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Abstract. Developing predictions of coastal flooding risk on
subseasonal timescales (2–6 weeks in advance) is an emerg-
ing priority for the National Oceanic and Atmospheric Ad-
ministration (NOAA). In this study, we assess the ability of
two current operational forecast systems, the European Cen-
tre for Medium-Range Weather Forecasts Integrated Fore-
casting System (IFS) and the Centre National de Recherches
Météorologiques climate model (CNRM), to make subsea-
sonal ensemble predictions of the non-tidal residual compo-
nent of coastal water levels at United States coastal gauge
stations for the period 2000–2019. These models were cho-
sen because they assimilate satellite altimetry at forecast ini-
tialization and attempt to predict the mean sea level, includ-
ing a global mean component whose absence in other fore-
cast systems complicates assessment of tide gauge reforecast
skill. Both forecast systems have skill that exceeds damped
persistence for forecast leads through 2–3 weeks, with IFS
skill exceeding damped persistence for leads up to 6 weeks.
Post-processing forecasts to include the inverse barometer
effect, derived from mean sea level pressure forecasts, im-
proves skill for relatively short forecast leads (1–3 weeks).
Accounting for vertical land motion of each gauge primar-
ily improves skill for longer leads (3–6 weeks), especially
for the Alaskan and Gulf coasts; sea-level trends contribute
to reforecast skill for both model and persistence forecasts,
primarily for the East and Gulf coasts. Overall, we find that
current forecast systems have sufficiently high levels of de-
terministic and probabilistic skill to be used in support of op-
erational coastal flood guidance on subseasonal timescales.

1 Introduction

Over the past several decades, nearly all United States coastal
regions have experienced a steady increase in the frequency,
extent, and duration of high tide flooding, particularly the
East and Gulf coast regions (Sweet et al., 2018, 2022). The
increased flooding frequency is associated with risks to tril-
lions of dollars of property and infrastructure, as well as
risks to coastal ecosystems (Fleming et al., 2018 and ref-
erences therein). As a result, there is an emerging need to
provide high tide flooding outlooks on subseasonal-to-annual
timescales (Dusek et al., 2022; NOAA Coastal Inundation
Framework, 2022).

High tide flooding (HTF) can be defined in terms of water
levels exceeding gauge station water level thresholds, where
the thresholds are typically determined based on local con-
ditions, including topography, land-cover types, and risk to
infrastructure (Sweet et al., 2018; Kavanaugh et al., 2023).
The water levels, in turn, can be considered the sum of a
tidal component, a sea-level trend component, and a non-
tidal residual (Dusek et al., 2022; see also Widlansky et
al., 2017). For the West Coast and parts of the East Coast,
the tidal component dominates water level in terms of am-
plitude relative to the non-tidal residual, either because the
tidal range is large or because the non-tidal residual is small,
while in other regions, including the Gulf Coast, the non-tidal
residual is comparable to the tidal component (Merrifield et
al., 2013; Sweet et al., 2014). Still, predicting non-tidal resid-
uals is important for all coastal regions because, as sea lev-
els continue to rise, even small-amplitude non-tidal residual
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anomalies can push high tide water levels past flood thresh-
olds (e.g., Sweet and Park, 2014).

Currently, NOAA’s National Ocean Service issues a
monthly HTF outlook for a wide range of stakeholders
(NOAA Coastal Inundation Framework, 2022; Dusek et al.,
2022) by using damped persistence of current gauge sta-
tion monthly non-tidal residual anomalies as part of its pre-
dicted total water levels. If current operational models could
in fact skillfully predict coastal sea level anomalies on sub-
seasonal timescales, specifically by outperforming damped
persistence, then incorporating those predictions in the HTF
outlook could improve upon its forecast guidance. The non-
tidal residual is driven by a multitude of processes operating
on timescales ranging from minutes to decades (Sweet et al.,
2018; Woodworth et al., 2019; and references therein). Many
of these processes, including daily timescale wind forcing
and storm surge, are largely governed by individual weather
systems, which are generally not predictable beyond 10–
14 d (Lorenz, 1963, 1969; Weber and Mass, 2017; Bauer
et al., 2015; Simmons and Hollingsworth, 2002; Zhang et
al., 2019). However, sea level anomalies are also correlated
with several modes of large-scale climate variability, in-
cluding the Madden–Julian Oscillation (MJO), the El Niño–
Southern Oscillation (ENSO), and the North Atlantic Os-
cillation (NAO) (Enfield and Allen, 1980; Menéndez and
Woodworth, 2010; Sweet and Zervas, 2011; Ezer and Atkin-
son, 2014; Sweet and Park, 2014; Valle-Levinson et al., 2017;
Han et al., 2019; Amaya et al., 2022; Boucharel et al., 2023;
Arcodia et al., 2024; Renkl et al., 2024), which are associ-
ated with potentially predictable signals on subseasonal-to-
seasonal (S2S) timescales (e.g., Vitart and Molteni, 2010;
Barnston et al., 2019; Albers and Newman, 2021, and ref-
erences therein). For example, Amaya et al. (2022) recently
demonstrated that coastal Kelvin waves related to ENSO are
associated with sea surface height anomalies along the West
Coast of the United States that can be skillfully predicted.
Whether these climate modes also introduce predictable sea
level anomalies along the other coasts of the United States
via wind stress and atmospheric pressure anomalies associ-
ated with atmospheric teleconnections remains an open ques-
tion.

In this study, we assess the skill of current forecast mod-
els for predicting non-tidal anomalies at gauge stations on
subseasonal timescales. Of course, there is a clear difference
in spatial scale between the model grid size, on the order of
tens of kilometers, and the point locations of the gauge sta-
tions. Here, we will take a relatively simple approach, using
the closest oceanic model grid point to a particular gauge
station to make forecasts for that station, and do not con-
sider the additional complication of how best to downscale
the model output to much smaller scales (e.g., Long et al.,
2023). This approach hinges in part on the assumption that
open ocean or near-shore sea level subseasonal anomalies
will be representative of the sea level subseasonal anomalies
at gauge stations. This is a reasonably well-justified assump-

tion, as many coastal gauge stations are fairly well-correlated
with the nearby open ocean (Vinogradov and Ponte, 2011).
However, the connection between open ocean and coastal
sea level anomalies varies by region due to many factors,
including shelf depth and extent, and eastern versus west-
ern boundary ocean dynamics (Hughes et al., 2019; Han et
al., 2019). For example, for eastern boundary regions (e.g.,
the US West Coast), coastal sea level will be influenced by
coastally trapped waves propagating poleward from equato-
rial regions and local direct forcing; for western boundary
regions, on the other hand, models need to successfully simu-
late more processes, including wave signals from all latitudes
(Hughes et al., 2019). Gauge stations located on islands, on
the other hand, which typically have narrow shelves, should
have sea level variability more closely matching the nearby
open ocean (Vinogradov and Ponte, 2011). Coastal shelf
depth also effects the relative importance of wind stress ver-
sus atmospheric pressure effects; for example, along coasts
with shallow shelves, wind-stress-driven sea level variability
is relatively more important than the inverse barometer ef-
fect (IBE) on daily to monthly timescales (Woodworth et al.,
2019; and references therein).

The two forecast systems evaluated here, the European
Centre for Medium Range Weather Forecasting Integrated
Forecasting System reforecasts (IFS) and the Centre National
de Recherches Météorologiques climate model (CNRM),
were chosen in part because they both assimilate ocean al-
timetry data into their initial conditions, which previous stud-
ies have suggested is relevant to sea level forecast skill (Wid-
lansky et al., 2023; Long et al., 2025). In addition, since
the forecast systems are verified against tide gauge obser-
vations, we examine the impact of post-processing refore-
casts by including both the IBE, computed from the corre-
sponding mean sea level pressure reforecasts, and an esti-
mate of local vertical land motion determined for each gauge
location. Model and verification datasets and skill evalua-
tion methods, including deterministic and probabilistic met-
rics, are outlined in Sect. 2. This is followed by an evalu-
ation of open ocean sea surface height reforecast skill and
coastal gauge station skill for the United States (Sect. 3.1–
3.2), where gauge stations are broken down into four regions:
the East Coast, Gulf Coast, West Coast, and Alaska. The sea-
sonality of skill is briefly discussed at the end of Sect. 3.3,
which is followed by a discussion of the implications of the
results in the Conclusions.

2 Data and verification metrics

2.1 Forecast models and verification data

Two dynamical forecast models are considered, the Euro-
pean Centre for Medium Range Weather Forecasting Inte-
grated Forecasting System reforecasts (IFS model versions
CY 46R1-47R1 for the reforecast period 2000–2019, https:
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//www.ecmwf.int/en/publications/ifs-documentation, last ac-
cess: 13 March 2024) and the Centre National de Recherches
Météorologiques climate model (CNRM model version
CM6.1, for the reforecast period 1993–2017, Voldoire et al.,
2019). Both models utilize the Nucleus for European Model-
ing of the Ocean (NEMO, Madec et al., 2017) ocean model
run at 1/4° resolution, and assimilate ocean altimetry data
into their initial conditions (ECMWF ocean analysis for the
IFS and the Mercator-Ocean ocean and sea-ice analysis for
the CNRM). Reforecast data, obtained from the S2S Predic-
tion database (Vitart et al., 2017), was only available at 1°
resolution, so all calculations, including identifying the clos-
est model grid point to each gauge station, are based on this
resolution.

For the open ocean, reforecasts are verified against sea
surface height (SSH) from the Copernicus Marine Service
Global Ocean Physics Reanalysis 12v1 (GLORYS, Lel-
louche et al., 2021), which has been extensively verified in
North American waters (Amaya et al., 2022, 2023; Castillo-
Trujillo et al., 2023; Feng et al., 2024). For coastal regions
of the continental United States and Alaska, reforecasts are
further verified against National Oceanic and Atmospheric
Administration (NOAA) water level gauge stations (NOAA
National Ocean Service, 2024). Only gauge stations that have
at least 10 years of data during the reforecast records of the
IFS and CNRM are considered, yielding 47 stations for the
East Coast, 32 stations for the Gulf of Mexico, 35 stations
for the West Coast, and 23 stations for Alaska (see Table 1
for a list of the gauge stations and the number of days in
each verification time series). When comparing the refore-
cast skill of the IFS and CNRM (Sect. 3.1), we verify against
their common reforecast periods, 2000–2017; when evaluat-
ing the reforecast skill of the IFS alone (Sect. 3.2–3.3), we
use the full IFS reforecast period, 2000–2019.

As discussed in the Introduction, water levels at gauge sta-
tions are separated into three components for the HTF out-
looks (Dusek et al., 2022): a 37-constituent tidal component
(e.g., Sweet and Zervas, 2011), a linear sea level trend com-
ponent, and a non-tidal residual. Here, for comparison with
the reforecasts, we remove the local tidal components, but we
do not remove the trend from the water level gauge data, so
that the verification time series of non-tidal residuals (NTR)
at each tide gauge includes the local trend component, in con-
trast with how it is defined for the HTF framework. Including
the trend component in the reforecasts and verifications of
the non-tidal residual allows for assessment of contribution
of the linear trend to reforecast skill, for example, by com-
paring the difference in anomaly correlation skill with and
without the linear trend included (Figs. 2d, 4d, 6d, and 8d),
and comparing reliability with and without the linear trend
included (Figs. 3, 5, 7, and 9).

IFS reforecasts are available from initialization out to fore-
cast lead day 46, while CNRM reforecasts are available out
to forecast lead day 47; both reforecast sets were obtained
as daily averages. To create reforecast anomalies, the lead-

dependent 20- or 25-year reforecast climatologies of the IFS
and CNRM periods, respectively, are subtracted from the
daily average data, which implicitly applies a mean bias cor-
rection; further details regarding the creation of the IFS and
CNRM climatologies (which are different for each model)
are in the Supplement (Sect. S1). Next, weekly averages are
calculated from the daily reforecast data, where week 1 in-
cludes the average of forecast days 1–7, week 2 includes days
8–14, etc. To calculate the daily average GLORYS verifica-
tion anomalies, we use a period spanning both the CNRM
and IFS reforecast records (2000–2017), where a 365 d (plus
1 d for leap years) climatology is calculated by averaging
over all years, and extracting the first four harmonics (plus
the mean) via Fourier transform (e.g., Epstein, 1988), yield-
ing the final climatology, which is then removed from the
daily average GLORYS data. Weekly average GLORYS ver-
ification anomalies are then created by applying a 7 d run-
ning mean to the daily data. To calculate the NOAA gauge
stations anomalies, we calculate a daily average climatology
for the period over which the gauge station data are available,
generally 20 years but slightly shorter for some stations (see
Table 1), and remove that climatology from the daily aver-
aged gauge station data. A 7 d running mean is then applied
to the gauge station data.

2.2 Inverse barometer effect and vertical land motion

The satellite altimeter-derived sea level products used to ini-
tialize the IFS are processed so as to remove static and high-
frequency (∼ 20 d cutoff) dynamic atmospheric pressure ef-
fects (Ponte and Ray, 2002; Centre national d’études spa-
tiales, 2020). As a result, when the ocean model (e.g., NEMO
in the case of the IFS) is run for forecasting purposes, it as-
sumes an atmosphere with no mass (both because the as-
similated observations are corrected to remove pressure ef-
fects, and because the “atmospheric pressure” subroutine in
NEMO is turned off), so that the SSH reforecasts include
neither static nor dynamic responses to atmospheric pressure
fluctuations (Tai, 1993). However, the static effect of atmo-
spheric pressure on the ocean surface can be approximated
via the so-called inverse barometer effect (Ross, 1854; Dood-
son, 1923; Groves and Hannan, 1968; Tai, 1993; Arbic, 2005;
Ponte, 1992, 2006; Oddo et al., 2014; Long et al., 2021; Feng
et al., 2024), which assumes a static ocean response to atmo-
spheric pressure forcing (Tai, 1993; Wunsch and Stammer,
1997). The IBE (ηibe) is written as

ηibe = −
pm.s.l.−pm.s.l.

ρocean g
(1)

(e.g., Piecuch and Ponte, 2015), where pm.s.l. is atmospheric
mean sea level pressure, pm.s.l. is the global mean sea level
pressure (MSLP, ocean-only), ρocean is the ocean density (as-
sumed to be a constant value of 1025 kg m−3), and g is the
acceleration due to gravity. Although the assumptions inher-
ent to the inverse barometer approximation are not always
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Table 1. List of NOAA gauge stations organized by four regions: East Coast, Gulf Coast, West Coast, and Alaska. The number of days listed
for each gauge station corresponds to the number of reforecast days used when calculating IFS reforecast skill; the IFS is initialized twice
weekly, which means that ∼ 2000 d equates to roughly ∼ 20 years. Gauge stations with an ∗ next to them are stations that are included in the
official NOAA High Tide Flooding Monthly Outlooks (Kavanaugh et al., 2023).

East Coast West Coast

Station list Data length
(days)

Station list Data length
(days)

Eastport, ME (8410140) 2088 San Diego, San Diego Bay, CA∗ (9410170) 2098
Bar Harbor, ME∗ (8413320) 1943 La Jolla, CA∗ (9410230) 2098
Portland, ME∗ (8418150) 2097 Los Angeles, CA∗ (9410660) 2098
Boston, MA∗ (8443970) 2092 Santa Monica, CA∗ (9410840) 2095
Fall River, MA (8447386) 2097 Santa Barbara, CA (9411340) 1534
Woods Hole, MA (8447930) 2064 Oil Platform Harvest, CA (9411406) 1745
Nantucket Island, MA (8449130) 2083 Port San Luis, CA∗ (9412110) 2096
Newport, RI∗ (8452660) 2098 Monterey, CA∗ (9413450) 2098
Providence, RI∗ (8454000) 2086 San Francisco, CA (9414290) 2093
New London, CT (8461490) 2088 Redwood City, CA (9414523) 2098
New Haven, CT (8465705) 2092 Alameda, CA∗ (9414750) 2098
Bridgeport, CT∗ (8467150) 2087 Richmond, CA (9414863) 2014
Montauk, NY (8510560) 2003 Point Reyes, CA∗ (9415020) 2088
Kings Point, NY∗ (8516945) 2097 Port Chicago, CA (9415144) 2081
The Battery, NY∗ (8518750) 2032 Arena Cove, CA∗ (9416841) 2098
Bergen Point West Reach, NY∗ (8519483) 2049 North Spit, CA∗ (9418767) 2090
Sandy Hook, NJ∗ (8531680) 2087 Crescent City, CA (9419750) 2064
Atlantic City, NJ∗ (8534720) 2050 Port Orford, OR∗ (9431647) 1847
Cape May, NJ∗ (8536110) 2066 Charleston, OR∗ (9432780) 2098
Burlington, Delaware River, NJ (8539094) 1835 South Beach, OR∗ (9435380) 2098
Marcus Hook, PA (8540433) 1667 Garibaldi, OR (9437540) 1515
Philadelphia, PA (8545240) 2090 Astoria, OR (9439040) 2098
Delaware City, DE (8551762) 1880 Wauna, OR (9439099) 1718
Reedy Point, DE (8551910) 2076 St Helens, OR (9439201) 1863
Lewes, DE∗ (8557380) 2093 Vancouver, WA (9440083) 1815
Ocean City Inlet, MD (8570283) 1825 Skamokawa, WA (9440569) 1703
Cambridge, MD (8571892) 2092 Toke Point, WA∗ (9440910) 2058
Tolchester Beach, MD (8573364) 2093 Westport, WA (9441102) 1447
Chesapeake City, MD (8573927) 1716 La Push, Quillayute River, WA (9442396) 1641
Baltimore, MD (8574680) 2098 Neah Bay, WA (9443090) 2096
Annapolis, MD (8575512) 2065 Port Angeles, WA∗ (9444090) 2098
Solomons Island, MD (8577330) 2027 Port Townsend, WA∗ (9444900) 2098
Washington, DC (8594900) 1991 Seattle, WA∗ (9447130) 2098
Wachapreague, VA∗ (8631044) 1719 Cherry Point, WA∗ (9449424) 2079
Kiptopeke, VA∗ (8632200) 2098 Friday Harbor, WA∗ (9449880) 2098
Lewisetta, VA∗ (8635750) 2098
Windmill Point, VA∗ (8636580) 2048
Yorktown USCG Training Center, VA
(8637689)

1658

Sewells Point, VA∗ (8638610) 2098
Money Point, VA (8639348) 2096
Duck, NC∗ (8651370) 2087
Oregon Inlet Marina, NC (8652587) 2089
Beaufort, Duke Marine Lab, NC∗ (8656483) 2098
Wilmington, NC (8658120) 2083
Springmaid Pier, SC∗ (8661070) 1962
Charleston, SC∗ (8665530) 2098
Fort Pulaski, GA∗ (8670870) 2092
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Table 1. Continued.

Gulf Alaska

Station list Data length
(days)

Station list Data length
(days)

Fernandina Beach, FL∗ (8720030) 2076 Ketchikan, AK (9450460) 2098
Mayport (Bar Pilots Dock), FL∗ (8720218) 2001 Port Alexander, AK (9451054) 1289
Trident Pier, Port Canaveral, FL∗ (8721604) 2093 Sitka, AK (9451600) 2098
Virginia Key, Biscayne Bay, FL∗ (8723214) 2096 Juneau, AK (9452210) 2093
Vaca Key, Florida Bay, FL (8723970) 2065 Skagway, Taiya Inlet, AK (9452400) 2087
Key West, FL (8724580) 2086 Elfin Cove, AK (9452634) 1510
Naples, Gulf of Mexico, FL∗ (8725110) 2044 Yakutat, Yakutat Bay, AK (9453220) 2082
Fort Myers, FL (8725520) 2055 Cordova, AK (9454050) 2091
Port Manatee, FL (8726384) 2062 Valdez, AK (9454240) 2084
St. Petersburg, Tampa Bay, FL (8726520) 2095 Seward, AK (9455090) 2098
Old Port Tampa, FL (8726607) 1915 Seldovia, AK (9455500) 2074
Clearwater Beach, FL (8726724) 2067 Nikiski, AK (9455760) 2094
Cedar Key, FL∗ (8727520) 2047 Anchorage, AK (9455920) 2087
Apalachicola, FL (8728690) 2084 Kodiak Island, AK (9457292) 2091
Panama City, FL (8729108) 2061 Alitak, AK (9457804) 1398
Panama City Beach, FL (8729210) 1496 Sand Point, AK (9459450) 2072
Pensacola, FL∗ (8729840) 2028 King Cove, AK (9459881) 1506
Dauphin Island, AL∗ (8735180) 1851 Adak Island, AK (9461380) 2051
Mobile State Docks, AL (8737048) 1387 Unalaska, AK (9462620) 2094
Bay Waveland Yacht Club, MS∗ (8747437) 1476 Port Moller, AK (9463502) 1124
Shell Beach, LA (8761305) 1191 Village Cove, St Paul Island, AK (9464212) 1409
Grand Isle, LA (8761724) 2062 Nome, Norton Sound, AK (9468756) 2067
New Canal Station, LA (8761927) 1484 Prudhoe Bay, AK (9497645) 2090
Port Fourchon, Belle Pass, LA (8762075) 1684
Berwick, Atchafalaya River, LA (8764044) 1673
Lake Charles, LA (8767816) 1555
Calcasieu Pass, LA (8768094) 1709
Morgans Point, Barbours Cut, TX∗ (8770613) 2091
Eagle Point, Galveston Bay, TX∗ (8771013) 2095
Galveston Pier 21, TX∗ (8771450) 2098
Rockport, TX∗ (8774770) 2013
Port Isabel, TX∗ (8779770) 2093

strictly valid, which can lead to deviations from a purely
static response (e.g., Wunsch, 1991; Le Traon and Gauzelin,
1997), previous studies have suggested that including the
IBE is important on subseasonal-to-seasonal timescales (e.g.,
Woodworth et al., 2019; Long et al., 2021; Feng et al., 2024).
In this study, for the IFS we use the predicted pm.s.l. to pre-
dict the ηibe from Eq. (1) at different forecast leads, which
is added to the corresponding SSH reforecasts as a post-
processing step for each tide gauge (for simplicity, we do
not display IBE-corrected CNRM reforecasts, as the IFS is
generally more skillful).

Over the course of several decades, the sea level at local
gauge stations can change from vertical land motion (VLM)
due to a wide range of phenomena, including glacial iso-
static rebound and groundwater and/or fossil fuel removal
(Larsen et al., 2004; Hu and Freymueller, 2019; Sweet et al.,
2022; Lindesy et al., 2021; Oelsmann et al., 2024). While

the VLM rate is too small to impact an individual subsea-
sonal forecast, it could be large enough in some regions to
impact long-term skill assessment and is implicitly included
in a persistence forecast. There exist many methods for esti-
mating VLM (e.g., Kopp et al., 2014; Hammond et al., 2021;
Oelsmann et al., 2024); however, here we use a relative sim-
ple approach that applies VLM rates as a trend correction to
each IFS forecast anomaly time series. The VLM rates we
use are provided on a 1°× 1° grid (NOAA National Ocean
Service, 2021; Sweet et al., 2022), and the grid point nearest
to each gauge station is used as the rate constant for the entire
reforecast period.

In the remainder of the paper, we will refer to two types of
reforecasts: (1) IFS and CNRM SSH reforecast anomalies,
which are the original ocean model output and (2) IFS re-
forecast anomalies that are IBE- and VLM-corrected, which
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will be referred to as non-tidal residual reforecasts:

N̂TR= SSH + IBE + VLM, (2)

where in Eq. (2), the SSH and IBE are IFS quantities and
the VLM is the trend correction described above. While we
could have adjusted the tide gauge NTR using the VLM prior
to evaluating skill, we prefer adding both the IFS-IBE and
VLM to the IFS-based SSH reforecast, since N̂TR is the
hindcast that should be verified directly against the NTR that
is observed at the tide gauge. GLORYS does not include the
IBE, so verifying the IFS and CNRM against GLORYS is
done using SSH only.

2.3 Skill metrics

Reforecast skill is evaluated both deterministically, using
anomaly correlation, and probabilistically, using reliability
and sharpness (Atger, 1999; Jolliffe and Stephenson, 2011;
Wilks, 2011). Reliability is computed for events that ex-
ceed the upper tercile of each gauge station’s water level,
where the tercile threshold is calculated separately for the
water level (non-tidal residual) distributions of the refore-
casts (N̂TR) and verifications (NTR). Using the tercile from
the reforecast ensemble sample distribution for computing
the reforecast probability of an event (as opposed to using
the observed tercile) amounts to an in-sample bias correc-
tion of the reforecast probability distribution (Weisheimer
and Palmer, 2014), which ensures that the reforecast prob-
abilities and observed frequencies of tercile events are the
same for each gauge station; this correction is needed be-
cause, in general, the reforecast water level distributions are
underdispersive (i.e., more narrow than observed). For all
reliability diagrams, the observed distributions and relative
forecast frequencies are split into 10 bins (0 %–10 %, 10 %–
20 %,. . ., 90 %–100 %).

To condense reliability metrics onto a single map, we use
the slope of a regression line fitted to each gauge station’s
reliability curve, computed via a weighted least-squares re-
gression fitted to the reliability bin values (i.e., the observed
relative frequency–reforecast probability pairs), where the
weights are determined by the number of events in each ob-
served frequency–reforecast probability bin. Since we have
applied the reforecast probability bias correction, the regres-
sion lines always intersect the tercile–tercile point (0.33,
0.33) on the reliability diagrams, so that a regression line
with a slope greater than 0.5 contributes positively to the
Brier skill score (e.g., Mason, 2004), though in general, any
reliability regression line that is relatively close to 0.5 is
probably “useful” for making forecast guidance (see, e.g.,
Weisheimer and Palmer, 2014, for a discussion on this point).

We also determine forecast sharpness, which measures the
ability of a forecast system to issue more definitive guidance
(i.e., beyond simply forecasting the climatological probabil-

ity), as

SHP=
1
n

∑n

i=1
pi (1)(1−pi ((1)) · 400 (3)

(Daan 1984; Potts 2011), where pi (1) is the probability of
exceeding the tercile threshold for each forecast, i, where
each “i” refers to a forecast initialization and verification
pair. This expression yields SHP= 0 for the sharpest fore-
casts (when all the forecasts are either 0 % or 100 %) and
SHP= 100 for the most blurred forecasts (multiplying the
expression in Eq. (3) by 400 is not strictly necessary but is
done to provide a more intuitive range of SHP values, span-
ning 0 to 100 instead of 0 to 0.25). Since a forecast sys-
tem can be perfectly sharp by always forecasting 0 %, which
would not be terribly useful, we also report the percentage of
forecasts that are in the 90 %–100 % probability bin relative
to the 0 %–10 % bin.

Dynamical model reforecast skill is also compared to the
skill of “damped” persistence of the observed coastal station
anomalies. Each damped persistence forecast is calculated
using the mean of the previous 7 d, multiplied by the lead-
dependent autocorrelation value, where the autocorrelation
function is calculated independently from the NTR time se-
ries for each gauge station. For all reforecasts, including from
the CNRM, the IFS, and damped persistence, reforecasts are
compared with and without a linear trend removed from the
anomaly time series, where the trend is independently com-
puted relative to the length of each time series being com-
pared.

3 Results

We begin with a simple evaluation of the geographic dis-
tribution of year-round week 3 SSH prediction skill for the
IFS and CNRM, verifying against GLORYS SSH anomalies,
which also do not include the IBE (Sect. 3.1). Thereafter, we
conduct a more detailed regional prediction skill assessment
of N̂TR based on the IFS reforecasts, including evaluating the
impact of the post-processed IBE- and VLM-based refore-
cast corrections, for gauge stations grouped into four broad
regions: the East Coast (Maine to South Carolina), the Gulf
Coast (Florida to Texas, and one station in Georgia), the West
Coast (California to Washington), and Alaska (Sect. 3.2). Fi-
nally, we evaluate the seasonal dependence of N̂TR predic-
tion skill (Sect. 3.3).

3.1 Multi-model comparison of coastal ocean and tide
gauge SSH reforecast skill

For the oceans surrounding North America, the geographic
distribution of week 3 SSH anomaly correlation skill for the
IFS and CNRM are qualitatively similar, with both models
exhibiting relatively higher skill in the eastern portion of the
Pacific Ocean, along the southern coast of Alaska, and the
Beaufort Sea, while exhibiting relatively lower skill along

Ocean Sci., 21, 1761–1785, 2025 https://doi.org/10.5194/os-21-1761-2025



J. R. Albers et al.: Assessing subseasonal forecast skill 1767

the East Coast of the US (Fig. 1). In general, the IFS is more
skillful than the CNRM in most regions, with the exception
of a small region northeast of the Bahamas, the central por-
tion of the Gulf of Mexico, and portions of the Labrador Sea
and Baffin Bay.

For both models, SSH reforecast skill evaluated at the
gauge stations tends to correspond reasonably well with
nearby open ocean SSH reforecast skill evaluated using
GLORYS gridded SSH anomalies for week 3 (see colored
shading for the oceans surrounding North America and col-
ored dots for the tide gauges used in this study in Fig. 1). This
good comparison justifies the use of nearest neighbor open
ocean SSH forecasts to predict tide gauge anomalies in this
study. For example, for both tide gauges and the near-shore
open ocean, reforecast skill for both models is relatively high
in southern California and Maine and relatively low between
Virginia and New York (see both Fig. 1a and b).

For the US coastlines nearest to the gauge stations that are
of central interest here, the IFS has superior skill at all fore-
cast leads (see Figs. S1–S6 in the Supplement). While the
IFS and CNRM have qualitatively similar skill characteris-
tics, only the IFS SSH has skill that is as good or better than
persistence for nearly all contiguous US (CONUS) gauge sta-
tions (Figs. S1–S6) as well as many Alaskan stations (not
shown), with the exception of those situated in regions far up
inland rivers, including stations such as Vancouver, WA, or
Berwick, Atchafalaya River, LA, which are all far removed
(and physically disconnected) from the nearest IFS or CNRM
open ocean grid points.

The biggest skill improvements of IFS week 3 refore-
casts relative to persistence are seen in three regions: along
the central East Coast, the entire West Coast, and along the
southern coast and islands of Alaska (not shown). Refore-
cast skill is highest in southern California (e.g., Fig. S3),
where skill from coastal Kelvin waves may provide a sig-
nificant predictable signal (Amaya et al., 2022), particularly
during strong El Niño events (see also Arcodia et al., 2024;
and references therein). At week 3, and even at week 2 (both
shown in the Supplement), the CNRM forecasts are uni-
formly (across all regions) less skillful than persistence, with
one exception: the week 2 CNRM forecasts for the Pacific
Northwest (Oregon and Washington) are more skillful than
persistence (Fig. S2).

Scoring reforecasts without accounting for strong trends
can make it difficult to differentiate between forecast skill as-
sociated with predicting subseasonal climate variations ver-
sus the spurious impact of trends on subseasonal forecast
skill (Wulff et al., 2022). Similarly, prior studies on sea-
sonal predictions of U.S. coastal sea-level anomalies have
found that sea-level trends can substantially affect refore-
cast skill estimates, especially when using standard metrics
benchmarked against a climatological forecast (Widlansky et
al., 2017; Long et al., 2021; Shin and Newman, 2021; Long
et al., 2025). After a linear trend is removed from the forecast
and verification datasets, CONUS reforecast skill is reduced

for most regions both for models and for persistence, with
the largest effects occurring for leads of 3 weeks and beyond
(Figs. S1–S12; see Sect. 3.2.1–3.2.4 for a detailed discussion
of the effect of the linear trend on IFS reforecast skill). How-
ever, removing the linear trend from the model reforecasts
and persistence also highlights the models’ ability to skill-
fully predict SSH anomalies related to subseasonal climate
variability. For example, linearly detrended CNRM refore-
casts are more skillful than linearly detrended persistence for
the entire West Coast and most East Coast stations at weeks
2 and 3 (Figs. S4 and S6, respectively). Thus, with the linear
trend removed, it becomes clearer that the CNRM provides
useful guidance for many regions for forecast leads out to
at least 3 weeks. However, the IFS is still more skillful than
the CNRM at nearly all gauge stations and at all lead times
(Figs. S1–S12), so for the remainder of the article, we focus
on results using the IFS.

3.2 Regional US coastal skill

We next assess deterministic and probabilistic N̂TR refore-
cast skill for each of the four US subregions, the West, Gulf,
and East coasts, and Alaska. When comparing determinis-
tic skill (anomaly correlation), four panels are shown: N̂TR
skill, followed by a panel showing the difference between
N̂TR skill and persistence skill, and then two panels isolat-
ing the contributions of the IBE and the linear trend to N̂TR
skill; the contribution of VLM to N̂TR skill is discussed in
the text when relevant with a figure included in the Supple-
ment.

Probabilistic week 3 N̂TR reforecast skill is assessed at all
gauge stations via three metrics that characterize reliability
and sharpness (see Sect. 2.3 for details of the calculations):
(1) the slope of the reliability regression line, where values
greater than 0.5 indicate positive contributions to the Brier
skill score; (2) forecast sharpness as measured by the “SHP”
parameter ranging from 0–100, where smaller values repre-
sent sharper forecasts; and (3) the percentage of forecasts that
are in the top forecast probability category versus the lowest
category (0 %–10 % versus 90 %–100 %), where higher per-
centages indicate relatively more “certain” affirmative fore-
casts. In addition, for each sub-region, we show reliability
diagrams and histograms of the forecast probability distribu-
tions for two representative gauge stations to provide a visual
reference for the metric numbers reported on the maps; for
these figures, skill of N̂TR reforecasts with the linear trend
removed is also shown.

3.2.1 West Coast

In general, N̂TR skill is highest along the southern to cen-
tral West Coast, often exceeding 0.5 for leads through week
6 (Fig. 2a). With the exception of a few gauge stations, no-
tably those far up the Columbia River, West Coast refore-
casts are also more skillful than persistence (Fig. 2b). Note
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Figure 1. Year-round (2000–2017) week 3 anomaly correlation skill between GLORYS SSH anomalies and SSH reforecasts (color contours),
and week 3 anomaly correlation skill between NOAA gauge station anomalies and SSH reforecasts (colored circle markers), for reforecasts
from the (a) IFS and (b) CNRM. While the sample years used in the anomaly correlation calculation (2000–2017) are the same, the dates
are slightly different because of different initialization dates. All dates are used in both datasets, regardless of whether they overlap with the
other dataset, because otherwise there are too few samples.

that for many of the stations between central California and
Oregon, IFS week 1 skill is only better than persistence with
the IBE correction (see Fig. 2b and c). Removing the linear
trend minimally impacts West Coast skill, primarily only for
longer leads in California (Fig. 2d).

Reliability and sharpness along the West Coast tends to
be largest in the south and decreases to the north (Fig. 3a).
For example, reforecasts for gauge stations south of Arena

Cove, CA, have excellent reliability (regression slopes be-
tween 0.6–0.9) and sharpness (SHP between 30–50), with
most gauge stations having roughly a quarter of their fore-
casts in the highest forecast probability category (e.g., Santa
Barbara, CA, in Fig. 3c). Even with the linear trend removed,
most forecasts in central to southern California have excel-
lent reliability and sharpness (e.g., Fig. 3c). Sharpness de-
creases roughly monotonically from south to north, but re-

Ocean Sci., 21, 1761–1785, 2025 https://doi.org/10.5194/os-21-1761-2025



J. R. Albers et al.: Assessing subseasonal forecast skill 1769

Figure 2. (a) Year-round (2000–2019) week 3 N̂TR anomaly correlation skill between nearest grid point N̂TR reforecasts anomalies
(SSH+ IBE+VLM) and West Coast NOAA gauge station NTR anomalies. (b) Difference between N̂TR skill and NTR persistence skill,
(c) difference between N̂TR skill and (SSH+VLM)-only skill, and (d) difference between N̂TR skill and linearly detrended N̂TR skill.

https://doi.org/10.5194/os-21-1761-2025 Ocean Sci., 21, 1761–1785, 2025



1770 J. R. Albers et al.: Assessing subseasonal forecast skill

liability has a minimum near the Oregon–California bor-
der (e.g., Crescent City, CA; Fig. 3b) with increasing val-
ues again from northern Oregon into Washington, apart from
gauge stations extending well up the Columbia River. The
IBE correction increases reliability for all West Coast gauge
stations, with regression slopes generally increasing by 0.2
slope units (not shown). The IBE correction also mildly de-
creases sharpness (not shown); however, since sharpness for
most gauge stations remains relatively high, this decrease
is outweighed by the increased reliability realized with the
IBE correction. Linearly detrending the reforecasts has a rel-
atively small impact on overall reliability and sharpness (not
shown).

3.2.2 East Coast

In contrast to the West Coast, N̂TR deterministic reforecast
skill along the East Coast exceeds 0.5 only through weeks
2–3 (Fig. 4a), though skill still nearly always exceeds that
of persistence for all locations and at all leads (Fig. 4b). The
IBE correction improves skill for many East Coast gauge sta-
tions, particularly north of 35° N for weeks 1 and 2 (Fig. 4c),
so that N̂TR skill exceeds persistence skill for the north-
ernmost gauge stations for shorter lead times (see Fig. 4b
and c). The linear trend also has a more significant impact
on East Coast than West Coast skill, significantly contribut-
ing to weeks 3–6, particularly for the Carolinas and Georgia
(Fig. 4d). When both N̂TR and persistence are linearly de-
trended, N̂TR is still more skillful than persistence at all leads
(not shown), consistent with the SSH results from Sect. 3.1.

With the exception of two gauge stations (Burlington,
Delaware River, NJ, and Bergen Point West Reach, NY),
all of the N̂TR reforecasts for the East Coast are at least
minimally reliable (regression slopes> 0.5), with some sta-
tions, particularly in the northeast, having quite high relia-
bility (regression slopes> 0.7). Moreover, for many of the
northernmost and southernmost gauge stations, the forecasts
also have reasonably sharp forecast probability distributions,
with SHP values somewhere between 50–68 (Fig. 5). In con-
trast, most of the mid-Atlantic stations have SHP values> 65
(that is, most reforecasts are near climatological probabili-
ties), with only a small number of forecasts in the highest
probability category.

The IBE correction impacts reliability differently depend-
ing on the region, improving it for gauge stations roughly
north of New York City and decreasing it for the middle At-
lantic Bight stations with no discernible change in sharpness
(not shown), while there is little impact further south in the
Carolinas. Thus, on balance, the notable benefits of the IBE
correction for the northern East Coast appear to outweigh the
small reduction in reliability for the middle Atlantic Bight re-
gion, particularly because the middle Atlantic Bight gauge
stations have marginal sharpness that weighs against their
overall usefulness. With the linear trend removed, reforecasts

at all East Coast gauge stations become more overconfident
and less sharp (e.g., Fig. 5b and c).

3.2.3 Gulf Coast

N̂TR skill for many of the Gulf Coast stations remains at
or above 0.5 until at least forecast week 6 (Fig. 6a), and
for nearly all gauge stations, the N̂TR reforecasts are more
skillful than persistence for weeks 2–6 (Fig. 6b). The IBE
modestly improves weeks 1–2 reforecast skill for gauge sta-
tions between Mississippi and the southern tip of Florida
(Fig. 6c), while the linear trend greatly increases reforecast
skill for all stations for leads at and beyond week 2. While
the steric and eustatic contributions to the linear trend are
generally spatially uniform across the Gulf (e.g., Fig. 2.1 of
Sweet et al., 2022), the effect of the VLM trend on refore-
cast skill is largely confined to gauge stations between Rock-
port, Texas, and Dauphin Island, Alabama (Fig. 10a), where
VLM improves correlation skill by roughly 0.1–0.2, partic-
ularly for forecast leads beyond week 2 (Fig. S13c). Never-
theless, even when the linear trend is removed from the re-
forecasts, reforecast skill (i.e., IFS-only SSH+ IBE) exceeds
linearly detrended persistence skill for leads out to 2–3 weeks
for Texas gauge stations and out to 6 weeks for stations be-
tween Louisiana and Florida (not shown).

Gulf Coast forecasts have good reliability (Fig. 7a), with
regression slopes in the 0.6–0.9 range. There is one out-
lier gauge station relatively far inland (Berwick, Atchafalaya
River, LA, Fig. 7b), with poorer reliability and with relatively
few forecasts in the highest probability category (∼ 10 %).
Most of the Gulf Coast stations have reasonably decent
sharpness quite similar to the St. Petersburg, FL, gauge sta-
tion (Fig. 7c). The IBE correction increases reliability for
gauge stations from Mississippi east to all of Florida (not
shown) but appears not to impact reforecast skill in Louisiana
or Texas. As for the East Coast, linearly detrending the
reforecasts mildly decreases their reliability and sharpness
(e.g., Fig. 7c).

3.2.4 Alaska

Most Alaskan gauge stations have modest skill (anomaly cor-
relation> 0.5) through week 3 (Fig. 8a), with skill exceeding
persistence at all leads (Fig. 8b). The IBE notably contributes
to reforecast skill for all stations out to lead times of 2–3
weeks, and for a handful of stations, out to even longer leads
(Fig. 8c). Reliability is also quite good, with all but a few sta-
tions having regression slopes> 0.6 and moderate sharpness
(Fig. 9). Except for Nome, Norton Sound, AK and Prudhoe
Bay, AK, the IBE notably increases the slopes of the relia-
bility regression lines (not shown), with many stations rising
from poor reliability slopes (0.1–0.4) to quite useful slopes
(0.5–0.8).

Removing the linear trend decreases overall skill for sta-
tions extending from roughly Kodiak Island southeast to
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Figure 3. (a) Year-round (2000–2019) West Coast N̂TR reliability (colored circles), sharpness (numbers), and percentage of forecasts that
are in the top forecast probability category versus the lowest category (0 %–10 % versus 90 %–100 %). For reliability, slopes greater than 0.5
contribute to positive Brier skill scores; for sharpness, the scale spans 0–100, with smaller numbers representing sharper forecast distributions.
Panels (b) and (c) show example reliability diagrams and sharpness distributions (ensemble probability counts) for two gauge stations,
Crescent City, California, and Santa Barbara, California, respectively, where the red ovals in panel (a) highlight the location of each station.

Sitka (Fig. 8d). Along this section of the Alaskan coast,
glacial isostatic rebound (see references in Sect. 2.2) is caus-
ing the land surface to rise, which is reflected in relatively
large VLM rates over southeastern Alaska (Fig. 10a). In-
deed, failing to account for VLM can lead to large errors
in the NTR anomaly time series; see, for example, the N̂TR
(blue lines) versus IFS-only (SSH+ IBE) time series (orange
lines) for Yakutat and Skagway, Alaska, in Fig. 10b and c, re-
spectively. In general, derived VLM rates (Kopp et al., 2014;
Sweet et al., 2022) successfully account for a large portion
of the negative linear NTR trend, though the VLM-corrected
time series (N̂TR) at some gauge stations appear to more
closely match the observed trend than for others (e.g., the
VLM correction appears to underestimate the size of the land

motion trend for Yakutat, Fig. 10b). Indeed, adjusting the
IFS reforecasts with the predicted VLM rates does not com-
pletely resolve all trend issues, as evidenced by Port Alexan-
der (Fig. 9c), where linearly detrending the reforecasts in-
creases reliability. For stations in the Aleutian Islands and
northwards to Prudhoe Bay, AK where isostatic rebound is
either not occurring or not significant, accounting for VLM
only mildly increases reliability. Nevertheless, adjusting the
IFS reforecasts to account for the VLM trend notably im-
proves both deterministic and probabilistic N̂TR reforecast
skill between Kodiak Island and Sitka for all forecast leads,
increasing anomaly correlations by 0.1–0.75 (Fig. S13a).
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Figure 4. (a) Year-round (2000–2019) week 3 N̂TR anomaly correlation skill between nearest grid point N̂TR reforecasts anomalies
(SSH+ IBE+VLM) and East Coast NOAA gauge station NTR anomalies. (b) Difference between N̂TR skill and NTR persistence skill,
(c) difference between N̂TR skill and (SSH+VLM)-only skill, and (d) difference between N̂TR skill and linearly detrended N̂TR skill.
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Figure 5. (a) Year-round (2000–2019) East Coast N̂TR reliability (colored circles), sharpness (numbers), and percentage of forecasts that
are in the top forecast probability category versus the lowest category (0 %–10 % versus 90 %–100 %). For reliability, slopes greater than 0.5
contribute to positive Brier skill scores; for sharpness, the scale spans 0–100, with smaller numbers representing sharper forecast distributions.
Panels (b) and (c) show example reliability diagrams and sharpness distributions (ensemble probability counts) for two gauge stations,
Eastport, Maine, and Oregon Inlet Marina, North Carolina, respectively, where the red ovals in panel (a) highlight the location of each
station.

3.3 Seasonality of deterministic skill

While coastal flooding can happen in any season, all four
United States sub-regions tend to have peaks in water levels
exceeding the 90th percentile of the observed NTR during
the winter months (not shown). To understand how the IFS
performs during these peak exceedance seasons, Figs. 11 and
12 group forecasts into four 3-month periods (JFM, AMJ,
JAS, and OND), where for each season and gauge station,
the latest forecast lead when N̂TR anomaly correlation skill
exceeds 0.5 is listed, both with the linear trend included (left-
hand columns) and without (right-hand columns).

With the linear trend included, forecasts skill for the East
remains above 0.5 for forecast leads out to at least 2 weeks
for all seasons and gauge stations, with the exception of the
East Coast during late fall to early winter when skill only ex-
ceeds 0.5 for leads of 1 week (Fig. 11a). For the Gulf Coast,
reforecast skill exceeds 0.5 for most stations through at least

2–3 weeks but as far out as 6 weeks for many stations and
seasons (Fig. 11c). With the linear trend removed, skill out
to and beyond 2 week lead times is largely confined to late
winter to early summer for the East Coast (Fig. 11b) and late
fall to early spring for the Gulf Coast (Fig. 11d).

Reforecast skill is notably better for the central to south-
ern portions of the West Coast and is relatively insensi-
tive to a linear trend (see Fig. 12a and b), with reforecast
skill exceeding 0.5 through forecast week 6 for nearly all
California gauge stations throughout the year. For Oregon
and Washington, skill exceeds 0.5 for forecast leads of 2–
3 weeks. For Alaska, reforecast skill for most stations ex-
ceeds 0.5 through week 3 for the cold season (October–
March) but only through week 2 for the warm season (April–
September), with the exception of the stations between Yaku-
tat and Juneau, where reforecast skill exceeds 0.5 at all lead
times almost year-round (Fig. 12c and d).
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Figure 6. (a) Year-round (2000–2019) week 3 N̂TR anomaly correlation skill between nearest grid point N̂TR reforecasts anomalies
(SSH+ IBE+VLM) and Gulf Coast NOAA gauge station NTR anomalies. (b) Difference between N̂TR skill and NTR persistence skill,
(c) difference between N̂TR skill and (SSH+VLM)-only skill, and (d) difference between N̂TR skill and linearly detrended N̂TR skill.
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Figure 7. (a) Year-round (2000–2019) Gulf Coast N̂TR reliability (colored circles), sharpness (numbers), and percentage of forecasts that
are in the top forecast probability category versus the lowest category (0 %–10 % versus 90 %–100 %). For reliability, slopes greater than 0.5
contribute to positive Brier skill scores; for sharpness, the scale spans 0–100, with smaller numbers representing sharper forecast distributions.
Panels (b) and (c) show example reliability diagrams and sharpness distributions (ensemble probability counts) for two gauge stations,
Berwick, Atchafalaya River, Louisiana, and St. Petersburg, Florida, respectively, where the red ovals in panel (a) highlight the location of
each station.

4 Conclusions

The primary goal of this paper is to assess the suitability of
the current generation of forecast models for making coastal
inundation forecasts on subseasonal timescales. Indeed, we
find that the deterministic skill of the IFS and CNRM ex-
ceeds that of damped persistence for many US coastal re-
gions for forecast leads extending out to 2–3 weeks, with
the IFS continuing to have skill above damped persistence
for longer leads through week 6. However, when reforecasts
and persistence reforecasts are linearly detrended, the skill of
both models over persistence increases, highlighting the abil-
ity of the models to successfully simulate water level anoma-

lies related to subseasonal climate variability. When a simple
bias correction is applied to the IFS’s probability distribu-
tion, the IFS generally has “useful” reliability (Weisheimer
and Palmer, 2014) that contributes positively to the Brier
skill score (Mason, 2004), though the need for the probabil-
ity bias correction highlights that the model ensemble spread
is consistently underdispersive. Thus, our results suggest that
the current generation of operational forecast models provide
predictions of coastal inundation with sufficient skill to form
the basis for improved forecast guidance of high tide flooding
predictions on subseasonal timescales.

We have also demonstrated the regional and forecast lead
time dependence of weekly N̂TR prediction skill. California
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Figure 8. (a) Year-round (2000–2019) week 3 N̂TR anomaly correlation skill between nearest grid point N̂TR reforecasts anomalies
(SSH+ IBE+VLM) and Alaska NOAA gauge station NTR anomalies. (b) Difference between N̂TR skill and NTR persistence skill, (c) dif-
ference between N̂TR skill and (SSH+VLM)-only skill, and (d) difference between N̂TR skill and linearly detrended N̂TR skill.
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Figure 9. (a) Year-round (2000–2019) Alaska N̂TR reliability (colored circles), sharpness (numbers), and percentage of forecasts that are
in the top forecast probability category versus the lowest category (0 %–10 % versus 90 %–100 %). For reliability, slopes greater than 0.5
contribute to positive Brier skill scores; for sharpness, the scale spans 0–100, with smaller numbers representing sharper forecast distributions.
Panels (b) and (c) show example reliability diagrams and sharpness distributions (ensemble probability counts) for two gauge stations,
Skagway, Taiya Inlet, Alaska, and Port Alexander, Alaska, respectively, where the red ovals in panel (a) highlight the location of each
station.
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Figure 10. (a) Vertical land motion rates (cm yr−1) shown as colored contours with the NOAA gauge station locations used in the study
shown as filled circular markers, where the color of the filled marker denotes the improvement in anomaly correlation skill when VLM is
included in the reforecast, i.e., skill of N̂TR reforecast minus skill of IFS-only reforecast (SSH+ IBE). (b) Week 3 N̂TR reforecast time
series (SSH+ IBE+VLM, blue line), IFS-only reforecast (SSH+ IBE, gray line) and NOAA gauge station NTR time series (orange line)
at the Yakutat, Yakutat Bay, Alaska, gauge station. (c) Same as (b) but for the Skagway, Taiya Inlet, Alaska, gauge station NTR time series
(orange line) at the Yakutat, Yakutat Bay, Alaska, gauge station.

has by far highest skill, with anomaly correlation skill above
0.6 through at least week 6. Many portions of Alaska also
have anomaly correlation skill that reaches or exceeds 0.5
for leads through week 3, with some stations in southeastern
Alaska having skill exceeding 0.5 through week 6 once past

VLM trends are taken into account. On the East Coast, on
the other hand, skill is quite low for the mid-Atlantic states
but is relatively higher south of Cape Hatteras and further
north along the New England coast (Figs. 1 and 4), where
anomaly correlation skill generally ranges from 0.4 to 0.5
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Figure 11. Seasonal cycle of N̂TR reforecast skill (2000–2019) where the color bar (and number in each box) corresponds to the latest
forecast lead (from week 1 to 6) when the anomaly correlation is greater than or equal to 0.5. In each panel, the seasonal cycle is split into
four 3-month periods, where the panels correspond to correlations among (a) East Coast NOAA gauge station NTR anomalies and N̂TR
reforecasts, (b) linearly detrended East Coast NOAA gauge station NTR anomalies and linearly detrended N̂TR reforecasts, (c) Gulf Coast
NOAA gauge station NTR anomalies and N̂TR reforecasts, and (d) linearly detrended Gulf Coast NOAA gauge station NTR anomalies and
linearly detrended N̂TR reforecasts.
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Figure 12. Seasonal cycle of N̂TR reforecast skill (2000–2019) where the color bar (and number in each box) corresponds to the latest
forecast lead (from week 1 to 6) when the anomaly correlation is greater than or equal to 0.5. In each panel, the seasonal cycle is split into
four 3-month periods, where the panels correspond to correlations among (a) West Coast NOAA gauge station NTR anomalies and N̂TR
reforecasts, (b) linearly detrended West Coast NOAA gauge station NTR anomalies and linearly detrended N̂TR reforecasts, (c) Alaska
NOAA gauge station NTR anomalies and N̂TR reforecasts, and (d) linearly detrended Alaska NOAA gauge station NTR anomalies and
linearly detrended N̂TR reforecasts.
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for forecast leads out to at least week 3. For many Gulf Coast
stations, skill remains above 0.4 to 0.5 for leads out to at least
week 6. However, for many Alaskan and East and Gulf Coast
gauge stations, a large fraction of the reforecast skill can be
attributed to the linear N̂TR trend, which includes steric and
eustatic trends that are explicitly accounted for in the model
reforecasts, as well as VLM trends that are added via post-
processing.

How the predicted IBE impacts N̂TR reforecast skill also
appears to strongly depend upon forecast lead time and re-
gion. Accounting for the IBE primarily improves reforecast
skill during forecast weeks 1 and 2, which is consistent with
predictable IBE signals being limited to weather timescale
atmospheric pressure fluctuations (e.g., the timescales sug-
gested in Fig. 2 of Woodworth et al., 2019). Still, the IBE is
essential since, for many gauge stations, week 1 IFS refore-
casts only have more skill than persistence when the IBE cor-
rection is applied. The regional dependence of IBE-related
skill improvement is at least somewhat consistent with the
idea that the IBE is more important at higher latitudes (Chel-
ton and Davis, 1982), particularly in the Gulf of Alaska and
the northern portion of the East Coast (Wunsch and Stammer,
1997; Ponte, 2006). However, it is likely that the geograph-
ical dependence of MSLP reforecast skill itself also plays a
role. For example, the IFS at weeks 3–6 tends to have higher
MSLP skill for the East Coast and the Aleutian Islands than
for the West Coast and mainland Alaska (Albers and New-
man, 2019; see their Figs. 1 and S2). Likewise, while the
importance of the IBE seems to monotonically increase from
south to north along the East Coast (Fig. 4), the middle of the
West Coast appears to benefit more from including the IBE
than do the northernmost West Coast gauge stations (Fig. 2).
Overall, the skill improvement we find with a post-processed
IBE correction suggests that future forecast model develop-
ment would benefit from the explicit inclusion of the IBE.

The relatively low N̂TR reforecast skill for many regions
suggests that usable NTR forecast guidance may benefit from
identifying “forecasts of opportunity”; that is, when predic-
tions are expected to have skill at the time of forecast is-
suance (e.g., Albers and Newman, 2019; Lang et al., 2020;
Mariotti et al., 2020; and references therein). For example,
when the MJO, ENSO, or the stratosphere generates more
predictable oceanic waves or teleconnections in sea level
pressure and surface winds (Barnston et al., 2019; DelSole
et al., 2017; Kim et al., 2018; Tripathi et al., 2015; Vi-
tart and Molteni, 2010; Albers and Newman, 2021) coastal
N̂TR anomalies may also become more predictable, support-
ing more confident guidance for coastal communities and
stakeholders. For the southern and central portion of Cali-
fornia, the relatively high reforecast skill likely can be an-
ticipated as a consequence of coastal Kelvin waves and re-
mote wind variability from coupled modes of variability in-
cluding ENSO (Menéndez and Woodworth, 2010; Arcodia
et al., 2024; Amaya et al., 2022). For the East Coast, iden-
tifying predictable Gulf Stream subseasonal anomalies may

lead to identifying times of higher N̂TR reforecast skill from
Florida through the Gulf Stream separation point near Cape
Hatteras, since Gulf Stream variability and coastal SLAs are
known to be correlated (Ezer et al., 2013; Ezer, 2016; Chi
et al., 2023). In contrast, the increase in coastal reforecast
skill further north along the New England portion of the coast
may be associated with the NAO, whose skill on subseasonal
timescales can be anticipated from prior stratospheric and
tropical conditions (e.g., Albers and Newman, 2021; and ref-
erences therein), since the NAO has a stronger influence fur-
ther north in New England versus the mid-Atlantic (Hurrell
et al., 2003; Visbeck et al., 2003). Our study will form the
basis for future work that uses dynamical models to better
predict these subseasonal forecasts of opportunity.

Data availability. The data used in this study are avail-
able from the following locations: GLORYS (https:
//data.marine.copernicus.eu/product/GLOBAL_MULTIYEAR_
PHY_001_030/description, last access: 30 January 2024, Lel-
louche et al., 2021), ECMWF IFS and CNRM reforecasts
(https://apps.ecmwf.int/datasets/data/s2s/levtype=sfc/type=cf/,
last access: 13 March 2024, Voldoire et al., 2019; Vitart et al.,
2017 ), VLM (https://oceanservice.noaa.gov/hazards/sealevelrise/
Sea_Level_Rise_Datasets_2022.zip, NOAA National Ocean
Service, 2021; Sweet et al., 2022), and NOAA tide gauges
(https://api.tidesandcurrents.noaa.gov/mdapi/prod/, NOAA Na-
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