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Abstract. Biogeochemical-Argo (BGC-Argo) float profiles
provide substantial information on key vertical biogeochem-
ical dynamics and have been successfully integrated in bio-
geochemical models via data assimilation approaches. Al-
though BGC-Argo assimilation results have been encourag-
ing, data scarcity remains a limitation with respect to their
effective use in operational oceanography.

To address availability gaps in the BGC-Argo profiles, an
observing system experiment (OSE) that combines a neu-
ral network (NN) and data assimilation (DA) was performed
here. A NN was used to reconstruct nitrate profiles, starting
from oxygen profiles and associated Argo variables (pres-
sure, temperature, and salinity), while a variational data as-
similation scheme (3DVarBio) was upgraded to integrate
BGC-Argo and reconstructed observations in the Coperni-
cus Mediterranean operational forecast system (MedBFM).
To ensure the high quality of oxygen data, a post-deployment
quality control method was developed with the aim of detect-
ing and eventually correcting potential sensors drift.

The Mediterranean OSE features three different set-ups:
a control run without assimilation; a multivariate run with
assimilation of BGC-Argo chlorophyll, nitrate, and oxygen;
and a multivariate run that also assimilates reconstructed ob-
servations.

The general improvement in the skill performance met-
rics demonstrated the feasibility of integrating new vari-
ables (oxygen and reconstructed nitrate). Major benefits
have been observed with respect to reproducing specific

biogeochemical-process-based dynamics such as the nitra-
cline dynamics, primary production, and oxygen vertical dy-
namics.

The assimilation of BGC-Argo nitrate corrects a generally
positive bias of the model in most of the Mediterranean areas,
and the addition of reconstructed profiles makes the correc-
tions even stronger. The impact of enlarged nitrate assimi-
lation propagates to ecosystem processes (e.g. primary pro-
duction) at a basin-wide scale, demonstrating the importance
of the assimilation of BGC-Argo profiles in forecasting the
biogeochemical ocean state.

1 Introduction

The Argo programme appears to be one of the better exam-
ples of the capacity of countries and human resources to work
together to provide global data coverage (Miloslavich et al.,
2019) that supports the investigation of present (analysis), fu-
ture (forecast), and past (reanalysis) ocean state conditions.
Over the last 10 years, the increase in the in situ observations
from autonomous platforms (Johnson et al., 2013; Johnson
and Claustre, 2016) has opened up new perspectives for bio-
geochemical oceanographers. Indeed, Biogeochemical-Argo
(BGC-Argo; Argo, 2022) has yielded new insights into the
interior of the global ocean (Le Traon, 2013) and key pro-
cesses such as the deep chlorophyll maximum (Mignot et al.,
2014; Barbieux et al., 2019; D’Ortenzio et al., 2020; Ricour
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et al., 2021; Barbieux et al., 2022), nutrients’ vertical fluxes
(Taillandier et al., 2020; Wang et al., 2021b), carbon exports
(Dall’Olmo and Mork, 2014; Wang and Fennel, 2023), and
oxygen dynamics (Capet et al., 2016).

With approximately 270000 profiles worldwide (as of
July 2023), oxygen (O) is currently the most commonly
measured variable. The count of O, profiles is 2 times
that of suspended particles and chlorophyll and more than
4 times that of nitrate, downwelling irradiance, and pH (https:
//biogeochemical-argo.org, last access: 17 July 2023). Since
2019, the availability of nitrate and chlorophyll profiles has
progressively decreased due to the high cost of the sen-
sor (Giorgio Dall’Olmo, personal communication, 2023). In
contrast, the number of oxygen profiles initially decreased
(2019-2022), but it has been stable or has slightly increased
since 2022. In the future, Argo Italy envisages mounting
oxygen sensors on all Argo floats in the Mediterranean Sea
(discussion in the workshop on “Copernicus Marine require-
ments for the in situ Observing Systems”, 14—15 Septem-
ber 2023).

The BGC-Argo data are distributed by the Global Data
Assembly Centres (GDACs, e.g. Coriolis, NOAA) in real
time (RT) adjusted mode (AM) and delayed mode (DM).
The quality of AM data is controlled within 24 h using inter-
nationally agreed upon and automatic quality control (QC)
procedures, while DM data are generally distributed a few
months later (nearly 6 months) in a more rigorous form (Li
et al., 2020). The QC tests, conducted across all of the data
mode levels, aim to assign a quality flag to every observation.
Data labelled as 1, 2, 5, and 8 are categorized as good, proba-
bly good, changed, and interpolated values, respectively. The
flag 9 indicates missing data, while flags 3 and 4 denote data
as probably bad or bad, respectively.

In the case of oxygen, QC is mainly performed at the sur-
face, along the entire vertical profiles, and along the trajec-
tory (Thierry and Bittig, 2021), excluding specific tests at
depth. The implementation of O, QC tests is mainly devoted
to improving the long-term reliability and accuracy of au-
tonomous measurements (Sauzede et al., 2017), particularly
concerning sensor drift (the optode drift).

When sensor drift exists, it is higher during storage, out of
the water, than during deployment. As described in Takeshita
et al. (2013) and Maurer et al. (2021), raw oxygen data from
floats may exhibit errors of up to 20 % in terms of oxygen
saturation (at the surface) due to sensor drift occurring dur-
ing storage. This drift is typically corrected by multiplying
the oxygen concentrations by a gain factor term that is de-
rived from a reference dataset (Johnson et al., 2015). Despite
efforts to correct drift during storage, which may enhance
accuracy by 5 %—10 %, it is likely that drift is still observed
in situ (or during deployment). For instance, Maurer et al.
(2021) observed drift rates in about 25 % of the 126 floats
analysed for the Southern Ocean Carbon and Climate Obser-
vations and Modeling (SOCCOM) project. These drift rates
spanned a total range of —1.1% to 1.2% yr~! with a stan-
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dard deviation of 0.65% yr~!. Similarly, Bushinsky et al.
(2016) found the presence of drift rates in about 70 % of the
floats deployed in the northern Pacific Ocean. Notably, both
positive and negative drift rates were observed across vari-
ous studies, including those by Johnson and Claustre (2016),
Bushinsky et al. (2016), Bittig et al. (2018a), and Maurer
et al. (2021).

The development and dissemination of a post-deployment
oxygen QC aims to avoid spurious results (Wang et al., 2020)
and to distinguish between ocean signals or trends (e.g. de-
oxygenation) from potential drifts. This allows one to ob-
tain more robust datasets suitable for specific numerical mod-
elling applications.

Aiming at optimally combining observations and model
information to obtain a closer description of reality, data as-
similation (DA) underpins decades of progress in ocean pre-
diction (Geer, 2021). On the one hand, advancements began
with an increase in the number of available observations over
the past decade, encompassing both the number of measured
variables and the total observations used for model tuning
(Wang et al., 2020; Yumruktepe et al., 2023; Wang and Fen-
nel, 2023) and validation (Terzi¢ et al., 2019; Salon et al.,
2019; Wang et al., 2021a). On the other hand, DA schemes
have been progressively updated to enable multivariate and
multi-platform assimilation (Cossarini et al., 2019; Teruzzi
et al., 2021; D’Ortenzio et al., 2021), retrieve associated un-
certainty in prediction models, and solve problems connected
to uneven distribution and/or scarcity of the observations
(Buizza et al., 2022).

In recent years, data assimilation (DA) techniques have
increasingly incorporated neural network (NN)-based tools.
The main strength of NN algorithms lies in their ability to
approximate continuous functions (Hornik et al., 1989) with
remarkably low computational times. These NN-based tools
have been integrated into DA frameworks to tackle various
DA challenges, such as bias correction (Kumar et al., 2015;
Zhou et al., 2021), reformulation of observation operators
(Storto et al., 2021), and cross-calibration (Lary et al., 2018).
Furthermore, NN algorithms have frequently been used as
independent tools, distinct from DA, to generate new prod-
ucts and/or reconstruct datasets (Lary et al., 2018). The use
of reconstructed datasets may compensate for potential gaps
in observation availability, potentially enhancing the predic-
tive skill of numerical models. As an example, ocean colour
(OC) datasets were employed to test multi-layer perceptron
(MLP), the most common type of NN, with respect to retriev-
ing past and long-term biogeochemical (BGC) time series
of phytoplankton and chlorophyll (Martinez et al., 2020a, b;
Roussillon et al., 2023). Moreover, in Sauzede et al. (2016),
MLP served to infer the chlorophyll vertical BGC distribu-
tion from OC. High predictive performance with respect to
predicting BGC states (e.g. oxygen) from physical profiling
float measurements was achieved in Stanev et al. (2022) for
the Black Sea.
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In Sauzede et al. (2017), a multi-layer perceptron neu-
ral network (hereafter MLP-NN) was used to approximate
the nutrient concentration and carbonate system from phys-
ical Argo and BGC-Argo oxygen profiles. The updated ver-
sion of the method presented in Bittig et al. (2018b) allows
for further refinement of this approach with the so-called
CANYON:-b NN method. A configuration to adapt the global
CANYON-b NN in the Mediterranean Sea region has been
developed by Fourrier et al. (2020). A further update of the
application of the MLP method to the Mediterranean Sea is
provided in Pietropolli et al. (2023), entailing lower error in
the nutrient predictions through a larger training dataset, hy-
perparameter refinement, and two-step QC of the input data.
Given its potential for predicting nutrient profiles, the MLP-
NN model outputs are a valuable datasets that can be used to
fill the gap in the availability of in situ observations in DA.

In the context of operational oceanography, the biogeo-
chemical modelling component of the Copernicus Marine
Service for the Mediterranean Sea (MedBFM) provides anal-
ysis, short-term forecast (Salon et al., 2019), and long-term
reanalysis (Cossarini et al., 2021), including the assimilation
of satellite OC and BGC-Argo observations (Salon et al.,
2019). In MedBFM, the 3DVarBio variational assimilation
scheme has evolved over time by including a greater num-
ber of observation types and variables. Starting from the first
release that included OC DA in the open ocean (Teruzzi
et al., 2014), the assimilation has progressively developed
to handle coastal OC observations (Teruzzi et al., 2018) and
chlorophyll and nitrate profiles from BGC-Argo (Cossarini
et al., 2019, and Teruzzi et al., 2021, respectively). Consid-
ering the growing availability of O, from BGC-Argo, this
paper presents an additional upgrade of MedBFM that in-
cludes BGC-Argo oxygen assimilation, with a novel post-
deployment QC, and the integration of NN-reconstructed
profiles in the assimilation scheme.

The constant evolution of observation networks and as-
similation capacities requires an updated understanding of
the impact of observation on the numerical model results
(Gasparin et al., 2019). This can be achieved by using the
numerical assimilative models in observing system experi-
ments (OSEs), in which the impact of existing observations
on the model performance is assessed (Le Traon et al., 2019).
In this paper, the OSE experiment, which combines DA and
NN in a modular approach, aims to quantify how the Argo
and BGC-Argo network can be exploited. The sequential use
of NN and DA schemes provides the flexibility of using one
module independently of the other, depending on the needs
of the overall system (Buizza et al., 2022). The DA module
used in this work is the 3DVarBio DA scheme described in
Teruzzi et al. (2021) and updated to assimilate BGC-Argo
oxygen profiles. The NN module is the NN-MLP described
in Pietropolli et al. (2023), for the Mediterranean Sea (here-
after NN-MLP-MED).

The spatial and temporal impacts of the OSE have been
evaluated using classic and new skill performance metrics
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in three 2-year (2017-2018) numerical experiments per-
formed using MedBFM coupled with 3DVarBio: a control
run (HIND) without assimilation; a multivariate run (DAfl)
with assimilation of BGC-Argo chlorophyll, nitrate, and oxy-
gen profiles; and a multivariate run that also assimilates the
in situ observations and NN-reconstructed profiles (DAnn).
Given its characterization as a miniature ocean suitable for
climate studies (Bethoux et al., 1999) and considering the
density of BGC-Argo profiles, the Mediterranean Sea repre-
sents an ideal site to conduct OSE studies to assess the feasi-
bility of assimilating BGC-Argo profiles and analysing their
impacts.

Indeed, the Mediterranean Sea is an anti-estuarine, semi-
enclosed sea (Pinardi et al., 2015) with a complex over-
turning circulation. This circulation consists of horizontal
mesoscale and subbasin-scale gyre structures, transitional
cyclonic and anticyclonic gyres, and eddies. These dynam-
ics are influenced by bathymetric features interconnected
by currents and jets (Oddo et al., 2009), along with vig-
orous vertical velocities. Furthermore, the shallow Strait of
Sicily, with a depth of approximately 500 m, separates the
western Mediterranean from the eastern Mediterranean. This
geographical feature allows different processes to dominate
in each of the two regions and limits exchanges to be-
tween the surface and intermediate waters (Pinardi et al.,
2015). Even from a BGC perspective, the Mediterranean
Sea can be roughly subdivided into the western and east-
ern Mediterranean sectors, characterized by an oligotrophic
west—east gradient. This gradient results in low nutrient
availability at the surface, which is generally insufficient to
sustain high phytoplankton biomass (Siokou-Frangou et al.,
2010; Marafién et al., 2021). Additionally, there is a deeper
nitracline in the east (> 120m) compared with the west
(< 100 m). Chlorophyll has a particular seasonal cycle, with
pronounced winter/early-spring surface blooms only in the
western part and a few locations in the eastern part. During
summer, a deep chlorophyll maximum follows the stratified
and oligotrophic conditions at increasing depth moving east-
ward (> 100 m in the east and < 100 m in the west) (Teruzzi
etal., 2021). Dissolved oxygen has a subsurface maximum at
about 50 m, with higher values in the west (partly due to the
dependence of oxygen solubility on temperature). Noticeable
differences are observed in the intermediate layers, where the
oxygen minimum ranges between 300 m (west) and 1000 m
(east) (Di Biagio et al., 2022).

While the general dynamics of BGC processes can be
summarized by a two-basin gradient, it is important to note
that mesoscale and sub-mesoscale events can impact the
Mediterranean Sea at the subbasin scale. These events can
create intense local dynamics, such as blooms and water col-
umn stratification, which are often associated with eddy ac-
tivity and peculiar vertical circulation. Reproducing these
phenomena in numerical model simulations can be more
challenging, as they are prone to encountering high model
bias or representativeness error.
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The paper is organized as follows: after a brief presenta-
tion of the OSE approach, each component and the exper-
imental set-up are described in detail (Sect. 2); in Sect. 3,
we describe the results of the novel NN-MLP-MED and the
assimilation simulations by using different skill metrics to
assess the model capability with respect to reproducing the
main BGC seasonal dynamics; a discussion of some key is-
sues involved in the NN and DA is provided in Sect. 4; the
paper then closes with some final remarks (Sect. 5).

2 Methods

A novel combined neural network (NN-MLP-MED) and
data assimilation (3DVarBio) approach is included in the
Mediterranean MedBFM model system to integrate BGC-
Argo and NN-reconstructed profiles into BGC simulations
of the Mediterranean Sea.

Our OSE experiment is based on a sequential modular ap-
proach (Buizza et al., 2022) consisting of a post-deployment
quality control method for O3, hereafter QC O, procedure, a
trained multi-layer perceptron NN (Pietropolli et al., 2023),
and a DA scheme (the 3DVarBio variational scheme of
MedBFM) (Fig. 1).

The first two modules, QC O, and NN-MLP-MED, use
BGC-Argo and Argo datasets as input. The 3DVarBio mod-
ule takes the enhanced dataset, quality-checked O, (QC O»)
and reconstructed nitrate (recNO3) (Fig. 1), as input.

In the following sections, we introduce the components
of the MedBFM system, including the transport model
(OGSTM; Foujols et al., 2000; Lazzari et al., 2012, 2016)
and the Biogeochemical Flux Model (BFM; Vichi et al.,
2007a, b). Additionally, we describe the novel modules,
namely the QC O, procedure and the NN-MLP-MED
scheme. Furthermore, we outline the dataset, which com-
prises BGC-Argo and NN-reconstructed datasets, and dis-
cuss the revised 3DVarBio approach.

2.1 The regional model for the Mediterranean Sea
(MedBFM)

The MedBFM consists of the tracer transport OGS Trans-
port Model (OGSTM), based on the OPA 8.1 system (Fou-
jols et al., 2000) and updated according to the Lazzari et al.
(2012) and Lazzari et al. (2016) versions; the BFM described
in Vichi et al. (2007a) and Vichi et al. (2007b); and the
3DVarBio variational assimilation scheme as in Teruzzi et al.
(2014) and Teruzzi et al. (2018).

OGSTM solves for advection, diffusion, and sinking terms
as well as considering the effects of the free surface and vari-
able volume-layer effects on tracer transport (Salon et al.,
2019). It is forced by output variables such as current,
temperature (7), salinity (S), and sea surface height from
the NEMO3.6 model (Clementi et al., 2017). OGSTM and
NEMOZ3.6 share the same bathymetry and z* grid config-
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Figure 1. Flowchart of the NN-MLP-MED and DA approach.
Green boxes represent the modules, plain boxes represent the
datasets, and arrows refer to Argo (temperature and salinity) and
BGC-Argo profiles of chlorophyll (Chl a), oxygen (QC O»), nitrate
(NO3), and reconstructed nitrate (recNO3).

uration as well as the same open boundary and river con-
ditions (Coppini et al., 2023). Atmospheric forcing, includ-
ing solar short-wave irradiance and wind stress, is acquired
as 2D daily fields from the European Centre for Medium-
Range Weather Forecasts (ECMWF), as detailed by Salon
et al. (2019).

BFM is a biomass- and functional-group-based ma-
rine ecosystem model. It solves governing equations for
nine living organic state variables, diatoms, autotrophic
nanoflagellates, picophytoplankton, dinoflagellates, carniv-
orous and omnivorous mesozooplankton, bacteria, het-
erotrophic nanoflagellates, and microzooplankton; macro-
nutrients (nitrate, phosphate, silicate, and ammonium); and
labile, semi-labile, and refractory organic matter and oxygen.
In addition, BFM includes a carbonate system model (Cos-
sarini et al., 2015a; Canu et al., 2015).

2.2 3DVarBio data assimilation scheme

Based on 3DVarBio (Teruzzi et al., 2014, 2018; Cossarini
et al., 2019; Teruzzi et al., 2021), the assimilation module
adopted in the present work integrates oxygen, chlorophyll,
and nitrate to update all of the assimilated variables as well
as all of the phytoplankton biomass and phosphate.

The 3DVarBio is a variational DA scheme (Teruzzi et al.,
2014) based on the minimization of a cost function (J).
This function comprises two terms: (i) the misfit between
the model background (xp) and the model control state vari-
able or analysis (i.e. the assimilation result x,) and (ii) the
mismatch between the observations (y) and the analysis (x,).
Both terms are weighted by their respective error covariance
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matrices (B and R) as follows:
J (xa) = (xa — x0) " B! (g — xp)
+O—HE)' R (v —H(x). (1

Here, the observation operator (H) maps the values of the
model background state in the observation space. Following
Dobricic et al. (2007), the background error covariance ma-
trix, B, is factorized as B =V VT with V = Vy Vy V. The
V' operators describe different aspects of the error covari-
ances: the vertical error covariance (Vy), the horizontal er-
ror covariance (Vpg), and the state variable error covariance
(VB). Vy is defined by a set of reconstructed profiles eval-
uated by means of an empirical orthogonal function (EOF)
decomposition applied to a validated multi-year (1998-2015)
run (Teruzzi et al., 2018). EOFs are computed for 12 months
and 30 coastal and open-sea subregions in order to account
for the variability in BGC anomaly fields. Vg is built us-
ing a Gaussian filter whose correlation radius modulates the
smoothing intensity. As in Cossarini et al. (2019), the correla-
tion radius in this work is non-uniform, direction-dependent,
and ranges between 12 and 20km (16 km on average). The
Vg operator consists of prescribed monthly and subregion
varying covariances among the BGC variables (e.g. nitrate to
phosphate). Specifically, for the assimilation of chlorophyll,
the Vp operator includes a balance scheme that maintains
the ratio among the phytoplankton groups and preserves the
physiological status of the phytoplankton cells (i.e. preserves
the internal ratios between the chlorophyll, carbon, and nu-
trients, as described in Teruzzi et al., 2014).

The operators Vy and Vp of 3DVarBio have been updated
for the assimilation of oxygen. Vy involved the calculation
of specific EOF profiles for oxygen, including a localization
function to avoid unrealistic corrections due to possible spu-
rious error covariances in the deepest part of the water col-
umn.

Vp included only a new direct relation for oxygen (i.e.
oxygen assimilation updated only the oxygen itself), given
that it has been shown that it barely affects other variables
(Skakala et al., 2021). In the BFM model equations, few for-
mulations depend on the oxygen concentration (e.g. nitrifi-
cation). Indeed, when the euphotic zone of the open ocean is
well oxygenated, oxygen dynamics have a limited impact on
the BGC cycles.

The assimilated observations consist of the quality-
controlled BGC-Argo dataset listed in Table 1. Oxygen and
nitrate profiles in the 0—600 m layer are used in the assimila-
tion, while chlorophyll is assimilated in the 0-200 m layer.

The observation error covariance matrix R is diagonal
with a monthly varying error in chlorophyll (Cossarini et al.,
2019). In both the nitrate BGC-Argo profiles and the recon-
structed nitrate profiles, the observation error remains con-
stant over time and increases along the vertical direction.
Within the 0-450 m layer, the error is set at 0.24 mmol m~3,
as in Mignot et al. (2019), and the linearly then increases
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up to 0.35 mmol m~3 between 450 and 600 m (the maximum
assimilation depth). This adjustment aims to prevent incon-
sistencies between the lower part of the assimilated layer
(450-600 m) and the deeper layer of the water column (be-
low 600 m). Although the accuracy of the reconstruction of
profiles is 0.87 mmol m—3 (Pietropolli et al., 2023), we de-
cided to not use different values of error for the two nitrate
subsets in order to show the highest potential impact of the
OSE.

Observation error for oxygen is set to 5mmolm™3
in the upper 200m of depth and gradually increases to
20 mmol m~3 in correspondence with the maximum assim-
ilation depth. These values correspond to the uncertainty as-
sociated with the oxygen dataset described in Feudale et al.
(2022).

2.3 The architecture of the neural network module and
the reconstructed nitrate dataset

NN-MLP-MED (Pietropolli et al., 2023) is the evolution of
previous MLP architectures developed to predict variables
sampled with low frequency (e.g. nutrients) starting from
variables sampled with high frequency (e.g. temperature)
(Sauzede et al., 2017; Bittig et al., 2018b; Fourrier et al.,
2020).

NN-MLP-MED is a deterministic feed-forward neural net-
work based on an MLP structure. It consists of the merging
of 10 different MLP architectures, each one with the same
input and output features, composed by two hidden layers
with varying numbers of neurons per layer. The final predic-
tion resulting from NN-MLP-MED is the mean of all of the
predictions of these components. The data flow of the MLP-
based approach follows the forward direction from the input
to the output layers through the neurons that compose the
layers. In our OSE experiment, the trained NN-MLP-MED
reconstructs nitrate profiles from sets of temperature, salin-
ity, oxygen, date, latitude, and longitude BGC-Argo profiles.

NN-MLP-MED introduces several innovative features
compared with the mentioned methods (e.g. CANYON-Med;
Fourrier et al., 2020), thereby leading to improved results.

Firstly, the input dataset encompasses a larger sample size
and broader coverage of the Mediterranean Sea region. The
EMODnet (European Marine Observation and Data Net-
work) data collection, as described by Buga et al. (2018),
consists of multi-platform data gathered from different re-
search cruises and monitoring activities in Europe’s marine
waters and global oceans. This dataset is characterized by
its multivariate nature, including various BGC observations,
such as chlorophyll, nitrate, phosphate, dissolved oxygen,
dissolved inorganic carbon, and alkalinity, collected between
1999 and 2018. Additionally, this dataset is further enriched
with in situ observations spanning the period from 1999 to
2016, as detailed in Lazzari et al. (2016) and Cossarini et al.
(2015b).

Ocean Sci., 20, 689-710, 2024
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Secondly, the input dataset benefits from a two-step QC
process, removing noisy and unreliable samples. The NN ar-
chitecture was also modified to enhance prediction perfor-
mance by accurately selecting a performing non-linear func-
tion, adjusting and optimizing the number of neurons for
each layer of the MLP model, and choosing a different opti-
mization strategy to train the algorithm. NN-MLP-MED also
includes a vertical smoothing step (running mean of 5-10 m
window) and a climatological adjustment at depth (600 m)
derived from the EMODnet dataset (Salon et al., 2019).

The uncertainty in the reconstructed nitrate associated
with the EMODnet validation dataset is 0.5 mmol m~3, while
it reaches 0.87 mmolm™ when predicting the BGC-Argo
dataset (Pietropolli et al., 2023).

After incorporating the NN-reconstructed profiles
(recNO3), the nitrate dataset used for assimilation expands
to 2146 profiles from the initial 938 nitrate (NO3) profiles
(Table 1). Generated by the NN-MLP-MED module, the
reconstructed dataset offers broad spatial coverage across
the 16 regions of the Mediterranean Sea (Fig. 2) as well as
a quite balanced distribution of nitrate data throughout the
seasons (Fig. 3), with the addition of 218 NN-reconstructed
profiles of nitrate in winter and 361 in summer.

2.4 BGC-Argo data and the post-deployment QC O,
module

BGC-Argo profiles from 2017 to 2018 were downloaded
from the Coriolis GDAC (Argo, 2022; last visited in July
2022). We collected both AM and DM data for oxygen and
chlorophyll. For nitrate, we selected DM data, while AM
data were incorporated after undergoing correction via the
CANYON-b NN method or using the World Ocean Atlas
(WOA18) collection (Garcia et al., 2019), as explained in
Johnson et al. (2021). For the three variables, we use data
flagged as good, probably good, changed, and interpolated
values (flags 1,2, 5, and 8, respectively).

Table 1 reports the total number of BGC-Argo profiles,
characterized by a high number of oxygen and chlorophyll
data against the relative paucity of nitrate. Figure 2 shows
the spatial distribution of BGC profiles of chlorophyll and
nitrate across the Mediterranean Sea. The oxygen coverage
can be approximated by merging nitrate and reconstructed
nitrate profile locations.

To provide more clarity with respect to analysing the data
availability, the Mediterranean Sea has been divided into the
following 16 subbasins:

— the Alboran Sea (alb), south-western Mediterranean
west (swml), south-western Mediterranean east
(swm?2), north-western Mediterranean (nwm), northern
Tyrrhenian (tyrl), and southern Tyrrhenian (tyr2) in the
western Mediterranean Sea;

— the northern Adriatic (adrl), southern Adriatic (adr2),
western Ionian (ionl), eastern Ionian (ion2), northern
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Tonian (ion3), western Levantine (lev1l), northern Lev-
antine (lev2), southern Levantine (lev3), eastern Levan-
tine (lev4), and Aegean Sea (aeg) in the eastern Mediter-
ranean Sea.

All three BGC variables have a fairly homogeneous spatial
coverage between the western and eastern Mediterranean Sea
regions, except for few subbasins not covered (alb, ionl, and
adrl; see Fig. 2), and a general 5d temporal sampling fre-
quency. Higher sampling frequencies (< 5d) are registered
for 20 % of profiles.

As oxygen sensors may drift and lose accuracy over
time, the accurate determination of dissolved oxygen is typ-
ically more challenging and requires some form of correc-
tion (Johnson et al., 2015). The loss of accuracy, expressed
as a percentage per year, is observed over time, particularly
12 months after deployment (https://www.euro-argo.eu, last
access: 17 July 2023).

Deep ocean drift is considered to be a proxy for oxygen
sensor drift because of the lack of seasonal and annual sig-
nals for oxygen at depth (Takeshita et al., 2013). Here, the
optode drift is evaluated using nonparametric methods (the
random sample consensus, RANSAC, and Theil-Sen meth-
ods) at two different depths (600 and 800 m) to avoid pos-
sible fake drift detection because of changes in the water
masses. Tests are applied when the life of a float is longer
than 1 year. Conversely, if the available float time series is
less than 1 year, the profiles are not corrected because the
float lifetime is considered to be too short to account for in
situ sensor drift.

Used for linear and non-linear regression problems, the
RANSAC and Theil-Sen methods automatically partition the
oxygen dataset into inliers and outliers. In order to avoid pos-
sible biases (Dang et al., 2008; Fischler and Bolles, 1981),
these methods calculate the drift based on the data subset
identified as inliers.

In our approach, the presence of a drift is established when
all four drift estimates (RANSAC at 600 and 800 m and
Theil-Sen at 600 and 800 m) agree with respect to their sign
and their average value (D_avg) exceeds 1 mmolm— yr—!.
This threshold is chosen on the basis of results in Bittig et al.
(2018a). Subsequently, the identified drift is removed from
the oxygen profiles. This is achieved by setting the D_avg
at 600 m and linearly interpolating toward the surface, where
drift is set equal to zero. As highlighted by Thierry and Bit-
tig (2021), there is a lack of specific tests at depth, although
several tests are performed near the surface by the GDACs.
The presence of near-surface tests motivates our decision to
mitigate the correction’s impact at the surface.

2.5 Design of numerical experiments

Three numerical experiments are performed to analyse the
impact of different assimilation set-ups. The simulated pe-
riod is 1 January 2017-31 December 2018, and the MedBFM
module set-up mostly corresponds to the standard adopted
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Spatial Distribution of BGC Argo and recNO3 in 2017-2018
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Figure 2. BGC-Argo profiles of chlorophyll (Chl, in white), in situ nitrate (NO3, in red), and reconstructed nitrate (recNO3, in blue) assimi-
lated in the Mediterranean Sea (2017-2018). The Mediterranean domain was subdivided into subbasins for the validation. According to data
availability and to ensure the consistency and robustness of the metrics, different subsets of the subbasins or some combinations of them are
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Mediterranean Sub-basins

in the Mediterranean Analysis and Forecast biogeochemical The three simulations, which share the same set-up except
system of the Copernicus Marine Service. This set-up in- for the assimilated datasets, are as follows: (1) control run
cludes the following: open boundary conditions in the At- without assimilation (HIND); (2) assimilation of BGC-Argo
lantic; climatological input of nutrients, carbon, and alkalin- chlorophyll, nitrate, and oxygen (DAfl); and (3) assimilation
ity for 39 rivers and the Dardanelles Strait; initial conditions of additional reconstructed nitrate profiles used to enhance
from the EMODnet dataset (details are provided in Salon the DAfl assimilative set-up (DAnn).
et al., 2019); and a 3-year spin-up using the 2017 forcings Before integrating data in 3DVarBio, the same pre-
in perpetual mode. assimilation assessment described in Teruzzi et al. (2021)
Our experimental set-up differs from the standard set-up is applied to the chlorophyll profiles. Nitrate profiles are
with respect to the physical forcing, which is sourced from rejected if the concentration at the surface is higher than
the Mediterranean Copernicus reanalysis (Escudier et al., 3mmolm~3. At the surface, the oxygen profile exclusion
2021), as well as for the initial oxygen conditions. These con- is evaluated by calculating the difference between the up-
ditions are derived from the BGC-Argo dataset by generating permost oxygen measurement and the oxygen saturation
16 climatological profiles of oxygen after performing the QC (derived from temperature and salinity data from the Argo
O3 procedure and then uniformly assigning them to each grid dataset, as in Garcia et al., 2019). Profiles are excluded when
point of the 16 subbasins shown in Fig. 2. this difference reaches the threshold of 10 mmolm™3. At
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Table 1. Summary of the numerical experiments and assimilated BGC-Argo profiles.

Test case Chl O, NOs3 Updated variables

HIND - - - -

DAfl 1773 1924 938  phyto-biomass, NO3, Oy, and POy
DAnn 1773 1924 2146  phyto-biomass, NO3, Oy, and POy

600 m, the difference between oxygen and a climatological
reference oxygen at depth is calculated. Profiles are excluded
when the difference reaches the threshold of 2 times the
standard deviation of the same reference dataset. As a ref-
erence dataset, we chose the EMODnet2018_int data collec-
tion, which integrates the in situ aggregated EMODnet data
(Buga et al., 2018) and the datasets listed in Lazzari et al.
(2016) and Cossarini et al. (2015b). The EMODnet2018_int
dataset is available for 16 subbasins in the Mediterranean Sea
(Fig. 2).

During DA, profiles are excluded when innovation ex-
ceeds specific threshold rules. For chlorophyll, the thresh-
old is set at 2mg m~3. For nitrate, the thresholds are 1 and
2 mmol m~ for the 0—50 and 250-600 m layers, respectively
(as in Teruzzi et al., 2021). Oxygen thresholds are 30 and
50mmolm~3 for the 0—150 and 150-600 m layers, respec-
tively (thresholds are roughly 3 times the standard deviation
of the climatology computed on EMODnet data for the dif-
ferent subbasins). Exceeding values have to be found in at
least five vertical levels within the specified layers. These
exclusions aim to prevent corrections that could trigger un-
stable dynamics after the assimilation (Teruzzi et al., 2021;
Storto et al., 2011; Sakov and Sandery, 2017; Waller et al.,
2018). The excluded profiles range from 0.1 % for chloro-
phyll to less than 1 % for nitrate.

3 Results
3.1 The post-deployment QC O, module

The product of our QC O, module is a quality-controlled
dataset available at https://zenodo.org/records/10391759
(Amadio et al., 2023).

The QC O, module enabled the automatic correction of in
situ sensor drifts. Of the 40 floats available between 2017 and
2018, we performed the drift analysis on 16 floats, while 24
floats remained unanalysed due to the limited length of the
time series. Of these 16 floats, we found a drift in 13: 4 with
a positive drift and 9 with a negative drift. For the remaining
three floats, the drift values were below the prescribed thresh-
old (Sect. 2.4). At a depth of 600 m, the absolute average cor-
rection for the 13 floats is approximately 4.3 mmol m =3 yr~.
This value aligns with the ranges expressed in terms of sensor
drift percentage in Bittig et al. (2018a) (1 %—1.5 %).
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Figure 4 shows the evolution of oxygen profiles for a
quasi-stationary float (6902687) after applying the drift cor-
rection. Consistent with findings in various studies (e.g. Bit-
tig et al., 2018a; Maurer et al., 2021), the detection of drift
by our QC O, suggests a possible tendency of the optode to
slowly degrade over time. After 2 years, the bias due to the
drift reaches approximately S mmol m 3 (profiles from 1 De-
cember 2017 in Fig. 4).

The removal of drift brings the oxygen concentration at
600 m closer to the EMODnet climatological data (as shown
by the green star in Fig. 4). This leads us to infer that our
drift correction enables the inclusion of more profiles in the
assimilated oxygen datasets.

3.2 Validation using satellite and BGC-Argo datasets

skill of the simulations listed
in Table 1 is evaluated by comparing model re-
sults with (i) the satellite Copernicus Marine Ser-
vice OC product (i.e. non-gap-filled L3 product
OCEANCOLOUR_MED_BGC_L3_MY_009_143  from
https://marine.copernicus.eu, last access: 17 July 2023)
of chlorophyll and (ii) BGC-Argo profiles of chlorophyll,
nitrate, and oxygen (Argo, 2022). The OC L3 satellite
products downloaded from the Copernicus Marine Service
catalogue are interpolated from a 1km to 1/24° model
resolution.

Specifically, we compared the daily model output with the
satellite dataset and the model’s first guess (i.e. the model
state at 13:00 UTC before assimilation) with the BGC-Argo
profiles. While the use of the first guess is a common prac-
tice in DA (Hollingsworth et al., 1986), it is worth reiterat-
ing that this comparison should be considered to be a semi-
independent validation, given that two consecutive profiles
of the same BGC-Argo float can share a certain degree of
correlation in their errors.

The root-mean-square error (RMSE) metric is chosen to
quantify the model’s capability to reproduce seasonal vari-
ability in the main BGC processes at the surface (satellite
dataset) or along the vertical column (BGC-Argo dataset),
such as phytoplankton surface bloom and dynamics during
water column stratification.

Indeed, the RMSE is evaluated during winter (from Febru-
ary to April, FMA) and summer (from June to August, JJA)
2017 and 2018 within 16 subbasins of the Mediterranean Sea
(as described in Sect. 2.4 and in Fig. 2) or in an aggregated

The performance
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Figure 4. Depiction of the original (black) and corrected (blue) oxygen profiles for float 6902687 across four selected dates (yyyy-mm-dd).
The green star refers to the EMODnet O, climatological value in the nwm subbasin, while the horizontal line refers to the EMODnet O,

standard deviation at 600 m.

combination of them. The latter includes six macro-basins:
the south-western Mediterranean Sea, (Swm) consisting of
swml and swm?2; the north-western Mediterranean (Nwm),
represented solely by the nwm; the Tyrrhenian Sea (Tyr),
consisting of tyrl and tyr2; the Ionian Sea (Ion), consisting
of ionl, ion2, and ion3; the Adriatic Sea (Adr), consisting
of adrl and adr2; and the Levantine Sea (Lev), consisting of
levl, lev2, lev3, and lev4.

The winter RMSE concerning the OC chlorophyll in
HIND spans between approximately 0.09 and 0.21 mgm™3
with a maximum in the alb region (Fig. 5). The inclusion of
multivariate DA (in DAfl) positively impacts the model per-
formance, reducing surface errors by 6.5 %, as mainly ob-
served in the eastern subbasins. A further reduction in the
RMSE (up to 10 %) with respect to HIND is then obtained
with DAnn, highlighting that enlarging the nitrate float net-
work leads to improvements in the reproduction of surface
phytoplankton dynamics. Except for alb and swml, where
no nitrate data (in situ or reconstructed) were available, all of
the Mediterranean subbasins exhibit a reduction in the RMSE
during winter. In the nwm, the RMSE in the DAl assimila-
tive set-up is higher than in the HIND run. However, in DAnn
(light blue striped bar for nwm in Fig. 3) the enlarged nitrate
dataset positively affects the chlorophyll dynamics at surface.

A general slight worsening of the assimilated runs can
generally be observed during the summer stratification pe-
riod, especially in the eastern subbasins. From DAl to DAnn,
the RMSE value slightly increases in all subbasins. These
values correspond to an average worsening of about 6 % in
DAMfl and an average worsening of 7.5 % in DAnn compared
with the HIND run. Despite the introduction of a high num-
ber of reconstructed nitrate profiles in some subbasins (e.g.
orange striped lines for nwm and ion2 in Fig. 3), this in-
clusion does not positively impact the summer chlorophyll
RMSE at the surface. The RMSE values in summer are an
order of magnitude lower than in winter, reflecting the sea-
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sonal chlorophyll variability in the Mediterranean Sea (i.e.
the very low values of chlorophyll at the surface).

The RMSE metrics based on BGC-Argo are computed
for the six selected aggregated macro-basins and in selected
layers (0-10, 10-30, 30-60, 60-100, 100-150, 150-300,
and 300-600m), and they are shown for nitrate (Fig. 6a,
b), chlorophyll (Fig. 6¢c, d), and oxygen (Fig. 6e, f). The
statistics computed over the aggregate basin provide more-
robust results (e.g. they are computed over a larger number
of profiles), even if possible spatial patterns of the errors
can be damped. Thus, this choice might limit the analysis
on whether/how different nitrate assimilation set-ups affect
chlorophyll and oxygen dynamics (see Sect. 3.3).

As expected, the assimilation of in situ BGC-Argo con-
siderably improves the quality of modelled nitrate with re-
spect to the HIND run. During winter, the average RMSE
reduction is 40 % in DAfl and increases to 46 % in DAnn,
whereas the average reduction reaches 59 % in DAfl and
63 % in DAnn in summer (Fig. 6a, b). The most significant
RMSE reduction in the DAnn run compared with DAfl is ob-
served in Nwm and Tyr (0450 m) during winter and in Ion
(0-100 m) in summer. This impact can be directly ascribed
to profile availability (Fig. 3), and additional profiles gener-
ate more persistent corrections.

As the DAfl and DAnn simulations share the same chloro-
phyll assimilation set-up, the RMSE improvements in terms
of chlorophyll assimilation can be evaluated by comparing
the HIND with the DAfl or DAnn simulation (Fig. 6c, d).
We observe slight enhancements with respect to simulating
chlorophyll in Nwm (0-100m) and Lev (0-200 m) during
winter and in Tyr, Ion, and Lev (50-200 m) during summer
(Fig. 6¢, d). Even if phytoplankton dynamics depend on nu-
trients dynamics, the positive impact of DAnn on the nitrate
RMSE does not transfer to the vertical chlorophyll statistics
in the DAnn.

Ocean Sci., 20, 689-710, 2024
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Figure 5. Seasonal chlorophyll RMSE values of the model runs with respect to satellite OC observations: winter bloom and summer stratifi-
cation seasons in the Mediterranean Sea subbasins for the HIND run (light blue), the DAfl run (orange), and the DAnn run (green with dots).
The black vertical line represents the subdivision of the Mediterranean Sea into the western and eastern sectors.

Assimilating oxygen profiles enables the reduction of the
model-BGC float RMSE by about 30 % during winter and
summer. In winter, the correction involves the whole water
column in the east (Lev and Ion) and deeper layers (150-
600 m) in the west (Swm, Nwm) and Adr (Fig. 6e, ). In sum-
mer, the impact is mainly observed in Tyr, Ion, and Lev. The
integration of NN-reconstructed profiles in the DAnn simula-
tion does not significantly affect oxygen dynamics compared
with the DAl simulation, given that oxygen has already been
markedly modified by the O, assimilation occurring at the
same location as NN-reconstructed nitrate profiles.

3.3 Integration of NN-MLP-MED and DA modules:
the impact

3.3.1 Impacts on biogeochemical vertical dynamics

To assess the impact of profile assimilation on changing the
vertical gradients of BGC variables, Figs. 7, 8, 9, and 10
show the Hovmoller diagrams of the spatial averages of ni-
trate, phosphate, chlorophyll, and oxygen for two selected
subbasins (first and second columns for nwm and ion2, re-
spectively, with boundaries indicated in the map of Fig. 2)
and for the entire Mediterranean Sea (third column). This
representation offers additional details on the vertical impact
of the reconstructed nitrate profile assimilation with respect
to the validation of Fig. 6 that considers only model points
corresponding to the location of BGC-Argo profiles. nwm
and ion2 represent distinct trophic conditions in the Mediter-
ranean Sea and are also characterized by a high number of
assimilated reconstructed nitrate profiles (Fig. 3). The north-
western Mediterranean has a higher level of nutrient concen-
trations and more intense surface blooms in winter (Siokou-
Frangou et al., 2010; Di Biagio et al., 2022). During sum-
mer, nwm exhibits a shallow nitracline, a higher chlorophyll
concentration at the deep chlorophyll maximum (DCM), and
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a shallow subsurface oxygen maximum (SOM) (first col-
umn in Figs. 7, 8, 9, and 10). Conversely, the eastern sub-
basin is characterized by a deeper nitracline and DCM as
well as more oligotrophic conditions (ion2, second column
of Figs. 7, 8, 9, and 10).

Considering nitrate, the multivariate assimilation (DAfl)
reduces a general positive bias of the model in all of the
Mediterranean areas (blue pattern in Fig. 7). The addition
of NN-reconstructed profiles makes the corrections stronger.
On average, the nitrate concentration below the nitracline
(the depth at which nitrate concentration is 2 mmol m_3) de-
creases by 8% and 11 % in the DAfl and DAnn runs, re-
spectively. Both the assimilation runs also exhibit changes
in the nitracline depth with more intense deepening in the
DAnn simulation. Differences between the assimilation and
the HIND run accumulate over time. The rate of this accu-
mulation is highest during the first year and decreases dur-
ing the second year. These differences remain almost con-
stant in subbasins with a high number of BGC-Argo and
NN-reconstructed profiles (e.g. nwm in Fig. 7). On the other
hand, considering the ion2 and the whole Mediterranean Sea,
which comprises some undersampled areas (e.g. ionl and
ion3), the effect of DA corrections is still propagating after
the 2 years (third column of Fig. 7).

Very similar patterns are also observed in the Hovmoller
diagrams of phosphate (Fig. 8), which is an updated variable
of the multivariate variational assimilation scheme through
nitrate—phosphate covariance. In fact, the general negative
corrections on phosphate fields are linked to the high positive
values of the covariance matrix between nitrate and phos-
phate (Teruzzi et al., 2021).

Considering chlorophyll (Fig. 9), the main difference be-
tween DAfl and HIND is a slight reduction in the DCM
chlorophyll concentration (e.g. variation smaller than 5 %
with respect to HIND simulation) and a correction of the tim-
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Figure 6. Seasonal nitrate (a, b), chlorophyll (¢, d), and oxygen (e, f) profiles of the RMSE of the model runs with respect to BGC-Argo
observations for the bloom (a, ¢, ) and stratification (b, d, f) seasons in the aggregated Mediterranean Sea subbasins for the HIND run (light

blue), DAfl run (orange), and DAnn run (green).

ing of the surface winter blooms (second row in Fig. 9). Even
if the chlorophyll validation (Fig. 6) does not show strong
differences between DAfl and DAnn, the basin-wide aver-
ages of DAnn display more intense corrections with respect
to DAfl in terms of the DCM depth and chlorophyll intensity
and the overall chlorophyll concentration (Fig. 9). Over the
0-200 m layer of the whole Mediterranean Sea, the chloro-
phyll decreases with respect to HIND are 4 % and 5 % for
DAfl and DAnn, respectively.

Corrections on oxygen dynamics after the multivariate as-
similation (DAfl, second row in Fig. 10) are either positive
or negative depending on the area and the period of the year.
In particular, corrections are mostly positive in ion2, while
the nwm subbasin shows negative corrections in the subsur-
face layer and positive ones in the upper layer in the second
year. At a basin-wide scale with respect to the Mediterranean,
the average correction is 0.2 % for the 0—200 m layer. The
addition of the reconstructed nitrate profiles does not alter
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the correction pattern, with an average correction of 0.3 %.
However, the largest differences between the two assimila-
tion runs can be spotted in areas with a high density of NN-
reconstructed profiles during summer (e.g. nwm, first col-
umn in Fig. 10). As observed in the nitrate and chlorophyll
Hovmoller diagrams, the assimilation of NN-reconstructed
profiles causes a decrease in the summer productivity in the
DCM layer. Consequently, less oxygen is produced, gener-
ating the negative changes in the DCM layer in the bottom
left panel of Fig. 10. Because of the smaller amount of sub-
sequent sinking organic matter, less oxygen is consumed in
the remineralization processes in layers below the DCM in
late summer and autumn, and positive oxygen changes are
generated, particularly during 2018.

Ocean Sci., 20, 689-710, 2024
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3.3.2 Impact on ecosystem indicator (net primary
production)

Net primary production (NPP) integrates phytoplankton
growth and respiration processes, which are at the base of
the marine trophic food web. The assimilation of chlorophyll
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and nitrate as well as the updates of phosphate directly and
indirectly affect primary production, as they influence both
phytoplankton biomass and nutrient availability. Thus, the
comparison of primary production among the three simula-
tions reveals how the assimilation impacts a key indicator
that integrates several marine ecosystem processes. Seasonal
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maps of NPP integrated over the 0-200 m layer in the HIND,
DAfl, and DAnn simulations (Fig. 11) confirm that the as-
similation’s impact varies spatially and temporally.

In the DAfl simulation, the most evident differences in pri-
mary production compared with the HIND simulation are lo-
cated in the eastern Mediterranean Sea, with a decrease in
NPP of nearly 10 % in the Levantine macro-basin and in the
Ionian Sea close to the Greek coast (first and second row
of Fig. 11). This reduction is particularly pronounced during
winter. In the western Mediterranean, the impacts on primary
production are less evident in both seasons, with a slight re-
duction (5 %) in winter in the Tyrrhenian Sea.

The DAnn simulation shows more pronounced impacts on
primary production compared with the DAfl simulation (sec-
ond and third rows of Fig. 11). The main differences between
the DAnn and DAl runs are highlighted by the black con-
tour line in Fig. 11 (differences larger than 15 mgCm~2d™1).
Specifically, during winter, a decrease in NPP is mainly ob-
served in Nwm, Ion, and Tyr, whereas reductions in NPP are
observable in Nwm and Ion in summer.

As shown in Fig. 3, the levl and lev4 basins have a
high number of reconstructed nitrate profiles during both
the winter and summer seasons. This abundance of NN-
reconstructed profiles contributes to an increase in the impact
of reproducing the NNP dynamics, which is spatially local-
ized. Conversely, lev2 and lev3, the subbasins dividing levl
from lev4, contain in situ nitrate but lack reconstructed ni-
trate profiles. This lack may spatially limit the impacts that
the assimilation of reconstructed nitrate profiles could have
on NPP throughout the entire Levantine region (Lev).

In general, the impact on primary production is greater
in areas where nitrate observations or reconstructed nitrate
observations are assimilated (Fig. 3), suggesting a dynamic,
bottom-up control on primary production. In fact, the weaker
fertilization of the surface layer in DAnn, which occurs for
both macronutrients after assimilation (Figs. 7, 8), causes a
reduction in NPP.

3.3.3 Impact on the Argo observing system design

Analysing the departure of an assimilated simulation from
a reference solution provides insights into the impact of the
observing system design, and several data impact indicators
can be used (Ford, 2021; Teruzzi et al., 2021; Raicich and
Rampazzo, 2003). In this work, we adopted the impact indi-
cator /;;(t), as described in Teruzzi et al. (2021). This indi-
cator supports the quantification of the vertically integrated
response resulting from the assimilation of BGC-Argo pro-
files compared with the non-assimilation run:

() = |Sim;; () — HIND;;; (£)[0—maxdepth
Y (HINDofmaxdepth)mean )
Here, HIND is the reference, while Sim refers to one of the

different DA set-ups (DAfl or DAnn). |Sim;; (1) —HIND;; ()|
is the absolute difference between two simulations (for each

@
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day and grid point), while the subscript “maxdepth” indi-
cates the vertically integrated layer of 0-300 and 0-600 m
for chlorophyll and nitrate, respectively.

The indicator /;;(¢) quantifies the departure of an assim-
ilated run (DAfl or DAnn) from the reference simulation
(HIND) for every grid point within the Mediterranean Sea
domain over time, while the 95th percentile of the I;;(z)
highlights the areas in which the assimilation markedly in-
creases this difference between model runs.

To compare the spatial extent of the 95th percentile of
I;j (t) between the two pairs of runs (HIND-DAf]l and HIND—
DAnn), we choose a threshold value corresponding to the
mean value of the HIND-DAfl and HIND-DAnn maps in
Figs. 12 and 13 (i.e. 0.1 and 0.4 for nitrate and chlorophyll,
respectively) and calculate the areas with values above the
threshold.

Figures 12 and 13 show the nitrate and chlorophyll /;;(¢)
95th percentile of the seasonal indicator in winter (panels a
and c) and in summer (panels b and d) in the DAl (panels a
and b) and DAnn (panels ¢ and d) simulations.

In DAfl, the extent of the nitrate /;;(¢) 95th percentile
above the threshold of 0.1 is 16.5% and 18.7 % in winter
and in summer, respectively, with a clear spatial distribu-
tion mapping the density of BGC-Argo floats. The introduc-
tion of NN-reconstructed profiles in DAnn makes it possible
to increase the nitrate-impacted areas up to about 35 % and
39 % in winter and summer, respectively. The DAnn impact
increase is mainly localized in the western Mediterranean
Sea and in Ion, while the less-evident impact in Lev, espe-
cially in summer, is mainly due to the low number of NN-
reconstructed nitrate profiles in the area.

Chlorophyll impact maps (Fig. 13) show that, besides the
direct impact of chlorophyll profile assimilation, phytoplank-
ton is also affected by the reconstructed nitrate assimilation.
Compared to the threshold of 0.4, the impacted areas increase
from 18.2 % to 29.8 % in winter and from 10.8 % to 14.5 %
in summer in the DAfl and DAnn runs. These results suggest
that the inclusion of reconstructed nitrate assimilation has the
potential to extend its impact across the majority of the 16
subbasins of the Mediterranean Sea. However, the scarcity
or absence of available data for assimilation prevents us from
observing an impact in the marginal seas (Adr and Aeg), the
southern part of the Ionian (ionl), and western subbasins (alb
and swml).

Oxygen impact maps (not shown) are very similar to the
nitrate DAnn maps and do not show differences between the
two DA simulations, as the same QC oxygen dataset was
assimilated in DAfl and DAnn and the oxygen assimilation
largely overcomes any other potential model adjustment af-
ter nitrate assimilation.
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Figure 9. Hovmoller diagram of chlorophyll for the HIND simulation (a, b, ¢) and differences between the respective DAfl and DAnn
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The averages of the 0—200 m concentration and of the nitracline for the simulated period are reported.
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4 Discussion (Amadio et al., 2023) for initial conditions, data assimila-

tion, validation, and reconstruction of new datasets. Even if
Our quality check procedure (QC O,) for oxygen drift de- the dist.inction between real oxygen .depleti(.)n signal§ ar.ld op-
tection and comparison with a reference dataset successfully ~ tode drift can remain problematic without high-quality in situ

integrates the official BGC-Argo information (Argo, 2022), data, we believe that the I%te.ratur.e a-nd pri-or knowledge can
making oxygen BGC-Argo a robust and valuable dataset D€ used as a baseline for distinguishing drift.
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Figure 11. Maps of winter (FMA) and summer (JJA) net primary production (NPP, mgC m—2 d_l) in the three simulations: HIND (a, b),
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(f) encompass areas in which the NPP difference between DAnn and DAfl exceeds 15 mgC m—2d-1

In particular, the oxygen concentration in the mesopelagic
layer of the Mediterranean Sea can exhibit basin-scale vari-
ability (Mavropoulou et al., 2020) as well as local intense
multi-year variability (Sisma-Ventura et al., 2021). For ex-
ample, one of the most evident signals was the early-1990s
Eastern Mediterranean Transient (EMT) associated with
variations in thermohaline circulation. The EMT caused both
negative and positive variations (e.g. about 10 mmol m~3 on
a decadal timescale) in oxygen levels in the western and east-
ern Mediterranean Sea (Mavropoulou et al., 2020). How-
ever, in the last decades, a much smaller inter-annual vari-
ability in oxygen in the mesopelagic layer has been ob-
served in both the western and eastern basins (Coppola et al.,
2018; Mavropoulou et al., 2020). Therefore, the threshold of
1 mmol m~3 yr~! at 600 and 800 m appears to be a prudent
limit for the discrimination of sensor drift from real long-
term signals for our specific application.

To date, visual checks by oceanographers have been nec-
essary to distinguish ocean signals from sensor drift (Wang
et al., 2020), and the ongoing debate regarding the replace-
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ment of visual checks by automatic statistical procedures is
still open. Consequently, our work seeks to contribute to this
topic by proposing a new tool designed to automatically han-
dle deep-ocean signal or optode drift issues. This method
can be further developed by applying oxygen drift analysis
at fixed isopycnals, in conjunction with analysis at constant
isobaths. This approach might allow us to filter out poten-
tial oxygen concentration changes caused by floats moving
across different water masses.

The assimilation of vertical profiles provides complemen-
tary information to satellite OC assimilation (Verdy and Ma-
zloff, 2017; Cossarini et al., 2019), which remains the most
commonly used method in operational systems (Fennel et al.,
2019). In fact, the effectiveness of the profile assimilation
process, which has the capability to constrain vertical BGC
dynamics in subsurface layers (Kaufman et al., 2018; Teruzzi
et al., 2021; Ford, 2021; Skakala et al., 2021; Wang et al.,
2022), depends on the availability of BGC-Argo data, which
are generally insufficient to constrain a basin-wide simula-
tion. Previous findings (Teruzzi et al., 2021) have primarily
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demonstrated the efficiency of OC assimilation in constrain-
ing chlorophyll dynamics, especially during winter, and the
advantages of assimilating BGC-Argo profiles in summer.
Our work highlights the larger and more extensive benefits
of profile assimilation during summer due to the incorpora-
tion of reconstructed nitrate profiles.

Through the integration of NN and DA, the count of ni-
trate profiles ingested can potentially be as high as that from
BGC-Argo equipped with an oxygen sensor (i.e. more than
double the nitrate profiles), which corresponds to a density of
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one profile in each 2.5° x 2.5° box every 10d for the 2017-
2018 period. This means that seasonal subbasin-scale dy-
namics (e.g. bloom or stratification) can effectively be con-
strained, whereas the mesoscale dynamics can be only lo-
cally constrained (D’Ortenzio et al., 2021).

Apart from an increase in the number of floats, a further
increase in the area impacted by float assimilation can be
optimized by redefining horizontal covariance errors in the
DA scheme. Indeed, benefits of a non-uniform correlation
radius on the horizontal scale have previously been investi-
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Figure 14. The monthly availability of BGC-Argo profiles (num-
ber of profiles per month) from 2013 to 2022 for nitrate (green),
chlorophyll (grey), and oxygen (yellow).

gated (Cossarini et al., 2019), and additional improvements
could be provided by a 3D varying correlation radius (Storto
et al., 2014).

Looking at the recent evolution in the availability of BGC-
Argo sensors (Fig. 14), our combined NN and DA approach
would allow us to maintain the benefits of the BGC-Argo
observing system in the Mediterranean operational system.
Even if nitrate and chlorophyll profiles have dramatically
decreased after 2020, the assimilation of NN-reconstructed
profiles can potentially overcome this lack. Nevertheless, as
shown in our OSE (Figs. 12 and 13), there are still areas that
are undersampled by the Argo and oxygen sensors, such as
the Alboran and southern Ionian seas and the marginal seas
(northern Adriatic and northern Aegean Sea), which would
require specific deployments.

With respect to previous BGC observing system simula-
tion experiments (Yu et al., 2018; Ford, 2021), we show how
to exploit the current Argo and BGC-Argo networks to re-
construct BGC variables.

MLP feed-forward methods to reconstruct BGC variables
are good enough (Bittig et al., 2018b; Fourrier et al., 2021;
Pietropolli et al., 2023; Sauze'de et al., 2020) for our pur-
poses, even if their application to generate smooth and con-
sistent profiles still has some limitations (Pietropolli et al.,
2023). The MLP-NN-MED method exhibits a validation
error of 0.50mmolm™> for nitrate when used to predict
nitrate from the EMODnet dataset, whereas this value is
0.87 mmol m~3 when used to predict nitrate from BGC-Argo
data (Pietropolli et al., 2023). These uncertainties related to
the reconstructed nitrate dataset are higher then that used in
our study (0.24 mmol m~—3) for both the BGC-Argo and re-
constructed profiles.

Thus, while it is reasonable to assign a higher observation
error to NN-reconstructed nitrate, applying the same error to
both in situ and NN-reconstructed datasets has resulted in a
potential overestimation of the assimilation impact that can
be achieved. On the other hand, using a possibly underesti-
mated error could unbalance the assimilation results toward
observation overfitting, and we recognize the potential ben-
efits of using different error values for BGC-Argo and re-
constructed profiles. Overfitting effects on observations may
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similarly stem from our choice of not explicitly including
the nitrate representation error. However, our nitrate error
definition is an evolution of the approach used in Teruzzi
et al. (2021), who demonstrated a well-established balance
between assimilation impacts and overfitting towards the ob-
servations.

The larger error in the MLP-NN-MED prediction of BGC-
Argo profiles stems from the fact that the MLP methods,
which are trained on individual data points and produce
pointwise outputs, are unaware of the vertical gradient (e.g.
typical shape) of the profiles of the BGC variables that they
seek to infer. This fact can lead to irregularities and a lack
of smoothness in the predicted profiles (Pietropolli et al.,
2023), which we partly solved by adding a smoothing op-
erator. However, one way to increase the reliability of profile
reconstruction would be to include information with a phys-
ical meaning from observed data (Buizza et al., 2022). One-
dimensional convolutional neural networks represent a viable
alternative approach, considering their ability to treat the co-
herence of the 1D signals (e.g. typical shapes of profiles) as
shown in Li et al. (2021).

The integration of NN and DA has been tested in several
geoscience applications (Buizza et al., 2022; Brajard et al.,
2021; Stanev et al., 2022) to infer unresolved spatial scales
or reproduce missing data. In our application, the integration
of NN, which retrieves a large number of profiles (Pietropolli
et al., 2023), and DA, which can apply the correction to all
nutrients through error covariances (Teruzzi et al., 2021), al-
lows spatial and multivariate changes to be captured at both
the local and basin scale to constrain Mediterranean produc-
tivity (Fig. 11). Although the corrections take time to extend
to the entire basin (Fig. 7), our simulations have shown that
constraining bottom-up ecosystem processes (e.g. produc-
tivity and the organic matter sink) has proven effective and
might be used in conjunction with the classical OC correc-
tion to phytoplankton biomass.

Any plan to learn directly from observations will be faced
with some challenges, such as the use of observations with
uneven spatiotemporal coverage or issues related to specific
processes (Geer, 2021). The modular approach followed in
this work represents a successful example of exploiting the
strengths of NNs and DA to enhance the observing system
impact in the operational BGC system of the Mediterranean
Sea.

5 Conclusions

Combining a deterministic feed-forward neural network and
data assimilation to design an observing system experiment
has enabled us to demonstrate the enhanced positive impact
of profile assimilation in the Copernicus Mediterranean op-
erational forecast system (MedBFM).

The development of the oxygen QC procedure allowed us
to statistically deal with optode in situ drift and to derive ac-
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curate reconstructed profiles of nitrate, thereby keeping the
number of assimilated observations at a much higher level
despite the current negative trend in BGC-Argo availability.

The achieved density of BGC profiles provides valuable
and additional information to complement ocean colour in
the description of seasonal phytoplankton blooms and strati-
fication dynamics at the subbasin scale.

The assimilation of BGC-Argo nitrate corrects a general
positive bias of the model in several Mediterranean areas, and
the addition of reconstructed profiles makes the correction
stronger.

Along with nitrate assimilation, the phosphate update
through error covariances sustains spatial and multivariate
changes that are capable of correcting key BGC processes
(e.g. nitracline and deep chlorophyll maximum) and con-
straining ecosystem processes (e.g. productivity) at a basin-
wide scale.
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