

Supplement of

On mode water formation and erosion in the Arabian Sea: forcing mechanisms, regionality, and seasonality

Estel Font et al.

Correspondence to: Estel Font (estel.font.felez@gu.se)

The copyright of individual parts of the supplement might differ from the article licence.

Content: Supplementary Figures S1-S5:

- Figure S1: Sensitivity of the GOTM 1D model MLD to different water types
- Figure S2: Longitudinal and interannual variability of the buoyancy flux and wind stress
- Figure S3: Mixed layer depth comparison between observation and 1D GOTM
- Figure S4: Mixed layer depth comparison between observation and 3D MOM4p1-TOPAZ
- Figure S5: Vertical integration of the weekly climatology of N² and its haline, and thermal components for observations, 1D, and 3D models.

Figure S1. (a) Chlorophyll concentration summer climatology anomaly. Boxes mark the Arabian Sea, the Northern Arabian Sea and the Southern Arabian Sea regions used in panels (b-m). (b-m) Sensitivity of the modelled MLD by the GOTM 1D model to Water types. MLD annual time-series for Argo (black) and MLD output by GOTM using 5 different water types between (i, ia, ib, ii, iii) for the whole AS (b), NAS (f), and SAS (g). (h-i-j) Full-year bias distribution for each of the water types compared to the observations per region. (k-l-m) It is the same as (h-i-j) but for only data in weeks 25-30 (summer onset). Water type ii is best at representing shallow MLD. In the SAS during summer less turbid waters (type i) are best at reproducing the MLD.

Figure S2. Latitudinal hövmollers of (a) buoyancy flux, B; (b) standard deviation of the buoyancy flux; (c) thermal and (d) haline component of the buoyancy flux; (e) wind stress and (f) standard deviation of wind stress. In (b) contours of B=0 (solid) and B=0 for ±1std (dotted and dashed). In (f) contours of 0.1 wind stress (solid) and 0.1 ± 1 std (dotted and dashed).

Figure S3. Mixed layer depth comparison between observation and 1D GOTM. a-d) Scatter of the observed MLD vs. the 1D modeled MLD per season. e) Scatter of the 1D model vertical resolution (regular grid of 2m (delta pressure) in the upper 200m). f-i) Histograms of the difference between the observed MLD and the 1D modeled MLD. The mean and median of the difference per season are respectively: DJF: -21 ± 30 m, -19 m; MAM -9 ± 26 m, -5 m; JJA -3 ± 28 m, -3 m; and SON -6 ± 25 m, -5 m.

Figure S4. Mixed layer depth comparison between observation and 3D MOM4p1-TOPAZ a-d) Scatter of the observed MLD vs. the 3D modeled MLD per season. e) Scatter of the 3D model vertical resolution. Grid size is represented by delta pressure variable. f-i) Histograms of the difference between the observed MLD and the 3D modeled MLD. The mean and median of the difference per season are respectively: DJF: -20 ± 24 m, -17 m; MAM: -9 ± 16 m, -8 m; JJA: -10 ± 20 m, -8 m; and SON: -11 ± 17 m, -11 m.

Figure S5. Vertical integration of the weekly climatology of N^2 and its haline, and thermal components for observations, 1D, and 3D models. The vertical integral of stratification (N^2 - solid), the thermal component of the stratification (N^2_T - dashed), and the haline component of the stratification (N^2_s - dotted) for the observations (first column), 1D model (second column) and 3D model (third column). Each row corresponds to the locations of the different case studies in Figure 8.