expected from the central limit theorem in statis-
tics that the process becomes Gaussian as the number of wave
sources increases. However, this Gaussian limit is different
from the Gaussian process assumed in previous studies, as
shown in this paper. This matters because the difference can
affect parameters for nonharmonic internal tides estimated
from observations. Also, the requirements for convergence
to the Gaussian limit have not been investigated for nonhar-
monic internal tides.

Situations similar to nonharmonic internal tides arise in
other fields of physics and engineering, such as acoustics,
optics, and communications, in which an observed wave sig-
nal consists of multiple wave components with the same fre-
quency but with random phase shifts (e.g. see the summary
by Abdi et al., 2000). Surface waves are treated differently
to include the random frequency variability (e.g. Longuet-
Higgins, 1983), although early studies assumed a fixed fre-
quency (e.g. Longuet-Higgins, 1952). For constant ampli-
tude and uniformly distributed phase, the problem becomes
equivalent to a random walk on the two-dimensional plane
(e.g. Bennett, 1948; Abdi et al., 2000). Previous studies in
these fields have developed statistical models applicable to a
wave signal consisting of a few to many wave components
with random phases (Bennett, 1948; Beckmann, 1964; Si-
mon, 1985; Barakat, 1988) and also with random amplitudes
(Barakat, 1974; Abdi et al., 2000).

This paper aims to develop a statistical model of nonhar-
monic internal tides observed at a fixed location by adapting
models developed in other fields of physics and engineering
and then to check the model’s applicability to nonharmonic
internal tides. An important aspect of the model is to consider
non-uniform and non-identical probability distributions for
individual waves because the amplitude and phase random-
ness of internal tides are expected to vary with the spatial
distribution of the sources and their distances to the observa-
tion location. Although the model is developed by adapting
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previous models to nonharmonic internal tides, the model de-
velopment is not trivial because there are relatively few and
scattered studies that consider wave components with non-
uniformly and non-identically distributed phases. The statis-
tical model is then used to show that the envelope-amplitude
distribution approaches a generalization of the Rayleigh dis-
tribution as the number of independent sources increases.
The model PDFs are compared to the observed PDFs at a
mooring site on the Australian North West Shelf to demon-
strate the applicability of the proposed model. The model is
also used to revise the common simple (or “toy”’) model of
internal tides that has been used for observational data anal-
ysis so that it is applicable to cases with many wave sources.

This paper is organized as follows. Section 2 describes
the simplified version of the proposed statistical model in
the limit of many wave sources. Computational methods and
the processing of observed data are described in Sect. 3, and
the results are shown in Sect. 4. Implications of the results
are discussed in Sect. 5. This paper ends with brief conclu-
sions in Sect. 6. Appendix A describes the general version
of the proposed statistical model applicable to an arbitrary
number of wave sources, and Appendix B provides a brief
summary of the coordinate transformation and Fourier and
Hankel transform pairs used in this paper.

2 Statistical model

As a theoretical model of internal tides observed at a fixed
location, we consider a sinusoidal time series that has the
deterministic angular frequency w, a random amplitude A,
and a random phase lag ®. Furthermore, we assume that
this signal results from the superposition of independent and
non-identically distributed N sinusoidal components, each
of which has a random amplitude A; and a random phase
lag ® ;. Then, the signal can be expressed as

N
Ae—iOgior _ ZAje—l®jezwt
j=1

N
= (X +iY)el =Z(xj+iy,-)eiwf, 1)
j=1
where ¢ is time. The Cartesian form of the complex-valued
amplitude (X, Y) is introduced because both polar and Carte-
sian forms are necessary later. Following the convention in
statistics (e.g. von Storch and Zwiers, 1999), random vari-
ables are written in uppercase letters, and the corresponding
lowercase letter is used for its realization, unless otherwise
stated.

Following previous studies cited in the Introduction, non-
harmonic internal tides are defined by subtracting harmonic
internal tides estimated by harmonic analysis (i.e. least-
squares fitting of sinusoids at the tidal frequencies). So, we
consider the statistics of
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Figure 1. Schematics of relationships among variables used in this
paper on the complex plane. x + iy is the total complex-valued am-
plitude, and x” +iy’ is that with zero mean. Grey dots show sam-
ples taken from nonharmonic vertical-mode-one semidiurnal inter-
nal tide at the PIL200 location (described in the Methods section).
For illustration purposes, r = 9m (& 1.5 times the standard devia-
tion of harmonic semidiurnal internal tide) and ¢ = 120° are chosen
arbitrarily.

X' +iY =(X+iY) — (BE(X) +iB(Y))

=

=Y {X;+i¥; - (E(X,) +iE(Y;))} @)

j=

in this study. Hereafter, E(-) denotes the expected value of
the argument. We write the above expression in polar form
as

A/e—i@)/ ZAe—i@)_re—i(p
N
_ A i9) i) 3
= je Pl —rjeTi g, 3)
—

where E(X) +iE(Y) = re~'?. Note that r is the distance to
the expected value of the complex vector X 4iY on the com-
plex plane. Because of this, E(A/Z) is not Var(A), and r and
¢ are not E(A) and E(®), respectively. Hereafter, Var(-) de-
notes the variance of the argument. Relationships among the
variables are illustrated in Fig. 1.

A particular variable of interest in this study is A’ 2, which
corresponds to the squared envelope amplitude of a nonhar-
monic internal tide. It may not be obvious in the polar form,
but provided that the individual sinusoidal components are
independent, the use of Cartesian components shows that
the following relationship generally holds for non-identically
distributed components, without assuming the independence
of A’J. and ®’j:
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In this study, we refer to the second moment of A’ as the
“total variance”, and write of\, = E(A’Z) because it is the sum
of Var(X) and Var(Y), although it is not Var(A).

2.1 Probability distribution functions in the many
source limit

Since we consider a sum of random variables, the central
limit theorem in statistics suggests the existence of a univer-
sal PDF in the limit of large N, which is applicable regardless
of the PDFs of the individual wave components. Hereafter,
the limit of large N is referred to as the “many source limit*
because individual components in Egs. (1)—(4) require wave
sources. We derive a statistical model in the many source
limit in this section because only the many source limit is
considered in the majority of this paper. The model is a sim-
plified version of the general model applicable to arbitrary
N, which is required to investigate the rate of convergence to
the many source limit with increasing N. Since this general
model requires mathematics rather specific to statistics, the
derivation is presented in Appendix A. The relationships in
this section are applicable to general PDFs of the individual
wave components, and specific PDFs are introduced in the
following section.

Before deriving the statistical model in the many source
limit, it is necessary to note one detailed point in statistics,
which is required to derive PDFs in the many source limit. If
we write the joint PDF in Cartesian coordinates as fxy and
in polar coordinates as fa@, the two are related as

fxy(x,y)dxdy = fae(a,0)dadd )

in the convention in statistics (Hoyt, 1947). Note that the Ja-
cobian of the coordinate transformation (i.e. a) is included
in fae so that fyy =a~! fae (Hoyt, 1947). This is neces-
sary to make the integral of f4@ over the whole domain unity
and to retain the properties of PDFs (e.g. marginal and con-
ditional probability); however, it is unfortunately a potential
source of confusion because they do not follow the standard
rule of coordinate transformation.

We now proceed to deriving the statistical model in
the many source limit. When N is sufficiently large, and
Var(X ;) <« Var(X) and Var(Y;) < Var(Y) for all j indices
in Eq. (4) (i.e. none of the components dominate the vari-
ance), the central limit theorem states that X’ and Y’
are asymptotically normally distributed (Beckmann, 1964).
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Then, the joint probability distribution of X’ and Y’ ap-
proaches the joint Gaussian distribution. To simplify the
mathematical expression, it is convenient to rotate the
(x’, y") axes on the complex plane to the so-called princi-
pal axes (xp, yp) so that X, and Y} are uncorrelated. The
direction of the principal axes is found from the covariance
matrix

Cz[ 0% Pxyoxoy } ©
PXYOXOy of '

where oy and oy are the standard deviation of X’ and Y/,
respectively, and pxy is the correlation coefficient of X’ and
Y’. The eigenvalues of C provide the variance in the major
and minor principal directions, 0)2(1) and (T)%P (= 0)2(1)), and the
eigenvector provides the direction of the major principal axis,
op. Using the principal axes, the joint PDF fX;)y;) approaches

the joint Gaussian distribution:

1 1 x{;Z yi;z
/ /
fan bbb~ oo\ 2o rar)) @
P P

This can be written in polar coordinates as

fae(a,0) ~

2m o X0y,
2
a 1+cos2(0 — 1—cos2(0 —
wexp (-2 2( ¢p) n 2( ¢p) L ®)
4 o%y oy,

where (xp, yp) = a(cos(6 — ¢p), sin(0 — ¢p)). (The prime is
omitted from a and 6 for brevity.) Note that a is multiplied
to impose Eq. (5). The corresponding amplitude and phase
distributions can be obtained by integrating f4'q/, over 6 and
a, respectively (i.e. marginal distributions). The integrations
yield

2a a?
far(a) ~——=——=exp| =5
o2 /1—b2 (1-0?)03,

x I L (9a)
"\=)o3 )0 )

1 V1—b2

o () ~ — , 9b
for®) 2w 1 —bcos2 (6 — pp) ©b)
oj/ = 0')2(1) + G%P, (90)

-2
b=o, (af{P — O’)%P> . (9d)

Here, Ij is the modified Bessel function of the first kind of
the order 0, and the integral over 6 is evaluated using

g
/e”C°S9d9 =27 1y(a), (10)
—TT

which comes from the so-called Jacobi—Anger expansion
(Abramowitz and Stegun, 1972, Eq. 9.6.34 or DLMF, 2025,

https://doi.org/10.5194/0s-21-2233-2025



K. Shimizu: Process-based modelling of nonharmonic internal tides — Part 1

2 b

% ————— 1.00

%‘ N —0.97
=S —0.80

gz — 041
N @

:._‘; g ...... 0

ETo

2 0 ‘ N " "

0.5 1.0 1.5 2.0 2.5
Normalized amplitude a’/o .

3.0 T T T - r
g @ Ao %
b\ 2.5 A - 0°
< 20f — %
g sl — 27°
_q§ ’ — 54°
> 1.0f —— 135° 1
% 05k ‘ ...... 00
S 0 : A/t i G S ey
& -180 -90 0 90 180

Phase 6 (°)

2237

2.0 T T T T r .
(b) Ao b
16F

1.2

0 L
-180 -90 0 90 180
Phase 6 (°)

0.8} / 1-e7
06F /
041 II

02

0 1 2 3 4 5
Phase variance o}’

Normalized contribution to E(4'?)  Probability density fp (rad™)

Figure 2. Analytic probability density functions (PDFs) used in this paper and their properties. (a) Generalized Rayleigh distribution in
Eq. (9a), (b) phase distribution of joint Gaussian distribution in Eq. (9b) plotted with gol/g =0, (¢) wrapped normal phase distribution in

Eq. (12) plotted with ¢; = 0, and (d) normalized contributions to E(A’ 2) (the dashed double-dotted line and solid line show the first and
second terms of Eq. 14b, respectively). In (a), amplitude and PDFs are normalized by envelope-amplitude standard deviation o 4/. In (b)
and (c), lines with an upward arrow indicate the Dirac delta function. For sinusoidal components with equal amplitude and phase lag,
distributions in (a) and (b) are limiting distributions for large N under the phase distribution in (c) with the same line style.

Eq. 10.35.2). As shown by Hoyt (1947), the radial distribu-
tion function is a generalization of the Rayleigh distribution
(see also Nakagami, 1960; Beckmann, 1964). The distribu-
tion becomes the standard Rayleigh distribution when b =
0 and approaches a one-sided Gaussian distribution when
b — 1 (Fig. 2a). The phase distribution is bimodal and be-
comes uniform when b = 0 and two sharp peaks when b — 1
(Fig. 2b). Note that ai, = Var(X) + Var(Y) = E(A’Z) from
the property of eigenvalues and Eq. (4) or Egs. (Al13a)—
(A13Db).

2.2 Specific probability distribution functions

To apply the above general relationships to nonharmonic in-
ternal tides, we assume specific amplitude and phase distri-
butions. First, we assume that the amplitude and phase vari-
ability of each sinusoidal component are independent:

fa0; (aj’gj) = fa, ("j) fo; (91')- an

Second, we assume that fg, is given by the wrapped normal
(or Gaussian) distribution (Mardia, 1972, p. 55)

2

1 > 0; —j+2mk

= » exp(——( L ) ) (12)
N2moj Il 20/.

where o is the standard deviation of the phase and is short-
hand notation for o g . The wrapped normal distribution is a
J

fo; (6))

circular analogue of the Gaussian distribution and defined for
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any one period of 2. It approaches the Gaussian distribution
in the limit o; — 0 but approaches the uniform distribution
in the limit o; — oo (Fig. 2c). Note that we consider non-
identical phase distribution (i.e. ¢; and o are not necessary
the same for different j indices). Then, the mean and second
moments under Eq. (12) are given by

E(X;+iY))=rjei, (132)
E (A’f) =al—r? =32, (13b)
1 L= 252
E(X) = 5@+ (fe ™7 =rf)eos2gy (130
1 1 = 252
£(r) - - L@ - ez a2
E(X'¥) = X (22727 —12) sin2g,; 13
1) == (ade —ri)sin2g;, (13e)
where
2
v =Eje_af/2, (142)
2 afz' -
4j

anda; =E(A;) and ; = E(Az.). As seen in these relation-
ships, and as shown before by Colosi and Munk (2006),
the phase spread o; provides a convenient way to sepa-

rate the variance of each sinusoid (aJZ.) into the deterministic
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(mean) component (rlz.) and the random (deviation) compo-

nent (E? gjg). It is also convenient that the random component

is separated into the contributions from random amplitude
(the first term in gz) and random phase (the second term).

We also need the amplitude distribution f4; to solve the
problem, and we consider two contrasting amplitude PDFs.
The first amplitude PDF is the constant (deterministic) dis-
tribution:

faj(aj) =8(a; —oa;). (15)

where o4, is the constant amplitude (and E(A?) 1/2y ‘and 8(+)
denotes the Dirac delta function. In this case, a; = 04, and

ajz. = aij. The second amplitude PDF is the uniform distri-

bution:

UaTj fora; < \/EO’AI.
fa; (@) = 4 ) (16)
0 fora; > \/EO’AJ.

This distribution is referred to as “uniform” because it corre-
sponds to uniform probability in the radial direction between
0 and /20,4 ; on the x;—y; plane. (Note that the factor a;

comes from the requirement in Eq. 5.) The distribution is

normalized to have a]z = 0’3‘ _, as in the constant-amplitude
J

PDF. The mean amplitude is given by a; = 220, /3

The specific phase and amplitude distributions allow the
evaluation of the second moments in Eqgs. (13b)—(13e). Then,
because of Eq. (4), o4’ in the limiting distribution (Egs. 9a
and 9b) is given by the square root of the sum of E(A’jz).
The b parameter in the limiting distribution can be calculated
from the eigenvalues of the covariance matrix (Eq. 6), whose
components are given by the sum of E(X’jz), E(Y’jz), and
E(X ’/ Y//. ).

It is worth noting here that the relationships under the
wrapped normal distribution suggest relatively small effects
of amplitude distribution on the total amplitude A’ for two
reasons. The first reason is that the contribution of random
amplitude to the total variance is relatively small. The first
term in Eq. (14b) is O (constant) and 1/8 (uniform) for these
very different amplitude distributions. In comparison, the
second term can be as large as 1 (Fig. 2d) without requir-
ing a large phase spread, as pointed out by Zaron and Eg-
bert (2014). For example, the e-folding variance (where the
dashed line reaches 1 in Fig. 2d) is about 1, or 16 % of the
full phase 27 in terms of standard deviation. The second rea-
son is that the general version of the statistical model in Ap-
pendix A suggests that random amplitude (or smooth f4,)
tends to smooth the Fourier transform of the PDF (i.e. charac-
teristic function) ¢ ; compared to the constant-amplitude case
(Eq. A14). This means that random amplitude tends to make
the total-amplitude PDF f4/ smoother and to make the con-
vergence to the limiting distributions (Eqs. 9a and 9b) faster.
For these reasons, we consider rather contrasting amplitude
distributions f4; in this paper.
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It is also worth noting that the wrapped normal distribu-
tion is similar to the von Mises distribution used, for exam-
ple, by Barakat (1988), and both distributions yield similar
results within the scope of this paper. However, the two dis-
tributions are different in that the phase spread parameter
in the von Mises distribution is not the standard deviation
and lacks clear meaning when the distribution deviates sig-
nificantly from the Gaussian distribution, whereas the phase
spread parameter of the wrapped normal distribution is the
standard deviation and could be estimated by various means.
The wrapped normal distribution is chosen in this paper so
that a stochastic model can be used to estimate the phase
spread parameter in Part 2 of this study (Shimizu, 2025).

3 Methods

3.1 Calculation of theoretical probability density
function

We investigated the convergence rate of the PDFs to the lim-
iting distributions (Egs. 9a and 9b) by calculating PDFs and
covariance matrices using the general version of the statisti-
cal model in Appendix A under the specific phase and am-
plitude distributions in Sect. 2.2 and varying N. The details
of the computation are provided in Appendix A.

3.2 PIL200 observations

We investigated the applicability of the proposed statistical
model to nonharmonic internal tides by comparing the statis-
tical model with measurements at the PIL200 location on the
Australian North West Shelf (115.915°E, 19.435°S; water
depth ~ 200 m). A mooring consisting of CTDs, thermistors,
and an acoustic Doppler current profiler (ADCP) was de-
ployed from 20 February 2012 to 18 August 2014 as part of
the Australian Integrated Marine Observing System (IMOS).
The measurements consisted of five half-yearly deployments.
Although the number and heights of instruments as well as
instrument settings varied over the whole measurement pe-
riod, temperature and salinity were overall measured at ap-
proximately 10 and 20-30 m intervals, respectively, over the
whole water column except in the upper 20-30 m. Typical
sampling intervals of the CTDs and thermistors were either
60 or 120s. Current velocity was measured at 10 m vertical
intervals, and the sampling intervals varied between 300 and
1200 s among the five deployments. Pressure was measured
by the ADCP located at 8-9 m above the seabed.

The PIL200 data were processed as follows. We re-
tained only data flagged as “Good_data” and ‘“Proba-
bly_good_data” and removed suspicious salinity records.
Then, we interpolated salinity to the thermistor depths, re-
moved high-frequency variability by low-pass-filtering tem-
perature and salinity with a cut-off period of ~ 1 h, subsam-
pled them at 15 min intervals, and calculated isopycnal ele-
vation. When vertical salinity interpolation was difficult be-
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cause of bad or missing data at multiple levels, we did not
attempt to calculate isopycnal elevation. We used isopycnal
densities from 1021.00 to 1026.25 kg m—> at 0.25 kg m > in-
tervals, which resulted in roughly one isopycnal every 10 m.
Surface elevation was calculated from the pressure measure-
ments and then low-pass-filtered and subsampled in the same
way. Then, we calculated surface and isopycnal displace-
ments by subtracting the corresponding background eleva-
tion, calculated by low-pass-filtering the isopycnal elevation
with a cut-off period of &~ 62h to remove tidal and inertial
variability. Current velocity was processed similarly by re-
moving high-frequency variability, by subsampling, and then
by subtracting the background (low-frequency) currents.

3.3 Vertical-mode amplitude estimation

We considered vertical-mode-one (VM1) to mode-four
(VM4) internal tides, whose amplitudes and energetics were
estimated as follows.

We calculated the first five modes (qgn forn=0,1,2,3,4)
and the associated celerities (c,) as a function of time (at
15 min intervals) using the low-pass-filtered (background)
isopycnal elevation and the formulation of vertical modes
in Shimizu (2017, 2019). (In this study, the term “celer-
ity” is deliberately used for the propagation speed of non-
rotating, long, linear gravity waves with one of the vertical-
mode structures, which differs from the phase speed of in-
ternal tides.) Hereafter, the subscript n denotes mode index,
which is 0 for the barotropic mode, 1 for VM1 (the first baro-
clinic mode), etc. The most common normalization of verti-
cal modes is to set the maximum value to 1; however, for nu-
merically computed vertical modes, this normalization can
introduce discontinuous changes as the stratification varies
over time. In this paper, the vertical modes were normalized
by setting the arbitrary norm for the barotropic mode (ho) to
the water depth (201 m) and the norms for VM1 (le), VM2
(h2), VM3 (h3), and VM4 (h4) to 1/5, 1/17,1/38, and 1/63
of the water depth, respectively. The celerities of baroclinic
modes showed clear seasonal variation, but the above nor-
malization of the vertical modes kept the extreme (minimum
or maximum) value of cﬁn at about 1 (black line in Fig. 3a
and b). (However, note that the depths of the extreme varied
seasonally.)

Using the vertical modes, we estimated vertical-mode am-
plitudes of isopycnal displacement (7),) and the horizontal

velocity vector (_v),,) based on the Gauss—Markov estima-

tion (Wunsch, 1997). (The units of 7, and U, are metres
and ms~!, respectively.) This method required estimates of
the error covariance, as well as the covariance of vertical-
mode amplitudes. Following Wunsch (1997), we assumed di-
agonal covariance matrices. From the high-frequency end of
the power spectra of the unfiltered time series, the standard
deviations of surface displacement, isopycnal displacement,
and horizontal velocity errors were estimated to be ~ 0.03 m,
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~3m, and ~ 0.04ms~!, respectively. The prior estimates
of vertically integrated available potential or kinetic energies
contained in the first five modes were set to 1000, 1000, 500,
250, and 125 J m~2 (the energy ratio was taken from Wunsch,
1997). Since the extreme values of qAﬁn are about 1, 7,, corre-
sponds to the maximum or minimum isopycnal displacement
within the water column.

Since the measurements were made on the continental
shelf, the seasonal variability of stratification affected ver-
tical modes and related variables substantially (e.g. the black
line in Fig. 3a), including 7, () (not shown). Although har-
monic analysis with multi-year-long records can determine
seasonally variable harmonic internal tides, non-random sea-
sonal variation of nonharmonic internal tides, which is not
considered in the statistical model, would make comparisons
with the proposed statistical model more difficult. There-
fore, to suppress the seasonal variability, we scaled the VM1
isopycnal displacement amplitude as

@0 o, (17)
c (&)

n

ﬁzcaled (t) —

where ¢™f (0.79 and 0.38 ms~! for VM1 and VM2, respec-
tively) is the root mean square of ¢, (¢).
The vertically integrated available potential energy, kinetic

energy, and energy flux are given by (Shimizu, 2011)

L@, o
Pat) = 350, (18)
Kn(t) = %ﬁﬁﬂ%n(r)ﬁ (18b)
T a(t) = pen(®) i (O T n(0), (18¢)

where p is the constant reference density used in vertical-
mode calculation (1025kgm~3). Since P, is given by
Eq. (18a), the scaled amplitude in Eq. (17) is proportional to
the square root of the available potential energy, rather than
the vertical displacement of isopycnals.

Please note that the scaling in Eq. (17) suppresses seasonal
variability in the following analyses but does not remove the
seasonality in any way. It merely uses the fact that available
potential energy showed less seasonality than isopycnal dis-
placements. Since the product Bniin is a physically mean-
ingful quantity that has to remain the same regardless of the
scaling of vertical modes, the scaling in Eq. (17) makes the
scaled vertical mode (i.e. 344 = ¢~ 1¢™f ) more season-
ally variable. Also, note that the surface expression of inter-
nal tides showed seasonal variability with or without the scal-
ing (Fig. 3b), which might be relevant for satellite altimetry
but is not the focus of this paper.

The scaled isopycnal displacement amplitudes 7541 (z)
are the main variables analysed in this paper. The horizontal

velocity amplitudes U, (¢) are used only for obtaining some
diagnostics and for some discussion.
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Figure 3. Time series of variables related to vertical-mode-one (VM1) internal tides from PIL200 observations. (a) Celerity and low-pass-
filtered (subtidal) background VM1 current speed, (b) maximum and surface values of VM1 structure function, (c¢) scaled isopycnal dis-
placement amplitude and its harmonic component, and (d, e) envelope amplitudes and Greenwich phase lags of diurnal, semidiurnal, and
quarter-diurnal components of nonharmonic internal tides. In (a), the dashed line shows least-squares fit of annual and semi-annual cycles to

celerity.

3.4 Harmonic analysis

The T_TIDE package (Pawlowicz et al., 2002) was used for
the traditional harmonic analysis (Foreman, 1977) to esti-
mate harmonic internal tides. The whole record of 754 (t)
was used to estimate one set of harmonic constants. For con-
sistency, we opted to use the common constituents used in
the previous studies of nonharmonic internal tides (i.e. M»,
S2, Na, K», Ky, Oy, Py, Qy), although the multi-year record
length allowed the determination of more constituents. There
were two exceptions to this. The first exception was that we
included the seasonal cycle of M; and S; constituents (which
are represented by the Hj, H», Ry, and T, constituents in
the T_TIDE package) because a small seasonal cycle re-
mained after the scaling in Eq. (17). The second exception
was that we included My, MS4, and S4 quarter-diurnal tides
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(or shallow-water tides, which are overtides and compound
tides of semidiurnal constituents) because the PIL200 loca-
tion was on the continental shelf and the spectral analysis,
described below, showed clear quarter-diurnal peaks.

3.5 Nonharmonic internal tides

Nonharmonic internal tides were determined by subtract-
ing the harmonic internal tides from 75°¥°d(¢). We analysed
the diurnal, semidiurnal, and quarter-diurnal components.
They were calculated by bandpass-filtering the time series in
the 21-28, 11-15, and 5.8-6.7 h bands, respectively. These
bands were determined by the widths of the corresponding
spectral peaks of nonharmonic internal tides. The envelope
amplitude a’(r) of each component was estimated by first
low-pass-filtering the squared time series and then multiply-
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ing the results by 2, which comes from the mean square of
the sinusoidal “carrier” wave. Then, the phase lag 6'(r) was
found by local least-squares fitting of a sinusoid to the time
series normalized by the envelope amplitude over one period.
(This method appeared to be more robust than the Hilbert
transform.) The phase lag of each component was calculated
as a Greenwich phase lag with respect to the dominant con-
stituent (K|, My, and My for the diurnal, semidiurnal, and
quarter-diurnal components, respectively). The record length
of the PIL200 observations (> 2 years) was considered to be
sufficiently long to analyse the statistics of nonharmonic in-
ternal tides on a continental shelf, although the uncertainties
are relatively large as shown later.

3.6 Spectral analysis and estimation of cusp
parameters

The power spectral densities (PSDs) of the total and nonhar-
monic internal tides were estimated by calculating the peri-
odogram of half-overlapping ~85 d records (2> data points)
of the corresponding time series with the Hamming win-
dow, averaging them, and then converting the results to PSD.
Throughout this study, PSD is defined as one-sided, defined
for 0 < w < 00, to be consistent with harmonic analysis.

For the goodness-of-fit test described below, the equiva-
lent degrees of freedom (e.g. von Storch and Zwiers, 1999,
chap. 17.1) of the nonharmonic internal-tide time series were
required. The most straightforward way to estimate them
was to use e-folding decorrelation times from the shapes of
so-called “cusps” in the estimated PSD, following Colosi
and Munk (2006) and Zaron (2022). These studies fit one
Lorentzian spectrum above a constant background level to a
frequency band containing a cusp; however, two Lorentzian
spectra were used in this paper because a cusp covered mul-
tiple major tidal constituents, and their frequency differences
were not always negligible compared to the cusp width. This
double Lorentzian spectral model is

2
g (a); 031,, T, B, So) = on
27Ty

a-5)

(@ —w)* + T,

x((w w?2+T_2 >+So, (19)
o)+ T,

where oi, is the total variance of envelope amplitude in a
cusp, T, is the e-folding decorrelation time, w; and w; are the
angular frequencies of two tidal constituents, g is the frac-
tion of variance associated with the first constituent, and Sy is
the background spectral level. (There are additional terms for
one-sided spectra, but they are negligible for w;T; > 1 and
w2 Ty, > 1.) For the diurnal, semidiurnal, and quarter-diurnal
bands, the sets of (O, Ki), M3, S»), and (M4, MSy4) con-
stituents were used, respectively.

For cusps with an approximately Lorentzian form, the pa-
rameters oi,, T,, B, and Sy were estimated by least-squares
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fitting as follows. The most straightforward least-squares fit-
ting turned out to be unsatisfactory because the background
level Sy could become unrealistically low or negative. So,
we used a variant of the weighted and tapered least squares
(Wunsch, 2006, chap. 2.4.2), with a cost function similar
to that used in data assimilation (Wunsch, 2006; Bennett,
2002):

L e o TR (v — o(x:
N8 p) R, (¥ —g(x: p))
y

1
N (p— pinit)TR;; (P — Pinit) - (20)
p

Here, the vector y contains the estimated PSD, the vector x
contains @ where the PSDs are estimated, and the vector p
contains the model parameters ai,, Tn_l, B, and Sp. The vec-
tor p;y; is the initial guess of p, and R, and R, are the
error covariance matrices of (y — g(x; p)) and (p — piui0), Te-
spectively. Diagonal R, and R, were assumed. The two
terms were normalized by the number of respective vector
elements Ny and N, so that varying N, for different fre-
quency bands did not change the relative weight of the two
terms. The initial guesses of T; and Sp were obtained by
visual inspection of the estimated PSD. Visual guesses of
Tn” were uncertain, and 1/14, 1/7,and 1/3.5 d~! were used
as rough estimates for the diurnal, semidiurnal, and quarter-
diurnal bands, respectively. The error of Tn_l was assumed
to be 50 %. The errors of the estimated PSD and Sy were
taken from half of the 95 % confidence intervals of the spec-
tral estimate. The initial ai, was taken from the variance
of bandpass-filtered nonharmonic internal-tide time series.
Since this estimate included the background level but crf‘,
does not, the initial guess of the background level was used
for its error estimate. The initial 8 was taken from the vari-
ance ratio of harmonic internal tides in the two constituents,
and the error of 8 was assumed to be 0.25. The minimum of
Eq. (20) was searched for numerically.

3.7 Estimation of model parameters

To compare the statistical model with the PIL200 observa-
tions, we applied the statistical model in Sect. 2 to the diur-
nal, semidiurnal, and quarter-diurnal frequency bands rather
than to each constituent. This is because it was impractical
to separate nonharmonic internal tides into individual con-
stituents. Although this means that the mean components,
(r, p), vary with time due to the existence of multiple con-
stituents, it did not cause any difficulty because harmonic
tides were subtracted before analysing nonharmonic internal
tides.

For the comparisons, the parameters of the PDFs in the
“many source” limit (Eqgs. 9a and 9b) were estimated from
each frequency component of nonharmonic internal tides as
follows. From the envelope amplitude a’(¢) and phase 6’ (z),
we first calculated the Cartesian counterparts, x’(¢) and y’ (),
and then estimated the covariance matrix C in Eq. (6). The
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parameters o4/, b, and goI’, were calculated from the eigenval-
ues and eigenvectors of C. This method appeared to be more
robust than estimating the b parameter from the skewness of
the envelope-amplitude distribution fy4-.

Note that the variance of envelope amplitude Ui, is twice
the variance of the original time series because the sinusoidal
carrier wave was removed to calculate the envelope ampli-
tude a’(¢). Note also that the background level in the PSD
is included in 03‘, estimated in this way but excluded in oﬁ,
estimated by fitting the double Lorentzian model.

3.8 Goodness-of-fit test

The Pearson’s x? goodness-of-fit test was used to quantita-
tively compare the observed PDFs with the distributions in
the many source limit because it is nonparametric and can
be used with estimated parameters. To increase the reliabil-
ity, the envelope amplitudes were binned with variable bin
widths that correspond to equal probability under the stan-
dard Rayleigh distribution. The phases were binned with a
constant bin width. The equivalent sample size (or degrees
of freedom) was calculated by dividing the record length by
twice the e-folding decorrelation time 7, (von Storch and
Zwiers, 1999), estimated by the least-squares fitting of the
double Lorentzian model to cusps in the PSD.

Note that the results of the goodness-of-fit test need to be
interpreted with caution because the statistical model for a
fixed frequency is compared to the observations in the diur-
nal, semidiurnal, and quarter-diurnal frequency bands.

4 Results

4.1 Convergence rate to the generalized Rayleigh
distribution

Figure 4 illustrates that the convergence rate of envelope-
amplitude PDFs to the generalized Rayleigh distribution
at the “many source” limit is faster with increasing phase
spread o; and more even distribution of harmonic phase lags
@;. Considering cases with equal (constant) amplitude and
harmonic phase lag (¢; =0), the N =10 case practically
reaches the limiting distribution for o; = 135°, but N ~ 30
is required for o; = 27° and 9° (Fig. 4a—c). To see the effects
of non-identical phase distribution, non-identical o; and ¢,
are considered separately. If a/.z is distributed linearly, the re-
sults are overall similar to the case with constant o; given by
the root mean of linear 02, although the results are not iden-
tical (not shown). If ¢; is evenly distributed over 72°(e.g.
at intervals of 7.2° for N = 10), the N = 10 case practically
reaches the limiting distribution for o; =9° (Fig. 4d). For
the same o; but with ¢; evenly distributed over 360°, N =3
is sufficient to yield a PDF that is practically the limiting
distribution (not shown). If the amplitudes are uniformly dis-
tributed with equal variance, the N =3 case is reasonably
close to the limiting distribution in all the o; and ¢; cases
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considered above (Fig. 4e-h). Also, the uniform amplitude
distribution reduces the b parameter or makes the PDFs on
the x'—y’ plane more circular (see text in the panels). This
shows that the amplitude variation tends to make the result-
ing PDF smoother and convergence to the limiting distribu-
tion faster, as expected in Sect. 2.2. Overall, the convergence
rate is relatively fast.

The results here suggest that, unless observed internal
tides are dominantly generated at a few generation sites, non-
harmonic internal tides are likely to have PDFs close to the
limiting distributions in Eqs. (9a) and (9b) for the following
three reasons: (i) it is unlikely that harmonic phase lags ¢;
are close to each other because they depend, for example, on
the distance and propagation speed between the sources and
the observation location, (ii) relatively small phase spread is
sufficient to approach the limiting distributions, and (iii) am-
plitude variability tends to increase the rate of convergence to
the limiting distributions. If this is the case, the universality
of the total PDFs would provide a convenient basis for ob-
servational data analysis and numerical modelling; however,
it would also make the analysis of the underlying processes
difficult because the total variance does not distinguish the
separate contributions of individual wave components, and
the total PDF (and the associated higher-order statistics) does
not depend on the details of individual waves.

4.2 Observed time series, spectra, and energetics

The time series of harmonic and nonharmonic internal tides
are shown in Fig. 3c—e. The VM1 isopycnal displacement
amplitude ﬁﬁcaled (1) shows that the contributions of harmonic
and nonharmonic internal tides are comparable at the PIL200
location (Fig. 3c). The harmonic internal tides show the
spring—neap tidal cycle, but it is not clear in the nonharmonic
counterpart. The envelope amplitudes of nonharmonic inter-
nal tides in the diurnal, semidiurnal, and quarter-diurnal fre-
quency bands vary a lot without a stable mean, and the phases
appear to be random (Fig. 3d and e). These features are
consistent with the PDFs at the many source limit (Egs. 9a
and 9b) with a small b parameter. The results for the higher
modes are similar, except that amplitudes decrease as the
mode number increases, and the harmonic internal tides are
substantially smaller than the nonharmonic counterpart (not
shown).

Since the PIL200 location is on the continental shelf, there
is a possibility that the local topographic excitation of higher
modes by the barotropic mode or VM1 may lead to a sim-
ilar behaviour of different modes. The visual inspection of
the time series indeed showed intermittent periods when
ﬁffaled(t) values for different modes were highly correlated.
To check the influence of such correlation on nonharmonic
internal-tide variance (the most important statistics consid-
ered in this study), the squared correlation coefficient ma-
trix of the four modes of nonharmonic internal tides was cal-
culated in the three frequency bands. The result shows that
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the off-diagonal components were mostly less than 5 %, ex-
cept between semidiurnal VM2 and VM3 (20 %), semidi-
urnal VM2 and VM4 (10 %), semidiurnal VM3 and VM4
(21 %), and quarter-diurnal VM3 and VM4 (8 %). Therefore,
the influence of the correlation is considered to be small over-
all, and the four modes are analysed separately in the follow-
ing analyses.

The power spectral densities of the total and nonharmonic
internal tides are shown in Fig. 5. The VM1 spectrum shows
clear peaks at the diurnal, semidiurnal, and quarter-diurnal
frequencies (Fig. 5a). The semidiurnal peak is tallest with
M, being the dominant constituent. Since the PIL200 loca-
tion is on the continental shelf, the quarter-diurnal (shallow
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water) internal tide is stronger than the diurnal internal tide.
The subtraction of the harmonic tides reduces the heights of
the peaks at the M», S, K1, and O frequencies but otherwise
makes relatively small changes to the spectrum (compare red
and black lines in Fig. 5a). The spectra of the higher-mode
nonharmonic internal tides show clear peaks at the semidiur-
nal and quarter-diurnal frequencies, but the diurnal frequency
band shows either an unclear peak or no peak (Fig. 5b—d).
The spectra show the so-called “cusp” structure around
the peaks. The bandpass filters used to separate the diurnal,
semidiurnal, and quarter-diurnal components were chosen
based on the widths of the corresponding cusps (green shad-
ing in Fig. 5). The spectral resolution is not high enough to
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levels, respectively, from least-squares fitting.

resolve cusps around individual tidal constituents; however,
it would be difficult to separate individual cusps in any case
because the cusps are broader than the frequency differences
among different constituents in the same frequency band.
This provides the justification to use the diurnal, semidiur-
nal, and quarter-diurnal components in our analyses. The pa-
rameters associated with the cusps are shown in Table 1, and
the results of least-squares fitting are shown in Fig. 5. The
e-folding decorrelation times are 10, 6-10, and 3-4d for
the diurnal, semidiurnal, and quarter-diurnal band, respec-
tively. These numbers are substantially smaller than those
from satellite altimetry in the deep ocean (Zaron, 2022), but
the causes are beyond the scope of this study. The decorre-
lation times were used to calculate the equivalent degrees of
freedom of the nonharmonic internal-tide time series.

The energetics in Table 2 show the following results. The
nonharmonic-to-harmonic variance (or potential energy) ra-
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Table 1. Parameters estimated by least-squares fitting of the dou-
ble Lorentzian model (Eq. 19) to cusps in power spectral density
(Fig. 5). The background level Sy in Eq. (19) is integrated over each
frequency band so that the numbers can be directly compared to po-
tential energies in Table 2. Abbreviations are as follows. VM: verti-
cal mode, D: diurnal, SD: semidiurnal, and QD: quarter-diurnal.

Decorrelation time Background level

Ty (d) (Jm~2)
D SD QD D SD QD
VM1 10 10 4 5 6 4
VM2 — 7 3 — 10 5
VM3 - 6 3 - 4 2
VM4 - 6 3 - 2 1
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tio is about 1.1-1.2 for the VM1 diurnal and semidiurnal
components (Table 2). The VM1 quarter-diurnal compo-
nent is stronger than the diurnal component and dominantly
nonharmonic. This is partly expected because the nonlin-
ear interaction of harmonic—nonharmonic or nonharmonic—
nonharmonic semidiurnal internal tides can generate a non-
harmonic quarter-diurnal internal tide without the modula-
tion processes. The VM2 semidiurnal internal tide has a
nonharmonic-to-harmonic variance ratio of 6, and the topo-
graphic conversion of a nonharmonic VM1 semidiurnal in-
ternal tide would contribute to this large ratio. (These addi-
tional generation mechanisms are one of the major reasons
why the terms “incoherent” or ‘“non-phase-locked” tides are
not used in this study.) Although the background variability
seen in the PSD (Fig. 5) is included in these statistics, the
comparisons of the background levels in Table 1 and the po-
tential energies in Table 2 show that the errors are relatively
small. The energy fluxes of nonharmonic VM1 and VM2 in-
ternal tides show propagation towards ESE-SE. The ratio of
the total energy and energy flux suggests that roughly half
of the energy is associated with directional waves for VM1
and VM2. Note that the uncertainties of the above mean val-
ues are relatively large for nonharmonic internal tides (about
+20 %-30 % for 95 % confidence intervals after more than
2 years of observations) because of the highly variable na-
ture of nonharmonic internal tides.

4.3 Comparisons of observed and model probability
density functions

The PDFs of the envelope amplitudes and phases of nonhar-
monic internal tides were calculated from the corresponding
time series (Fig. 3d and e for VM1).

The comparisons of the observed and (fitted) model PDFs
show that the limiting distributions (Eqgs. 9a and 9b) pro-
vide a reasonable description of the amplitude and phase
PDFs of the individual components of nonharmonic internal
tides (Figs. 6 and 7). The estimated parameters are shown in
the figure panels. Although the amplitude PDFs show some
skewness, the phase PDFs suggest that the b parameter is
small. The observed and model phase PDFs may appear to
disagree in some cases because the observed phase PDFs
were calculated as the marginal PDFs without amplitude
weighting, but the model parameters were estimated based
on the covariance matrix (Eq. 6), which takes amplitudes into
account. However, the phase is roughly uniformly distributed
(small b parameters) despite this difference. For more quanti-
tative comparisons of the PDFs, the Pearson’s x 2 goodness-
of-fit test shows that the observed distributions are not dif-
ferent from the limiting distributions at the 5 % significance
level in all the cases in which the decorrelation time could be
estimated from the cusp shapes (Figs. 6 and 7). These results
show the applicability of the proposed statistical model to
nonharmonic internal tides in the many source limit, at least
for the available record length. Although the applicability is
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shown only at one location in this study, the convergence rate
of the PDFs, shown in the previous section, suggests that the
proposed statistical model has wide applicability to nonhar-
monic internal tides, regardless of the details of underlying
physical processes. The applicability to different frequency
bands and different modes, which are likely to have differ-
ent generation processes, supports this speculation. (The six
cases in Figs. 6 and 7 are shown to demonstrate this point,
although the results look rather similar.)

5 Discussion

The major novel contributions of this paper are deriving the
PDFs of nonharmonic internal tides, observationally show-
ing their applicability, and demonstrating the importance of
viewing nonharmonic internal tides as the superposition of
many random waves. These contributions were made by de-
veloping a statistical model of nonharmonic or incoherent
internal tides observed at a fixed location from similar mod-
els developed in other fields of physics and engineering (e.g.
Barakat, 1974, 1988; Abdi et al., 2000) and by comparing the
results with the PIL200 observations. An important aspect
of the statistical model is allowing non-uniform and non-
identical probability distributions for individual wave com-
ponents, which enables application to spatially distributed
sources and increasing phase randomness with distance from
the observation location.

Once the above view is adopted, some of the results of this
paper might appear trivial because it follows from the central
limit theorem in statistics; however, the above view was not
adopted in the previous studies of nonharmonic internal tides
in a quantitative manner. A demonstration of this is the fol-
lowing simple model for internal tides, used by Colosi and
Munk (2006), Zaron (2015), Geoffroy and Nycander (2022),
and Kachelein et al. (2024):

A1 = (r + A')el @01 =©). Q1)

Here, the subscript 0 is added to @ to emphasize that it is the
fixed angular frequency of a harmonic tide, r is the ampli-
tude of the harmonic internal tide, and A’ and © are random
amplitude and phase, respectively, which are assumed to be
Gaussian. (Although 7 is hereafter a random variable, it is
written in lowercase.) This model essentially assumes a sin-
gle sinusoidal wave whose amplitude and phase are modu-
lated by random processes, as the proposed statistical model
assumes for individual wave components. However, when a
nonharmonic internal tide results from the superposition of
many random waves, the PDF becomes joint Gaussian in
Cartesian coordinates (see Fig. 8a or grey dots in Fig. 1 for
samples from the PIL200 observations), which can be quite
different from the PDF associated with the above model (i.e.
A’ and @ are joint Gaussian in polar coordinates). The dif-
ference could be relatively minor when Var(A’) and Var(®)
are small (Fig. 8b) but substantial when Var(®) is not small
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Table 2. Vertically integrated energies (in J m_2) and energy fluxes (in W m~ 1) of vertical-mode-one (VM1) and mode-two (VM2) internal
tides in three frequency bands. The harmonic (H) components and mean (M) and standard deviation (SD) of nonharmonic (NH) components
are calculated from harmonic analysis and bandpass-filtered time series, respectively.

Diurnal Semidiurnal Quarter-diurnal
H NH H NH H NH
M SD M SD M SD
VM1
Potential energyb 27 30 41 314 366 604 1 80 124
Kinetic energy 3 43 54 178 297 415 2 50 68
Eastward energy flux 1 17 48 178 238 496 1 52 92
Northward energy flux 3 =5 41 —132  —-203 546 0 =57 105
VM2¢
Potential enelrgyd 16 30 47 25 148 221 0 28 43
Kinetic energy 3 30 38 27 8 121 1 21 30
Eastward energy flux 0 8§ 20 7 49 99 0 10 20
Northward energy flux 3 -3 19 =5 -33 79 0 -10 20

4 To calculate standard error, divide SD for diurnal, semidiurnal, and quarter-diurnal components by 8.7, 8.5, and 14,
respectively. b Multiply by 0.12 to convert to variance of maximum isopycnal displacement within the water column and by
8.6 x 1078 1o that of surface displacement (neglecting seasonal cycle) (m2). © To calculate standard error, divide SD of
semidiurnal and quarter-diurnal components by 11 and 16, respectively. d Multiply by 0.16 to convert to variance of extreme
(minimum or maximum) isopycnal displacement within the water column (neglecting seasonal cycle) (mz).
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Figure 6. Comparisons of envelope-amplitude and phase probability density functions from the statistical model and PIL200 observations
for nonharmonic vertical-mode-one internal tides. (a—c) Envelope amplitude, (d—f) phase lag. Upper, middle, and bottom rows show diurnal,
semidiurnal, and quarter-diurnal components, respectively. Solid lines show distributions in the “many source” limit, with estimated model
parameters shown in each panel.
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Figure 7. Comparisons of envelope-amplitude and phase probability density functions from the statistical model and PIL200 observations
for semidiurnal frequency band. (a—c) Envelope amplitude, (d—f) phase lag. Upper, middle, and bottom rows: vertical mode two (VM?2),
mode three (VM3), and mode four (VM4), respectively. Solid lines show distributions in the “many source” limit, with estimated model

parameters shown in each panel.

(Fig. 8c). In particular, the above model has two awkward
features when the peak of the PDF is located within a few
standard deviations of the origin. First, the phase of a non-
harmonic internal tide can be almost uniformly distributed as
seen in the right column of Figs. 6 and 7; however, the above
model becomes awkward when Var(®) is larger than about
1 because the “wrapping” of phase is not included when the
phase spread is beyond the full period 2. Second, when the
PDF is seen in Cartesian coordinates, the PDF has a peak
near the origin because the radial Gaussian distribution must
be divided by the radius upon conversion to Cartesian coor-
dinates to impose Eq. (5). The peak near the origin becomes
wider as Var(A’) increases. Since such a peak is unrealistic
for a nonharmonic internal tide, Var(A’) effectively has a rel-
atively small upper limit of roughly O.1r. Figure 8c shows
the PDF as broad as possible under these constraints. It is
worth noting that Var(A") and Var(®) estimated from obser-
vations in the previous studies (Colosi and Munk, 2006; Ge-
offroy and Nycander, 2022) are almost at these upper limits,
and the observed distributions in Fig. 11 of Colosi and Munk
(2006) appear closer to Fig. 8a than Fig. 8c.

The results of this paper suggest that the many source limit
is common in nonharmonic internal tides, and hence it is im-
portant to construct an alternative simple model that is ap-
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plicable to the joint Gaussian distribution in Cartesian coor-
dinates. This can be done easily. Since the complex ampli-
tude X' 4 Y’ has the joint Gaussian distribution, it appears
most convenient to rotate the coordinates so that the resul-
tant amplitudes X}, and Y}, are uncorrelated. Then, the most
straightforward simple model is

i =re @) 4 (Xp+iYp) el (0 =¢h) (22)
where ¢}, is the angle of the rotated xp, axis on the complex
plane. This model is convenient because X}, and Y}, are inde-
pendent Gaussian variables with zero mean, and it can deal
with uniform phase distribution within the Gaussian assump-
tion. Considering the real part of the above expression, the
auto-covariance function is

Cy(1) = % {r2 + (cXi)(r) + Cyi)(r)) } oS, (23)

where 7 is the time lag, and C X}, and CYi) are the auto-

covariance functions of Xp and Y}, respectively. Follow-
ing the previous studies (Colosi and Munk, 2006; Geoffroy

and Nycander, 2022), we assume C X} (r) = U)Z(Pe_m/ Tr and

Cyi) ()= ogpe_”'/T'i, where T, is the e-folding decorrela-
tion time. Then, the Fourier transform of C), and appropriate
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Figure 8. Comparison of probability density functions (PDFs) under simple (or “toy”) models. (a) PDF under Eq. (22), (b) PDF under
Eq. (21) with relatively small Var(A’) and Var(®), and (c) that under relatively large Var(A’) and Var(®). The parameters used are shown in

each panel.

scaling yield the (one-sided) power spectral density:

5,0) = 1128 (0 — wp) + &
n w —2r w [O) ijTn
1 1
« S —). 24)
(w—wy)*+ T, (w+wy)"+ T,

where Eq. (9¢) is used. The last term is often omitted assum-
ing woT; > 1 but is mathematically required for one-sided
spectra (i.e. only positive w is considered). As seen in these
expressions, Eq. (22) leads to a much simpler formula of
power spectral density than Eq. (21) (see the derivation in
Colosi and Munk, 2006).

Some readers may think that simple models such as
Egs. (21) and (22) are merely a toy model; however, the
details can be important because Eq. (21) has been used
for the quantitative estimation of parameters associated with
nonharmonic internal tides. For example, Geoffroy and Ny-
cander (2022) used the auto-covariance function of Eq. (21)
to estimate the variance of nonharmonic internal tides from
global Argo data. Another example is the estimates of
the decorrelation time 7}, from satellite altimetry by Zaron
(2015, 2022). Zaron (2022) fitted the Lorentzian spectrum
in Eq. (24) to the power spectrum of the sea level anomaly,
although he assumed a Gaussian phase variation that does
not yield the Lorentzian spectrum in general (see Colosi and
Munk, 2006). If the observed nonharmonic internal tides are
approximately in the many source limit, the proposed sim-
ple model and Eq. (24) would provide justification for his
choice. These parameters provide important bases for distin-
guishing quasi-geostrophic (or “balanced”) currents and in-
ternal tides in wide-swath altimeter data, such as those from
the Surface Water and Ocean Topography (SWOT) mission
(Morrow et al., 2019).

Note that the proposed statistical model is also applicable
to a small number of wave sources (see Appendix A), al-
though this paper focused on the many source limit. It would
be interesting to make comparisons in regions affected by a
few strong sources in the future, such as around Hawaii and
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the French Polynesian Islands (e.g. Zaron and Egbert, 2014;
Buijsman et al., 2017).

Since a PDF is basic information that characterize a
stochastic process, the PDFs proposed in this study can be
used for many purposes in the future. For example, for sur-
face waves, the PDF of wave amplitude is used for many
engineering applications (e.g. Horikawa, 1978). Similarly,
the proposed PDF can be used to assess the risk of infre-
quent strong waves for offshore operations. Another example
would be the occurrence of nonlinear internal bores and soli-
tary waves, which develop from internal tides. On the shal-
low continental shelf off California where these nonlinear
waves occur regularly, Colosi et al. (2018) reported that the
energy flux of internal bores and solitary waves follows the
exponential distribution. If the proposed envelope-amplitude
PDF is applicable to a deeper location before these nonlinear
waves develop, it would allow us to investigate the statistical
relationship between these nonlinear waves and the underly-
ing internal tides.

If the many source limit is common for nonharmonic in-
ternal tides as suggested in this paper, one of the most im-
portant problems would be to understand what controls the
variance of nonharmonic internal tides because the covari-
ance matrix in Eq. (6) determines the PDF (and the associ-
ated higher-order statistics). Although the proposed statisti-
cal model includes some parameters pertaining to this point,
such as the strengths of the sources and the phase spread, the
comparisons with the PIL200 observations unfortunately did
not provide such information. This is actually expected for
any cases in which the observed PDF is close to the limiting
distribution because the total variance does not distinguish
the separate contributions of individual wave components,
and the PDF does not depend on the details of the individ-
ual waves or the underlying physical processes. For exam-
ple, the phase of observed nonharmonic internal tides can be
nearly uniformly distributed when the phases of individual
wave components vary less than 5 % (of the total 2;7), and the
observed amplitude tends to show large variability when the
amplitudes of individual components do not vary at all. More
broadly, this situation appears to be common for a system
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with large degrees of freedom, as statistical mechanics show
that statistical principles make a macroscopic quantity not
necessarily sensitive to the details of microscopic processes
(e.g. Reif, 1965). For process-based understanding, Part 2 of
this study (Shimizu, 2025) combines the proposed statisti-
cal model with adjoint and stochastic models, which provide
spatially distributed source strengths and phase spread, re-
spectively. Then, the model suite enables us to investigate
important processes and parameters controlling nonharmonic
internal-tide variance.

6 Conclusions

This paper developed a statistical model of nonharmonic or
incoherent internal tides and compared the model probabil-
ity density functions (PDFs) with the observed PDFs at the
PIL200 location on the Australian North West Shelf. To my
knowledge, this is the first study that focused on the statisti-
cal aspects of nonharmonic internal tides and considered the
importance of viewing nonharmonic internal tides as the su-
perposition of many random waves. The major new findings
of this paper are as follows.

— The PDF of complex-valued nonharmonic internal-tide
amplitude approaches the joint Gaussian distribution
on the complex plane as the number of independent
wave sources increases. The corresponding envelope-
amplitude PDF is a generalization of the Rayleigh dis-
tribution.

— Under conditions that are likely for nonharmonic inter-
nal tides, the convergence to the “many source” limit is
relatively fast. It requires about 10 independent sources
in most situations and as few as three in favourable situ-
ations. This implies that nonharmonic internal tides tend
to have universal PDFs.

— The observed PDFs were not different from the lim-
iting distributions for nonharmonic vertical-mode-one
to mode-four internal tides in the diurnal, semidiurnal,
and quarter-diurnal frequency bands at the 5 % signif-
icance level, provided that the power spectra show the
corresponding tidal peaks clearly. This observationally
shows the applicability of the proposed PDFs in the
many source limit.

— The convergence to the universal PDFs unfortunately
makes process investigation based on observations more
difficult because the total variance does not distinguish
the separate contributions of individual wave sources,
and the PDFs become insensitive to the details of indi-
vidual waves or the underlying physical processes.

Also, the statistical model was used to revise the common
simple (or “toy”’) model of internal tides that has been used
for observational data analysis so that it is applicable to the
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many source limit. Since the last point above makes process
investigation difficult, Part 2 of this study (Shimizu, 2025)
develops a new modelling framework and model suite to
investigate important processes and parameters controlling
nonharmonic internal-tide variance based on the proposed
statistical model.

Appendix A: Calculation of probability density function
for an arbitrary number of wave sources

This Appendix describes the general version of the statistical
model in Sect. 2.1 applicable to arbitrary N. The standard
approach in statistics to derive the PDF of a sum of random
variables consists of (i) considering the joint probability den-
sity function (PDF) of individual components, (ii) calculat-
ing the characteristic function (i.e. the Fourier transform of
the PDF) of each component, (iii) taking the product of the
characteristic functions, and (iv) calculating the total PDF as
the inverse Fourier transform of the total characteristic func-
tion. Because there are some pitfalls to deal with PDFs in
polar coordinates, such as Eq. (5), the derivation below starts
from the expression in Cartesian coordinates, although the
results are written in polar coordinates. Please refer to Ap-
pendix B for a brief summary of the coordinate transforma-
tion and Fourier and Hankel transform pairs in Cartesian and
polar coordinates used in this paper.

The derivation of PDFs proceeds as follows. To calcu-
late the characteristic function ¢;, we consider the PDF
of (X ;., YJ/.), define ¢; as the two-dimensional (2D) Fourier
transform of fX/j_ Y and then convert the expression to its
polar counterpart (A;, ®;). The characteristic function in
Cartesian coordinates is

o0 00

of (K)me) = / / fX’,.Y;. (x}! y;) ei(/cxx}+xyy;)dx}dy}

—00 —00

[o o2Ne o)
=t / / Ixjv; (xjayj)ei(Kxxi+K)'y’)dxjdij (Ala)
—00 —00

Aj=kxXj+KyYj, (A1b)

where (fj,ij) = (B(x;),E(y))), (kx, ky) is the “wavenum-
ber” vector used in Fourier transform, A ; is the phase shift
originating from the subtraction of the mean in Eq. (2),
and fx;y;(x}, Y= fx’,.Y;(xj_)_st Yi—¥j) = fx;v;(xj,yj)
is used. The conversion to polar coordinates is done us-
ing Eq. (1) and (xy, ky) = k(cosA,sin)A). Then, Egs. (Ala)
and (A1b) become

¢j(/€s)\):eiiA"‘//fAj@i (aj,Qj)eikafcos()‘Jref)dajd@j, (A2a)
-7 0
Aj=krjcos(A+gj). (A2b)

Although the PDF including the mean (f4;e;) appears in this
equation, the characteristic function is defined for deviation
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from the mean, as in the original expression in Eqs. (Ala)
and (A1b) because of the phase shift operator ¢~'2i. The
total characteristic function is given by

N
=[]¢) (A3)
j=l

The total PDF is given by the inverse Fourier transform of ¢.
We consider the inverse 2D Fourier transform in Cartesian
coordinates first and then transform the coordinates to po-
lar coordinates. The expression in Cartesian coordinates is
given by Eq. (B1b) but with fxy and (x, y) replaced by fx/y
and (x’, y’), respectively. The corresponding expression in
polar coordinates is

T o0

farer(a,0) = & )2 / / ¢ (e, Wye a0 e died),

-7 0

= iﬂ 3 (—i)"e*"w/¢(’<>(K)Jk(m)xdx, (A4)
k=—00 0

where Ji is the Bessel function of the first kind of the or-
der k, and the factor a is multiplied to impose Eq. (5) upon
conversion to polar coordinates. The second expression is ob-
tained using the azimuthal Fourier series in Eq. (B4a) (with
#® being the Fourier coefficients) and the properties of the
Bessel function (Abramowitz and Stegun, 1972, Egs. 9.1.5,
21, and 35 or DLMF, 2025, Eqgs. 10.4.1,10.9.2, and 10.11.1).
Note that this total PDF is for the deviation from the mean
as in Eq. (3), although the PDFs of each component f4;e;
in Eq. (A2a) include the mean. The radial (or envelope-
amplitude) PDF is given by the marginal probability:

fA’(a)=/fA’@’(a,9)d9

=a / »© (1) Jo(ka)kd. (A5)

If A; has an upper limit «;, the computational load of the
Hankel transform in Eq. (A4) and the subsequent moments
can be reduced (Bennett, 1948; Barakat, 1974, 1988). This is
because A’ has the maximum value (see Fig. 1):

N
R=Z|aj+rj|. (A6)

Since the PDF is zero for a > R, the Hankel transform in
Eq. (A4) can be replaced by the Fourier—Bessel series of the
form

o0 oo .
a —ik6 Jk,1d
fwo@d =g % 2 ¢ Zak,sz< - ) (A7)

—00 =1
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where ji; is the Ith root of Ji, and «j; represents the
amplitudes of individual components (to be determined).
The Fourier—Bessel series is a generalized Fourier series
using Bessel functions as the basis functions (instead of
trigonometric functions). It often appears as a part of two-
dimensional Fourier transform in polar coordinates. Assum-
ing azimuthal Fourier series,

Z £ @e ™, (A8)

k*—oo

fae(a,0)=

the amplitudes «y; are obtained using the orthogonality of
the Bessel function over a fixed interval (Abramowitz and
Stegun, 1972, Eq. 11.4.5 or DLMF, 2025, Eq. 10.22.37):

R

/aJk <]kl§) Jk (]ka)da— R72h<+1(1k z) S1,m, (A9)
0

where §; ,, is the Kronecker delta. The resultant amplitudes
are

k| = —/f (@) Jk (]kl—)d
RJk+1 Jit) A R

However, since f ,)(a) is zero for a > R, the integral can

be related to ¢* through the Hankel transform of ff‘l,‘) (a)
(compare the above integral with Eq. B6 in Appendix B). So,
oy ; can be written as

2 Jk,l
. ¢(k) (_> .
k+1 (Jk,l) R

(A10)

apg = (=) (A1)

RJ}?
Substituting this into Eq. (A7) yields the Fourier—Bessel ver-
sion of Eq. (A4). The advantage of the Fourier—Bessel solu-
tion is that, unlike Eq. (A4), Eq. (A7) requires the evaluation
of © only at discrete points. Then, the mean square ampli-
tude is given by

E (A/Z) /a fa(@)da _4RZZ

5 1]0,11(101)

X (Jo (Jou) + <% - j%l) Ji (Joz)) © (JOI) . (A12)

The components of the covariance matrix Eq. (6) are given
by

1
0% = E (A’Z) — Re(B), (A13a)
1
= JE (A’2> + Re(B), (A13b)
1
PXy = Elm(B), (A13c¢)
= 1 J2.l
B=R> —— $® (-) . (A13d)
; j2.193 (ja.1) R

To calculate the PDF and covariance under the wrapped
normal phase distribution in Eq. (12), the characteristic func-
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tion of each component is needed. It is given by substituting
Egs. (11) and (12) into Eq. (A2a) and evaluating the integral.
The result is

o0
A & —kP02)2 .
ik, 2) =e" 1% Y ike Koj 2tk (3+9))

k=—00
x /fAj (aj) Ji (kaj)daj, (A14)
0

where Aj; is defined in Eq. (A2b). This is substituted into
Eq. (A3) to calculate PDFs and moments.

Using the above theory, the PDFs in Fig. 4 were calcu-
lated as follows. The azimuthal Fourier coefficients ¢*) in
Egs. (A12) and (A13d) for k = 0, 2 and radial integration in
Eq. (A14) were calculated numerically. The PDFs and co-
variance matrices were calculated in the Fourier—Bessel se-
ries using Eqs. (A7)-(A13a—A13d). It is worth noting that,
for large N, the majority of f4/@ values tend to be lo-
cated in a much smaller area near the origin compared to
the whole non-zero area. For example, the PDF of the gen-
eralized Rayleigh distribution becomes small for a > 304/.
In such cases, fa/@ excluding the tail can be evaluated with
reduced R from Eq. (A6), which can provide substantial re-
duction of the computational cost with a relatively small loss
of accuracy. In this paper, R = 404 is used for computational
efficiency.

It is also worth noting that the convergence of the Fourier—
Bessel series solution was slow when the PDF contained sin-
gularities, peaks, or edges. With the above choice of R, about
10 terms of the Fourier—Bessel series were sufficient when
the resulting PDF was close to the standard Rayleigh dis-
tribution; however, more than 1000 terms could be required
when the resulting PDF had sharp peaks or edges or the b pa-
rameter in Egs. (9a) and (9b) was small. The Fourier—Bessel
series was extremely inefficient when the resulting PDF had
singular points or the b parameter was very close to 1. For-
tunately, these difficulties appear to occur only for small N
or almost the same ¢;. For example, for constant A; and
uniformly distributed phase, singularity occurs up to N =4
(Simon, 1985). In this paper, we used 1000 and 100 terms
for constant and uniform amplitude cases, respectively. Cases
with singularities are not considered.

Appendix B: Fourier and Hankel transform pairs in
Cartesian and polar coordinates

This Appendix briefly summarizes the coordinate transfor-
mation and the definition of Fourier and Hankel transform
pairs in Cartesian and polar coordinates used in this paper.
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The two-dimensional Fourier transform pair in Cartesian
coordinates is defined as

oo o0

¢(Kx”‘y)=f /fXY(X,y)ei(’(*x+’(y>’)dxdy,

—00 =00

(Bla)

1T .
fxy(x,y)=w/ /¢(Kx,Ky)e”("*”"yy)dxxdxy, (B1b)

—00 —00

where fxyy is a PDF in Cartesian coordinates, ¢ is its Fourier
transform (i.e. characteristic function), and (ky, ky) is the
“wavenumber” vector used in Fourier transform. The signs of
the exponents follow the statistical convention, which are dif-
ferent from the common definition (e.g. in physics and engi-
neering). The coordinate transformation to polar coordinates
is done using

(B2a)
(B2b)

(x,y) = a(cosf, —sinb),

Kx,Ky) =k (COSA,sinl).
(kxkey)

Note that 0 is positive clockwise on the (x, y) plane to make
6 the phase lag used in the traditional harmonic analysis, but
A is the standard angle (positive counter-clockwise). Then,
the Fourier transform pair in polar coordinates is

T o0

B, L) = / / fae(a,0)e 50+ Hqgdp, (B3a)
—7 0
fro@.0) = —— / / ¢ (k, Me~wacosOFM e qiedn,  (B3b)
(2m)?

)

where fse is the PDF in polar coordinates corresponding
to fxy. Note that fyy(x,y) =a~! fae(a,0) is used to im-
pose Eq. (5). Note also that, unlike the PDF, we do not
distinguish ¢ in Cartesian and polar coordinates, and the
“wavenumber” vector follows the standard rule of coordinate
transformation. To evaluate these transforms, it is convenient
to introduce the following azimuthal Fourier series:

o0

¢, )= Y o0, (B4a)
k=—00
J—— y
fA@(a,e)zgk;mf/ik)(a)e o, (B4b)

Although they are both Fourier series, they are defined as
a pair because they are part of the Fourier—Hankel trans-
form pair of a two-dimensional function. Using these az-
imuthal Fourier series and the so-called Jacobi—Anger ex-
pansion (Abramowitz and Stegun, 1972, Eqs. 9.1.44 and 45
or DLMF, 2025, Egs. 10.12.2 and 3),

o0

eiacos@ — Z l.k.]k(a)eike, (BS)

k=—00
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in Egs. (B3a) and (B3b), we get the Hankel transform pair:

p® (1) = i¥ f @) sy (ka)da, (B6a)
0
F@) = (=ka / ¢® () Ji (ka)kdc, (B6b)
0

To see the standard relationships without the statisti-
cal requirement in Eq. (5), substitute fyy = a_lfA@ =f,
a_lff(‘ ) =f®, ¢p=F, and p® = F®  where F is the
Fourier transform of an arbitrary two-dimensional func-
tion f.

Data availability. The PIL200 data are publicly available from
https://thredds.aodn.org.au/thredds/catalog/IMOS/ANMN/QLD/
PIL200/catalog.htm] (Australian Institute of Marine Science,
2021). The processed version of the observational data is available
from Shimizu (2024) (https://doi.org/10.5281/zenodo.13999868).
The statistical modelling was conducted semi-analytically using
the equations presented in this paper.
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