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Abstract. A major challenge for cleanup operations in the
Great Pacific Garbage Patch is the daily prediction of plastic
concentrations that allows identifying hotspots of marine de-
bris. Lagrangian simulations of large particle ensembles are
the method in use and effectively reproduce observed particle
distributions at synoptic scales O(1000 km). However, they
lose accuracy at operational scales O(1–10 km), and opera-
tors regularly experience differences between predicted and
encountered debris accumulations within the garbage patch.
In Lagrangian methods, it would be common to ask this ques-
tion: where do objects go as they follow the current? Here, we
take a different approach and instead ask this question: which
locations attract material? The recently developed concept
of Transient Attracting Profiles (TRAPs) provides answers
because TRAPs uncover the most attracting regions of the
flow. TRAPs are the attracting form of hyperbolic Objec-
tive Eulerian Coherent Structures and are computable from
the instantaneous strain field on the ocean surface. They de-
scribe flow features which attract drifting objects and could
facilitate offshore cleanups that are currently taking place
in the Great Pacific Garbage Patch. However, the concept
remains unapplied since little is known about the persis-
tence and attraction of these features, specifically within the
Pacific. Therefore, we compute a 20-year dataset of daily
TRAP detections from satellite-derived mesoscale velocities
within the North Pacific subtropical gyre. We are the first
to track these instantaneous flow features as they propagate
through space and time. It allows us to study the life cycle of
TRAPs, which can range from days to seasons and lasts an
average of 6 d. We show how long-living TRAPs with life-
times beyond 30 d intensify and weaken over their life cycle,
and we demonstrate that the evolution stage of TRAPs af-

fects the motion of nearby surface drifters. Our findings in-
dicate that, at the mesoscale, operators in the Great Pacific
Garbage Patch should search for long-living TRAPs that are
at an advanced stage of their life cycle. These TRAPs are
the most likely to induce a large-scale confluence of drift-
ing objects and their streamlining into hyperbolic pathways.
Such a streamlined bypass takes, on average, 5 d and creates
an opportunity to filter the flow around TRAPs. But we also
find TRAPs that retain material over multiple weeks where
we suspect material clustering at the submesoscale. Prospec-
tive research could investigate this further by applying our
algorithms to soon-available high-resolution observations of
the flow. Our analysis contributes to a better understanding
of TRAPs, which can even benefit other offshore operations
besides ocean cleanups, such as optimal drifter deployment,
oil spill containment, and humanitarian search and rescue.

1 Introduction

The horizontal long-term flow at the ocean surface is under-
stood to be the main forcing that transports floating material
over large distances (van Sebille et al., 2020) and can be well-
described by the combination of geostrophic and Ekman cur-
rents (Röhrs et al., 2021). Floating marine debris follows the
large-scale convergence within each of the five subtropical
gyres and forms basin-scale accumulation zones (van Sebille
et al., 2020), which exhibit elevated levels of plastic concen-
tration. In this context, the North Pacific subtropical gyre is,
to date, the area of highest scientific and public concern. The
first initiatives to clean up ocean plastic pollution at a global
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scale are taking place in this particular gyre (Slat, 2022), and
a variety of experiments have been dedicated to estimating
the limits of this accumulation zone, which is colloquially
termed the Great Pacific Garbage Patch (Onink et al., 2019;
Lebreton et al., 2018; Law et al., 2014). Figure 1 highlights
this large-scale convergence zone and the horizontal long-
term flow at the surface of the northeast Pacific Ocean.

A constant challenge for cleanup operations in this re-
gion is to predict day-to-day variabilities of plastic concen-
tration and to identify hotspots of marine debris. The com-
mon method is to release large ensembles of virtual parti-
cles at the ocean surface and to derive their trajectories and
distribution as they follow the time-evolving surface flow
(Duran et al., 2021; van Sebille et al., 2020; van Sebille
et al., 2018). Measurements from altimetry or estimations
from numerical ocean models typically provide the velocity
fields that drive these Lagrangian particle simulations, from
which particle concentrations at the ocean surface can be
derived. At synoptic scales O(1000 km), Lagrangian simu-
lations succeed in predicting the limits of the Great Pacific
Garbage Patch (Onink et al., 2019; Lebreton et al., 2018;
Law et al., 2014). However, within the garbage patch and at
operational scales O(1–10 km), The Ocean Cleanup reports
that Lagrangian simulations often fail to accurately predict
the particle distributions they observe at sea. This deficiency
may result from the combination of Lagrangian methods with
submesoscale velocity estimations from numerical models.
At operational scales and within this region, numerical mod-
els currently represent the only source for nowcast and fore-
cast estimations of the surface flow, but these simulations
can only approximate the true dynamics at sea. On the other
hand, Lagrangian simulations can produce significant trajec-
tory errors if the underlying velocity data or the trajectory
modelling itself are missing important physics, specifically
because errors can accumulate quickly during the integration
process (Duran et al., 2021; Serra et al., 2020).

In Lagrangian methods, it would be common to ask this
question: where do objects go as they follow the current?
Here, we take a fundamentally different approach and in-
stead ask this question: which locations attract material? The
recently published concept of Transient Attracting Profiles
(TRAPs; Serra et al., 2020) can answer this question since
it allows detecting the most attracting regions of the flow.
TRAPs are the attracting form of hyperbolic Objective Eu-
lerian Coherent Structures (OECSs; Serra and Haller, 2016)
and are computable from the symmetric part of the velocity
gradient. They indicate regions of maximal compression and
stretching on a two-dimensional surface, such as the ocean
surface, that translate into the attraction and hyperbolic trans-
port of nearby floating objects.

Serra et al. (2020) and Duran et al. (2021) provide exper-
iments that show the capability of TRAPs to attract drifting
objects. They demonstrate how TRAPs uncover the stretch-
ing of tracer patterns that remains undetected by conventional
diagnostics like streamlines or divergence. Their experiments

also indicate that TRAPs are insensitive to the shape, sub-
mergence level, release time and release position of drifting
objects. These parameters are generally uncertain in appli-
cations but must be considered in Lagrangian simulations.
Moreover, Serra and Haller (2016), Serra et al. (2020) and
Duran et al. (2021) argue that TRAPs are robust to moderate
errors in the underlying velocity field, while trajectory-based
methods are susceptible to error accumulation during the ve-
locity integration. We list more benefits of the TRAP method
in Table B1, but here, we highlight one essential aspect of
the concept: TRAPs can predict material aggregation. The
timescale of prediction will generally depend on the tempo-
ral and spatial scales of the underlying velocity data. At the
mesoscale and daily frequency, TRAPs computed from now-
cast or near-real-time observations of the flow should inher-
ently indicate where drifting objects will aggregate within
a few days. Lagrangian simulations can only provide such
predictions by extrapolating nowcast observations or using
model forecasts, which, as reported, leads to inaccurate pre-
dictions of debris hotspots.

So, it stands to reason that TRAPs could facilitate off-
shore cleanups that are currently taking place in the Great
Pacific Garbage Patch. However, the concept remains un-
applied since the persistence and attractive properties of
TRAPs have not been characterised in this particular re-
gion at the mesoscale O(10–100 km) or at the submesoscale
O(1–10 km). Therefore, we create a 20-year dataset of daily
mesoscale TRAP detections and provide a first analysis of
these features within the North Pacific subtropical gyre.

We compute TRAPs from combined near-surface
geostrophic and Ekman current velocities since geostrophic
velocity from altimetry is the only large-scale observation
that resolves flow features at the mesoscale (Abernathey and
Haller, 2018). Many studies have established that altimetry-
derived velocity products are accurate for Lagrangian
transport applications; see Sect. 3.1.3 of Duran et al. (2021)
and references therein. We focus the analysis on TRAPs
derived from observations of sea surface height. With this,
we advance our knowledge about the natural occurrence of
large-scale TRAPs and test their ability to predict debris
aggregation from only mesoscale-permitting flows, which
are available in near-real time. Our analysis provides an
essential first step to applying the concept during offshore
cleanups. A second important step would be to characterise
submesoscale TRAPs and their relation to mesoscale
TRAPs. While we leave the submesoscale analysis for future
research, our mesoscale analysis provides a blueprint that
can be applied to higher-resolution observations, which will
be available soon from the current Surface Water and Ocean
Topography (SWOT) mission (International Altimetry
Team, 2021).

Since conventional altimetry measurements of the ocean
surface filter out all small-scale, short-term features of the
flow, our study will focus on the low-frequency circulation.
Therefore, we will locate TRAPs within the mesoscale eddy
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Figure 1. Mean circulation and EKE in the eastern North Pacific. Vectors indicate the direction and magnitude of the 20-year average com-
bined near-surface geostrophic and Ekman current velocities for the period 2000–2019 (CMEMS, 2022a). Arrow size scales with increasing
velocity magnitude. The red box defines our study domain and highlights the area of large-scale convergence due to Ekman transport. The
boundaries of the study domain approximate the estimated limits of the Great Pacific Garbage Patch (Onink et al., 2019; Lebreton et al.,
2018; Law et al., 2014). The ocean surface is coloured by the magnitude of eddy kinetic energy (EKE) with respect to the same period,
derived from geostrophic currents only (CMEMS, 2022b).

field by comparing our dataset to corresponding records of
mesoscale eddy detections. We investigate the relation be-
tween TRAPs and mesoscale eddies to advance our under-
standing of strain between eddies and its potential for pre-
dicting debris transport.

Serra et al. (2020) mention that TRAPs “necessarily per-
sist over short times”, with examples of TRAPs existing
for several hours and attracting nearby objects within 2 to
3 h. These timescales for persistence and impact derive from
TRAPs computed upon submesoscale velocity fields with a
high tempo-spatial resolution. However, the concept is scale-
invariant and can be applied to velocity data of any resolu-
tion. TRAP characteristics will depend on the velocity data
used for their computation, and the lifetime and impact of
TRAPs will be relative to the timescales of the oceanic struc-
tures that give rise to the hyperbolic-type Lagrangian motion
that TRAPs identify. For this reason, Duran et al. (2021) find
persistent TRAPs that predict transport patterns 8 d in ad-
vance. They compute TRAPs from mesoscale surface veloc-
ities with daily frequency and consequently study these struc-
tures at larger scales than Serra et al. (2020). With our choice
of altimetry data, we follow Duran et al. (2021) and expect
mesoscale TRAPs to exist and impact on timescales compa-
rable to those of mesoscale flow features. Indeed, some ex-
amples from altimetry data in Serra and Haller (2016) show

that different types of OECSs, including the attracting hyper-
bolic type studied here, can last for at least 6 d.

TRAPs that persist over several days will then high-
light permanent flow features where we might find large-
scale confluence of material. Therefore, identifying persis-
tent TRAPs can help to point cleanup operations in the right
direction, which motivates us to design a tracking algorithm
that follows TRAPs through space and time. We are the first
to track these Eulerian flow features, determine their life-
times and describe their propagation through the domain. We
further combine these methods with observations of surface
drifters to investigate the TRAP properties relevant for an off-
shore cleanup in the Great Pacific Garbage Patch. The find-
ings we describe have the potential to facilitate even more
maritime search operations that are taking place in other con-
texts and regions.

The paper is organised as follows. In Sect. 2, we review
the theoretical aspects of Transient Attracting Profiles, out-
line the design of the experiment and go through the meth-
ods we use for our analysis of mesoscale TRAPs. Section 3
presents our results in four parts – the spatial distribution of
TRAPs, their life cycle and propagation, vorticity patterns
around TRAPs, and the impact of TRAPs on nearby drifters.
In Sect. 4, we discuss our findings and the directions they
offer for future research.
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2 Methodology

2.1 Transient Attracting Profiles

Serra et al. (2020) derive TRAPs from the instantaneous
strain field on the ocean surface using snapshots of the two-
dimensional surface velocity field u(x, t), with u being de-
pendent on position x and time t . The symmetric part of the
velocity gradient represents the time-dependent strain ten-
sor S(x, t)= 1

2 (∇u(x, t)+ [∇u(x, t)]>) with the eigenvalue
fields si(x, t) and eigenvector fields ei(x, t). S, si and ei de-
note the respective quantities at a fixed position x0 and time
t0, and we apply the notation for the diagonal form of S from
Serra and Haller (2016):

Sei = siei, |ei | = 1, i = 1,2; s1 ≤ s2,

e2 = Re1, R :=
(

0 −1
1 0

)
. (1)

The deformation of any fluid’s surface element A is deter-
mined by the local strain rates si , which specify the rates of
stretching (si > 0) or compression (si < 0) of A along the
principle axes indicated by the local eigenvectors ei ; see Ol-
bers et al. (2012) for details. Due to the condition s1 ≤ s2, the
local eigenvector e1 identifies the direction of compression
and e2 the direction of stretching for a non-uniform deforma-
tion with s1 < 0 and s2 > 0. The compression and stretching
of surface elements translate into the attraction and repulsion
of material. Negative local minima of s1(x, t0) at snapshot
time t0 describe the most attracting regions of the flow, max-
imising attraction normal to e2 at the respective position. For
incompressible conditions, s1 =−s2 further holds and local
minima of s1(x, t0) simultaneously indicate local maxima of
s2(x, t0). Then, the strongest attraction and strongest repul-
sion occur at the same position and in orthogonal directions.

TRAPs indicate the most attracting regions of the flow as
they start at negative local minima of the s1(x, t0) strain field
and extend tangent to the local eigenvectors e2 until the strain
rate s1 along the tangent ceases to be monotonically increas-
ing. Consequently, TRAPs contain one minimum value of
s1(x, t0), i.e. the point of strongest attraction perpendicularly
towards the TRAP. The position of this local minimum is
called the TRAP core, which represents an objective saddle-
type stagnation point of the unsteady flow (Serra and Haller,
2016). A TRAP describes the direction of maximal stretch-
ing because it is tangent at each point to the unit eigenvectors
e2, and in the following, we will also call it a TRAP curve.

Figure 2 presents an example of a Transient Attracting
Profile. The TRAP is displayed as a red curve, with the TRAP
core as a red dot in the middle. The image shows this struc-
ture upon a colour map of the underlying s1(x, t0) strain
field, superimposed by velocity vectors of the surrounding
flow, all derived from the same snapshot of combined sur-
face geostrophic and Ekman current velocities at time t0. The
TRAP core coincides with the point of highest attraction, i.e.

Figure 2. Example Transient Attracting Profile. The red structure
represents one TRAP from our 20-year record of daily TRAPs,
computed from snapshots of combined surface geostrophic and Ek-
man current velocities (CMEMS, 2022a). The red dot in the middle
indicates the TRAP core. The red line represents the TRAP curve.
Vectors illustrate the surrounding flow, and the colour map indicates
the s1(x, t0) strain field derived from the same velocity snapshot at
time t0. The geometries in salmon colour indicate, with increasing
transparency, the position of the same TRAP after 10 and 20 d.

a negative local minimum of the s1(x, t0) field, and the ve-
locity indicates water motion normal towards the TRAP and
subsequent transport to both ends of the structure. The figure
also displays the positions of this TRAP after 10 and 20 d.

2.2 TRAP computation

Serra et al. (2020) have published a programme to com-
pute TRAPs from two-dimensional snapshots of an Eule-
rian velocity field u(x, t) (Serra, 2020); see Algorithm C1
for details and Kunz (2024a) and Kunz (2024b) for our post-
processing of the output. We call the points that discretise the
TRAP curve curve points, and the algorithm gives the posi-
tions of all curve points and corresponding TRAP cores in
the domain. It also outputs the normal attraction rate s1 at
every TRAP core, which we name core attraction.

We truncate TRAP curves wherever the attraction rate
along the curve falls below 30 % of the attraction at the re-
spective core. Such a cutoff criterion makes sense physically
because the attraction of nearby parcels becomes negligi-
ble as distance increases away from the core. Without cut-
off, TRAPs can become indefinitely long and merge with
nearby structures, which makes them hard to distinguish.
In addition, their converging ends put the wrong emphasis
on regions between TRAP cores where the attraction rate is
comparably low. Moving away from a TRAP core, the lo-
cal eigenvectors e2 also start pointing in arbitrary directions,
and they stop being representative of the TRAP. The attrac-
tion strength criterion does not necessarily prevent such an
excessive integration of the eigenvectors. To obtain an accu-
rate TRAP that indicates hyperbolic flow, one has to define
an upper limit for TRAP length, in addition to the cutoff by
attraction strength; see Fig. S1 in the Supplement for details.
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The TRAP algorithm (Serra, 2020) provides default values
of 1° for the maximum arc length of a TRAP and 30 % for
the attraction strength cutoff. Together, both parameters de-
termine the length of a TRAP curve and must be set thought-
fully before computation. With the mesoscale velocity data
we use, the preset values provide a clear saddle-type repre-
sentation of TRAPs. Also, a maximal arc length of 1° limits
each TRAP branch to a maximal arc length of 0.5°, which
approximately equals the average radius re of mesoscale ed-
dies in our domain. We consult an eddy census product by
AVISO+ et al. (2022) and derive an average eddy radius
and its standard deviation of re ≈ (53± 20) km. We expect
TRAPs to highlight strain between mesoscale eddies, and
therefore it is helpful to study TRAPs and eddies on com-
parable length scales. For these reasons, we keep the preset
parameter values. However, this choice does not affect our
main diagnostics, and future studies should adjust these set-
tings according to the applied velocity data. Modified TRAP
lengths do not change our analysis since our statistics refer
to the position and attraction of the TRAP core.

We set the boundaries of our study domain to [22.5,
42.5° N] in latitude and [−160, −125° E] in longitude and
compute TRAPs within this domain. We choose these lim-
its, highlighted by the red box in Fig. 1, to enclose the North
Pacific accumulation zone between Hawaii and California as
defined by Onink et al. (2019). These boundaries also war-
rant no intersection with any land mass.

We compute TRAPs from daily snapshots of combined
near-surface geostrophic and Ekman currents and there-
fore extract the velocity fields uo and vo from the prod-
uct Global Total Surface and 15 m Current (COPERNICUS-
GLOBCURRENT) from Altimetric Geostrophic Current and
Modeled Ekman Current Reprocessing that is provided by
the EU Copernicus Marine Service (CMEMS, 2022a). The
velocity fields are available at 3-hourly instantaneous time
steps, from which we select data at midnight UTC to sample
snapshots with a daily frequency. The latitude–longitude grid
of the velocity field has a resolution of 0.25°.

2.3 Tracking algorithm

Our tracking algorithm is applied to the full TRAP record
and finds spatially proximate detections at consecutive times-
tamps, which can be identified as one single feature of the
flow. The only free parameter ε defines the size of the search
area around a given TRAP to look for a detection in the fol-
lowing snapshot, and we set it to ε = 0.25°. For a higher
value, the algorithm creates “jumps” from a current to an
unrealistically far future TRAP detection and overestimates
trajectory lengths; see Sect. S2 in the Supplement for a de-
tailed explanation and motivation for this choice. The algo-
rithm assigns a unique label to each TRAP trajectory and
its associated instances. It derives metrics like the lifetime
3 of TRAPs and their age τ at a particular snapshot. The
algorithm only captures the time spent inside the study do-

main and period. Therefore, it gives rise to potential bias
in the lifetime estimation of TRAPs that reach beyond the
tempo-spatial limits of the domain. However, we find that
only 5.4 % of all TRAP trajectories are adjacent to these lim-
its and might not entirely occur within the study domain. Our
conclusions and the distribution of TRAP lifetimes do not
change if we exclude those biased trajectories; see Sect. S3,
where we analyse this in detail. With the trajectory estima-
tion, we can now derive the zonal and meridional translation
speeds cx and cy for every instance of a TRAP trajectory.
Therefore, we choose all TRAPs that persist for at least three
consecutive snapshots and compute propagation speeds us-
ing centred differences. We derive no velocities at the start
and end of a trajectory where the TRAP forms and decays.
At these stages, cx and cy could be estimated by following
the underlying oceanic structure that creates the TRAP.

2.4 Mesoscale eddy data

We compare TRAPs against eddy detections from the Alti-
metric Mesoscale Eddy Trajectories Atlas (META3.2 DT)
that is produced by SSALTO/DUACS and distributed by
AVISO+ with support from CNES, in collaboration with
IMEDEA (AVISO+ et al., 2022). This dataset provides Eu-
lerian detections of eddies derived from sea surface height
(SSH) contours. It is at frequency with our TRAP record and
includes estimations of the eddy contour speed U . The eddy
contour speed U is the average geostrophic speed of the con-
tour of maximum circum-average geostrophic speed for the
detected eddy. We filter the dataset for eddy detections within
the study domain and period and retrieve 28 645 cyclonic
and 24 193 anticyclonic eddy trajectories from 689 460 cy-
clonic and 686 720 anticyclonic eddy detections. Since we
cut off eddy trajectories beyond the domain boundaries, tra-
jectories can show discontinuities if they leave and return to
the domain. This effect occurs for 4.2 % of all eddy trajec-
tories. We do not correct for this cutoff since the impact on
our aggregate statistics should be negligible. We estimate the
eddy lifetime by taking the time difference between the first
and the last occurrence within our domain, added by 1 d. Ac-
cordingly, the estimated eddy lifetime can also include times
spent outside the domain, given that the eddy returns to it
again. We further derive eddy propagation speeds as we do
for TRAPs.

2.5 Vorticity curve

We use the relative vorticity field to characterise the flow
around TRAPs. Many TRAPs seem to be surrounded by four
vortices of alternating polarity. In this case, two vortices on
each side of a TRAP curve exhibit perpendicular flow to-
wards the TRAP core and tangential flow away from it with
respect to the TRAP curve. We call this vorticity pattern a
quadrupole and classify variations of it. To detect vorticity
patterns without a coordinate transformation, we draw a cir-
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cle in the horizontal plane around every TRAP core with a
radius equal to the distance between the core and the fur-
thest curve point. Starting from the position of the furthest
curve point, we parameterise the circle, with angles increas-
ing counterclockwise, and bilinearly interpolate the vorticity
field to the points on this circle. The vorticity curve ζ(α) then
describes the vorticity along this circle with respect to the an-
gle of parameterisation, i.e. the phase α.

By visualising the vorticity curve, we can see polarity
changes in the surrounding vorticity field and their spatial
orientation towards the TRAP. Figure 3a illustrates an ex-
ample of such a vorticity measurement around a TRAP. For
a quadrupole in the Northern Hemisphere, the polarity pat-
tern along the vorticity curve results in cyclonic (⊕, positive
vorticity), anticyclonic (	, negative vorticity), cyclonic and
anticyclonic, and the vorticity curve reveals four zero cross-
ings.

Since the ensemble mean of all vorticity curves ζ(α) will
indicate a quadrupole pattern, we filter the ensemble for spe-
cific combinations of four vortices with either cyclonic or
anticyclonic rotation. We do not explicitly resolve patterns
with fewer than four vortices because we can identify them
from this classification if needed. There are in total 24 pos-
sible vortex combinations, 10 of which exert distinct dynam-
ics, i.e. are unique under rotations of 180° around a TRAP
core. To isolate each pattern, we first remove a constant aver-
age background vorticity from every vorticity curve ζ(α) and
then filter the ensemble for these 10 vortex combinations. To
detect the vortex configuration within a given vorticity curve,
we divide the curve into four phase intervals of αI = [0,π/2),
αII = [π/2,π), αIII = [π,3π/2) and αIV = [3π/2,2π) and
determine the sign of the average vorticity within each inter-
val; see Fig. S5 for more details on all 10 vorticity patterns.

2.6 Impact on drifters

Since TRAPs highlight the most attracting regions and their
cores represent objective saddle points of the unsteady sur-
face flow, we expect them to attract and disperse drifting
objects in a hyperbolic pattern. We study their transient im-
pact on drifting objects by looking at surface drifter trajec-
tories around TRAPs. To compare drifters and TRAPs at
simultaneous timestamps, we consult 24 h drifter positions
at midnight UTC from the Global Drifter Program (Lump-
kin and Centurioni, 2019). For our study domain and pe-
riod, this dataset provides 842, i.e. 328 drogued and 514
undrogued, drifter trajectories distributed over 221 979, i.e.
67 885 drogued and 154 094 undrogued, positions. We call
these daily drifter positions drifter days. See Fig. S2 for an
overview of all drifter positions. Figure 3b illustrates an ex-
ample of hyperbolic drifter motion from this dataset – drifters
are first attracted perpendicularly towards the TRAP and then
transported along one of its branches towards the end.

We want to see how drifters behave in the surroundings
of a TRAP and detect pairs of drifters and nearby TRAPs.

In Kunz (2024a), we provide a comprehensive description of
our pair algorithm that works from a drifter’s perspective and
searches for the closest TRAP within a search radius rs. This
approach is equivalent to, but more efficient than, searching
for drifters within a radius rs from a TRAP and discarding
drifter positions related to another neighbouring but closer
TRAP. For every drifter–TRAP pair, the algorithm records
the drifter’s current distance to the TRAP. It saves attributes
like the TRAP age τ at first encounter, the TRAP lifetime 3
and its attraction rate s1 at every instance of the pair. More-
over, we know the daily vorticity pattern in the surroundings
of a drifter–TRAP pair, and we measure the pair’s duration,
i.e. the retention time ϕ of a drifter around its closest TRAP.

Since we frequently observe TRAPs within groups of four
vortices, we assume that the position and size of surround-
ing mesoscale eddies determine the limit to which we can
observe hyperbolic drifter motion around a TRAP. Consider-
ing an idealised group of four eddies with radii re, we can
capture the eddy regions that constitute the hyperbolic flow
within a search radius of rs =

√
2re from the TRAP core;

see Fig. S4 for details. AVISO+ et al. (2022) find an aver-
age radius of re ≈ 53km for mesoscale eddies in our domain,
and we use it to set rs = 75km for the search radius of our
algorithm. Smaller radii rs will also allow the detection of
hyperbolic drifter motion. However, they will not provide a
complete picture up to the centre of an eddy, and they may
not suffice for larger eddies, for eddies that are less adjacent
than we assume or for TRAPs that are up to 25 km off their
estimated position due to the coarse resolution of our veloc-
ity data. Yet, we want to maximise the search zone to capture
as many hyperbolic drifter trajectories as possible since they
will occur within an abundance of motion patterns, and we
need a large dataset to develop robust statistics. Therefore,
we apply rs = 75km.

Another motivation for this choice is the distance distribu-
tion of drifters around TRAPs. rs = 75km represents the av-
erage distance d plus 1 standard deviation between a drifter
and its closest TRAP core, i.e. d ≈ (51±25)km for drogued
and d ≈ (49± 24)km for undrogued drifters. 86 % of drifter
days occur within a 75 km distance to the closest TRAP core;
see Fig. S3 for the respective distribution. The 14 % of drifter
days beyond this limit do not provide additional insights for
our analysis but significantly increase the number of drifter–
TRAP pairs that last for 1 d. Such 1 d pairings also occur, but
less frequently, within the search radius, due to ephemeral
TRAPs with lifetimes of 3= 1d, due to drifters passing by
in the periphery of a TRAP or due to a drifter meeting an-
other structure in the way. We exclude these 1 d pairs from
our analysis since we cannot infer any useful motion statis-
tics from them.

Because our pair algorithm searches for the closest TRAP
around a drifter, its detection is insensitive to the individual
attraction strength or impact range of surrounding TRAPs.
The definition of a dynamic impact range would be a valu-
able contribution to the TRAP concept, which we propose
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Figure 3. Vorticity circle and observed drifter transport around a TRAP. (a) Blue dots indicate the interpolation points of the vorticity curve
ζ(α). The blue triangle highlights the starting point of the parameterisation at α = 0◦. α increases counterclockwise as we sample the vorticity
ζ(α) along the circle. (b) Big red circle markers indicate the current position of two drifters around the same TRAP. Red tails with small
markers show the respective drifter positions throughout the preceding 7 d. One drifter is drogued and indicated by filled markers. The other
drifter is undrogued and represented by empty markers. We consult these drifter positions from the Global Drifter Program (Lumpkin and
Centurioni, 2019). In both panels, vectors illustrate the surrounding flow, and the colour map indicates the relative vorticity field ζ(x, t0) at
snapshot time t0.

for future research. However, our approach here will allow
us to show the aggregate effect of TRAPs on drifters and to
provide a first estimate of the retention times that drifters can
spend around a TRAP.

3 Results

3.1 Spatial distribution of TRAPs

We first look at important circulation features of the study
area. Figure 1 shows the distribution of eddy kinetic energy
(EKE) over the domain with respect to the period 2000–
2019. The lowest values of EKE occur in the northwest cor-
ner of the domain. This subregion is part of an eddy desert
in the northeast Pacific, where mesoscale eddies are low in
amplitude and short in lifetime, if present at all (Chelton
et al., 2011). We find two distinct regions of high EKE in the
northeast and southwest of the domain, indicating frequent
turbulence and mesoscale eddy activity. These two regions
neighbour the California Upwelling System (CALUS) and
the North Hawaiian Ridge Current (NHRC), respectively,
which are known for the production of energetic mesoscale
eddies (Lindo-Atichati et al., 2020; Pegliasco et al., 2015).

Within our domain and period, we detect 4 076 065 TRAP
instances from which we identify 720 391 TRAP trajectories.
TRAPs occur everywhere but with distinct patterns in quan-
tity, persistence and attraction strength. In panel (a) of Fig. 4,
we separate the domain into bins of 0.25°× 0.25° and show
the 20-year bin averages of instantaneous TRAP core attrac-
tion rates s1. A comparison with Fig. 1 reveals that TRAPs
are particularly strong in regions of high EKE close to the
CALUS and the NHRC. In the central–north, middle and
southeast parts of the domain, moderate to low EKE prevails,

and TRAPs are, on average, moderately to weakly attracting.
The eddy desert in the northwest corner remains, with a clear
preference for weak TRAPs. We derive a mean attraction rate
and standard deviation of s1 ≈ (−0.23± 0.11) s−1 over all
TRAP instances. The most attracting TRAP that we find is
located within the eastern hotspot of Fig. 4a and exhibits an
attraction rate of s1 =−1.73 s−1. We correlate the average
attraction rates s1 from Fig. 4a with the EKE field given in
Fig. 1 and find a Pearson correlation coefficient of r =−0.93
with a p value of p < 0.001. It indicates a strong and sig-
nificant negative correlation between the two variables. We
infer from this that weak TRAPs, i.e. with a less negative at-
traction rate s1, occur in regions of low EKE, while strong
TRAPs occur in regions of high EKE.

In panel (b), we visualise our tracking results and show
the trajectories of TRAPs with lifetimes 3> 30d. We call
this subset long-living TRAPs, and we expect that these
trajectories indicate westward propagation with a tendency
towards the Equator, considering the movements we ob-
serve in time-lapse animations of the TRAP field; see
Videos S1, S2 and S3 in Kunz (2024c). Pegliasco et al.
(2015) find similar propagation characteristics for anticy-
clonic mesoscale eddies originating in the California Up-
welling System east of our domain. A comparison to panel
(a) suggests that attraction strength may vary along the tra-
jectories of long-living TRAPs, which, however, will ex-
clude very weak attraction rates. Indeed, long-living TRAPs
are stronger than TRAPs with lifetimes 3≤ 30d. We find
mean attraction rates of s1,3>30 ≈ (−0.28± 0.11) s−1 and
s1,3≤30 ≈ (−0.20± 0.09) s−1 for TRAP instances associ-
ated with these groups, respectively.

In panel (c), we separate the domain into bins of 1°× 1°
and count the number of TRAP trajectories that pass through
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each histogram bin. We find more TRAPs passing through
the northwest than through the southeast half of the do-
main. TRAP trajectories are especially abundant around the
eddy desert, i.e. in the northwest and central–north portion
of the study region. We complete the picture by deriving
the average lifetime 3 of all trajectories that pass through
a histogram bin in panel (d). We find a clear preference for
ephemeral TRAPs in the northwest corner and for persistent
TRAPs within the southeast half of the domain. We sum-
marise that TRAP trajectories are very abundant but only
remain for a few days around the eddy desert, while they
become less abundant but more persistent towards the Equa-
tor and the eastern boundary. It suggests that the underlying
oceanic structures that create TRAPs show different char-
acteristics in these two regions. Our observations are there-
fore consistent with the sparse occurrence of primarily weak
mesoscale eddies in the eddy desert around the northern do-
main boundary (Chelton et al., 2011) and with the generation
of energetic mesoscale eddies around the CALUS and the
NHRC (Lindo-Atichati et al., 2020; Pegliasco et al., 2015),
which eventually propagate through the southeastern part of
the domain.

3.2 Life cycle and propagation

We find that TRAPs typically persist for a few days. How-
ever, the life cycle of some profiles can also span several sea-
sons. Figure 5a presents the distribution of TRAP lifetimes
3 over all TRAP trajectories. We find a mean lifetime of
3≈ (6± 12) d. The most persistent TRAP has a lifetime of
3= 294d and is indicated by the thick red–brown trajectory
in Fig. 4b. Only 4 % of TRAP trajectories exhibit lifetimes of
3> 30d, but they include around 41 % of all instantaneous
detections.

In Fig. 5a, we also present the lifetime distribution for all
mesoscale eddy detections that AVISO+ et al. (2022) find in
our domain. We consult the eddy census product by AVISO+
et al. (2022) to provide a first overview of three compara-
ble features between TRAPs and mesoscale eddies. AVISO+
et al. (2022) identify 28 645 cyclonic and 24 193 anticyclonic
mesoscale eddy trajectories within our study domain and pe-
riod. On average, these cyclonic eddies persist for 3⊕ ≈
(24± 40) d and anticyclonic ones for3	 ≈ (29± 56) d. The
distributions in panel (a) resemble one another, but there are
considerably more TRAP than eddy trajectories in our do-
main, and their lifetimes shift towards smaller values. Over
their lifetime, approximately 25 % of TRAPs find no eddy
detection, 54 % find one and 21 % find multiple eddy de-
tections within a radius of 0.5° arc length. This cumulative
number of encountered eddy detections depends on TRAP
lifetime with a correlation coefficient of r = 0.65 and a p
value of p < 0.001. Long-living TRAPs encounter, on aver-
age, four eddy detections over their life cycle, while some
long-living TRAPs can be related to up to 18 different eddy
detections. From these statistics, we understand that the de-

tections from AVISO+ et al. (2022) are not suitable for ex-
plaining individual TRAP detections.

However, we expect high rotation speeds of mesoscale ed-
dies to create high strain between them, which should be re-
flected in a relation between s1 and the eddy contour speed
U . We investigate this relation by recasting, without show-
ing, panel (a) from Fig. 4 but for the mean eddy contour
speeds U . We find a correlation coefficient between the two
histograms of r =−0.94 with a p value of p < 0.001. It con-
firms that, on average, TRAP attraction strength scales with
eddy contour speed. Panel (b) of Fig. 5 then views the evolu-
tion of s1 and U over the lifetime of long-living TRAPs and
eddies. We adopt this approach from Pegliasco et al. (2015),
who study the evolution of eddy radii and amplitudes. On
average, both TRAP attraction and eddy contour speed in-
tensify in the first half and decrease in the second half of
a respective life cycle. We conclude that the life cycles of
TRAPs and eddies are related.

Panel (c) presents the latitudinal dependence of the zonal
translation speed cx for TRAPs and eddies. We find that cx
is primarily negative and thus westward for both features.
The mean values cx vary with latitude and decrease towards
the Equator, which indicates that both phenomena propagate
faster towards the west at lower latitudes. The average west-
ward propagation ranges between 0 and 4cms−1. The close
agreement between the latitudinal means of cx provides ev-
idence that, on average, TRAPs move along with mesoscale
eddies. We find similar coincidence for the latitudinal and
longitudinal distribution of zonal and meridional propagation
speeds cx and cy ; see Fig. A1. However, mesoscale eddies
exhibit more extreme propagation speeds, suggesting that ed-
dies might only create persistent strain within a specific dy-
namic range or around a certain combination of eddies.

Our results indicate that TRAPs are located within the
mesoscale eddy field, but we wonder where exactly. While
TRAPs exert maximum normal attraction and induce signifi-
cant deformation, i.e. strain-dominated regions, coherent ed-
dies are characterised by water parcels rotating about a com-
mon axis within closed transport barriers. Hence, coherent
eddies represent vorticity-dominated regions which should
exclude TRAPs. As a consequence, TRAPs should emerge
at the eddy periphery. However, the eddy detections from
AVISO+ et al. (2022) cannot explain all TRAP occurrences.
We often observe TRAPs at eddy boundaries. But we also
frequently find TRAPs in regions with no eddy detections or
even inside eddy contours; see Fig. A2 or Video S3 for de-
tails. The latter occurs for 15 % of all TRAP detections and
suggests the presence of multiple eddies within one eddy de-
tection. Even though the eddy dataset allows us to reveal av-
erage relations between TRAPs and mesoscale eddies, it is
not suited for describing the actual dynamics around indi-
vidual TRAPs. Instead, we use the relative vorticity field to
characterise the flow around TRAPs.
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Figure 4. Distribution of TRAP characteristics over the domain within the period 2000–2019. (a) TRAP core attraction strength s1 averaged
over 20 years and all instances within bins of 0.25°× 0.25° size. Red colours indicate high attraction. (b) Trajectories of long-living TRAPs
with lifetimes 3> 30d. Trajectories are coloured by the associated TRAP lifetime 3, using the respective colour scale on the right. The
most persistent TRAP is indicated by a thick line. (c) Number of identified TRAP trajectories that pass through histogram bins of 1°× 1°
size. (d) Average lifetime 3 of TRAP trajectories passing through each bin.

Figure 5. Comparisons between TRAPs and mesoscale eddies. (a) Distribution of lifetime 3 over all TRAP trajectories as well as cyclonic
and anticyclonic eddy trajectories in the domain. For clarity, we cut off the distributions of eddy lifetimes at 300 d. (b) Evolution of attraction
rate s1 over TRAP lifetime and evolution of contour speed U over eddy lifetime for phenomena with lifetimes 3> 30d. (c) Latitudinal
dependence of zonal propagation speed cx for 2 951 028 TRAP, 604 296 cyclonic eddy and 608 650 anticyclonic eddy instances. Lines in (b)
and (c) indicate bin means, and shaded bands indicate their errors with respect to a confidence level of 95 %. Mesoscale eddies as detected
by AVISO+ et al. (2022).

3.3 Vorticity patterns around TRAPs

A considerable number of TRAPs seem to be surrounded by
four vortices of alternating polarity, which exhibit perpendic-
ular flow towards the TRAP core and tangential flow away
from it with respect to the TRAP curve. We call this pat-
tern a quadrupole. Here, we unravel this quadrupole and its
variations to demonstrate the driving mechanisms behind the
formation of mesoscale TRAPs. We compute the vorticity

curves ζ(α) around all available TRAPs, and because we first
want to show the raw signal, we do not remove background
vorticities at this stage. For visualisation purposes, we nor-
malise each curve ζ(α) by its maximum absolute value to ob-
tain ζ̂ (α). We take this large ensemble of normalised curves
ζ̂ (α) and show its mean and standard deviation in Fig. 6. It
reveals the mean pattern in the vorticity field around a TRAP.
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Figure 6. Ensemble of 3 568 850 normalised vorticity curves ζ̂ (α) around TRAPs. Every raw vorticity curve ζ(α) is normalised by its
maximum absolute value to obtain ζ̂ (α). ζ̂ (α) > 0 indicates cyclonic and ζ̂ (α) < 0 anticyclonic rotation in the surrounding flow field of
a TRAP. The blue line indicates the ensemble mean, and the shaded band renders its standard deviation. Black lines represent an arbitrary
0.1 % subset from this ensemble. The panels on the right illustrate two TRAPs: one surrounded by a quadrupole as suggested by the ensemble
mean and the other surrounded by vortices of unknown polarity. What vorticity patterns will appear around individual samples?

The ensemble of all vorticity curves clearly resembles a
sine wave. The similarity between the ensemble mean and a
harmonic function, as well as its smoothness, is remarkable.
Even though individual curves might not follow this shape,
the entirety of the approximately 3.5 million curves gener-
ates a robust signal. Since a vorticity curve with four zero
crossings and a polarity pattern of cyclonic–anticyclonic–
cyclonic–anticyclonic sequence indicates a quadrupole, the
above signal gives us reason to believe that the mean pattern
in the vorticity field around a TRAP is a quadrupole. Figure 3
illustrates such a typical quadrupole situation.

Now, we remove the background vorticity from each vor-
ticity curve ζ(α) and filter the ensemble of all vorticity curves
ζ(α) for the 10 distinct vortex combinations. The quadrupole
pattern in Fig. 6 serves as our reference pattern, and we define
the other nine patterns in terms of variation from it. There-
fore, we introduce the quadrupole order q. It describes the
number of vortices in a given pattern that need to change
polarity in order to obtain the reference quadrupole pattern.
We group the vorticity patterns of the previous 3 568 850
TRAP instances by q and illustrate the most frequent groups
in Fig. 7. See Fig. S5 for details on all 10 vorticity patterns
and their attributed quadrupole order.

We use shorthand names for TRAP instances within a
specific quadrupole surrounding, i.e. qth-order quadrupoles.
Zero-, first- and second-order quadrupoles constitute
99.97 % of the signal in Fig. 6. We identify approximately
57 % of all TRAPs as zero-order quadrupoles, 34 % as first-

Figure 7. Quadrupole orders and their frequency. The quadrupole
order q describes the number of vortices in a given pattern that need
to change polarity in order to obtain the reference quadrupole pat-
tern. After removing the background vorticity from every vorticity
curve ζ(α), 99.97 % of the ensemble can be explained by the five
patterns illustrated here. Figure S5 provides an overview of all vor-
ticity patterns.

order quadrupoles and 8 % as second-order quadrupoles.
As we expect, the most prevalent group is the reference
quadrupole indicated by the ensemble mean. However, a
significant share of TRAPs are surrounded by a first-order
quadrupole. A quick look into the ensemble means in
Fig. S5 reveals that first-order quadrupoles can also include
dipoles with one dominating polarity, and some second-order
quadrupoles might represent symmetric dipoles. Higher-
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Figure 8. Distribution of quadrupole orders over TRAP lifetime and attraction. (a) Shares of zero-, first- and second-order quadrupoles over
the lifetime of 26 675 long-living TRAPs with 3> 30d. (b) Distribution of TRAP attraction rate s1 for all zero-, first- and second-order
quadrupoles within the ensemble of vorticity curves ζ(α).

Figure 9. Retention times of drifters around TRAPs. Filled bars indicate the probability density of retention times ϕ for drogued drifters.
Empty bars present the probability density for undrogued drifters. Drogued drifters remain on average ϕ ≈ (5.3± 4.3) d, and undrogued ones
remain ϕ ≈ (4.6± 3.4) d around a TRAP. The p value for the difference in means results in p < 0.001. Pairs with retention times of 1 d are
excluded.

order quadrupoles also exist. They involve the lowest attrac-
tion rates, but we neglect them since they rarely occur.

Next, we want to know how quadrupole patterns evolve
over the TRAP lifetime 3 and how they relate to the at-
traction rate s1. Panel (a) in Fig. 8 illustrates the shares of
quadrupole orders zero, one and two at different evolution
stages of long-living TRAPs. We observe a gradual change
in the vorticity field around long-living TRAPs towards the
reference quadrupole state during the first half of a life cy-
cle and away from the reference quadrupole state during the
second half. Zero-order quadrupoles are the most important
vortex group throughout the entire lifetime, and they are es-
pecially abundant during the mature phase of TRAPs, i.e. be-
tween 20 % and 80 % of the lifetime. However, the first-order
quadrupole is a comparably probable state at the formation
and decay phase of this cycle.

A comparison between Figs. 8a and 5b suggests that the
evolutions of quadrupole order q and TRAP attraction rate s1
go along with each other; i.e. TRAPs intensify towards their
mid-life while their vorticity surroundings approach a lower-
order quadrupole state. From this, we expect that zero-, first-

and second-order quadrupoles create different kinds of strain.
Panel (b) in Fig. 8 displays the distribution of the instanta-
neous attraction rates s1 with respect to these quadrupole or-
ders. The weakest TRAPs, i.e. with the highest strain rates
s1, are surrounded only by first-order quadrupoles. Zero- and
second-order quadrupole environments appear for slightly
higher attractions, i.e. smaller strain rates s1. All three dis-
tributions peak within the same niche, but with a decreas-
ing attraction rate, the probability densities for second- and
first-order quadrupoles decline faster than for the reference
quadrupole. It shows that the probability of finding strongly
attracting TRAPs is higher among quadrupoles of order zero.
The average attraction rates s1 confirm this tendency, and the
p values for the respective differences in mean values result
in p < 0.001. However, the strongest TRAPs are attributed to
both the zero- and first-order quadrupole environments, and
we note that in panel (b), we are looking at slight differences
at the extremes. We conclude that there is a trend towards the
reference quadrupole environment for increasingly attractive
TRAPs, while first-order quadrupoles are likewise able to in-
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Table 1. Characteristics of drifter–TRAP pairs at specific TRAP evolution stages. ϕ indicates the average retention time over all respective
pairs, 3 the average lifetime over all associated TRAPs and s1 the average attraction rate over all associated TRAP instances. TRAP
formation is given if a pair includes the first detection of a TRAP and TRAP decay if a pair includes the last detection.

TRAP formation TRAP decay ϕ [d] 3 [d] s1 [s−1
] No. pairs Share in drifter days

Group I yes yes (3.5± 2.6) (3.5± 2.6) (−0.17± 0.07) 5456 8.5 %
Group II yes no (4.8± 3.8) (19.6± 20.8) (−0.21± 0.08) 5521 11.8 %
Group III no yes (4.7± 3.7) (19.6± 20.3) (−0.21± 0.08) 5609 11.8 %
Group IV no no (5.3± 3.8) (47.9± 35.4) (−0.27± 0.11) 17 292 40.9 %

Figure 10. Drifter motion around TRAPs. For the first TRAP detection of every drifter–TRAP pair, we determine the angle between the vector
pointing from the core to the furthest curve point and the zonal axis, with 0° pointing eastward and angles increasing counterclockwise. We
use this angle to rotate all drifter positions towards the zonal axis. We allocate all rotated drifter positions to hexagonal bins. For every bin, we
average the elapsed retention time ϕ as well as the eastward and northward velocity components over all binned drifter instances. The colour
mapping indicates bin averages of ϕ, and vectors indicate the average velocity components. A transparent TRAP in the middle represents a
generic profile, and the black circle draws the limits of the drifter search zone around it. (a) TRAP forms and decays, (b) TRAP only forms,
(c) TRAP only decays, and (d) TRAP neither forms nor decays during the drifter visit.

duce high strain. We now investigate which of these groups
organise tracer patterns particularly well.

3.4 Impact on drifters

We identify 33 878 drifter–TRAP pairs with retention times
of ϕ > 1d. These pairs cover 73 % of all drifter days and
exhibit a mean retention time of ϕ ≈ (4.8± 3.7) d, which
reflects the transient impact of TRAPs; i.e. drifters are at-
tracted and dispersed again within a few days. However, we
also find a few drifters that spend multiple weeks around a
TRAP. The highest retention time we measure is ϕ = 46d.
Pairs with retention times ϕ > 7d represent only 9 % of all
pairs but cover 28 % of all drifter days. We generally observe
similar behaviours of drogued and undrogued drifters around
TRAPs. But we emphasise a subtle difference in retention
times to explain why we find 2.6 times more undrogued than
drogued drifter–TRAP pairs, while there are only 1.6 times
more undrogued than drogued drifters in our domain. Fig-
ure 9 presents the distribution of retention times ϕ over these
drifter–TRAP pairs with respect to a pair’s drogue state. The
probability density function illustrates, irrespective of sam-
ple size, which drogue type is more likely to enter into a
long retention. With increasing retention time ϕ, the prob-
ability density for undrogued drifters declines faster than for

drogued ones. In general, drogued drifters show a higher sus-
ceptibility to stay around TRAPs for 8 d or longer. Even-
tually, longer retention of drogued drifters makes them less
available for transient pairings.

We study the average drifter motion around TRAPs and
find that transport patterns depend on the evolution stage of
the respective TRAP. Thus, we divide all drifter–TRAP pairs
into four groups. The first group includes pairs for which
the respective TRAP forms and decays during the drifter
visit. Technically, this means that a pair covers the first and
the last detection of a TRAP. The second group consists of
pairs which start at the formation of a TRAP but end be-
fore its decay. The third group represents pairs which begin
after the formation of a TRAP but end with its decay, and
the fourth group defines pairs that exist throughout the life-
time of a TRAP but exclude its formation and decay. Table 1
summarises the average retention times, attraction rates and
TRAP lifetimes related to these groups. We find the longest
average retention time for pairs that occur throughout the life
cycle of a TRAP without formation or decay. These pairs in-
volve TRAPs of significantly stronger attraction and higher
persistency compared to pairs that experience TRAP forma-
tion or decay.
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In Fig. 10, we illustrate the average drifter motion around
TRAPs with respect to this grouping. We rotate drifter tracks
around TRAPs towards the zonal axis and allocate their re-
spective drifter positions to hexagonal bins. For every bin,
we average the elapsed retention time ϕ as well as the east-
ward and the northward velocity components over all binned
drifter positions. Bin colours indicate the average elapsed re-
tention time ϕ per bin, and vectors indicate the average ve-
locity components.

Panel (a) highlights the average drifter motion around
TRAPs that form and decay. The situation appears some-
what disorganised, with no specific motion pattern to de-
tect. Velocity vectors hardly show any preferred direction of
drifter transport, and green colours dominate the picture. The
colour map indicates that the retention times of the underly-
ing drifter–TRAP pairs begin and end anywhere throughout
the search circle. Panel (b) gives insight into drifter motion
during the formation of TRAPs that persist beyond the reten-
tion time. We find that drifters mostly move away from the
TRAP and parallel to the TRAP curve. Panel (c) describes the
opposite situation in which decaying TRAPs attract rather
than disperse drifters. This attraction is directed mainly to-
wards the TRAP core. Panels (a) to (c) reveal that drifters
around TRAPs that form or decay do not tend to follow a hy-
perbolic pattern. However, TRAPs that are at the final stage
of their life cycle can at least indicate the confluence of ma-
terial.

In contrast, the velocity vectors in panel (d), where TRAP
formation and decay are excluded, describe hyperbolic trans-
port as expected. Drifters flow perpendicularly towards the
TRAP core and tangentially away from it, with respect to the
TRAP curve. We also observe distinct regions of blue and
red bin colours, indicating that many drifters enter the zone
perpendicularly towards the TRAP and leave it at one end of
the structure. A comparison with Fig. 5b, Fig. 8a and Table 1
clarifies that hyperbolic transport primarily occurs through-
out the mature phase of a long-living TRAP because, at this
stage, the surrounding flow organises into a quadrupole pat-
tern that generates high strain.

4 Summary, discussion and conclusion

We studied the characteristics of TRAPs and the prospects
for predicting debris transport from satellite-derived
mesoscale-permitting datasets. Our findings provide an
advanced understanding of TRAPs in the Great Pacific
Garbage Patch and demonstrate the importance of TRAP
lifetime estimations to an operational application. We find
that the life cycle of TRAPs can range from days to seasons
with an average lifetime of 3≈ (6± 12) d. However,
41 % of TRAP detections relate to profiles with lifetimes
of 3> 30d. Such long-living TRAPs exhibit a distinct
evolution of attraction strength. They intensify during the
first and weaken during the second half of their life cycle. At

the same time, the vorticity field around TRAPs gradually
changes towards and away from a specifically ordered
state, i.e. a group of four vortices with alternating polarity.
Therefore, the life cycle of TRAPs can explain why we
observe hyperbolic drifter transport primarily throughout
the mature phase of long-living TRAPs. At this stage, the
surrounding flow creates the optimal vorticity pattern for
generating high, hyperbolic strain. We find that hyperbolic
transport around TRAPs takes on average ϕ ≈ (5.3± 3.8) d.
In general, retention times can be very short, and strong
TRAPs quickly attract and disperse material. However, we
also detect a few drifters that spend multiple weeks around a
TRAP. The highest retention time we measure is ϕ = 46d.

We identify the evolution stage of TRAPs as the most sig-
nificant predictor for drifter motion. However, the coherence
of surrounding vortices might further explain our observa-
tions of hyperbolic transport and long retentions. We pro-
pose investigating this with higher-resolution measurements
of the flow, which can resolve the small-scale vortices we see
around many TRAPs in Video S3. The mesoscale eddy detec-
tions by AVISO+ et al. (2022) do not include such vortices,
which explains the high number of TRAPs without nearby
eddy detections. Moreover, we find 15 % of TRAPs inside
these eddy detections, even though the centres of the eddies
are not expected to be strain-dominated regions. It is known
that eddy detection algorithms based on closed contours of
sea surface height often yield false-positive identifications
(Andrade-Canto and Beron-Vera, 2022; Beron-Vera et al.,
2013). Liu and Abernathey (2023) present an alternative al-
gorithm which detects eddies from Lagrangian-averaged vor-
ticity deviations (LAVDs; Haller et al., 2016). They claim
the absence of false-positive detections. However, we still
find TRAPs in the centres of these eddy detections, possi-
bly due to the discrepancy between the timescale over which
Lagrangian averaging takes place and the instantaneous na-
ture of TRAPs; see Fig. A2 for details. We expect true coher-
ence and no inclusion of TRAPs within eddy centres when
we use a detection framework that descends from the de-
formation tensor S(x, t). Serra and Haller (2016) introduce
elliptic OECSs, which can be derived from singularities of
S(x, t) and build a complement to the strain-dominated re-
gions uncovered by TRAPs, with the additional benefit of
both methods being applicable to Eulerian snapshots of ve-
locity. A computational implementation of elliptic OECSs
could be the subject of future research.

There is an ongoing debate about whether coherent
mesoscale eddies accumulate and transport floating material.
The study by van Sebille et al. (2020) discusses confirming
examples such as Brach et al. (2018), Budyansky et al. (2015)
and Dong et al. (2014). Early et al. (2011) use the zero con-
tour of relative vorticity to define eddy boundaries in an ide-
alised flow. They show how an anticyclonic eddy core trans-
ports floats and tracers over large distances, but they also
explain why fluid from the outside cannot be entrained by
the core. The authors illustrate that the ring of fluid around
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an eddy core simultaneously entrains and sheds fluid from
and into the environment, dispersing material across differ-
ent scales. Abernathey and Haller (2018) argue that transport
by coherent eddies is negligible and that material transport
is caused by stirring and filamentation at the periphery of
strictly coherent eddies rather than by the coherent motion
within eddy cores. They emphasise the need for objective
methods to identify such peripheral regions. Froyland et al.
(2015) demonstrate an objective approach using finite-time
coherent sets from a transfer operator that minimises mass
loss from eddy boundaries. They track the long-term decay of
an observed Agulhas ring and estimate the proportion of sur-
face water leaking from this coherent eddy. Using their the-
ory, Denes et al. (2022) derive finite-time coherent sets from
a dynamic Laplace operator and estimate the material trans-
port provided by the periphery of a modelled Agulhas ring.
They show that the quasi-coherent outer ring of this eddy
significantly contributes to the entrainment and retention of
fluid. TRAPs are intrinsic to these peripheral regions, and the
concept should facilitate further understanding of these pro-
cesses.

In our study domain, the average surface area within a
mesoscale eddy is Ae ≈ 8361km2, as derived from eddy de-
tections by AVISO+ et al. (2022). Even if mesoscale eddies
accumulate floating material in their interior, there is no pref-
erential region within that area expediting debris collection.
For a similar area, however, TRAPs maximise normal attrac-
tion of nearby trajectories, which then move tangentially to
a TRAP. Surrounding material will move towards the TRAP,
aggregate and then move along the TRAP towards its ends.
Because the circulation aggregates material from both sides
of a TRAP into a smaller subarea, we expect the density of
debris along a TRAP, i.e. the amount of debris per unit area,
to be considerably greater than in its periphery. Eventually,
the hyperbolic flow would convey this aggregated debris into
a strategically placed cleanup system. For these reasons, nav-
igating a cleanup system along mesoscale TRAPs could be
more productive than navigating it through mesoscale eddies.

We demonstrate this aggregation in Fig. 10d, where the
hyperbolic flow transports drifters into a smaller subarea. As
illustrated in these rotated scenes, there are two pathways for
searching for debris, i.e. the western and eastern branches of
the TRAP, each supplied with material from the north and
south. However, we can only show this effect using a com-
posite of many drifter trajectories in Fig. 10d. Individual ex-
amples of a TRAP attracting multiple drifters are rare due to
the low number of drifters in the domain. Figure 3b presents
one of the few observations with two drifters. Although the
number of drifters allows us to show the impact of TRAPs
on individual, nearby drifters, it is insufficient to quantify the
likelihood of drifters aggregating around mesoscale TRAPs
and other regions of the flow, such as mesoscale eddies. We
illustrate this deficiency with a time series for the number
of daily drifter positions spent around TRAPs and within
mesoscale eddies in Fig. S6. The high standard deviations

for respective drifter counts result from the low number of
drifters and prevent an accurate comparison. We leave the
time series as a motivation for future studies. Prospective re-
search could investigate the likelihood of aggregation using
a significantly higher number of drifters or appropriate mea-
surements of debris concentrations, the latter being available
soon from current missions.

There are obvious limits to the application of this
mesoscale-permitting dataset. The effective resolution in
space and time should be coarser than the 0.25° latitude–
longitude grid and the daily frequency. We observe the ef-
fects of this in animations where TRAPs disappear and re-
emerge after a few days. At such a gap, our tracking algo-
rithm defines a new trajectory, and therefore we might under-
estimate TRAP lifetimes. Similarly, detection gaps affect the
identification of drifter–TRAP pairs, leading to an underesti-
mation of retention times. However, we find remarkable con-
sistency between Duran et al. (2021) and our study. They find
persistent mesoscale TRAPs that predict the spread of sur-
face oil at least 8 d in advance, in agreement with our finding
of retention times of ϕ = (5.3± 3.8) d for hyperbolic drifter
motion. These comparable timescales and the overall simi-
lar behaviour we observe for drogued and undrogued drifters
further underline the concept’s robustness against differences
in tracer properties.

Our analyses of drifter–TRAP pairs reveal the hyperbolic-
type Lagrangian motion induced by TRAPs. These observa-
tions confirm the persistence of TRAPs over periods con-
siderably longer than a few hours, which is the lifetime
of a TRAP that is mathematically guaranteed to exist. We
know from our drifter–TRAP statistics that, for about a week,
drifters are attracted normally to a TRAP, then accelerate and
finally leave the TRAP in a tangential direction. Given that
the drifter and altimetry datasets are independent oceanic ob-
servations, these statistics show that TRAPs often persist for
at least a week. Importantly, we note that the behaviour of
drifters in the vicinity of forming or decaying TRAPs is dis-
tinct from the hyperbolic behaviour observed near TRAPs
that are neither forming nor decaying. This result shows that
we are following the same TRAP and not following differ-
ent TRAPs that quickly form and decay at locations that co-
incide with the path of propagating eddies. Due to the rel-
atively short transport time of a drifter in the vicinity of a
TRAP, we would expect that a TRAP can persist for consid-
erably longer than a week. Indeed, the persistent relation that
we find between TRAPs and mesoscale vorticity structures,
including the similarity in their propagation speed, suggests
that the lifetimes of mesoscale TRAPs are often related to
the lifetime of long-lived mesoscale structures. Duran et al.
(2021) present another example of the temporal continuity of
TRAPs and their influence on hyperbolic tracer deformation,
again from independent observations. The hyperbolic nature
of this latter deformation pattern is established in Olascoaga
and Haller (2012) and Duran et al. (2018).
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Even though our study cannot resolve important subme-
soscale processes like filamentation, Langmuir cells or sub-
mesoscale vortices, it demonstrates the capability of TRAPs
to predict material transport from mesoscale observations.
We observed the effect of TRAPs on drifters, both drogued
and undrogued, which sample any oceanic structures found
along their path, including submesoscales. Thus, our results
include the aggregate effect of such flow components on the
daily drifter positions that we use in the analysis, even though
these flow components are not resolved by the satellite al-
timetry itself.

Computing TRAPs and their statistics from submesoscale
velocity observations is an essential second step for introduc-
ing the concept to offshore cleanups. Submesoscale TRAPs
will indicate material aggregation at the scales of a cleanup
system, and they will likely show different characteristics
than their mesoscale counterparts. Investigating these dif-
ferences and the interaction between mesoscale and subme-
soscale TRAPs will advance our understanding of material
aggregation across multiple scales, which has the potential
to use nowcast observations for cleanup navigation. Our al-
gorithms offer a great chance to reapply the TRAP concept
to future high-resolution observations that will be provided
by the current SWOT mission (International Altimetry Team,
2021), with a resolution about 1 order of magnitude higher
than the data used here. Since the geostrophic assumption
is needed to obtain a sea surface velocity from SWOT mea-
surements, such exploration can be complemented with ad-
ditional observations in coastal regions from high-frequency
radar, which gives the full and not only the geostrophic sea
surface velocity.

An interesting approach would be to study the flow around
drifter–TRAP pairs with long retention times. These long re-
tention times might be due to drifter trapping within sub-
mesoscale vortices and filaments that result from instabil-
ities at mesoscale fronts (van Sebille et al., 2020; Zhang
et al., 2019; Gula et al., 2014). Mesoscale TRAPs indicate
these mesoscale fronts and might provide a window to en-
hanced material clustering at the submesoscale, where we
also expect higher numbers of small-scale TRAPs. The large-
scale confluence we observe around mesoscale TRAPs could
further supply these submesoscales with material. More re-
search is needed to clarify whether mesoscale TRAPs from
large-scale observations of sea surface height O(10–100 km)
can be used as a proxy for material accumulation at opera-
tional scales O(1–10 km).

Our results can support cleanup operations in the Great
Pacific Garbage Patch since they reveal which TRAPs indi-
cate a large-scale confluence of drifting objects. Mesoscale-
permitting flow observations, like the satellite data applied
here, are available in near-real time, and operators should use
them to search for long-living TRAPs that are at an advanced
stage of their life cycle. These TRAPs can predict material
aggregation since they streamline floating objects into hyper-
bolic pathways. Such a streamlined bypass involves a short

but strong attraction, which can be exploited to filter the flow
around a TRAP. The state-of-the-art cleanup system consists
of a 2 km long surface barrier, towed by two vessels (The
Ocean Cleanup, 2023), and it could move along TRAPs to
act like a filter on the through-flowing water. The large-scale
navigation along mesoscale TRAPs could then be comple-
mented by vessel-based methods that enable the detection of
debris and attracting flow features on the small scales, for
instance, through automated object recognition using cam-
eras (de Vries et al., 2021) or shipboard marine X-band radar
(Lund et al., 2018). Prospective research about mesoscale
and submesoscale TRAPs will further contribute to bridging
observational gaps between these scales.

Ultimately, this research is not limited to the subject of
marine debris, and various offshore applications can benefit
from the detection and tracking of these hyperbolic struc-
tures. For instance, authorities might use TRAPs to mitigate
sargassum transport towards ports and coastal areas where
beaching events cause limited accessibility. If TRAPs indi-
cate enhanced small-scale clustering of organic compounds,
biologists could use them to monitor and protect the foraging
of marine species. Oceanographers can apply the TRAP con-
cept to optimise drifter deployments whenever drifters are
supposed to separate fast or remain in a specific region. Fur-
thermore, TRAPs are suitable for estimating oil transport at
the ocean surface, making them a considerable tool for emer-
gency response to oil spills. And finally, a better understand-
ing of TRAPs will help establish their use in the essential
search and rescue operations that are saving lives at sea.
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Appendix A: Figures

Figure A1. Comparison of propagation speeds between TRAPs and mesoscale eddies. Latitudinal dependence of the (a) zonal propagation
speed cx and (b) meridional propagation speed cy . Longitudinal dependence of the (c) zonal propagation speed cx and (d) meridional
propagation speed cy . Lines indicate bin means, and shaded bands represent the respective standard deviations from 2 951 028 TRAP, 604 296
cyclonic and 608 650 anticyclonic eddy instances. Mesoscale eddies as detected by AVISO+ et al. (2022).

Figure A2. Snapshot of mesoscale TRAPs and mesoscale eddy detections within the study domain. Black lines represent TRAPs. Cyan and
pink lines depict the speed contours of cyclonic and anticyclonic mesoscale eddies as detected by AVISO+ et al. (2022). Blue and red patches
depict Lagrangian particles trapped by cyclonic and anticyclonic coherent eddy boundaries as detected by Liu and Abernathey (2022) for the
same snapshot. The colour scale on the right indicates the relative vorticity ζ(x`, t0) of Lagrangian particles at position x`, with ` ∈ [1,n]
being the index for each of the n Lagrangian particles at snapshot time t0.
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Appendix B: Tables

Table B1. Benefits of TRAPs. Adopted from Serra and Haller (2016), Serra et al. (2020) and Duran et al. (2021) and amended to the form
given here.

Predict material aggregation Since TRAPs attract nearby drifting objects, TRAPs computed from
nowcast observations of the flow can indicate where material will ag-
gregate in the near future.

Use velocity snapshots TRAPs can be directly inferred from snapshots of the surface velocity
field and are thus light in computation. They allow for input data with
time gaps, and predictions can be made from a nowcast of the velocity
field.

Avoid pitfalls of trajectory inte-
gration

TRAPs do not require costly trajectory integrations, tracer release times,
locations or the length of the observation period. Velocity errors do not
accumulate, which should make TRAPs less sensitive to uncertainties
in the underlying velocity field. TRAPs also provide full domain cover-
age. Lagrangian methods, on the other hand, become computationally
demanding with increasing resolution of the initial particle field where
particles may eventually leave a finite-size domain.

Indicate direction of transport What makes TRAPs special is that they indicate the directions of trans-
port, while other structures like s1(x, t) minima, divergence minima
or ridges of the finite-time Lyapunov exponent (FTLE) field do not.
FTLE ridges do not necessarily indicate the direction of largest stretch-
ing (Haller, 2015).

Easy to interpret TRAPs describe localised, one-dimensional curves of attraction in con-
trast to large open sets of, e.g. horizontal divergence or particle density.

Robust TRAPs are robust to different inertia and windage effects and are thus
insensitive to the varying shape or submergence level of drifting objects.

Uncover hidden flow structures TRAPs can be perpendicular to streamlines and exist in divergence-free
flows.

Observer-independent The objective nature of TRAPs leads to the same conclusions on dif-
ferent platforms. Classic Eulerian quantities like streamlines, velocity
magnitude, velocity gradient, energy or relative vorticity are not objec-
tive and will lead to different results in different frames of reference.

Scale-invariant TRAPs can be computed for velocity fields of any temporal and spatial
resolution. The concept can be applied to the scales of the confluence
phenomena of interest.
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Appendix C: Algorithms

Code and data availability. We provide source code at
https://doi.org/10.5281/zenodo.12761097 (Kunz, 2024a) to
post-process TRAP computations, track TRAPs through the
domain and identify drifter–TRAP pairs. We also provide a 20-year
dataset of TRAP detections with lifetime estimations, vorticity
pattern detections and our dataset of drifter–TRAP pair detections
at https://doi.org/10.5281/zenodo.10993736 (Kunz, 2024b).

Video supplement. We provide animations of the TRAP tracking
algorithm in Video S1; of the evolution of TRAPs, drifter po-
sitions and the relative vorticity field in Video S2; and of the
evolution of TRAPs, mesoscale eddy detections and the relative
vorticity field in Video S3. Videos S1, S2 and S3 are avail-
able at https://doi.org/10.5281/zenodo.10943728 (Kunz, 2024c),
and Fig. S7 summarises the details.

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/os-20-1611-2024-supplement.
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