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Abstract. Forecasting seasonal sea levels along many coasts
remains challenging, with generally lower skills than fore-
casts for the open oceans. We investigate the influence of
ocean dynamics on forecasting monthly sea level anomalies
for the United States Gulf Coast and East Coast using the Es-
timating Circulation and Climate of the Ocean (ECCO) sys-
tem, which is initialized monthly from 1992 through 2017
and runs forward for 12 months under climatological at-
mospheric forcing. This approach, which we refer to as an
ocean dynamic persistence forecast, demonstrates improved
skill compared to both observed damped persistence and the
ECMWF SEASS climate forecast system when evaluated
against observations. At a lead of 4 months, dynamic per-
sistence has the highest anomaly correlation coefficients at
22 out of 39 coastal locations (mostly south of Cape Hat-
teras). However, improvement in root mean square error is
minimal, possibly due to reduced variability in ECCO as-
sociated with its climatology forcing and coarse resolution.
This study suggests that dynamic persistence offers the po-
tential to improve sea level forecasts beyond the capabilities
of damped persistence and a state-of-the-art climate model.

1 Introduction

Forecasting monthly changes in coastal sea levels is chal-
lenging, especially along the United States (US) Gulf Coast
and East Coast, where climate models have yet to demon-
strate skill at seasonal lead times (Long et al., 2021, 2025).
In the open ocean, using global climate models to forecast
sea level variability has shown promising results (Widlan-
sky et al., 2023; Balmaseda et al., 2024), particularly in
the tropical Pacific where predictions of monthly sea level
anomalies are routinely provided to island communities in
the form of enhanced high-tide outlooks (Widlansky et al.,
2017). Climate models such as the fifth-generation Seasonal
Forecasting System (SEASS) from the European Centre for
Medium-Range Weather Forecasts (ECMWF) are also skill-
ful for sea surface height (SSH) variability in much of the
tropical and subtropical Atlantic Ocean (Balmaseda et al.,
2024), although no sea level prediction products utilizing this
skill in the open-ocean Atlantic have been developed for the
coastal US.

The main reason why climate model forecasts of SSH in
the Atlantic Ocean are not used to improve seasonal predic-
tions of high-tide flooding, such as NOAA’s monthly out-
look, is because the state-of-the-art forecast models are not
skillful at Gulf Coast and East Coast water level gauge loca-
tions (Long et al., 2021; Widlansky et al., 2023; Balmaseda
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et al., 2024). Consider Charleston, South Carolina, where the
anomaly correlation coefficient (ACC) at seasonal lead times
(e.g., the outlook 4 months in the future, which we call the
lead-4 month forecast) is nearly zero if utilizing SSH from
SEASS or any other climate model so far assessed (Long et
al., 2025). For coastal sea levels at such locations, seasonal
forecast skill is perhaps limited by inaccurate initializations
of the climate models (Widlansky et al., 2023; Feng et al.,
2024), simulation biases in the coupled atmosphere—ocean
system (Meehl et al., 2021; Roberts et al., 2021), and low
predictability of the wind stress anomalies (Newman et al.,
2003; Obarein et al., 2023).

Since climate models have yet to demonstrate skillful sea-
sonal sea level forecasts for the Gulf Coast and East Coast,
NOAA currently relies on statistical forecasts of the monthly
anomalies (i.e., the autocorrelation damping timescale of wa-
ter level observations; referred to as a damped persistence
forecast), combined with long-term trends and tide predic-
tions, to provide information for their monthly high-tide out-
looks (Dusek et al., 2022). Unfortunately, including damped
persistence in the NOAA outlook minimally increases skill
beyond a climatology-only model for most locations on the
Gulf Coast and East Coast because the statistical persistence
of monthly sea level anomalies dampens to nearly zero by
the lead-4 month, especially between Key West, Florida, and
Cape Hatteras, North Carolina, where the autocorrelation de-
cay is fastest (Dusek et al., 2022).

The apparent lack of skillful seasonal sea level fore-
casts for the Gulf Coast and East Coast contrasts with
what we could expect based on the relatively slowly evolv-
ing ocean, which provides sources of predictability on sea-
sonal and longer timescales (e.g., Hasselmann, 1976; Deser
et al.,, 2003). The persistence of oceanic conditions, due
to the ocean’s high inertia of thermal and momentum en-
ergy, or so-called ocean memory (e.g., Frankignoul and Has-
selmann, 1977; Shi et al., 2022), allows sea level anoma-
lies to be tracked in the open ocean for months (e.g.,
Chelton and Schlax, 1996). Slow ocean dynamics, such as
westward-propagating Rossby waves, sometimes carry sea
level anomalies across the Atlantic, which project onto the
coastal sea level variability, especially south of Cape Hatteras
(Minobe et al., 2017; Calafat et al., 2018; Dangendorf et al.,
2023; Wang et al., 2024). In addition, remote buoyancy forc-
ing from high latitudes could influence sea levels along the
East Coast through oceanic advections and coastal-trapped
waves (Frederikse et al., 2017; Wang et al., 2022; Zhu et al.,
2024). Considering these well-established physical processes
and the availability of reliable initial conditions in this region
from ocean reanalyses (Feng et al., 2024), it may be possible
to achieve more skillful seasonal sea level forecasts for the
East Coast. However, certain aspects of the coastal environ-
ment, such as the highly variable nature of nearshore winds
(Lee et al., 2023), are likely to complicate efforts to skillfully
forecast the sea level variability, as these winds can disrupt
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otherwise predictable oceanic conditions and influence local
sea level responses.

One opportunity for improving sea level forecasts is to
isolate oceanic information from atmospheric variability, the
latter of which is much less predictable at leads beyond a cou-
ple of weeks (e.g., Hasselmann, 1976; Newman et al., 2003),
then let the ocean evolve according to its internal dynamics.
Using an adjoint sensitivity analysis derived from the Esti-
mating Circulation and Climate of the Ocean (ECCO) model,
Frederikse et al. (2022) evaluated a hybrid dynamical fore-
casting method consisting of atmospheric forcing from either
a climate model forecast (CCSM4) participating in the North
American Multi-Model Ensemble or the mean annual cy-
cle (i.e., climatology). They referred to the latter forcing ap-
proach as “ocean dynamic persistence” and applied it to fore-
casting sea levels at one pilot location on the Southeast Coast
(Charleston). At the lead-4 month, their study showed that
both sets of retrospective forecasts had higher ACC values
(and lower root mean square error; RMSE) than the damped
persistence forecast at the Charleston water level gauge, with
the dynamic persistence approach performing best (see their
Fig. 6).

Given the promising result at Charleston in Frederikse et
al. (2022), we aim to test the opportunity for expanding im-
provement to other parts of the Gulf Coast and East Coast us-
ing the dynamic persistence approach. Different from Fred-
erikse et al. (2022), where the sea level forecasts rely on a
pre-computed sea level sensitivity to atmospheric forcing to
represent ocean dynamical responses, our investigation uti-
lizes a set of retrospective forecasts produced with an ini-
tialized version of the ECCO model that runs forward for
12 months under climatological atmospheric conditions. This
configuration allows us to evaluate the potential of ocean dy-
namic persistence in forecasting sea level anomalies every-
where along the coast at the model’s resolution (details about
the model and forecasting method are described in Sect. 2).
We will compare the performance of the ECCO dynamic per-
sistence model with that of the observed damped persistence
of sea levels as well as the SSH forecast from the SEASS
climate model. Through this assessment, we seek to address
current limitations in skillfully forecasting coastal sea levels
by exploring the potential of ocean dynamic persistence.

2 Data and methods

This study utilizes sea level observations from NOAA’s Na-
tional Water Level Observation Network as well as vari-
ous satellite altimetry missions to assess the performance
of different seasonal forecasting methods. For water level
gauges, we obtained hourly sea level data from NOAA’s
Center for Operational Oceanographic Products and Ser-
vices (CO-OPS) for 39 stations along the Gulf Coast and
East Coast (Fig. 1), consistent with the locations used in
Feng et al. (2024) to assess coastal sea level variability
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Figure 1. Study domain and water level gauge locations. The
Northeast Coast extends from Eastport, ME (8410140), to Ore-
gon Inlet Marina, NC (8652587); the Southeast Coast extends from
Beaufort, NC (8656483) to Virginia Key, FL (8723214); and the
Gulf Coast extends from Vaca Key, FL (8723970), to Port Isabel,
TX (8779770). The seven-digit numbers following the location
names denote the NOAA station IDs of the water level gauges.

in ocean reanalyses. The hourly time series are averaged
to daily data after removing the tide components with the
Unified Tidal Analysis and Prediction functions in MAT-
LAB (UTide). Since the present study focuses on the dy-
namic sea level forecast, the local inverse barometer (IB) ef-
fect is removed from the observations using sea level pres-
sures from the ERAS reanalysis (Hersbach et al., 2023). For
altimetry, we obtained gridded absolute dynamic topogra-
phy level 4 data from the Copernicus Marine and Environ-
ment Monitoring Service (CMEMS), which have a spatial
resolution of 0.25° x 0.25° and daily temporal resolution.
A dynamic atmospheric correction has been applied to the
CMEMS product so that there is no IB effect. We performed
monthly averaging of both observations (i.e., the daily water
levels and altimetry). These monthly sea level observations
cover the overlapping period of the retrospective forecasts
assessed here, which begin in 1993.

Observations from water level gauges and altimetry are
used in the damped persistence forecasts assessed here. In
the damped persistence model, each forecast is generated us-
ing the previous month’s observations to predict the target
month’s sea level anomalies. The damping timescale is de-
termined from the observed rate of how sea level anomalies
decay to zero. We refer to the prediction for the month after
the observation as the lead-1 month forecast. Note that the
dynamical models considered here are initialized on the first
day of each month, and we refer to the mean output during
the first month of simulation as the lead-1 month forecast.

The dynamic persistence forecasts are generated by
NASA’s Jet Propulsion Laboratory (JPL) using the ECCO
system. The initial conditions of the forecast are derived from
the observation-constrained ocean state estimate from ECCO
Version 4 Release 4 (ECCO V4r4; Forget et al., 2015), which
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is based on the global MITgecm with a 1° nominal resolu-
tion. The ocean state estimate is obtained by optimizing a
set of control variables (surface forcing, mixing parameters,
and initial state) in an iterative process such that the forward
model solution is consistent with a diverse set of satellite and
in situ ocean observations within the uncertainty estimates of
the observations (Forget et al., 2015). Despite its coarse res-
olution, ECCO V4r4 can reasonably reproduce coastal sea
level variability (Fig. 2). Along the Southeast Coast and Gulf
Coast, ECCO V4r4 shows comparable ACC and RMSE to
eddy-permitting ocean reanalyses such as ECMWEF’s Ocean
ReAnalysis System 5 (ORASS; Zuo et al., 2019). The atmo-
spheric state variables from the ECCO optimization are used
to force the ocean model, with surface fluxes of heat, mo-
mentum (wind stress), and fresh water being computed exter-
nally. For each month from January 1992 to December 2017,
the model is integrated forward in time for 12 months with
monthly climatological forcing to generate a set of 12-month
forecasts. This flux-forced model configuration allows us to
isolate the effect of ocean dynamics on the seasonal sea level
forecast, while excluding the potential biased atmosphere
forecast and ocean—atmosphere interactions. Because these
forward simulations use climatological seasonal forcing, any
interannual variations or monthly anomalies in the retrospec-
tive forecasts are due to the evolution of the initial ocean
state. Note that the dynamic persistence forecast is not an
ensemble forecast, meaning that there is a single forecast for
each target month at a specific lead time. We assessed the
monthly dynamic sea level output, which does not include
the IB effect.

The Operational Seasonal Forecast System (SEASS) at
ECMWEF is a fully coupled global climate model utilizing
the NEMO ocean component with a nominal horizontal res-
olution of 0.25° (Johnson et al., 2019). This model was ini-
tialized monthly from January 1993 to December 2023 using
ORASS. For forecasts initialized in February, May, August,
and November, SEASS provides a 13-month outlook with
15 ensemble members, while forecasts from other months
have a 7-month outlook with 25 ensemble members. We eval-
uate the ensemble mean forecast for the period overlapping
the ECCO dynamic persistence model (i.e., 1993-2017), al-
though the SEASS assessment is focused on when forecasts
are available from all 12 start months (i.e., lead times out to
7 months). SEASS excludes the IB effect.

We evaluated the seasonal forecast skills of the damped
persistence (observed), dynamic persistence (ECCO), and
climate forecast (SEAS5) models by comparing their
monthly sea level anomalies, nearest to the locations of water
level gauges, against such observations as well as altimetry
interpolated to the model grids. To correct for biases caused
by model drift (see Widlansky et al., 2017; Long et al., 2021),
the sea level anomaly forecasts from ECCO and SEASS were
calculated by removing the lead-time-dependent monthly cli-
matology of the retrospective epoch common to the fore-
cast models (i.e., 1993-2017). Linear trends for that period
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Figure 2. ACC and RMSE of monthly sea level anomalies from the ECCO state estimate and ORASS with water level gauge observations.

The ORASS assessment is modified from Feng et al. (2024).

were also removed from each forecast, which follows es-
tablished methods for avoiding the influence of long-term
changes on seasonal forecast skills (e.g., Widlansky et al.,
2017; Long et al., 2021; Balmaseda et al., 2024; Long et al.,
2025). Observed sea level anomalies were calculated rela-
tive to climatology based on the 1993-2017 period, with the
trend removed accordingly. Metrics of assessment include
standard deviation (SD), ACC, and RMSE, which are pre-
sented for each model as well as relative to the performance
of the damped persistence model. For the latter comparison,
we tested the significance of ACC differences at each loca-
tion using Fisher’s z-transformation method. We calculated
the z statistic based on the difference between the two trans-
formed z scores, and a two-tailed test at the 0.05 significance
level was applied against the null hypothesis that both models
have similar skill. The sample size was set to 294, which is
the number of target months available for each forecast lead
time.

3 Results

Seasonal forecasting skill according to the ACC metric is
shown in Fig. 3 across the three models: damped persis-
tence (observed), dynamic persistence (ECCO), and climate
forecast (SEASS). The sea level anomalies at lead-1 and
lead-4 months were evaluated against observations from wa-
ter level gauges and satellite altimetry. Results for loca-
tions of The Battery (New York; NY), Charleston (South
Carolina; SC), Virginia Key (Florida; FL), and Grand Isle
(Louisiana; LA) are shown to provide examples of the sea
level forecast verification for the respective parts of the
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coastal US (i.e., in the Northeast Coast, Southeast Coast, and
Gulf Coast; Fig. 1).

At the lead-1 month, damped persistence (using altimetry)
demonstrates fairly high ACC throughout most open-ocean
areas of the northwestern Atlantic and Gulf Coast regions
(i.e., ACC values exceed 0.5 almost everywhere); however,
ACC values are lower along the coast (Fig. 3a). For example,
the ACC of damped persistence (using water level gauges) is
0.32 at The Battery, 0.40 at Charleston, 0.39 at Virginia Key,
and 0.44 at Grand Isle. There are also some offshore areas
of relatively lower ACC values (and higher RMSE; Fig. 4),
where the monthly sea level variability is much greater than
at the coast (see Fig. 1 in Long et al., 2021).

Dynamic persistence exhibits similar ACC values com-
pared to damped persistence of altimetry and water level
gauges at lead-1 month for the coastal examples; however,
skill is somewhat lower in most of the open ocean (Fig. 3c).
The Loop Current region of the interior gulf and where the
Gulf Stream extends away from the coast (i.e., at about 35° N
in the Atlantic Ocean) are notable examples of where dy-
namic persistence ACC values are much lower than damped
persistence at the lead-1 month. The RMSE metric mostly
mirrors this result (i.e., higher errors in these energetic off-
shore areas; Fig. 4). In most other areas of the open ocean,
ACC values are higher and RMSE is lower for all models
relative to within the Loop Current/Gulf Stream system, al-
though the overall skill at the lead-1 month for dynamic per-
sistence is worse than damped persistence nearly everywhere
(considering the domain-averaged values listed in Figs. 3
and 4).
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Figure 3. Retrospective forecast skill (ACC) at lead-1 and lead-
4 months for the damped persistence (observed; a and b), dynamic
persistence (ECCO; ¢ and d), and climate forecast (SEASS; e and f)
models. Forecasts of monthly sea level anomalies are compared to
observations by altimetry (shading) and water level gauges (colored
circles on land) at four example locations (indicated by unfilled cir-
cles on the coastline). The domain-averaged ACC is shown in the
upper left of each panel.

The climate forecast model has similar overall ACC val-
ues at the lead-1 month (Fig. 3e) to dynamic persistence
(Fig. 3c). Retrospective forecasts from both models exhibit
relatively low ACC values in the Loop Current region and
the Gulf Stream extension (i.e., offshore of Cape Hatteras),
especially compared to damped persistence (Fig. 3a). The cli-
mate forecast performs particularly well for a broad area of
the subtropical Atlantic Ocean, where its ACC values equal
or beat dynamic persistence. The RMSE metric again mir-
rors the ACC result for the climate forecast (Fig. 4). For the
coastal locations, at the lead-1 month, ACC and RMSE val-
ues are similar among the three retrospective forecasts.

By the lead-4 month, each model shows less forecast
skill according to the ACC metric, both along the coast and
in most offshore areas (Fig. 3b, d and f). The decline in
skill compared to the lead-1 month forecasts is greatest for
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Figure 4. Same as Fig. 3, but for RMSE.

the damped persistence model. In particular, the domain-
averaged ACC for damped persistence has declined from
0.52 at the lead-1 month to 0.16 at the lead-4 month. Along
the coast, there is no evidence of damped persistence having
much skill at the lead-4 month, as the ACC is only 0.22 at
The Battery, 0.14 at both Charleston and Virginia Key, and
0.16 at Grand Isle. In the offshore regions, ACC values are
also generally less than 0.2, except for a region of noticeably
higher values around Cuba and the Bahamas. RMSE is also
low in the coastal regions, and the changes from lead-1 to
lead-4 month are small (Fig. 4).

Dynamic persistence is the best-performing model at the
lead-4 month, according to the ACC metric, particularly
along the coast (Fig. 3d). Consider the forecasts at Charleston
where the lead-4 month ACC value for dynamic persistence
is 0.36, compared to only 0.14 and 0.08 for damped persis-
tence and the climate forecast, respectively. However, RMSE
assessments at the lead-4 month show only modest improve-
ments for dynamic persistence compared to the other models
(e.g., at Charleston, the RMSE is 6.3 cm for dynamic persis-
tence, which is not much better than the 6.6 cm for damped
persistence and 7.3 cm for SEASS; Fig. 4). Notably, the cli-
mate forecast has lower ACC values along the coast at this
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Figure 5. Differences of retrospective forecast skill (ACC and RMSE) at the lead-1 month for the dynamic persistence (ECCO; a and b)
and climate forecast (SEASS; ¢ and d) models compared to damped persistence of monthly sea level anomaly observations by water level
gauges (colored circles). Skill of the damped persistence model is subtracted from that of the other models at each location. Orange shading
indicates more skill (higher ACC and lower RMSE) compared to the damped persistence model. Circles with thick black outlines denote

statistically significant ACC differences at the 0.05 significance level.

lead (Fig. 3f) compared to dynamic persistence, although the
offshore performance of the former equals or beats the other
models.

Using damped persistence as a benchmark of seasonal
forecasting skill (or lack thereof), Figs. 5 and 6 show lead-1
and lead-4 month ACC and RMSE differences, respectively,
for the dynamic persistence and climate forecast models. At
the lead-1 month, dynamic persistence performs worse than
damped persistence along the Northeast Coast, while no sig-
nificant differences are found along the Southeast Coast and
Gulf Coast (Fig. 5a and b). However, by the lead-4 month,
the dynamic persistence model has better forecast skill, with
significantly higher ACC compared to damped persistence
for most locations along the Southeast Coast (Fig. 6a). The
region with higher ACC for the dynamic persistence model
extends to the northeastern Gulf Coast, though the difference
there is not statistically significant. However, the spatial pat-
tern of skill differences shows regional coherence, suggest-
ing widespread skill improvements south of Cape Hatteras

Ocean Sci., 21, 1663-1676, 2025

in the dynamic persistence model, even if not passing a sig-
nificance test at each specific location. Elsewhere along the
coast (i.e., in the northeast and western Gulf Coast), the lead-
4 month forecast performance is similar between dynamic
persistence and damped persistence. According to the RMSE
metric, skill differences between these models at the lead-
4 month are minor nearly everywhere (i.e., differences of less
than 1 cm; Fig. 6b).

The climate forecast model demonstrates utility shortly
after its initialization at The Battery and several neighbor-
ing locations in the northeast, with significantly higher ACC
than damped persistence at the lead-1 month (Fig. 5c and d).
However, even at that early lead time, its performance is
worse than damped persistence along the northeastern Gulf
Coast according to the ACC and RMSE metrics, as well as
the Southeast Coast according to only RMSE. At the lead-
4 month, there is no widespread evidence that the climate
forecast performs better than the other models along the
Northeast Coast or along the Gulf Coast and Southeast Coast

https://doi.org/10.5194/0s-21-1663-2025
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Figure 6. Same as Fig. 5, but for the lead-4 month.

(i.e., its ACC and RMSE values are similar to or worse than
damped persistence at almost all coastal locations considered
here, although the climate forecast has slightly higher ACC
at three locations in the Chesapeake Bay area to the north of
Cape Hatteras; Fig. 6¢ and d).

Changes in forecast skill as a function of lead time are
shown in Fig. 7 at the example locations for each of the mod-
els (the climate forecast ends at the lead-7 month, whereas
damped persistence and dynamic persistence extend another
5 months). According to the ACC and RMSE metrics, the
climate forecast performs best at only one location (The Bat-
tery), but only for the first month (Fig. 7a and b). The cli-
mate forecast skill decays faster than the other models at
all four locations (i.e., the ACC decreases and the RMSE
increases). Whereas the skill at the lead-1 month for dy-
namic persistence is like the climate forecast (and damped
persistence), the dynamic persistence skill has a slower de-
cay with increasing lead, especially according to the ACC
metric (its RMSE worsens at a similar rate as damped persis-
tence). Based on ACC values, dynamic persistence becomes
the best-performing model by the lead-5 month at The Bat-
tery (Fig. 7a), the lead-2 month at Charleston (Fig. 7c) as
well as Virginia Key (Fig. 7e), and the lead-3 month at Grand
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Isle (Fig. 7g), with damped persistence being the similar-
or better-performing model at earlier leads. RMSE values
are similar for damped persistence and dynamic persistence,
with both models generally having smaller errors than the
climate forecast (Fig. 7b, d, f, and h).

Differences in initial conditions seem to be associated with
forecast skill variations between the dynamic persistence and
climate forecast models, at least at the earliest lead time.
Model initial conditions are from the ECCO state estimate
for dynamic persistence and ORASS for the climate forecast
(ACC and RMSE metrics for the respective state estimate
and reanalysis are marked at the lead-0 month in Fig. 7). At
the lead-1 month, there is evidence of the model with higher
forecast skill at a particular location also having the bet-
ter initial condition for that area (e.g., at The Battery where
ORASS and SEASS perform better than the ECCO state es-
timate and dynamic persistence). We note again though that
the SEASS advantage at The Battery disappears by the lead-
2 month. At the other example locations, the ECCO state es-
timate performs better than the ORASS reanalysis, and the
skill for dynamic persistence is likewise better (higher ACC)
than SEASS at the lead-1 month as well as all longer leads.
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Figure 7. Retrospective forecast skill (ACC and RMSE) as a
function of lead time at four example locations (labeled in
Fig. la). Markers (see legend) correspond to the damped per-
sistence (observed), dynamic persistence (ECCO), and climate
forecast (SEASS5) models. Also shown are the state estimate
(ECCO V4r4) and reanalysis (ORASS), which are the initial con-
ditions corresponding to the latter two forecasts. Monthly sea level
anomalies from each product are compared to observations by wa-
ter level gauges. Gray shading designates less skill than the damped
persistence model at a particular lead month (lower ACC and
higher RMSE).

To remove the effect of any biased initial conditions from
the evaluation of using ocean dynamic persistence to fore-
cast coastal sea levels, we compared the dynamic persistence
skill to that of damped persistence of the ECCO state esti-
mate instead of observations (Fig. 8). Here, these forecasts
are evaluated against the ECCO state estimate. The advan-
tage of dynamic persistence compared to damped persistence
is much clearer according to this comparison. Previously, we
evaluated forecasts compared to damped persistence of ob-
servations and noted that the dynamic persistence model per-
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formed worst at the lead-1 month along the Northeast Coast
(Fig. 5). Comparing dynamic persistence to damped persis-
tence of ECCO itself demonstrates that there is in fact a bene-
fit of including ocean dynamics, even for the Northeast Coast
at the lead-1 month (Fig. 8a and b). At the lead-4 month,
compared to the damped persistence of ECCO, dynamic per-
sistence has higher ACC values and similar or better RMSE
nearly everywhere on the East Coast (Fig. 8c and d). The ben-
efit of dynamic persistence is less clear along the Gulf Coast,
which possibly points to a limitation of ECCO’s coarse res-
olution in allowing oceanic signals to propagate into the gulf
from the Atlantic or Caribbean.

Despite dynamic persistence having the best lead-4 month
forecast skill at Charleston, Virginia Key, and Grand Isle,
along with most other locations south of Cape Hatteras, we
noticed a lack of variability in this model’s predicted monthly
sea level anomalies. Figures 9 and 10 show the time se-
ries of forecasts from each model at the lead-1 and lead-
4 months, respectively, compared with water level gauge ob-
servations. None of the models depict the observed amounts
of coastal sea level variability at either lead. For dynamic
persistence at the lead-4 month, the SD values are 2.5 cm
at The Battery (observed: 5.7 cm), 1.4 cm at Charleston (ob-
served: 6.7cm), 1.2cm at Virginia Key (observed: 5.0 cm),
and 1.6cm at Grand Isle (observed: 5.4 cm). Considering
Charleston again for further comparison, variability is only
somewhat larger for dynamic persistence at the lead-1 month
(2.3 cm); damped persistence similarly suffers from dimin-
ished variability, especially by the lead-4 month (0.9 cm;
Fig. 10b), and the climate forecast variability is the largest
of the models for both the lead-1 and lead-4 months (4.7 and
3.6 cm, respectively). The larger variability of the climate
forecast does not translate to better skill at the lead-4 month
because that model deviates the most from observations, as
evidenced by it having the lowest ACC and highest RMSE
values for Charleston (0.08 and 7.3 cm; Fig. 10b), as well as
almost everywhere else on the Gulf Coast and East Coast
(Fig. 6¢c and d). Potential causes of the weak variability
noticed in dynamic persistence forecasts are discussed in
Sect. 4, along with a mention about how this may concern
the usability of such predictions.

4 Summary and discussion

This study indicates the potential of using ocean dynamic
persistence to improve seasonal sea level forecasts for the
US Gulf Coast and East Coast, particularly south of Cape
Hatteras. By assessing initialized ocean conditions from the
ECCO framework that were run forward dynamically under
climatological atmospheric conditions, we showed that dy-
namic persistence achieves higher forecast skill overall com-
pared to damped persistence. Dynamic persistence also per-
forms similar to or better than the SEASS climate forecast
nearly everywhere that we assessed. Notably, the dynamic
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Figure 8. Difference in skill (ACC and RMSE) between dynamic persistence (ECCO) and damped persistence (ECCO) at lead-1 (a, b)
and lead-4 (c, d) months, with each product being compared to monthly sea level anomalies derived from the ECCO state estimate. Orange
shading indicates more skill (higher ACC and lower RMSE) for dynamic persistence (ECCO) compared to damped persistence (ECCO).
Circles with thick black outlines denote statistically significant ACC differences at the 0.05 significance level. Note that smaller ACC
differences are more likely to pass the significance test in (a) because the respective ACC values of both models are typically closer to 1 at

the shorter lead time (e.g., at Virginia Key).

persistence model outperforms the other models at the lead-
4 month, with higher ACC values at most locations along
the Southeast Coast and Gulf Coast (Fig. 6a). Despite show-
ing minimal improvement in RMSE, dynamic persistence ex-
hibits similar or better skill according to this metric at longer
lead times than damped persistence (e.g., at the lead-4 month;
Fig. 6b), and both of those models perform better than the
much more sophisticated SEASS model (Fig. 6d).

Better performance of dynamic persistence compared to
damped persistence can be attributed to the ocean’s ability to
retain the memory of initial conditions, particularly through
its high thermal inertia as well as processes such as Rossby
waves and horizontal advection, which can influence sea lev-
els over time. This is especially relevant along the Southeast
Coast, where delayed oceanic responses to remote forcings
are an opportunity to improve forecast skills (Calafat et al.,

https://doi.org/10.5194/0s-21-1663-2025

2018; Frederikse et al., 2022). However, the dynamic persis-
tence forecast only captures seasonally predicable forcings
on the ocean, thereby simulating how oceanic initial condi-
tions evolve according to a climatological atmosphere. As a
result, sea level variability predicted by dynamic persistence
tends to be much weaker compared to what is observed in the
real ocean forced by actual atmospheric conditions. The cli-
matological atmospheric forcing used in the dynamic persis-
tence forecast tends to restore the ocean toward a seasonally
steady state, while friction and mixing gradually dissipate ex-
isting sea level anomalies, resulting in reduced sea level vari-
ability over time (Sérazin et al., 2014). ECCO’s coarse res-
olution (nominally 1°) may also contribute to its weak vari-
ability at all leads, and there is emerging evidence that much
higher resolution (i.e., finer than 0.25°) is probably necessary
to resolve sea levels along the Gulf Coast and East Coast well

Ocean Sci., 21, 1663-1676, 2025
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Figure 9. Time series of monthly sea level anomalies according to observations from water level gauges and the lead-1 month retrospective
forecasts from the damped persistence (observed), dynamic persistence (ECCO), and climate forecast (SEASS) models. For each example
location (labeled in Fig. 1a), the SD (cm), ACC, and RMSE (cm) metrics are indicated for the models and observations (SD only).

(Feng et al., 2024; Little et al., 2024). Our attempt to scale the
dynamic persistence forecast by its SD did not yield better
skill according to the RMSE metric.

Differences between dynamic persistence and damped
persistence are less pronounced along the Northeast Coast,
which is likely due to the relatively poor initial conditions
of the former model, as evidenced by the rather low ACC
at the lead-0 month for ECCO V4r4 (Fig. 7a). Interestingly,
when we compare the dynamic persistence forecast to an ex-
periment using damped persistence of the ECCO state es-
timate (instead of observations), much higher skills for dy-
namic persistence are evident along the Northeast Coast at
the lead-1 and lead-4 months (Fig. 8), which points to an op-
portunity to improve initial conditions as a way toward bet-
ter forecasts. Yet even at The Battery location on the North-
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east Coast, dynamic persistence exhibits clearly higher ACC
values after the lead-4 month compared to the other models
(Fig. 7a), which could be due to the propagation of remote
signals improving the skill of dynamic persistence over time
(at least compared to damped persistence).

While for short lead times the SEASS climate forecast
has ACC values comparable with the other models (i.e., at
the lead-1 month; Fig. 3e) and for at least several months
longer in some open-ocean regions (Fig. 3f), its perfor-
mance declines rapidly at the coastal locations considered
here. The mediocre initial conditions from ORASS near the
coast (Fig. 2; see also Feng et al., 2024), coupled with the
limited predictability of atmospheric variability at seasonal
timescales (Lee et al., 2023; Newman et al., 2003), may con-
tribute to SEAS5’s lower skill compared to damped persis-
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Figure 10. Same as Fig. 9, but for the lead-4 month.

tence and dynamic persistence at the lead-4 month for the
Gulf Coast and East Coast (e.g., Fig. 6). The upcoming re-
lease of SEAS6, which incorporates data assimilation im-
provements in coastal areas from the ORAS6 reanalysis (Zuo
et al., 2024), may address limitations relating to initial con-
ditions. Plans are also underway to further quantify the role
of the ocean observing system in the performance of cur-
rent subseasonal to seasonal forecasting systems (Fujii et al.,
2023), which should help to identify aspects of the coastal
environment that are most important to assimilate well. For
now, this study suggests that dynamic persistence is an al-
ternative and probably better-performing option, compared
to the SEASS climate model example, for sea level forecast-
ing on some coasts like the regions we assessed. Despite the
coarser resolution of the ECCO framework, dynamic persis-
tence seems to capture essential sources of ocean predictabil-
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ity that SEASS struggles with, particularly along the South-
east Coast.

Although dynamic persistence shows promise, applica-
tion in its current form for operational forecasting such as
NOAA'’s monthly high-tide flooding outlook is hindered by
its weak variability, which manifests in an inability to predict
extreme sea level events. Furthermore, it remains to be tested
whether implementing sea level anomalies from the dynamic
persistence forecast will improve the high-tide flooding out-
look. It is perceivable that concerns about the utility of dy-
namic persistence in predicting high-tide flooding could be
mitigated by improving the model, such as through better
initial conditions (i.e., data assimilation improvements) and
more realistic physics (i.e., increasing the resolution). Fore-
cast models could also be made more accurate for predicting
the coastal sea levels by including the IB effect (Albers et
al., 2025). Nonetheless, utilizing the dynamic persistence of
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ECCO, or probably other ocean models having realistic ini-
tial conditions, would set a higher benchmark than damped
persistence and offer a more robust foundation for evaluat-
ing the performance of future seasonal forecasting systems.
We hope this study encourages further evaluation of dynamic
persistence as a new baseline for improving seasonal fore-
casts of sea levels and potentially other aspects of ocean vari-
ability.
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