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Abstract. Extreme sea levels may cause damage and the dis-
ruption of activities in coastal areas. Thus, predicting ex-
treme sea levels is essential for coastal management. Sta-
tistical inference of robust return level estimates critically
depends on the length and quality of the observed time se-
ries. Here, we compare two different methods for extending
a very short (~ 10-year) time series of tide gauge measure-
ments using a longer time series from a neighbouring tide
gauge: linear regression and random forest machine learning.
Both methods are applied to stations located in the Kattegat
Basin between Denmark and Sweden. Reasonable results are
obtained using both techniques, with the machine learning
method providing a better reconstruction of the observed ex-
tremes. By generating a set of stochastic time series reflect-
ing uncertainty estimates from the machine learning model
and subsequently estimating the corresponding return levels
using extreme value theory, the spread in the return levels is
found to agree with results derived by more physically based
methods.

1 Introduction

Extreme sea levels (ESLs) can have disastrous consequences
in coastal zones in terms of flooding vulnerable assets, loss
of lives, and disturbances (Brown et al., 2018; Vousdoukas
et al., 2020; Wahl et al., 2017). Coastal floods generally re-
sult from a combination of ESLs, wind, waves, tides, and
local conditions, including bathymetry and terrain features.
Climate change also affects ESL events due to sea level rise

and changes in storm frequency and/or intensity (Rutgersson
et al., 2022). Reliable estimates of current and future ESLs
are urgently needed to mitigate the impacts of disaster risks
and to inform adaptation to climate change. Long time series
of observed sea levels are essential for improving confidence
in statistically inferred return levels (RLs) (Menéndez et al.,
2010; Woodworth et al., 2011) and are often considered es-
sential for coastal planning. International initiatives such as
the Global Sea Level Observing System (GLOSS) (Caldwell,
2012; Merrifield et al., 2012) and other works (Woodworth et
al., 2010) have highlighted this necessity and called for the
recovery of historical records in what is known as “data ar-
chaeology”. Nevertheless, the temporal paucity of sea level
time series (Holgate et al., 2013) remains a limitation for ad-
equately estimating RLs and ESLs in many places.

This technical note evaluates a machine learning method
called random forest (RF) (Breiman, 2001) for extending the
sea level time series obtained by a tide gauge of interest using
a longer time series at a neighbouring tide gauge in the con-
text of analysing sea level extremes. This is particularly rele-
vant when the initial time series is very short, e.g. in the order
of ~ 10-20 years, which is principally too short to allow re-
liable statistical inference of ESLs (e.g. a RL corresponding
to a 100-year event). The RF methodology is compared to a
linear regression (LR) model, which could also be expected
to perform adequately for short time series.

Our study area lies within the Kattegat Basin, located on
the western coast of Sweden, around the city of Halmstad
(Fig. 1). Here, according to the Swedish Meteorological and
Hydrological Institute (SMHI), the highest recorded Swedish
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sea level of 235cm was observed in November 2015. This
event was mainly due to local conditions leading to a sea
level increase of 50—100 cm in comparison with neighbour-
ing stations, such as Viken; however a seiche effect could
also have added around 25 cm to the total sea level (Johans-
son, 2018). In this area, tides vary with an amplitude of
around 20 cm during spring tides (Svansson, 1975), and cur-
rent ESLs are mainly due to storm surge effects. However,
other factors could also play a role, such as the precondi-
tioning of the Baltic Sea (Andrée et al., 2023). Hieronymus
and Kalen (2020) showed that the Swedish western coast is
expected to be one of Sweden’s most exposed areas due to
rising sea levels.

Different methods have been proposed to extend sea level
records. For example, Bernier et al. (2007) used short obser-
vation time series associated with a 40-year hindcast surge
model. Reconstructions by Cid et al. (2018) were based on
tide gauge data and atmospheric conditions. Hieronymus et
al. (2019) showed good performance of neural networks with
respect to predicting sea levels at tide gauges located along
the Swedish coast based on different atmospheric variables
and tide gauge records. Granata and Di Nunno (2021) found
similar results when forecasting tides in the Venice region
using different machine learning methods, including RF, re-
gression tree, and multilayer perceptron. Recently, Belling-
hausen et al. (2023) demonstrated the utility of using an RF
classifier to satisfactorily predict the occurrence of ESLs at a
few stations around the Baltic Sea within 3 d based on surface
wind and pressure fields, precipitation, and the pre-filling
state of the Baltic Sea.

In the following, we systematically evaluate the perfor-
mance of RF as means of extending a very short time series
of only 10 years and of reconstructing past sea level varia-
tions based on a more extended time series from a neighbour-
ing station. This approach is compared to the linear regres-
sion approach. Both methods have previously been found to
reduce biases efficiently and are relatively computationally
inexpensive with low complexity when applied to a small
number of input variables, as is the case in this study. To
evaluate the sensitivity of the reconstructed sea level with re-
spect to the geographic distance from neighbouring stations,
we apply the method to data from different stations. Finally,
we consider the method’s potential and limitations with re-
spect to the reconstruction of sea level extremes when the
time series of interest is very short and inherently provides a
poor sampling of even moderately extreme events.

2 Data and methods
2.1 Sealevel data
The datasets used in the analysis are hourly sea level obser-

vations from different stations available from SMHI (SMHI,
2021) and the Danish Meteorological Institute (DMI). Three
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Figure 1. Map of northern Europe indicating the study area and the
tide gauge stations (red dots).

stations are located on the western coast of Sweden —
Ringhals (station no. 2105, “RINGHALS”), Halmstad (sta-
tion no. 35115, “HALMSTAD SJOV”), and Viken (station
no. 2228, “VIKEN”) — and one station is located on the east
coast of Denmark — Hornbak (Hansen, 2007) (Fig. 1). The
distance between Hornbak and Viken is around 9 km, the
distance between Hornbak and Ringhals is around 130km,
and the distance between Viken and Ringhals is around
127km (Table 1). The geographical location of the stations
is important, as it can change how the water level behaves,
for example, stations may be constricted in a channel, such
as Viken and Hornbzk. Here, ESLs are defined as the total
highest measured sea level including tides and storm surges;
this choice is motivated by the low tidal range in the area
(Svansson, 1975).

Each hourly time series is first linearly detrended and
transformed into a time series of daily maxima from which
the annual maximum is determined for each year in the se-
ries. When determining the annual daily maximum, we en-
force a minimum temporal separation of 2d to ensure the
independence of events at each station. The datasets are of
varying lengths (Fig. 2), ranging from 12 years (Halmstad
station) to 129 years (Hornbak station). Long-term linear
trends (i.e. sea level rise) were estimated over the whole time
series for all stations and found to be 0.33 cm (Ringhals),
0.35cm (Hornbzk), 1.47cm (Viken), and 5.51 cm (Halm-
stad) per decade.

After being detrended, the Hornbzk sea level varied from
—145 to 187 cm, the Viken sea level ranged between —114
and 166 cm, the Ringhals sea level ranged between —105 and
162 cm, and the Halmstad sea level ranged between —94 and
213 cm relative to the mean sea level (Fig. 2).

2.2 Methods

The proposed approach for temporally extending short ob-
served sea level time series at the station of interest (y) is
based on using longer observed sea level time series at a
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Figure 2. Sea level time series from the four tide gauge stations showing daily maximum values (blue) and yearly maximum values (red

circles).

neighbouring station (x) constituting the predictor. For each
x—y station pair (Table 1), we use a temporally coinciding
time series to set up each prediction model (e.g. 10 years).
We will refer to this as the “set-up period”. Within the set-
up period, models are fitted or trained using both time series
for 80 % (8 years in our example) of overlapping data (train-
ing dataset), whereas the last 20 % (2 years in our example)
serve as the validation dataset to provide an unbiased evalu-
ation of the model fit. The coinciding period outside of the
set-up period constitutes the testing period. Two overall pre-
dictor approaches are employed: one using simple LR and
one based on RF machine learning.

For both approaches, we only use the sea level of the daily
maxima at station y at time ¢, denoted as y,, predicted from
the sea level at station x at time ¢, denoted as x;. Neverthe-
less, as the sea level is sensitive to meteorological conditions,
which are advected by the winds, the sea level at one station
at time ¢ might be better predicted using the time-lagged sea
level from another station, e.g. the sea level at time 7+ a few
days. Here, we use the daily maxima, which might buffer this
effect to some extent. However, it is most likely that some
slight improvements could be found when applying some
time-delayed variables. Therefore, a short analysis has been
done to test time-lagged variables for the set-up period of
30 years for each x—y station pair. Three different tests have
been done. The first one, in which no time-delayed predictors
were added, is the one used in this paper: y; = RF(x;). In the
second one, we add two time-delayed variables, time t — 1 d
and time r —2d: y; = RF(x;, x;—2, x;—1). In the third one, we
add four time-delayed variables, time t—1 d, time 7 —2 d, time
t+1d,and time r +2d: y; = RF(xs, Xr—2, Xt —1, Xt+1, Xr42).
Slight improvements in the root-mean-square error (RMSE)
values (around 1-2.5cm) and r values (around 0.03-0.08)
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are found for all x—y station pairs, with the best test being
the third one, although the second one also presented in-
termediate improvement. Bias values barely changed, with
maximum changes of 0.2 cm; however, towards the extremes,
values from tests 2 and 3 presented a bigger underestima-
tion than those from test 1. Thus, for this study, we believe
that the method used within the paper (test 1) is sufficient
and might even be the best method to reproduce ESLs. This
might be due to the fact that RF is statistically based and
is only applied to stations in close proximity to each other
(max 130km) that are, therefore, mostly submitted to the
same synoptic atmospheric phenomena within 1 d of one an-
other. More testing could be done to really assess the poten-
tial added value of using time-delayed variables, but this is
outside of the scope of this study.

2.2.1 Linear regression

Based on each x—y predictor-reconstruction station pair, a
linear equation is found using the least-squares method as
means of determining the best-fit coefficients. Based on the
resulting equation, y; is predicted from x;.

All coefficients values from the linear fits are positive and
fairly close to 1 (0.765—1.12), meaning that a low sea level at
one station corresponds to a low sea level at another station;
a similar effect is also then found for high and intermediate
sea levels. Therefore, the sea level at one station varies at a
rather similar rate to the other station, as a coefficient value
of 1 would mean that the sea level measured at one station
would be increasing or decreasing as the same rate at another
station. The x_Hornbak—y_Halmstad set presents a coeffi-
cient that is closer to 1, highlighting a strong correlation be-
tween those two stations. Only the x_Ringhals—y_Halmstad
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and x_Viken—y_Halmstad station pairs present a coefficient
higher than 1. This suggests that the sea level at Halmstad
varies at a higher pace than at the two predictor stations.

2.2.2 Random forest

A probabilistic RF model is trained using the sea level at one
station as the predictor (x) and the sea level at another station
as the predictand (y). The RF method yields a mean and a
standard deviation for each predicted value (Breiman, 2001).
The RF model is implemented using the TreeBagger (https://
se.mathworks.com/help/stats/treebagger.html, last access: 20
April 2023) MATLAB function, in which the regression
method is based on a number of trees and minimum leaf
size hyperparameters. The mean and standard deviation val-
ues are predicted using the predict (https://se.mathworks.
com/help/stats/treebagger.predict.html, last access: 20 April
2023) MATLAB function. We use the predict function
for our regression problem; in the MATLAB documenta-
tion, there is a further description of the function for the
weighted average of the prediction using selected trees.
We do not use the TreeWeights option, but we do employ
the output of the standard deviations of the computed re-
sponses over the ensemble of the grown trees for regres-
sion: [Y fit,stdevs] = predict(B, X). Here, Y fit is a vec-
tor of predicted responses for the predictor data in the table
or matrix X, based on the ensemble of bagged decision trees
B. By default, the predict function takes a democratic (non-
weighted) average vote from all trees in the ensemble. Here,
these parameters are set to 500 and 1, respectively which
were values chosen after a brief sensitivity analysis and are
not the default choices for regression models. The LR is fit-
ted and the RF model is trained using the same set-up period
for each station pair (Table 1).

2.2.3 Model testing

To evaluate the proposed methodology, different analyses
with different combinations of stations are used to test the
spatial and temporal sensitivity (Table 1). Six analyses us-
ing different combinations of station data obtained at Horn-
bak, Viken, and Ringhals are carried out using the recent
10 full years (2010-2020) as the common set-up period for
model training and validation (see Sect. 2.2.2). Six additional
analyses are carried out to predict Viken sea levels from
Hornbak data using the two previous time periods (2000—
2010 and 1990-2000) as well as using a 20-year set-up pe-
riod (1990-2010 and 2000-2020) and a 30-year set-up pe-
riod (1990-2020) for training and validation to evaluate the
temporal sensitivity. All 36 possible combinations have then
been analysed to better estimate the spatial and temporal sen-
sitivity. Finally, we compare the reconstructed sea levels at
Halmstad using the station data from Hornbzk, Viken, and
Ringhals, respectively (see Sect. 3.2), for the period from
2010 to 2020. In the latter case, we also estimate RLs based

Ocean Sci., 20, 21-30, 2024

on the reconstructed time series and compare them to previ-
ous results reported for Halmstad.

To assess the performance of each model, different
goodness-of-fit (GOF) metrics are chosen: the root-mean-
square error (RMSE) and the Pearson correlation coefficient
(r). Moreover, the general bias (bias) and the 95th percentile
bias (perc95-bias) between the observations and both model
reconstructions (LR and RF) within the validation period are
calculated.

To evaluate the model’s performance towards the ex-
tremes, annual maxima and values above the 95th, 97th, and
99th percentiles from observations are compared with the
corresponding predicted values.

2.2.4 RF method with random sampling to evaluate
RLs

The RF method estimates the standard deviation associated
with the predicted sea level daily maximum at each time
point. We denote the following introduced methodology as
the “RF method with random sampling”. Based on the RF
daily means and standard deviations, we select the corre-
sponding annual maxima from the reproduced time series
and their associated standard deviations. We assume that a
Gaussian distribution describes the probability for each pre-
dicted annual maximum. RLs are subsequently calculated us-
ing a generalized extreme value (GEV) distribution fitted to
the annual maxima (Coles, 2001). This yields an ensemble
of randomly drawn RL curves. The 95th percentile of the en-
semble spread is calculated.

We denote x, the predictor time series of daily maxima;
v, the predicted time series of daily maxima; and SD,, the
standard deviation associated with y which is obtained by
(yr,SDy,) =RF (x;) at time 7 with RF, the trained RF model.

We can then extract the time series of annual maxima from
the mean predictions and its associated standard deviation
(which we denote as Y, and SDy,, respectively) with n €
[1, N1, where N is the number of years in y. Let us introduce
arandom variable R that is distributed normally:

Ry~ N(u,az) withyt =Y, and o =SDy, for ne[l, N].

Therefore, for each annual maximum, we can then randomly
get a value that gives us one set of N annual maxima values.
We then repeat this operation 10 000 times to get 10 000 sets
of N randomly obtained annual maxima. We next fit a GEV
distribution for each set, which ultimately gives us 10000
randomly drawn RL curves. This is what we call the ensem-
ble spread, from which we extract the 95th percentile to get
a reasonable uncertainty spread.

This method is further compared with the commonly used
GEV approach applied directly to the N-year annual maxima
of the predicted mean values from the RF model, which we
simply refer to as RF.
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Table 1. Experimental set-up and summary of analyses. The case study of Halmstad city is highlighted in italic.

Coinciding Distance

Predictor ~ Predictand Set-up period period between stations  Study
Station x  Stationy | 1 2 ‘ (km)
Viken Hornbzk ‘ 2010-2020 ‘ 1977-2020 9  Spatial
Ringhals  Viken | 2010-2020 | 1977-2020 127 correlation
Hornbazk  Ringhals | 2010-2020 | 1968-2020 130 analysis
Viken Ringhals | 2010-2020 | 1977-2020 127
Ringhals  Hornbak ‘ 2010-2020 ‘ 1968-2020 130
Hornbak  Viken | 2010-2020 | 1977-2020 9

\ | 2000-2010 | \ Temporal

\ | 1990-2000 | correlation

\ 2000-2020 \ \ analysis

\ | 1990-2010 \

\ 19902020 \
Hornbek | 2010-2020 | 2010-2020 68
Viken Halmstad | 2010-2020 | 2010-2020 60  Case study
Ringhals | 2010-2020 | 2010-2020 80

3 Results and discussion
3.1 Model validation

To validate the models, GOF metrics are calculated (and
partly presented in Table 2). For the time series of daily max-
ima, roughly similar statistics are found for all datasets, ir-
respective of whether the RF or LR is used. In general, we
find slightly (but not significantly) better r and RMSE values
associated with the LR and a slightly better perc95-bias for
the RF (not shown). For the annual maxima, the 95th, 97th,
and 99th percentile sets show marginally higher r and lower
RMSE values for the LR in nearly all cases, with a maxi-
mum difference of 4 cm for the RMSE (except for 4 simula-
tions of the 36 where RMSE values vary by up to 10 cm to-
wards the extremes) and 0.10 for the » value. Overall, RMSE
values are between 10 and 40cm and r values are between
0.4 and 0.9 in most cases when looking at the extreme sets.
Smaller RMSE values ranging from 5 to 15 cm and r values
above 0.75 are found when looking directly at the predicted
time series. Hence, error metrics are generally worse for both
methods when calculated for extreme values (annual max-
ima and high percentiles) compared with the overall values
calculated from the full time series of predicted daily max-
ima values. For extremes, represented by the high-percentile
datasets, bias values range from —30 to —2cm, i.e. an un-
derestimation of the observed extreme values for both the
LR and RF. As shown in Table 2, biases vary, with a max-
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imum difference between models of ~ 10cm in almost all
cases. This highlights the fact that both models lose accuracy
with respect to predicting ESLs compared with predicting
less extreme events. This seems to be caused by the non-
linear effects occurring during the extremes, as the decrease
in r shows. Figure 3 depicts the correlation between observa-
tions and models with respect to predicting Viken sea levels
from the Hornbek data trained on the 2010-2018 period. A
similar picture is observed in nearly all cases (not shown). As
shown in Fig. 3, the RF model returns significantly higher sea
levels and shows higher variability towards the most extreme
range compared with the LR, except when predicting Horn-
bak sea levels from Viken data, where the model is trained
on observations from the 1990-2000 and 2000-2010 set-up
periods (not shown). In those two cases, the RF does not cor-
rectly reproduce the extreme range (as they are out-of-sample
data, whereas the predicted values are bounded) because it
can only reproduce in-sample events; however, those events
correspond to the highest ESLs, which the LR also struggles
to reproduce, and the RF, therefore, does not give much lower
values than the LR in this case. This effect disappears when
the model is trained on a longer time period, as we could
see when investigating at the 20- and 30-year set-up periods
(not shown). Compared with the LR, it is clear that the in-
herently non-linear RF is better able to account for the few
moderate extremes that occur during the 8-year training pe-
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riod, whereas they are likely to be suppressed in a linearized
model.

Table 2 analyses the sensitivity to the distance between
the two tide gauges for the 2010-2020 period. When the dis-
tance between two stations grows, the accuracy of both mod-
els seems to decrease, especially towards the extremes. For
example, when looking at daily maxima values as well as
the extreme set values, RMSE values of around 820 cm and
r values of around 0.7-0.9 are found for the sets reproduc-
ing the Viken sea level from the Hornb&k tide gauge and
its mirror set (9 km apart), compared with RMSE values of
around 12—40cm and r coefficients of around 0.3-0.8 when
reproducing the Ringhals sea levels from Hornbak data and
its mirror set (130km apart) (Table 2). The highest differ-
ences are also observed for the extremes (annual maxima
or the 95th, 97th, and 99th percentiles). Similar results are
found when comparing the sea level time series for Hornbaek
and Ringhals based on Viken data and when comparing pre-
dictions for Viken and Hornbzk sea levels based on Ring-
hals data (not shown). When comparing results from mir-
rored sets (e.g. when predicting Viken sea levels from Ring-
hals data or predicting Ringhals sea levels from Viken data),
we do not always find the same performance, especially to-
wards the extremes, as measured by the GOF metrics. This
can probably be explained on physical grounds due to local-
ized phenomena resulting, for example, from the topography
or the local meteorological conditions; however, this is be-
yond the scope of the current technical note. Indeed, there
are two sets of stations with very significant geographical dif-
ferences: Hornba&k and Viken stations lie inside of a channel
(almost at the entrance), whereas other stations are located on
the open coast. In general, the RF method seems to be more
accurate than the LR when predicting ESLs, for which it is
essential to capture the non-linear behaviour and variability
associated with the complex natural interactions between the
drivers of ESL events. The non-linear behaviour and variabil-
ity are likely to become more prominent when observations
are obtained at sites further away. Conversely, LR is inher-
ently constrained by a linearity assumption.

3.2 Halmstad

The highest sea level recorded in Sweden occurred in Halm-
stad, indicating that Halmstad is highly susceptible to ESLs.
However, the length of the local sea level time series is very
short. Subsequently, three stations — Hornbak, Viken, and
Ringhals — are used to reconstruct the Halmstad sea level
time series (Table 2). As shown above, using an RF or LR
method, we can, in principle and with reasonable confidence,
reconstruct Halmstad sea levels back until 1891 for the pe-
riod before observations became available in 2009 using
Hornbzk station as a predictor, as it has the longest observed
time series.

Because of the short length of the Halmstad time series,
the training period is almost identical to the full time se-
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ries; in practice, this makes it difficult to assess the model
behaviour on extremes. Therefore, we used different 2-
year testing and 8-year training periods to analyse how the
model behaves for Halmstad station (the set-up period was
from 2010 to 2020 with different testing periods: 2010-
2012, 2011-2013, 2012-2014,..., 2017-2019, and 2018-
2020); this has also been done to predict the Halmstad sea
level from Hornbak, Ringhals, and Viken separately. Over-
all, the difference between each testing period is rather small,
with RMSE values ranging from 1.5 to 4.1 cm, r values rang-
ing from around 0.03 to 0.06, a bias from 5.2 to 6.8 cm, and a
perc95-bias ranging from 5.4 to 16.5 cm. We found that, as in
the other simulations done (predicting Viken from Hornbak
for example), the RF visually (from correlation plots; not
shown) behaves better towards the extremes (at least slightly)
than the LR for all sets and tests, except for the testing period
from 2015 to 2017 when predicting Halmstad from Viken
or Hornbak. Furthermore, between the LR and RF, RMSE
values only vary by a maximum of 2.9cm (x_Hornbak—
y_Halmstad) or 1.9 cm (in the two other sets). The x_Viken—
y_Halmstad set has the lowest RMSE values, with an average
across the simulations of 6.4 and 7.9 cm, a bias of —0.2 and
—0.4, and a perc95-bias of —2.7 cm in both the LR and RF,
respectively. Therefore, it seems that the model behaves rel-
atively well on extremes for Halmstad station, even though
we cannot fully ensure its behaviour because of the short
length of observations. Moreover, this conclusion is partly re-
inforced by the analysis between surrounding stations where
the testing could be done over a larger time period using the
2018-2020 period as testing with the 2010-2020 period as
the set-up period.

In previous studies, Halmstad’s RLs have been calculated
for current and future climate scenarios based on recon-
structed sea levels from local wind speed observations of the
Nidingen offshore station and Viken tide gauge data (Ander-
sson, 2021). For Halmstad, RLs based on extended time se-
ries using the three neighbouring stations permit a reduction
of the 95th percentile confidence interval (CI) compared with
observations. Here, the full-period length of Halmstad’s ob-
served values (station y) are concatenated with the predicted
time series to get the longest and more accurate extended
time series possible before a GEV fit is applied. Even so, RLs
are still lower, although they are within the uncertainty range
of those displayed by Andersson (2021), which is a good
sign, except for the 200-year RL with Viken as a predictor
when based on the RF mean outputs (Fig. 4a, Table 3). This
could possibly be explained by the underestimation found to-
wards the extremes on the predicted and, therefore, extended
time series. This is why we introduced the RF method with
random sampling which allows us to represent more extreme
values.

Conversely, we apply RF-based random sampling to
predict RLs probabilistically, as described in Sect. 2.2.4
(Fig. 4b), at Hornbak, Viken, and Ringhals (which results
in an extended time series of around 120 years, 35, and
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Figure 3. Scatter plot between observations and the LR (a) and RF (b) for predicting Viken sea level (y) from the Hornbaek tide gauge (x)
for the set-up period from 2010 to 2020. Blue points show the daily maxima, each corresponding blue bar shows the standard deviation, and
coloured stars correspond to percentile values ranging from the 1st percentile to the 99th percentile of the dataset.

Table 2. RMSE and bias values between different datasets evaluated in the validation period. Noticeable improvements (> 5 cm) in terms of
model bias with respect to annual maxima using the RF model are highlighted in bold. A negative bias corresponds to an underestimation of
the predicted values, whereas a positive bias (italic) corresponds to an overestimation. Error metrics calculated over the testing period for the
case study of Halmstad city are displayed in bold italic. Because of the short length of the testing period, we do not calculate the bias on the

annual maxima.

RMSE on Bias on Bias on
Predictor ~ Predictand  Set-up period | daily maxima (cm) | daily maxima (cm) | annual maxima (cm)
Stationx  Station y LR RF | LR RF | LR RF
Viken Hornbak 2010-2020 | 10.2 11.6 0.9 0.9 -53 -3.7
Ringhals Viken 2010-2020 8.7 103 | —0.5 —-0.8 | —284 —-12.3
Hornbaek Ringhals 2010-2020 | 12.1 143 | —1.0 —1.1 | =179 —21.1
Viken Ringhals 2010-2020 8.7 10.3 0.5 04 —6.5 -8.7
Ringhals Hornbak 2010-2020 | 12.8 14.9 1.0 0.7 | =30.6 —-23.0
Hornbak Viken 2010-2020 9.6 109 | —0.9 —-09 | —175 -9.1
2000-2010 9.2 112 | —-1.0 —-09 | —184 —-10.8
1990-2000 9.1 11.1 0.2 —-0.03 | —14.3 —11.8
1990-2010 8.8 10.6 1.8 1.7 | —12.0 6.6
2000-2020 9.8 11.2 | —1.1 —-09 | —183 -71
1990-2020 9.6 113 | —0.8 -0.7 | —219 —-15.7
Hornbwk  Halmstad 2010-2020 8.9 11.8 1.0 1.1
Viken Halmstad 2010-2020 6.2 7.7 0.8 0.8
Ringhals  Halmstad 2010-2020 7.5 8.8 0.7 0.9

45 years, respectively). As would be expected due to the
long time series, estimates based on Hornbaek data deliver
the best performance and yield what seems like a reason-
able 95th percentile ensemble spread (Fig. 4). The inferred
RLs are slightly higher than the RLs derived directly from
observations, which are associated with a very large 95th
percentile CI due to the short length of the time series. The

https://doi.org/10.5194/0s-20-21-2024

predictions using Viken data present the lowest RLs, with a
95th percentile ensemble spread (upper values) almost cor-
responding to the median RLs from observations probably
underestimating the extremes. On the other hand, predictions
from Ringhals result in the highest RLs; however, like Viken,
these values are also associated with a rather large ensem-
ble spread. Because of the lengths of the respective time se-
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Figure 4. RLs from each reconstructed time series to predict the sea level for Halmstad based on RF model mean outputs (a) and following
the RF method with random sampling (b). The figure displays maximum likelihood estimates of the GEV distribution fits of each dataset
associated with 95th percentile confidence intervals (Cls) (a) and the 95th percentile ensemble spread (b) in background colours, while the
dots represent the empirical data from observations. Black error bars show RLs and the 95th percentile CIs calculated from Andersson (2021).

Table 3. Halmstad’s RLs from reconstructed time series using the outputs from the RF method and the RF method with random sampling
applied to the Hornbek (italic) station compared with the assessment by Andersson (2021; bold italic).

A 5-year A 10-year A 50-year A 100-year A 200-year
Predictor: station x RL (m) RL (m) RL (m) RL (m) RL (m)
Hornbak 1.6 1.8 2.1 2.2 23 RF
Ringhals 1.6 1.8 2.3 2.5 2.7
Viken 1.6 1.7 2.0 2.1 2.2
Viken and wind 1.8 2.0 2.4 2.6 2.8 Andersson
Uncertainties 1.5-2.0 1.7-2.3 2.0-2.8 2.1-3.0 2.3-3.3  (2021)
Hornbeek 1.7 1.9 2.4 2.6 2.8 RF method
The 95th percentile 1.6-1.8 1.8-2.0 2.2-2.7 2.3-3.0 2.5-3.3  with random

ensemble spread

sampling

ries, there is low confidence in return periods of rare occur-
rences such as a 200-year event (although this is a little less
pronounced for Hornbaek-based predictions). This challenge
with respect to rare occurrences is evident when looking at
the 95th percentile CIs for each RL curve resulting from the
RF method with random sampling. For Halmstad, RLs based
on inputs from the Hornbzk station following the RF method
with random sampling are close to those reported by Ander-
sson (2021), highlighting the importance of considering the
full uncertainty range when predicting high sea levels from a
small sample of such events (Table 3).

Ocean Sci., 20, 21-30, 2024

4 Limitations

It is evident that our statistical reconstructions are limited by
several factors, in particular local ocean dynamics and the
length of the time series used. Both are especially important
for extreme analysis. We implicitly assume that a time win-
dow of only 10 years is sufficient to describe the relation-
ship between two stations under normal ocean conditions.
While this study seems to support this hypothesis, it is by no
means assured that this will be the case for any two neigh-
bouring stations, especially when the relationship is found to
be highly non-linear. For non-normal situations like ESLs, it
is evident that our set-up period is principally much too short
to learn the (inherently non-linear) dynamics related to rare
sea level extremes and that our modelling essentially yields
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an extrapolation of the normal ocean dynamics relating two
sites, which may introduce significant biases in the subse-
quent RL estimates. This limitation is general for most, if not
all, types of extensions of observed time series using neigh-
bouring data. Even so, it is trivial to assume that non-linear
and non-parametric methods like RF outperform other meth-
ods in terms of capturing extreme trends within a very short
time window.

As indicated earlier, RF is limited in range by the input
values. Hence, in principle, this method is not suitable for
extrapolating to higher values than what is seen in the train-
ing period, as highlighted when predicting the Hornbak sea
levels from the Viken tide gauge based on the 1990-2000
and 2000-2010 set-up periods. This limitation is a known is-
sue when applying RF-based prediction models (Tyralis et
al., 2019; Hengl et al., 2018); it can be mitigated to some ex-
tent by using many extended time series for model training
as new data become available. In this study, we did not find
out-of-sample issues to have a strong influence, as the RF
model reproduced extremes rather well. Adding additional
sources (e.g. observed wind information) may also improve
predictions (Johansson, 2018) or reanalysis (Hieronymus et
al., 2019). However, these approaches were outside the scope
of this technical note, which focused on exploring the lim-
itations and advantages of only using neighbouring obser-
vations of sea level. If more complex methods can achieve
additional accuracy, this is of course of great value, but it
may also confuse the interpretations at times, which is not
preferable. In preliminary tests, additional improvements due
to adding reanalysis and hindcast data did not appear to add
enough value to warrant the decreased interpretability, but
this is certainly a promising research area.

Finally, this study focused on a limited area of the Swedish
western coast. The methodology is generally applicable, but
it is contingent on local conditions; hence, further research
is needed to investigate if similar performance can be found
when applying the proposed method to other areas with dif-
ferent ocean dynamics.

5 Summary and conclusions

This study demonstrates that a sea level time series of daily
maxima can be relatively successfully reconstructed from a
neighbouring station employing the LR or RF approaches us-
ing even very short overlapping intervals (10 years). As ex-
pected due to the short length of the overlap, ESLs are some-
what underestimated. The RF model is better able to capture
the inherent non-linearities and, hence, proves to be more ac-
curate under those conditions. The corresponding absolute
bias values are generally lower than those found from the LR.
The best reconstructions are generally achieved for stations
spatially closer to each other, although this can be partially
offset using the RF, which is found to yield better results than
the LR for stations located further away from each other. We
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tested another method that we named the RF method with
random sampling in the case of Halmstad. When applied to
reconstructed time series from a 10-year dataset, the method
confirmed the results from a previous more physically based
study, reproducing RLs with a reasonable uncertainty range
given by the 95th percentile ensemble spread.

The method is easily applicable to other sites and can
also be applied across regions as long as two neighbouring
stations’ sea level time series are available. Overall, using
the RF method with random sampling to represent the un-
certainty in extremes could be an advantage compared with
many single-output machine learning predictions.
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