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Abstract. Three biogeochemical glider surveys in the Ross
Sea between 2010 and 2023 were combined and analysed
to assess production–export stock and rate dynamics. As the
most productive of any Antarctic continental shelf, the Ross
Sea is a site of substantial physical and biogeochemical inter-
est. While this region and its annual bloom have been charac-
terised for decades, logistical constraints, such as ship time
and sea ice cover, have prevented a comprehensive under-
standing of this region over long (> 1–2 months) timescales
and at high spatiotemporal resolution. Here, we use high-
resolution datasets from autonomous gliders in mass balance
equations to calculate short-term (days to weeks) net commu-
nity production via oxygen concentration, change in particu-
late organic carbon (POC) concentration over time, and POC
export potential during the period of peak primary produc-
tion in the region (November–February). Our results show
an overall decoupling of net community production (NCP),
driven by biologic changes in oxygen, from overall biomass
concentration as well as changes in POC over time. NCP
and carbon change vary between seasons and appear related
to changes in ice concentration and stratification. Substan-
tial spatiotemporal variability exists in all datasets, but high-
resolution sampling reveals short-term variations that are
likely masked in other studies. Our study reinforces the need
for high-resolution sampling and supports previous classifi-
cations of the Ross Sea as a high-productivity (average NCP
range−0.7 to 0.2 g C m−2 d−1), low-export (average changes
in POC over time range−0.1 to 0.1 g C m−2 d−1) system dur-
ing the productive austral spring and sheds additional light on
the mechanisms controlling these processes.

1 Introduction

The balance between organic carbon production and organic
carbon export from the surface ocean has been intensely in-
vestigated in recent years because of the key role it plays
in regulating global climate (Siegel et al., 2016; Henson et
al., 2024). While long-term monitoring programmes have al-
lowed certain oceanic regions to be well characterised (Karl
and Church, 2014; Steinberg et al., 2001; Hartman et al.,
2021), uncertainties surrounding these processes in certain
regions, such as the Southern Ocean, have limited our global
understanding of this balance. However, the proliferation of
autonomous assets, such as autonomous underwater vehi-
cles (AUVs), profiling floats, and gliders, equipped with bio-
geochemical sensors, have allowed more and new measure-
ments of carbon production and export processes at very high
spatial and temporal resolutions, in places where sampling
is challenging (Kaufman et al., 2014; Alkire et al., 2014).
Despite these substantial advances in recent years, some re-
gions still lack a long history of high-resolution observations,
making it difficult to differentiate between general trends or
anomalous events in a system.

One of these regions is the Ross Sea, which is a key re-
gion for organic and inorganic carbon cycling but contin-
ues to lack a complete, long-term understanding of biogeo-
chemical dynamics because of logistical constraints. Ship-
board and modelled estimates of primary production (Smith
et al., 2000, 2013; Schine et al., 2015), carbon concentra-
tions (Sweeney et al., 2000), and carbon export (Nelson et
al., 1996; Collier et al., 2000) have been conducted in the
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Ross Sea since the 1970s but have been limited to discrete
sampling in select locations. Moreover, substantial cloudi-
ness in the region limits ocean colour satellite retrievals in
the Ross Sea. Satellite bio-optical algorithms are derived pri-
marily from low-latitude and mid-latitude biogeochemical
properties (Hu et al., 2019), making satellite biogeochemi-
cal measurements from the Ross Sea both difficult and fre-
quently inaccurate because of the substantial differences be-
tween these properties in high-latitude versus low-latitude re-
gions (Chen et al., 2021).

Despite these limitations, the importance of the Ross Sea
in Southern Ocean carbon cycling is clear. The Southern
Ocean as a whole plays a disproportionately important role
in global carbon dynamics, accounting for 40 % of carbon
uptake (DeVries, 2014), and the Ross Sea is responsible for
28 % of that, despite only accounting for approximately 10 %
of the global ocean surface (Arrigo et al., 2008). An impor-
tant metric for evaluating the relationship between primary
production and carbon export is the total amount of carbon
that is converted to biomass after losses associated with au-
totrophic and heterotrophic respiration have been accounted
for; this is termed net community production (NCP). Un-
der steady-state conditions (i.e. carbon accumulation and loss
terms are balanced over long timescales), NCP can be related
to carbon export and is thus an important metric in evaluat-
ing production–export dynamics in oceanic systems (Cassar
et al., 2015).

The Ross Sea is characterised by pronounced seasonal cy-
cles dominated by a productive spring to summer season al-
ternating with a comparatively unproductive autumn to win-
ter season driven by heterotrophic processes. The produc-
tive period is dominated by a well-described, large and sus-
tained phytoplankton bloom dominated by two key groups:
colonial and solitary forms of the haptophytes Phaeocystis
antarctica and diatoms (Smith et al., 2014). This bloom has
been shown to reach substantial concentrations of biomass
with chlorophyll concentrations reaching anywhere from 6 to
> 40 µg L−1 (Smith et al., 2000, 2011; Portela et al., 2025).
Additionally, the region supports a substantial number of
higher trophic level organisms, including Adélie and emperor
penguins; orcas; Weddell, crabeater, and leopard seals; and
pelagic birds (Smith et al., 2014).

The Ross Sea consistently exhibits high rates of primary
production (Arrigo et al., 2008; Smith et al., 2014), but
the ultimate fate of that biogenic carbon remains uncertain
(Lo Monaco et al., 2005; Gruber et al., 2019). Along with the
North Atlantic (Frigstad et al., 2015; Hartman et al., 2010)
and upwelling regions (Demarcq, 2009), widespread phyto-
plankton blooms make the Southern Ocean continental shelf,
during the bloom period, one of the most productive regions
on the planet (Smith and Kaufman, 2018; Buesseler et al.,
2020). Despite this, some studies have found reduced carbon
transfer efficiencies relative to other regions on seasonal and
annual timescales (e.g. Southern Ocean flux transfer efficien-
cies ranging from 0.2 to 0.8; Buesseler et al., 2020). These

findings are supported by modelling studies, thus leading to
the classification of the Ross Sea as a high-production, low-
export system (Henson et al., 2019).

We assess high-resolution carbon production and export
dynamics in the Ross Sea from three independent glider de-
ployments during the austral spring/summer in 2010–2011,
2012–2013, and 2022–2023 and calculate biogeochemical
rates, including NCP, changes in particulate organic car-
bon (POC) over time ( ∂POC

∂t
), and carbon export poten-

tial (export∗POC). We also evaluate POC : chlorophyll ratios
(C :Chl) to assess how production–export dynamics have
changed through time and how differences between deploy-
ments relate to taxonomic controls on production and ex-
port. The measurements evaluated come from glider-based
dissolved oxygen, optical backscatter, and fluorescence data,
with the latter two converted to POC and chlorophyll concen-
trations, respectively. This study is the first to use consistent
methodology to compare high-resolution estimates of carbon
production and export processes from different years on the
Ross Sea continental shelf, providing further understanding
of the role the Ross Sea plays in Southern Ocean carbon dy-
namics.

2 Methods

2.1 Glider deployments

Three deployments of autonomous Seagliders (Eriksen et
al., 2001) equipped with biogeochemical sensors were com-
pleted in summer 2010–2011, 2012–2013, and 2022–2023
in the southwestern Ross Sea (Figs. 1, 2). Observational
periods coincided with the onset and the majority of the
annual spring phytoplankton bloom with gliders surveying
from 22 November to 20 January (2010–2011; Kaufman et
al., 2014; Queste et al., 2015), 31 November to 6 February
(2012–2013; Jones and Smith, 2017; Meyer et al., 2022a),
and 1 December to 19 January (2022–2023; Portela et al.,
2025). All gliders were deployed from the fast ice near Ross
Island (where calibration casts were not feasible) and recov-
ered from the RVIB Nathaniel B. Palmer. For all three de-
ployments, 93 %–95 % of all dives occurred within a 1° lati-
tude by 1° longitude box of each mean survey location. Glid-
ers were equipped with a Seabird CT sail (accuracy within
3.01× 10−4 S m−1, 0.001 °C, and 0.015 % for conductivity,
temperature, and pressure, respectively; https://seabird.com,
last access: 15 April 2025), an Aanderaa 4330F oxygen op-
tode (accuracy of ∼ 1.5 %; https://aanderaa.com, last access:
15 April 2025), and a WetLabs ECO Triplet Puck (0.2 %–
03 %; Salaun and Le Menn, 2023). Sensitivities for conduc-
tivity, temperature, pressure, oxygen, backscatter, and flu-
orescence were 4.0× 10−5 S m−1, 2.0× 10−4 °C, 0.001 %,
3.2 µg L−1, and 0.28 ppb per count, and 0.025 µg L−1, re-
spectively (https://seabird.com, https://aanderaa.com).
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Figure 1. Maps of glider tracks from the 2010–2011 (a), 2012–
2013 (b), and 2022–2023 (c) deployments overlaid onto average
sea ice concentrations from 1 December of each year. Sea ice data
come from the University of Bremen, and the inset map of Antarc-
tica comes from Bedmap2. The white region indicates land, and the
black dot indicates the location of Ross Island.

CTD calibration casts were conducted by scientists aboard
the RVIB Palmer in the near vicinity (< 400 m from the
glider’s location) coincident with glider recovery. Discrete
samples were collected for chlorophyll a and POC. Chloro-
phyll a samples were analysed fluorometrically on the ship,
whereas POC samples were stored and analysed onshore
via an elemental analyser at the Virginia Institute of Ma-
rine Science (Gardner et al., 2000). Discrete chlorophyll a

samples were used to convert glider fluorometer voltages
to optically based chlorophyll, and discrete POC samples
were used to convert optical backscatter counts at 470 nm
wavelength (bbp(470)) to POC according to the method of
Boss and Pegau (2001). For both chlorophyll and POC sam-
ples, single equations converting fluorescence to chlorophyll
and backscatter to POC were individually generated per year
(Fig. S1 in the Supplement). Dissolved oxygen sensors were
factory calibrated and compared with profiles collected from
the CTD rosette (R2

= 0.89, 0.76, and 0.96 for 2010–2011,
2012–2013, and 2022–2023, respectively). A full discussion
of sensors, discrete samples, and calibrations is provided
by Kaufman et al. (2014), Queste et al. (2015), Meyer et
al. (2022a), and Portela et al. (2025).

2.2 Biogeochemical rate measurements

Three biogeochemical rates were calculated per deployment:
NCP, ∂POC

∂t
, and export∗POC. Rates were calculated for non-

overlapping, consecutive 3 d intervals over the duration of
each deployment. To make the time period of analysis com-
parable between deployments, they were trimmed to only in-
clude days where euphotic zone (Zeu)-averaged chlorophyll
concentrations were within 90 % of the peak chlorophyll con-
centration (Fig. S2). Zeu was calculated as 1 % of maximum
measured photosynthetic active radiation (PAR) when PAR
was available (2022–2023) or according to Morel (1974)
when PAR was unavailable (2010–2011, 2012–2013). NCP
was calculated via a mass balance of glider-based dissolved
oxygen concentrations via Eq. (1):

NCP100 = PQ ·

 100∫
0

∂O2

∂t
−FKz −FAdv−ASEML

 , (1)

where PQ is photosynthetic quotient (i.e. the molar ratio
of oxygen to carbon produced during photosynthesis), and∫ 100

0
∂O2
∂t

is the change in O2 concentrations integrated over
the top 100 m from the beginning of day 1 to the end of day
3 of each 3 d period. A common reference depth is 100 m
to assess carbon export efficiency, and thus it was chosen
as our depth threshold (Buesseler et al., 2020). FKz is the
vertical eddy diffusion flux of oxygen to the water below
100 m, using the previously published vertical diffusivity co-
efficient (Kz) of 10−3 m2 s−1 for the Ross Sea (Kaufman et
al., 2017). FAdv is the advective flux of oxygen in the zonal
and meridional directions with velocity calculated accord-
ing to dive average currents (DACs) obtained from fitting
a hydrodynamic model to the glider’s flight path (Frajka-
Williams et al., 2011). Because our glider surveys were not
grids and thus limited our ability to generate individual x–
y gradients, deployment-wide average DACs and zonal and
meridional gradients of oxygen were used to calculate 3 d ad-
vection rates (FAdv) for each 3 m depth bin (Fig. S3). Individ-
ual FAdv values for each 3 m bin were then depth-integrated
over 100 m to derive a value for each deployment according
to Eq. (2):

FADV =

100∫
0

(
u ·

∂O2

∂x
+ v ·

∂O2

∂y

)
, (2)

where ASEML is air–sea exchange of oxygen between the at-
mosphere and the surface mixed layer. Mixed-layer depths
were calculated according to potential density difference
threshold of 0.02 kg m−3 from potential densities at 10 m.
Air–sea exchange was calculated according to the bubble
injection method outlined by Liang et al. (2013). Daily
wind speed (m s−1) and sea surface pressure (pascals) data
come from the National Center for Environmental Predic-
tion (NCEP) Reanalysis 1 product (2.5°× 2.5° resolution;
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Figure 2. The 2010–2011, 2012–2013, and 2022–2023 glider profiles of temperature (°C), salinity, dissolved oxygen (µmol kg−1), particulate
organic carbon (POC) concentrations (µg C L−1), and chlorophyll (µg L−1) by date. Contours represent isopycnals. All profiles are for the
upper 250 m.

Kalnay et al., 1996; Fig. 3e, g), which has been shown to
be more accurate than ECMWF Reanalysis data in this re-
gion (Sanz Rodrigo et al., 2012; Fig. S4). The gas transfer
velocity coefficient from Wanninkhof (2014) and the polar-
specific photosynthetic quotient (1.3) from Laws (1991) were
used. During the bloom period, we assume entrainment flux,
lateral mixing, and vertical advection at the 100 m bound-
ary to all be minimal; thus they are omitted. NCP data are
presented in units of g C m−2 d−1 with positive values indi-
cating net autotrophy (photosynthesis outpacing respiration)
and negative values indicating net heterotrophy (respiration
outpacing photosynthesis).

∂POC
∂t

was calculated according to Eq. (3):

∂POC
∂t
=

Z∫
0

∂POC
∂t
−FADV, (3)

where
∫ Z

0
∂POC

∂t
is the change in integrated POC concentra-

tion between days 1 and 3, and FADV is the advective flux of
POC derived in the same manner as for oxygen. During the
2012–2013 deployment, the backscatter sensor was turned

off below 250 m to save battery power (Jones and Smith,
2017; Meyer et al., 2022a). Therefore, all deployments were
analysed for changes in POC to a 240 m depth threshold
(Z = 240 m) to maintain consistency between datasets.

Integrated concentrations of both carbon and oxygen are
sensitive to the choice of integration depths of 240 and 100 m
respectively. Mixed-layer depths had ranges of 26–201, 22–
70, and 9–70, for 2010–2011, 2012–2013, and 2022–2023,
respectively (Fig. 3a). During analysis, multiple integration
depths of both dissolved oxygen and POC were tested. In
2010–2011, 2012–2013, and 2022–2023, O2 concentrations
integrated to 100 m were 64 %, 39 %, and 70 % higher than
mixed-layer integrated values, respectively. POC concentra-
tions integrated to 500 m were 64 % and 49 % higher than
the 240 m integrated values for 2010–2011 and 2022–2023,
respectively. Therefore, consistent integration depths should
be applied across datasets. While 100 m is a common integra-
tion depth for production metrics in production–export anal-
yses, ideally POC addition and removal should be evaluated
as deep as the dataset allows in order to generate a carbon
export rate most similar to carbon sequestration rates (typi-
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Figure 3. Mixed-layer depth (a; m), mixed-layer integrated
dissolved oxygen (b; mmol O2 m−2 d−1), oxygen solubility (c;
µmol O2 kg−1), temperature (d; °C), wind (e; m s−1), Schmidt
number (f), and sea level pressure (g; pascals) through time for
the 2010–2011, 2012–2013, and 2022–2023 deployments. Schmidt
number calculations come from Wanninkhof (2014), and wind and
sea level pressure are NCEP Reanalysis products. All other param-
eters come from glider measurements.

cally defined as carbon export to 1000 m; Boyd et al., 2019).
Here, a negative ∂POC

∂t
denotes a removal (i.e. a decrease in

POC concentrations through time), whereas a positive ∂POC
∂t

denotes an increase of POC concentrations through time.
POC export potential is the amount of POC available for

export in the upper 200 m at the end of the study period.
Because each deployment ended before the final bloom suc-
cession and biomass export, we measure a potential, rather
than actualised export at the end of the deployment period
(Hansell and Carlson, 1998; Sweeney et al., 2000). Here,
POC export potential was estimated as the difference be-
tween the two rates:

export∗POC = NCP−
∂POC

∂t
. (4)

Equation (4) represents a difference from the calculation of
POC export due to the non-steady-state nature of the spring
bloom period (Cassar et al., 2015). NCP and ∂POC

∂t
are in-

tegrated over different depth thresholds in accordance with
practices established by the Martin curve, which assesses ex-
port between 100 m and a variable depth Z (Martin et al.,
1987).

The coefficient of variation (%) of stocks and rates were
assessed by calculating the percent standard deviation of O2,
POC, ∂O2

∂t
, and ∂POC

∂t
per season according to Eq. (5):

coefficient of variation (%)=(
standard deviation

mean

)
· 100. (5)

2.3 Uncertainties

One source of uncertainty in our analysis arises from the esti-
mates of advection. In each deployment, the gliders surveyed
in various patterns, making repeat observations of the same
water masses and thus quantification of POC and O2 gradi-
ents and currents difficult. However, given these surveys oc-
curred during the Ross Sea bloom period, temporal changes
are a first-order control on observations, and spatial changes
are a secondary control. This is supported by very low rates
of FADV and spatiotemporal comparison of observations be-
tween multiple gliders in 2022–2023 (Fig. S5). Values of
FADV may also be influenced by the use of DACs averaged
over the entire dive rather than the upper 100 m, but given
the low FADV values relative to NCP, this does not make a
substantial difference in the calculation. For example, if the
supposed FADV is underestimated by 50 %, this only leads
to an underestimate of 0.3, 0.7, and 4.0 mg C m−2 d−1 in our
calculations for 2010–2011, 2012–2013, and 2022–2023, re-
spectively.

Our analysis hinges on the assumption that bio-optical
proxies represent their assumed biogeochemical parameter
accurately. Because POC and chlorophyll a concentrations
were validated in situ, this assumption is valid. Oxygen con-
centrations were only factory-calibrated and thus likely in-
clude higher uncertainty (Bittig et al., 2018). Propagation of
uncertainty for all biogeochemical rate measurements was
calculated following the method of Yang et al. (2017). We
used the offset (i.e. the y intercept) between glider and CTD
oxygen optodes and fluorometers to calculate the uncertainty
associated with oxygen and POC concentrations (Fig. S1).
For the Kz and Schmidt number, we used the previously re-
ported uncertainties of ±7 %–10 % from Yang et al. (2017).
This led to mean NCP uncertainties ranging from ±76 % to
±94 %, ∂POC

∂t
uncertainties ranging from ±38 % to ±45 %,

and export∗POC uncertainties ranging from ±47 % to ±61 %
across each season.
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3 Results

3.1 Net community production

Rates of NCP in 2022–2023 were highly variable but sug-
gest net autotrophy with a deployment-wide mean (± stan-
dard deviation of all 3 d periods) of 0.2± 3.2 g C m−2 d−1

(Fig. 4a). This value is highest of the three deployments –
higher than the mean of −0.7± 4.6 g C m−2 d−1 in 2012–
2013 and somewhat higher than the 2010–2011 deploy-
ment mean of 0.1± 3.8 g C m−2 d−1 (Fig. 4a). The 2022–
2023 season was highly variable, consistent with previ-
ous deployments (Fig. 4a). Additionally, the magnitudes of
NCP in each deployment were high with approximately
half (50 %, 48 % and 63 % for 2010–2011, 2012–2013,
and 2022–2023, respectively) of NCP 3 d rates greater
than 1.5 g C m−2 d−1 or less than −1.5 g C m−2 d−1. The
2010–2011 season exhibited the single greatest productivity
event in mid-December when NCP, driven by ∂O2

∂t
, reached

13.0 g C m−2 d−1 (Fig. 4a). This one 3 d period increased the
seasonal average by 0.6 g C m−2 d−1, moving it from slightly
heterotrophic (−0.5 g C m−2 d−1) to solidly autotrophic. In
all three deployments, NCP was driven by ∂O2

∂t
, reinforcing

the notion that biological processes are the largest driver of
changes in upper-ocean oxygen content during the bloom pe-
riod, evidenced by this term being an order of magnitude
greater than any of the other terms in the oxygen budget
(Figs. 5a, 6, S6, S7). Despite the substantial temporal vari-
ability between the 3 d periods and negative average NCP
observed in 2012–2013, our findings suggest that the Ross
Sea is capable of high rates of production.

The individual components of NCP (particularly, ∂O2
∂t

and ASEML) varied substantially between years (Fig. 5).
Due to the bloom, ∂O2

∂t
was the largest component in each

year with the highest average rate occurring in 2010–2011
(48± 410 mmol O2 m−2 d−1; Fig. 5a). ASEML was greatest
(36± 18 mmol O2 m−2 d−1) in 2010–2011, consistent with
the deepest mixed layers during this year, suggesting that
stronger winds that year are responsible for both (Figs. 4b,
5e). ASEML was likewise large (26± 22 mmol O2 m−2 d−1)
in 2012–2013 when winds were strong (Figs. 3e, 5b; Meyer
et al., 2022a). In all deployments, FKz made a negligible con-
tribution to total NCP (< 0.01 %–0.1 %; Fig. 5c, d). FADV
was also low with deployment-wide averages of 7.3× 10−3,
−0.1, and 1.4 mmol O2 m−2 d−1 for 2010–2011, 2012–2013,
and 2022–2023, respectively.

3.2 Changes in POC through time

∂POC
∂t

and the relationship between ∂POC
∂t

and NCP behaved
differently among deployments (Figs. 5, 6). ∂POC

∂t
was high-

est in 2022–2023 when NCP was likewise highest, but POC
concentrations were lower during this season than in 2012–
2013 (Meyer et al., 2022a; Portela et al., 2025; Fig. 2).
The mean 2012–2013 ∂POC

∂t
rate was similar in magni-

Figure 4. Net community production (a), ∂POC
∂t

(b), and export∗POC
(c) through time for glider deployments occurring in the 2010–
2011, 2012–2013, and 2022–2023 productive seasons. Units for
all rates are g C m−2 d−1. Shaded regions represent uncertainty for
each rate. For NCP, positive values indicate autotrophy, and negative
values indicate heterotrophy. For ∂POC

∂t
, positive indicates an in-

crease in POC through time, whereas negative indicates a decrease.

tude (−0.05± 1.7 g C m−2 d−1) to that of 2022–2023 despite
2012–2013 having a substantially lower NCP rate than in
2022–2023 (Fig. 4b). Like with oxygen, advection of POC
was negligible across seasons (averages were 4.3× 10−3,
−0.4, and 4.3 mg C m−2 d−1 for 2010–2011, 2012–2013, and
2022–2023, respectively) and, thus, did not contribute sub-
stantially to calculations of ∂POC

∂t
(Fig. 5f). Compared with

NCP, rates of ∂POC
∂t

per season were all low, suggesting that
during the observation period, high rates of production are
not matched by high rates of POC removal.

3.3 POC export potential

The temporal variability in export∗POC is largely driven
by the 3 d temporal variability in NCP (Fig. 4c). Thus,
as expected, export∗POC rates were highest in 2022–
2023 (0.2± 3.1 g C m−2 d−1) and lowest in 2012–2013
(−0.6± 3.9 g C m−2 d−1). In 2023, export∗POC from 1 to
3 January was one of the lowest in magnitude observed
across all three deployments at −7.2 g C m−2 d−1 (Fig. 4c).
This value was driven by negative NCP and suggests sub-
stantial rates of loss processes. Due to its low mean ∂POC

∂t
,

export∗POC in 2010–2011 (0.1± 3.7 g C m−2 d−1) was com-
parable to NCP, reinforcing the idea of biomass accumula-
tion in the surface ocean through time during this season.
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Figure 5. ∂O2
∂t

(a; mmol O2 m−2 d−1), ASEML (b;
mmol O2 m−2 d−1), FKz

O2 (c; mmol O2 m−2 d−1), and ∂POC
∂t

(d; mg C m−2 d−1) by day for the 2010–2011, 2012–2013, and
2022–2023 glider deployments. Note the different scales between
the y axes.

export∗POC was also greater than NCP in 2012–2013 but is
driven by a variable, frequently negative NCP with biomass
accumulation during the observation period, leading to neg-
ative average NCP, ∂POC

∂t
, and export∗POC. Like NCP, our av-

erage export∗POC is quite high, comparable to 68 %–100 % of
the total NCP on average. This finding suggests that substan-
tial POC existed within the top 240 m of the water column
but was not removed (e.g. through sinking, grazing, reminer-
alisation) during our observation period.

3.4 Stock and rate variability

As is evident by the large standard deviations on all 3 d
means of stocks (O2, POC) and rates (NCP, ∂POC

∂t
), variabil-

ity appears to be an important consideration when assessing
potential drivers and temporal differences between the pa-
rameters of interest. Because the glider and water masses are
both moving, the variability evaluated here represents both
seasonal spatial and temporal variability of stocks and rates.
When evaluated seasonally, spatial variability will be aver-
aged, and temporal variability is likely to be dominant due to
the evolution of the bloom (Fig. S5). Substantial variability
of POC and O2 concentrations themselves is not diagnostic
of substantial variability in rate patterns. However, an inverse
relationship is apparent between variability, in the form of
coefficients of variation, of ∂O2

∂t
and NCP. The highest mag-

nitude of coefficient of variation (−1.1× 103 %) coincides
with the lowest NCP in 2012–2013, and the lowest magni-

Figure 6. Net community production (NCP; g C m−2 d−1) ver-
sus biogeochemical rates ( ∂POC

∂t
, export∗POC; g C m−2 d−1) and

components of NCP ( ∂O2
∂t

, O2 FADV, FKz, and ASEML;
mmol O2 m−2 d−1) per day for 2010–2011, 2012–2013, and 2022–
2023 glider deployments. R2 values indicate correlation coeffi-
cients.

tude of the coefficient of variation (780 %) coincides with
highest NCP in 2022–2023 (Fig. 7).

The variability analysis also highlights some key discrep-
ancies between the mean concentration of parameters be-
tween years versus changes through each season and how
these relate to the biogeochemical rates of interest (Fig. 7).
The time mean of depth-integrated dissolved oxygen con-
centrations and POC concentrations exhibited different pat-
terns relative to ∂O2

∂t
and ∂POC

∂t
(i.e. years with the high-

est or lowest dissolved oxygen or POC concentrations did
not correspond to years with the highest ∂O2

∂t
or POC

∂t
).

Highest mean integrated dissolved oxygen concentrations
(3.4× 104

± 1.8× 103 mmol O2 m−2 d−1) were observed in
2022–2023 when ∂O2

∂t
and NCP were highest, but 2012–2013

had higher average oxygen concentrations but a much lower
NCP than 2010–2011 (Figs. 2, 4a). Differing patterns were
also evident when comparing POC concentrations and ∂POC

∂t
.

However, discrete dissolved oxygen and POC exhibited the
highest concentrations in 2012–2013 (Fig. 2). The lower-
than-average POC concentrations in 2022–2023 are partic-
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Figure 7. Averages and standard deviations (a) and coefficients of variation (b; all units are %) for dissolved oxygen (mmol O2 m−2),
particulate organic carbon (POC; mg C m−2), ∂O2

∂t
(mmol O2 m−2 d−1), and ∂POC

∂t
(mg C m−2 d−1) for the 2010–2011, 2012–2013, and

2022–2023 deployments.

ularly obvious when evaluated as the mean of concentra-
tions at discrete depths (Fig. 8). The increase in difference
(to approximately 20 %) between 25 and 50 m average con-
centrations toward mid-January would suggest that POC is
being retained above 50 m. Unlike POC, chlorophyll con-
centrations were much higher in 2022–2023 than the other
2 years (Fig. 2).

4 Discussion

The ability to resolve the surface O2 and POC fluxes defin-
ing these biogeochemical rates at very high spatiotemporal
resolution over multiple years provides a better understand-
ing of biological vs. physical controls on the system during
the spring bloom. Figure 6 highlights the consistently strong,
positive relationship between NCP, ∂O2

∂t
, and export∗POC dur-

ing all deployments. Despite varying rates of O2 FADV, FKz,
and ASEML between deployments, ∂O2

∂t
is always the dom-

inant term in the upper-ocean dissolved oxygen budget, de-
termining trends in NCP which, in turn, determine trends in
export∗POC (Figs. 4, 5). Likewise, ∂POC

∂t
appears consistently

uncoupled from NCP (Fig. 6). These findings suggest that,
despite substantially varying hydrographic and biogeochem-
ical attributes between seasons, a consistent relationship be-
tween production–export dynamics exists between seasons.
Thus, our results support the classification of the Ross Sea as
a high-production, low-export system (Henson et al., 2019),
but the high-resolution data provided by the gliders show
substantial 3 d temporal variability during the bloom season
that is likely a consistent, yet overlooked, feature of this sys-
tem. Our results show that this temporal variability impacts

rates and our understanding of the relationship between rates
when investigated on the subseasonal level.

Our results show that biogeochemical rates and stocks ap-
pear uncoupled, with no apparent, strong relationship be-
tween NCP and ∂POC

∂t
rates per season. Seasonal mean

NCP varied substantially between years, but seasonal mean
∂POC

∂t
did not, with the 3 years all within approximately

0.3 g C m−2 d−1 of each other. This suggests that the variable
environmental and biological conditions that lead to substan-
tial differences in NCP are not as strong a control on ∂POC

∂t
as they are for NCP. Thus, a higher NCP does not neces-
sarily translate to higher ∂POC

∂t
. For example, the low rates of

∂POC
∂t

in the 2010–2011 season likely stem from the low POC
concentrations (Fig. 3) and a variable mixed-layer depth,
which could prevent substantial POC accumulation due to
mixing-induced light limitation, (Fig. 2a) during this period.
Therefore, ∂POC

∂t
must be kept relatively low by some ex-

ternal factor that was not measured during this study, such
as differing lability of P. antarctica versus diatoms (or lack
thereof; Misic et al., 2017; Misic et al., 2024) and the role of
particle-attached bacteria and remineralisation (Becquevort
and Smith, 2001) on backscatter measurements. Coupling
glider studies with such analyses should be conducted in fu-
ture studies as they may help elucidate the mechanism behind
consistent ∂POC

∂t
between seasons.

The ratio of ∂POC
∂t

to NCP can be considered a propor-
tional POC removal (i.e. how much of the POC that was pro-
duced by the bloom during the observation period is removed
during the observation period; Fig. 9). The implications of
this proportional removal are important for evaluating a sys-
tem’s production–export efficiency. Our results suggest that
the proportion of POC removed (Fig. 9) is more important
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Figure 8. Average particulate organic carbon concentrations (µg C L−1) per depth of interest through time from the 2022–2023 glider
deployment. Depths of interest include 0, 25, 50, 75, 100, 150, 200, and 240 m.

for carbon cycling at times when there is either high NCP
and high biomass accumulation as in 2022–2023 or low NCP
but high biomass as in 2012–2013, rather than times where
there is high NCP but lower biomass as in 2010–2011.

The 2012–2013 glider observations extended into Febru-
ary, approximately 2 weeks longer than the other deploy-
ments. When late January and early February rates are in-
cluded, and values averaged over the entire deployment,
NCP is low at 0.05± 2.75, whereas ∂POC

∂t
is much higher at

0.23± 1.24 g C m−2 d−1 (Meyer et al., 2022a). Additionally,
these rates were calculated in 5 d intervals, not 3, so some
subseasonal variability is likely being smoothed and over-
looked due to the longer integration period. This difference
in average rates further supports the notion that, due to sub-
stantial temporal variability, the timescales over which these
rates are averaged are critically important if we want to de-
tect signals of climate change. Thus, establishing our evalu-
ation time frame based on an ecological, rather than tempo-
ral, metric (such as chlorophyll concentration) is important
and should lead to more biogeochemically reflective rate esti-
mates. These rates are important to compare over the time pe-
riod when chlorophyll concentrations are greater than 10 %
of peak bloom concentrations regardless of the exact days of
year.

This notion of uncoupling between production and ex-
port processes is supported by the high retention of POC in
the upper water column in 2022–2023 (Fig. 8). Biomass re-
tention is evident by the increasing difference between the
mean daily POC concentrations at 25 vs. at 50 m (i.e. POC
concentrations at 25 m are up to ∼ 20 % higher than 50 m)
from the beginning to the end of the deployment (Fig. 8).
Biomass retention is also supported by greater integrated
POC concentrations in 2022–2023 (34.0 g C m−2) than in
2012–2013 when concentrations declined more from surface
to depth (28.4 g C m−2; Fig. 2). Some of this difference be-
tween years may be taxonomically driven as different phyto-
plankton groups possess different concentrations of cellular

Figure 9. Deployment average proportional POC removal (%; i.e.
∂POC

∂t
/ NCP) per season. Negative values reflect a decoupling of

accumulation and removal processes over the course of our study.

carbon (Rousseau et al., 1990; Smith and Kaufman, 2018),
but the daily averaged C :Chl ratios at 5 m, representing the
typical surface values, for 2012–2013 and 2022–2023 both
increased in late December–early January (Fig. S8). The lim-
ited availability of POC and Chl calibration samples prevent
us from resolving any specific POC and Chl concentration
differences between phytoplankton groups, which may lead
to slight under- or overestimations of POC, Chl, and C :Chl
ratios as the bloom evolves. Despite this, the dramatic change
in C :Chl ratios through time is typical of the annual bloom
and suggests a mixed community with a shift from Phaeocys-
tis to diatom dominance over time (Jones and Smith, 2017;
Smith and Kaufman, 2018).
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Our NCP, ∂POC
∂t

, and export∗POC time series (Fig. 4) rein-
force the influence of short-term temporal variability on sea-
sonal means on the order of days. This is further empha-
sised when comparing the 2010–2011 dataset evaluated in
this study with a previously published study with a different
methodology (Queste et al., 2015). In their study, Queste et
al. (2015) calculated daily oxygen changes as the linear re-
gression of apparent oxygen utilisation against time at vari-
ous depth bins. When evaluating the same period, they found
NCP rates ranging from −0.9 to 0.7 g C m−2 d−1 (Queste
et al., 2015). When averaged over the entire deployment,
NCP in 2010–2011 from this current study is autotrophic but
highly variable at 0.1± 3.8 g C m−2 d−1 (Fig. 4a). This can
be attributed to the period from 13 to 15 December, which,
due to differences in integration periods for the calculations,
appears to be smoothed in the results of Queste et al. (2015)
but more apparent in our study. During this period, NCP is
13.0 g C m−2 d−1, resulting from an exceptionally high ∂O2

∂t
(1420 mmol O2 m−2 d−1; Fig. 5a) but moderate FADV, FKz,
and ASEML (0.15, 46, −1.9× 10−3 mmol O2 m−2 d−1, re-
spectively). Oxygen concentrations themselves during this
time do not appear anomalous (i.e. all dives on 13 to 15
December are internally consistent and within the range ob-
served during 2010–2011), suggesting that this is a real sig-
nal with a dramatic (> 4.27× 103 mmol O2 m−2) increase
over a short period of time (Fig. 5a). Additionally, the oxy-
gen concentrations immediately before 13 December were
not anomalously low. Removing the mid-December peak in
NCP decreases the 2010–2011 average, making the values
similar to those found by Queste et al. (2015). The impor-
tance of a singular event to the average 2010–2011 NCP may
help explain the substantially lower ∂POC

∂t
during this sea-

son compared with the other two seasons; i.e. a short event
does not have as strong an influence in increasing net POC
as a consistent period of high NCP. This is likely due to the
highly productive nature of the Ross Sea. Other studies have
found that in regions of lower average primary production,
short-term events have greater net impacts on primary pro-
duction and/or export (Meyer et al., 2022b). Our study rein-
forces the influence that integration periods have on results,
particularly when analysing NCP during highly dynamic pe-
riods (see Niebergall et al. (2023) for a discussion of the role
of integration time and space on NCP).

The high NCP observed in 2022–2023 coincides with
higher than average chlorophyll a concentrations and a sta-
ble water column (Fig. 2; Portela et al., 2025). While surface
POC concentrations are lower than the average typically re-
ported for the Ross Sea bloom period (Smith and Kaufman,
2018; Meyer et al., 2022a), depth-integrated POC was high,
indicating a substantial accumulation of biomass and reten-
tion of that biomass during this season. Portela et al. (2025)
provide a more complete discussion of the characteristics
and potential drivers of this larger-than-average bloom. The
overall characteristics of the 2022–2023 season sharply con-
trast with the more dynamic, lower-biomass (in terms of both

chlorophyll and POC), low- ∂POC
∂t

2010–2011 season. Portela
et al. (2025) note substantial differences in Ross Sea sea ice
concentration, as is evident in Fig. 1, between these 2 years
with 2022–2023 having more ice and a later opening of the
polynya than 2010–2011 and cite this as a possible mecha-
nism leading to the high chlorophyll concentrations observed
in 2022–2023. The influence of sea ice concentration on pro-
duction through iron seeding, water column stabilisation, and
enhanced mixing has been highlighted previously (Arrigo et
al., 2008; Smith and Comiso, 2008; Queste et al., 2015).

Current ecosystem models predict that due to allevia-
tion of light limitation, increases in iron concentration, and
warmer temperatures, primary production and phytoplank-
ton biomass in the Southern Ocean generally may increase
(Moreau et al., 2015; Ferreira et al., 2024). Trends in Ross
Sea sea ice cover have varied substantially over the last few
decades, showing changes which are frequently masked in
compilations of the entire Southern Ocean (Turner et al.,
2022). This makes accurate projections of the direction and
magnitude of change for future Ross Sea ice cover difficult.
Contrary to some studies, our findings suggest that heavy ice
cover may, at least temporarily, increase rates of primary pro-
duction and phytoplankton biomass (Portela et al., 2025). Al-
ternatively, some studies suggest that reduced ice cover will
increase long-term primary production due to the alleviation
of light limitation, warmer temperatures, and increased nutri-
ent availability (Thomalla et al., 2023). Regardless, our study
suggests that an increase or decrease in primary production
and POC concentrations in coming decades does not nec-
essarily induce substantial changes in carbon export in the
Ross Sea. More research is needed to fully elucidate the fate
of POC in the late bloom season in the Ross Sea.

5 Conclusions

When compared with global averages, high-resolution data
from three glider deployments support the classification of
the Ross Sea as a high-production, low-export system. Our
data highlight temporal uncoupling between biogeochemical
stocks (POC, O2) and rates (NCP, ∂POC

∂t
, export∗POC) and be-

tween related rates (NCP and ∂POC
∂t

) when evaluated on short-
term (3 d) and seasonal scales during three spring bloom pe-
riods. Much of this uncoupling relates to substantial vari-
ability which drives rates and reinforces the need for high-
resolution measurements. While all three deployments war-
rant additional observations into the autumn to document
the bloom demise and diatom reduction, the implications for
production–export dynamics during the peak productive pe-
riod are clear: high NCP leads to high export∗POC, and low
NCP leads to low or even negative export∗POC regardless of
the average surface POC and O2 concentrations during the
bloom. These findings should be considered when using just
stock concentrations to investigate these dynamics in the
Ross Sea.
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