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Abstract. This study is anchored in the H2020 SEAM-
LESS project (https://www.seamlessproject.org, last access:
29 January 2024), which aims to develop ensemble assimila-
tion methods to be implemented in Copernicus Marine Ser-
vice monitoring and forecasting systems, in order to opera-
tionally estimate a set of targeted ecosystem indicators in var-
ious regions, including uncertainty estimates. In this paper,
a simplified approach is introduced to perform a 4D (space–
time) ensemble analysis describing the evolution of the ocean
ecosystem. An example application is provided, which cov-
ers a limited time period in a limited subregion of the North
Atlantic (between 31 and 21◦W, between 44 and 50.5◦ N,
between 15 March and 15 June 2019, at a 1/4◦ and a 1 d
resolution). The ensemble analysis is based on prior ensem-
ble statistics from a stochastic NEMO (Nucleus for European
Modelling of the Ocean)–PISCES simulator. Ocean colour
observations are used as constraints to condition the 4D prior
probability distribution.

As compared to classic data assimilation, the simplifica-
tion comes from the decoupling between the forward simu-
lation using the complex modelling system and the update of
the 4D ensemble to account for the observation constraint.
The shortcomings and possible advantages of this approach
for biogeochemical applications are discussed in the paper.
The results show that it is possible to produce a multivari-
ate ensemble analysis continuous in time and consistent with
the observations. Furthermore, we study how the method can
be used to extrapolate analyses calculated from past obser-
vations into the future. The resulting 4D ensemble statisti-
cal forecast is shown to contain valuable information about
the evolution of the ecosystem for a few days after the last

observation. However, as a result of the short decorrelation
timescale in the prior ensemble, the spread of the ensemble
forecast increases quickly with time. Throughout the paper,
a special emphasis is given to discussing the statistical relia-
bility of the solution.

Two different methods have been applied to perform this
4D statistical analysis and forecast: the analysis step of the
ensemble transform Kalman filter (with domain localization)
and a Monte Carlo Markov chain (MCMC) sampler (with
covariance localization), both enhanced by the application of
anamorphosis to the original variables. Despite being very
different, the two algorithms produce very similar results,
thus providing support to each other’s estimates. As shown
in the paper, the decoupling of the statistical analysis from
the dynamical model allows us to restrict the analysis to a
few selected variables and, at the same time, to produce es-
timates of additional ecological indicators (in our example:
phenology, trophic efficiency, downward flux of particulate
organic matter). This approach can easily be appended to ex-
isting operational systems to focus on dedicated users’ re-
quirements, at a small additional cost, as long as a reliable
prior ensemble simulation is available. It can also serve as
a baseline to compare with the dynamical ensemble forecast
and as a possible substitute whenever useful.
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1 Introduction

Combining numerical models with observational data to re-
construct the past evolution of ocean biogeochemistry and to
predict its future evolution has been a major objective of op-
erational ocean forecasting centres for many years, motivated
both by the marine user’s needs and by advances in scientific
knowledge of the ocean functioning (Gehlen et al., 2015).

In order to support decision-making or reliable scientific
assessment, the marine ecosystem and biogeochemical pa-
rameters to be estimated (e.g. phenology, trophic efficiency,
downward carbon flux) must be supplemented with uncer-
tainties to quantify the robustness of the information pro-
duced and quantify the likelihood of estimates (Modi et al.,
2022). This motivates the development of systems capable of
producing information which is probabilistic in nature. This
study is anchored in the H2020 SEAMLESS project, which
aims to develop ensemble assimilation methods to be imple-
mented in Copernicus Marine Service monitoring and fore-
casting systems, in order to operationally estimate a set of
targeted ecosystem indicators in the different regions cov-
ered, including uncertainty estimates.

Despite their cost with high-dimensional systems, ensem-
ble methods based on Monte Carlo simulations are well
suited to generate samples of the probability distributions
of the quantities of interest, as is already implemented to-
day by some teams of the OceanPredict programme (Fen-
nel et al., 2019). The standard approach relies on imple-
mentations of sequential ensemble data assimilation meth-
ods that typically consist of variants of the ensemble Kalman
filter (Evensen, 2003). The data assimilation algorithms typ-
ically perform ensemble analysis and predictions in se-
quence to integrate observational information such as satel-
lite ocean colour and ARGO BGC profile data into cou-
pled 3D physical–biogeochemical models (Gutknecht et al.,
2022).

In these ensemble data assimilation systems, the most
expensive numerical component is the coupled physical–
biogeochemical model that is used to perform the ensemble
simulations because it is usually sought to run at high hori-
zontal resolution and because a few dozens of members are
usually necessary to obtain ensemble statistics that are accu-
rate enough for data assimilation. The aim of this paper is
to demonstrate that it is possible to make an additional use
of these expensive model data, obtained from a prior ensem-
ble model simulation (not yet conditioned on observations),
to produce a statistically driven analysis and forecast for se-
lected key model variables. A secondary aim of this paper is
to illustrate the extension of the approach to estimate ecolog-
ical indicators diagnosed from model state variables.

For instance, using the statistics of the ensemble, it is not
difficult, at least in principle, to obtain a 4D multivariate
statistical analysis based on all available observations over
a given time period (possibly quite long, typically between
1 month and 1 year, maybe longer). This just corresponds to

applying any standard Bayesian observational update algo-
rithm in four dimensions (4D) to condition the prior ensem-
ble on the observations and thus produce the corresponding
4D ensemble statistical analysis. In practice, this can for in-
stance be achieved by a direct application of just one analysis
step of the ensemble optimal interpolation (EnOI) algorithm
(e.g. Evensen, 2003; Oke et al., 2010), for a 4D estimation
vector (thus embedding the time evolution of the system, as
in Mattern and Edwards, 2023, but over an extended time
window). However, it is important to emphasize that, unlike
EnOI, we do not use historical data to prescribe the prior
statistics but an ensemble simulation that is specifically per-
formed for the requested time period. This is necessary if we
want to avoid assuming stationarity of the statistics.

Moreover, if the prior ensemble extends into the future, the
result of the observational update can include an ensemble
statistical forecast of the state of the system based on past
observations. This forecast only relies on the statistical de-
pendence between past and future as described by the prior
ensemble, and as interpreted by the observational update al-
gorithm. Such a 4D statistical analysis and forecast can be
seen as an additional byproduct of the system, which could
be obtained at negligible cost (as compared to the ensemble
simulations).

Furthermore, the decoupling between model simulations
and inverse methods substantially reduces the complexity of
the numerical apparatus, which becomes more easily man-
ageable and more flexible. Without the need to initialize the
dynamical model, the ensemble analysis and forecast do not
need to include the full state vector but can concentrate on
a few variables or diagnostics, possibly for a specific subre-
gion, where the result is most needed. As illustrated in this
paper, the possibility of reducing the dimension of the inverse
problem opens new prospects in terms of inverse method,
which can be more sophisticated, and thus more able to deal
accurately with complex prior ensemble statistics, nonlinear
observation operators and non-Gaussian observation errors.
For these reasons, there are certainly practical situations in
which it would be interesting to append such a 4D statisti-
cal analysis and forecast to existing ensemble data assimila-
tion systems. They may serve as a baseline to compare with
the dynamical ensemble forecast and as a possible substitute
whenever useful.

The obvious shortcoming of this approach is that the com-
plex nonlinear dynamical model is no longer directly used to
constrain the solution but only indirectly through the statis-
tics of the prior ensemble. Moreover, if the prior ensemble
has been run a long time from a realistic initial condition,
the prior ensemble spread may be substantially larger than in
classic data assimilation systems, with prior members possi-
bly further away from the observations. In this respect, the
approach is clearly suboptimal as compared to existing en-
semble 4D analysis methods like the 4D Ensemble Varia-
tional (4DEnVar; Buehner et al., 2013) and the two-step en-
semble smoother (see Van Leeuwen et al., 1996; Cosme et
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al., 2012, for a review of ensemble smoothers), which were
developed in the framework of the well-known 4DVar and
Kalman filter methods.

However, the approach proposed here also brings impor-
tant advantages explained above (use of past and future ob-
servations, statistical forecast capability, simplification of the
inverse problem), especially if the model is very sensitive to
small imbalances in the initial condition and if it is difficult
to produce an accurate ensemble analysis for all influential
model state variables (e.g. by lack of sufficient observations),
as is often the case with ocean biogeochemical models. In
such cases, the suboptimality of the approach (in the use of
the dynamical constraint) can easily be counterbalanced by a
better robustness and reliability.

The objective of this paper is to assess the strengths
and weaknesses of this strategy by producing a 4D analy-
sis and forecast of ecosystem variables and indicators for
a small subregion (10◦× 6.5◦) in the North Atlantic. The
prior 40-member ensemble is produced with a global 1/4◦

resolution NEMO(Nucleus for European Modelling of the
Ocean)–PISCES model configuration (prepared by Mercator
Ocean International, later referred to as MOI), with stochas-
tic parameterization of uncertainties. Observations are the L3
product of chlorophyll data from ocean colour satellites. The
results are illustrated for observed and non-observed vari-
ables, including ecosystem indicators, which are not model
state variables. Probabilistic scores are used to evaluate the
reliability and accuracy of the ensemble forecasts of chloro-
phyll concentration.

In addition, we show that the proposed strategy is compli-
ant with a variety of observational update schemes similar to
those in use today in operational systems. Two observational
update algorithms are considered in the present paper to con-
dition the prior ensemble on the observations. The first one
is the analysis step of the ensemble transform Kalman filter
(ETKF; Bishop et al., 2001) with domain localization (e.g.
Janjic et al., 2011), using an implementation framework in-
herited from the SEEK filter (Pham et al., 1998; Testut et al.,
2003). This is the same algorithm that is used in the MOI data
assimilation system (Lellouche et al., 2021), which illustrates
the direct applicability of this approach in a real system. In
this study, we just added time localization to our existing im-
plementation to make it applicable to long time periods. The
second one is the Monte Carlo Markov chain (MCMC) sam-
pler recently developed by Brankart (2019). The idea here
is to illustrate the potential benefit that can be obtained us-
ing a method that is more expensive and still difficult to ap-
ply to the global multivariate system. It is worth pointing out
once again that the aim of this article is not to compare the
performance of the ETKF and MCMC schemes. Instead, we
show that the practical advantages of the proposed inversion
method can benefit both schemes, and we provide interpreta-
tions of their respective behaviours.

The paper is organized as follows. In Sect. 2, we describe
the ensemble simulation that has been performed to produce

the prior ensemble. In Sect. 3, we formulate the inverse prob-
lem that we are going to solve: region and variables of inter-
est, observations, and prior statistics. In Sect. 4, we present
the inverse methods (ETKF observational update algorithm
and MCMC sampler). In Sect. 5, we illustrate the analy-
sis and forecast results, including the forecast probabilistic
scores.

2 Prior ensemble simulation

The purpose of this section is to present the stochastic
NEMO–PISCES simulator, which defines the prior proba-
bility distribution for the evolution of the coupled physical–
biogeochemical system. We first describe the determinis-
tic NEMO–PISCES model (provided by MOI), from which
we started, in Sect. 2.1, then the stochastic parameterization
transforming the deterministic evolution of the system into a
probability distribution in Sect. 2.2, and finally the ensemble
numerical simulation that has been performed to sample this
probability distribution in Sect. 2.3.

2.1 Model description

The physical component is based on the primitive equa-
tion model NEMO (Nucleus for European Modelling of
the Ocean; Madec et al., 2017), with the configuration
ORCA025 covering the world ocean at a 1/4◦ resolu-
tion and with 75 levels along the vertical. The initial
condition is specified using the GLORYS2V4 reanalysis
data (https://doi.org/10.48670/moi-00024) for the beginning
of 2013, and the atmospheric forcing is derived from the
ERA5 reanalysis.

The biogeochemical component of the model is based on
PISCES-v2 (Aumont et al., 2015), which includes 24 bio-
geochemical variables. There are five nutrients (nitrate, am-
monium, phosphate, silicate, and iron), two types of phyto-
plankton (nanophytoplankton and diatoms, with predictive
variables for carbon, chlorophyll, iron, and silicon), and two
types of zooplankton (microzooplankton and mesozooplank-
ton, for which only the total biomass is modelled). Detritus
is described by one variable for dissolved organic carbon and
two variables for particulate organic matter (small and big
particles, with a different sedimentation velocity). Among
these variables, the initial conditions for nutrients (phos-
phate, nitrate, silicate) and oxygen have been interpolated
from the World Ocean Atlas 2018 (Garcia et al., 2018a, b);
the initial conditions for dissolved organic and inorganic mat-
ter, total alkalinity, and dissolved iron are taken from the
gridded data from the Global Ocean Data Analysis Project
(GLODAP v2; Olsen et al., 2020), while the other variables
are initialized with constant values.

From the initial condition described above for the physical
and biogeochemical components of the model, a 2-year de-
terministic spinup of the coupled model has been performed,
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starting on 1 January 2017, to obtain a stabilized and coher-
ent initial condition for the coupled model for our period of
interest (the year 2019).

2.2 Stochastic parameterization

The deterministic model configuration described above has
been transformed into a probabilistic model by explicitly
simulating model uncertainties, using the stochastic param-
eterization approach proposed for NEMO in Brankart et al.
(2015). More precisely, three types of uncertainty have been
introduced in the model:

1. Uncertainties in the biogeochemical parameters. Fol-
lowing the work of Garnier et al. (2016), seven param-
eters have been perturbed by a time-dependent multi-
plicative noise with a lognormal probability distribu-
tion. These parameters have been chosen not only be-
cause they are uncertain but also because they have a
large influence on the primary production in the model.
They are (1) the photosynthetic efficiency of nanophy-
toplankton, (2) the photosynthetic efficiency of diatoms,
(3) the nanophytoplankton growth rate at 0 ◦C, (4) the
sensitivity of phytoplankton growth rate to tempera-
ture, (5) the sensitivity of zooplankton grazing rate to
temperature, (6) the dependence of nanophytoplankton
growth on day length, and (7) the dependence of di-
atoms growth on day length.

2. Uncertainties due to unresolved scales in the biogeo-
chemical tracers. In the biogeochemical model, another
important source of uncertainty is the effect of the unre-
solved scales on the large-scale component of the bio-
geochemical tracers. As a result of the nonlinear formu-
lation of the biogeochemical model, unresolved fluctu-
ations in the model variables can produce a substantial
effect in the coarse-grained evolution equations, which
is at least partly stochastic and which it is difficult to
describe using a deterministic parameterization. Fol-
lowing Garnier et al. (2016), this effect has been pa-
rameterized by averaging the biogeochemical fluxes be-
tween model compartments over a set of fluctuations in
the biogeochemical tracers. These fluctuations were as-
sumed to be proportional to the tracers themselves, with
a time-dependent multiplicative noise.

3. Location uncertainties. Unresolved scales in the phys-
ical component of the model also produce large-scale
effects that are difficult to parameterize and thus pro-
duce uncertainties that are not easy to simulate. Fol-
lowing the work of Leroux et al. (2022), uncertainties
in the Lagrangian advection operator have been intro-
duced in the model to simulate the effect of unresolved
scales in the advection of physical and biogeochemi-
cal quantities. In practice, this is implemented indirectly
by introducing random perturbations to the model grid,

Table 1. Characteristics of the maps of autoregressive processes
used to simulate each type of uncertainty: standard deviation (σ ),
correlation timescale (τ ), and correlation length scale (ρ). The hor-
izontal correlation is obtained by applying a smoothing operator.

Source of uncertainty σ τ ρ

Biogeochemical parameters 40 % 30 d five grid points
Unresolved scales in tracers 20 % 30 d five grid points
Location uncertainties 3 % 5 d five grid points

and more specifically to the horizontal size (dx, dy) of
the grid cells. This is equivalent to simulating an un-
certainty in the location of all model fields after each
time step. This uncertainty is thus expected to influence
both the physical and biogeochemical components of
the model.

These uncertainties are all simulated using two-
dimensional maps of autoregressive processes (drawn
independently for each uncertainty and each parameter),
whose characteristics are given in Table 1 (consistently with
what was done in the papers cited above). Of course, we
do not expect that they encompass all possible sources of
uncertainty in the model. In the paper, this assumption about
uncertainties will be used as an attempt to make the stochas-
tic simulator consistent with the available observations.
However, the validity of the assumption cannot be checked
for non-observed variables, as for instance the ecosystem
indicators, as further explained in the discussion of the
results in Sect. 5.3.

2.3 Ensemble experiment

An ensemble experiment has been performed to sample the
probability distribution described by the stochastic NEMO–
PISCES simulator. The sample size has been set to 40 ensem-
ble members, which amounts to performing 40 model simu-
lations from the same initial condition and with independent
random processes in the stochastic parameterization.

The ensemble simulation has been performed for the
whole year 2019 and the model results have been stored ev-
ery day (at least for our region of interest) for both the phys-
ical and biogeochemical components.

3 Inverse problem

Using the statistics of the prior ensemble described in the
previous section, the target is now to produce an ensemble
analysis and forecast of the evolution of the ecosystem. This
is formulated as an inverse problem, in which the probability
distribution described by the prior ensemble is conditioned
on observations. The purpose of this section is to describe the
problem that is going to be solved in the paper: (i) the subre-
gion and variables of interest (in Sect. 3.1), (ii) the Bayesian
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formulation of the problem (in Sect. 3.2), (iii) the observa-
tions (in Sect. 3.3), and (iv) the characteristics of the prior
ensemble in the region of interest with a comparison to ob-
servations (in Sect. 3.4).

3.1 Region and variables of interest

In this study, the focus will primarily be on the analysis and
forecast of the surface chlorophyll concentration, which is
the observed quantity (see below). Second, we will examine
how this result translates to other depth levels and to non-
observed quantities, like zooplankton and particulate organic
matter. Third, attempts will be made to see if more advanced
diagnostics or indicators about the evolution of the ecosys-
tem can be directly obtained as a solution of the 4D inverse
problem: (i) the timing of the bloom for phytoplankton and
zooplankton (phenology), (ii) the part of the primary produc-
tion that is converted into secondary production (vertically
integrated trophic efficiency), and (iii) the part of the result-
ing organic material that is trapped in the ocean (downward
flux of particulate organic matter at 100 m depth).

To illustrate the approach, the inverse problem will be lim-
ited to (i) a small subregion in the North Atlantic, between
31 and 21◦W in longitude and between 44 and 50.5◦ N in
latitude; (ii) a 3-month time period between 15 March and
15 June 2019, including the spring bloom; (iii) a depth range
between the ocean surface and 220 m depth; and (iv) a small
subset of the PISCES state variables, together with a few di-
agnostic quantities (e.g. the vertically integrated trophic ef-
ficiency and the downward flux of particulate organic car-
bon, regarded as two ecological indicators of interest; see
Sect. 5.3) that are introduced in the augmented state vector.
As compared to classic sequential data assimilation (like the
ensemble Kalman filter), the difference here is that the whole
3-month time sequence is packed together in the 4D estima-
tion vector. This makes the problem bigger but also allows us
to concentrate on a small subregion and a few selected vari-
ables. In terms of size, this amounts to 40× 40 grid points
in the horizontal, 32 depth levels, and 93 time steps (days),
for typically six three-dimensional variables and two two-
dimensional variables, so that the total size of the estimation
vector x is n= 40×40×93×(6×32+2)= 28867200. This
size is kept small enough to make the 4D inverse problem
easily tractable at reasonable numerical cost.

3.2 Formulation of the problem

The 4D inverse problem is formulated using the standard
Bayesian approach. First, we assume that we have a prior
probability distribution pb(x) for the estimation vector x

(with dimension n as defined above). In our case, this prior
distribution is defined by the stochastic NEMO–PISCES
simulator described in Sect. 2. Second, we assume that we
have a vector of observations yo, which is related to the true
value xt of the estimation vector by yo

=H(xt )+ εo, where

H is the observation operator and εo is the observation error.
The observation error is specified by the conditional prob-
ability distribution p[yo

|H(x)], which describes the proba-
bility of an observation for a given value of x. From these
two inputs, we can obtain the posterior probability distribu-
tion pa(x) for the estimation vector (i.e. conditioned on ob-
servations) using the Bayes theorem:

pa(x)= p
[
x|yo]

∝ pb(x)p
[
yo
|H(x)

]
. (1)

Our purpose throughout this paper is to solve the 4D inverse
problem by producing a sample of this posterior distribution.

For further reference in the paper, it is useful to take the
logarithm of this equation and define the cost function J (x):

J (x)= J b(x)+ J o(x), (2)

where J b(x)=− logpb(x) is the background cost function;
J o(x)=− logp[yo

|H(x)] is the observation cost function;
and J (x)=− logpa(x)+K , where K is a non-important
constant. Ratios in probability densities translate into differ-
ences in cost functions. The larger the cost function J (x), the
smaller the posterior probability.

The main difficulty with solving this problem comes
from the large dimension of the estimation vector x (n=
28867200) and the small dimension of the prior ensemble
(m= 40), so that specific methods with dedicated approxi-
mations are needed (see Sect. 4). This will not go without
a partial reformulation of the inverse problem. First, the un-
dersampling of the prior distribution will always require so-
lutions to avoid the spurious effect of non-significant long-
range correlations, either by solving the problem locally (do-
main localization) or by adjusting the prior correlation struc-
ture (covariance localization). Second, assumptions will also
be needed on the shape of the probability distributions. For
instance, if we can assume that both pb(x) and p[yo

|H(x)]
are Gaussian and that H is linear, then both J b and J o are
quadratic, so that J is also quadratic, and a linear obser-
vational update algorithm can be used to obtain a sample
of pa(x) from a sample of pb(x). Two options that can
potentially be activated in operational systems are consid-
ered here: one using a linear algorithm (ETKF), in which
all distributions are assumed to be Gaussian, and one using
a nonlinear iterative algorithm (MCMC sampler), in which
only pb(x) need be assumed Gaussian (to generate appro-
priate random perturbations efficiently) but not p[yo

|H(x)]
and pa(x). Both will require applying a transformation oper-
ator (anamorphosis) to the original variables (which are not
Gaussian).

3.3 Observations

The observations yo, which are used as conditions in the
inverse problem (1), are surface chlorophyll concentrations
derived from ocean colour satellites, as provided in the
CMEMS catalogue (Globcolour L3 product). They are avail-
able as daily images at a 1/24◦ resolution, as illustrated in
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Fig. 1 between 22 and 27 May 2019 for our region of in-
terest. We see that the coverage is very partial in space and
time as a result of the presence of clouds masking the ocean
surface.

Since chlorophyll concentration is one of the PISCES vari-
ables included in the estimation vector x, the observation op-
erator H is just a linear interpolation from the model grid
to the location of observations. For the observation error
probability distribution p[yo

|H(x)], we assume lognormal
marginal distributions, with a standard deviation equal to
30 % of the true value of the concentration, and we neglect
observation error correlations. To make the assumption of
zero observation error correlation more reasonable, we ap-
plied a data thinning to the original data, by subsampling the
data by a factor 3 in each direction. With this reduction, the
total size of the observation vector yo over the 3 months of
the experiment is p = 182837. However, when used for ver-
ification purpose, we always keep the full resolution of the
observations, and the total size of the observation vector is
then p′ = 1643150.

If the inverse method requires a Gaussian observation error
probability distribution, then an approximation is required as
explained in Sect. 4 and in the appendices.

3.4 Prior ensemble in the region of interest

The prior distribution pb(x) in the inverse problem (1) is
described by a sample provided by the ensemble simula-
tion presented in Sect. 2. Figure 2 illustrates the distribu-
tion obtained for the chlorophyll surface concentration in
our region of interest for 26 May 2019. The figure displays
three members of the ensemble (panels a–c) and three quan-
tiles (20 %, 50 % and 80 %) of the marginal ensemble distri-
butions (panels d–f). For a 40-member ensemble, this means
for instance that, at a given location, there are 8 members be-
low the 20 % quantile, 8 members above the 80 % quantile,
and 24 members in between.

From this figure, we can see that the spread of the prior
ensemble, which results from the uncertainties embedded in
the NEMO–PISCES simulator, is very substantial as com-
pared to the median value (50 % quantile). Ensemble mem-
bers also display a variety of patterns, which are triggered
by the space and time decorrelation of the stochastic pertur-
bations. If we compare this to the observations obtained for
26 May in Fig. 1 (panel e), we can see that the ensemble
members have a comparable order of magnitude, and a large
part of the observations fall in the range defined by the 20 %
and 80 % quantiles.

Actually, to be consistent with the observations, the en-
semble simulation should behave in such a way that 50 %
of the observations are above the median, 60 % between the
20 % and 80 % quantiles, etc. More generally, an ensemble
of sizem definesm+1 intervals in which an observation can
fall, and there should be an equal probability for the observa-
tion to fall in each of these intervals. This is the basis of the

rank histogram approach to test the consistency of an ensem-
ble simulation with observations. The histogram of all ranks
of observations in the corresponding intervals defined by the
ensemble should be flat (equal probability for an observation
to fall in any of the intervals). More precisely, in the presence
of observation errors, the ensemble members must be ran-
domly perturbed with a noise sampled from the observation
error probability distribution before computing the ranks.

Figure 3a shows the rank histogram obtained for the prior
ensemble using all observations in our region of interest dur-
ing the 3-month time period (i.e. with p′ = 1643150 ob-
servations). We can see that this histogram is not flat: the
ensemble simulation is overdispersive here. Uncertainties
in the model have been overestimated: there are too many
observations close to the median of the ensemble and not
enough in the external intervals defined by the ensemble. It
would certainly be better if the rank histogram could have
been perfectly flat, but an underdispersive ensemble would
have been much worse. Underestimating prior uncertainties
would indeed mean that the dynamical ensemble simulation
has not explored regions of the state space corresponding to
the observed values, and the solution of the inverse prob-
lem would imply positioning the posterior probability dis-
tribution in these regions where the prior probability is zero
and where we have no dynamical information about the be-
haviour of the system. Such an extrapolation might be pos-
sible for the observed variable but would be very hazardous
for non-observed quantities.

It must be noted that, in the prior simulation described in
Sect. 2, there are other regions and/or seasons where the en-
semble is still very underdispersive and/or biased, with most
observations falling outside of the range of possibilities ex-
plored by the model. In the Atlantic, this occurs for instance
in most of the subtropical gyre and on the southern edge of
the Gulf Stream extension. In such a situation, the methods
used in this paper would not be effective, and it is first nec-
essary to improve the description of uncertainties in the prior
model simulation.

4 Inverse methods

To solve the inverse problem described in the previous sec-
tion, we show that several methods can be used in a versatile
way. In the present demonstration, two methods will be ap-
plied: (i) the first one is the analysis step of the ensemble
transform Kalman filter (ETKF) proposed in Bishop et al.
(2001), with domain localization (e.g. Janjic et al., 2011);
(ii) the second one is the implicitly localized MCMC sam-
pler proposed in Brankart (2019). The two methods provide
a solution to the same problem and produce an updated en-
semble, which is meant to be a sample of the posterior proba-
bility distribution (conditioned on the observations). But they
use different algorithmic choices and different types of ap-
proximation, which are described in the rest of this section.
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Figure 1. Observation of surface chlorophyll concentration (in mg m−3, L3 ocean colour product) between 22 and 27 May 2009. The x axis
and y axis represent longitude and latitude, respectively.

Note that other updating methods could have been consid-
ered, such as EnKF, 3D-Var, etc. In Sect. 4.1, we describe the
general algorithms that are used to perform the observational
update (a Kalman filter and an MCMC sampler) and the level
of generality that they achieve. In Sect. 4.2 and 4.3, we high-
light what the two schemes imply in terms of localization
scheme and anamorphosis transformation, respectively.

4.1 Observational update algorithm

In Kalman filters (like the ETKF), the mean and covariance
of the updated ensemble are computed from the mean and
covariance of the prior ensemble using linear algebra formu-
las involving the observation vector, the observation opera-
tor and the observation error covariance matrix. This relies
on the assumption that both prior and posterior distributions,
as well as observation errors, are Gaussian and that the ob-
servation operator is linear. If put in square-root form (as the
ETKF), the scheme directly uses and provides the square root
of the covariance matrix (possibly with a low rank), which is
equivalent to using and providing an ensemble description of
the covariance matrix. Our specific implementation of this al-
gorithm is inherited from the SEEK filter (Pham et al., 1998),

which is another square-root filter, with an analysis step that
can easily be made equivalent to that of the ETKF (especially
once it has been adapted to allow for domain localization, as
in Brankart et al., 2003; Testut et al., 2003).

By contrast, MCMC samplers are iterative methods, which
converge towards a sample of the posterior probability dis-
tribution. Our particular implementation is a variant of
the Metropolis–Hastings algorithm (see, e.g., Robert and
Casella, 2004), which is designed in such a way that the
stochastic process, which generates the next element of the
Markov chain, is in equilibrium with the probability distri-
bution that must be sampled. This is obtained by an itera-
tion in two steps: (i) one step to draw a random perturba-
tion from a proposal probability distribution and (ii) one step
to accept or reject this new draw according to the variation
in the cost function. In this respect, our variant (Brankart,
2019) is somehow specific in the sense that (i) the proposal
distribution is based on the prior ensemble (with covariance
localization; see below) and (ii) only the observation compo-
nent of the cost function is needed to evaluate the acceptance
criterion. Because of this, the method still requires that the
prior probability distribution be Gaussian, but no assump-
tion is made here on the shape of the posterior probability
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Figure 2. Prior ensemble for surface chlorophyll concentration (in mg m−3) on 26 May 2009. The figure displays three members of the
ensemble (a, b, c) and three quantiles (20 %, 50 % and 80 %) of the marginal ensemble distributions (d, e, f). The x axis and y axis represent
longitude and latitude, respectively.

Figure 3. Rank histograms corresponding to the prior ensemble (a) and to the posterior ensemble as obtained with the LETKF algorithm
(b) and the MCMC sampler (c). For the posterior ensembles, the histograms aggregate ranks from two simulations: one conditioned on
observations from the odd days only, which is validated using observations from the even days, and another one conditioned on observations
from the even days only, which is validated using observations from the odd days.

distribution or on the observation constraint, which can be
nonlocal, nonlinear, and even non-differentiable.
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4.2 Localization

In ensemble Kalman filters, localization is used to alleviate
the effect of a small ensemble size as compared to the num-
ber of degrees of freedom in the system. In terms of covari-
ance, the main negative effect of an insufficient sample size
is that low correlations are typically overestimated (for in-
stance, zero correlations are approximated by non-zero cor-
relation), which can produce a substantial spurious effect on
the results. Localization can be obtained with two different
approaches: (i) domain localization (e.g. Janjic et al., 2011),
in which the solution at a given location is computed using
observations only within a specified neighbourhood (with a
decrease in the observation influence with the distance to
avoid discontinuities), and (ii) covariance localization (e.g.
Houtekamer and Mitchell, 1998), in which the ensemble co-
variance is transformed by a Schur product with a local-
support correlation matrix (thus zeroing the long-range cor-
relations). In both cases, it is assumed that the ensemble size
is sufficient to describe the covariance structure when con-
sidered locally.

In square-root Kalman filters (like the ETKF and SEEK
filters), covariance localization is difficult to apply because
the ensemble covariance is never explicitly computed, only
the square root is available. A solution has nevertheless been
proposed by Bishop et al. (2017) in the framework of the
ETKF, which consists in transforming each column of the co-
variance square root by a Schur product with each column of
a square root of the localizing correlation matrix. The result-
ing matrix can be shown to be a square root of the localized
covariance matrix, which is what is needed by the square-
root algorithm. However, with this approach, the number of
columns of the square-root covariance, and thus the cost of
the resulting algorithm, is considerably increased (multiplied
by the number of columns in the square root of the localizing
correlation matrix). This is why, in the application below, we
still use the more simple domain localization for the ETKF
algorithm (as in the MOI operational system).

In the MCMC sampler, covariance localization can be in-
troduced using a very similar approach as in the ETKF. If
we assume that we can easily sample a zero-mean Gaussian
distribution with the localizing correlation structure, then
we can define the sampling of the proposal distribution us-
ing the Schur product of one member of the prior ensemble
(anomaly with respect to the mean) with one member of this
localizing sample. This provides the time–space pattern of
the perturbation, which is then multiplied by a Gaussian ran-
dom factor (with a standard deviation equal to 1). From the
same property used by Bishop et al. (2017) for the ETKF,
the perturbation will have the same covariance as the prior
ensemble, with covariance localization. However, in this dif-
ferent context, the large increase in the number of directions
of perturbation associated with localization becomes a bene-
fit, since we want the perturbations to explore the estimation
space as much as possible to fit the observations and produce

the posterior sample. Moreover, if the localizing correlation
can itself be expressed as the Schur power of a specified cor-
relation matrix, it is again possible to produce a very large
sample (up to 108

−1012) with the localizing correlation from
a small sample (typically 102) with the specified correlation,
just by computing the Schur product of a random combina-
tion of elements from the small sample (see Brankart, 2019,
for more details). With the localization method, the sampling
of the proposal distribution in many dimensions is thus re-
duced to the computation of a multiple Schur product with
randomly selected members from a small sample, at a cost
that is linear in the size of the system. This is important be-
cause this cost is usually quadratic and thus often a limit-
ing factor to the application of MCMC samplers in large-
dimension problems.

4.3 Anamorphosis

Anamorphosis (A) is a nonlinear transformation that is ap-
plied to a model variable x to transform its marginal prob-
ability distribution into a Gaussian distribution (with zero
mean and unit variance). It is useful because many data as-
similation methods (like the two methods presented here)
make the assumption of a Gaussian prior distribution. In this
paper, we use the simple anamorphosis algorithm described
in Brankart et al. (2012), which consists in remapping the
quantiles of the marginal distribution of x on the quantiles
of the target Gaussian distribution, using a piecewise lin-
ear transformation (interpolating between the quantiles). The
transformed variable x′ =A(x) is then approximately Gaus-
sian.

However, as explained above, Kalman filters also require
that the observation operator is linear and that the observa-
tion error is Gaussian. In this case, a similar transformation
must also be applied to observations to keep the observation
operator linear in the transformed variables. This can be done
using the algorithm described in the appendices. This algo-
rithm provides the right expected value and error variance for
the transformed observation, but the detailed shape of the ob-
servation error probability distribution is lost by the transfor-
mation, since the observation error on this transformed ob-
servation must be Gaussian. It is indeed impossible to find
a transformation that ensures Gaussianity of both the prior
and observational uncertainties, while keeping the observa-
tion operator linear.

By contrast, in the MCMC sampler, it is not required that
the observation operator is linear, so that the observations do
not need to be transformed. The original observation opera-
tor H needs only to be complemented by an inverse anamor-
phosis transformation A−1, to come back from the trans-
formed vector x′ to the original vector x: H(x) is just re-
placed by H[A−1(x′)]. This makes the use of anamorphosis
much easier since only the estimation variables need to be
transformed and not the observations. The observation con-
straint can be applied using the native observations, with the
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native observation operator and the native observation error
probability distribution.

5 Results

In this section, we describe the solution obtained for the in-
verse problem formulated in Sect. 3 using the methods pre-
sented in Sect. 4. The focus will be on evaluating the relia-
bility and accuracy of the ensemble analysis and forecast us-
ing dedicated probabilistic scores. The section is first devoted
to the results obtained for the observed variable (the surface
chlorophyll concentration), in terms of analysis (Sect. 5.1)
and forecast (Sect. 5.2), and then extended to discuss the re-
sults obtained for non-observed variables and ecosystem in-
dicators (Sect. 5.3).

5.1 Analysis for observed variables

To illustrate first the idea of a single ensemble analysis ex-
tending over a long time period (3 months), Fig. 4 shows time
series of the surface chlorophyll concentration at the centre
of the region of interest (47.25◦ N, 26◦W), as obtained with
the two methods: the LETKF (localized ETKF) algorithm
(panel a) and the MCMC sampler (panel b). The black curves
represent 40 members of the prior ensemble (as produced by
the NEMO–PISCES simulator) and the blue curves repre-
sent 40 members of the posterior ensemble (conditioned on
all observations available in the period). We can see that the
prior uncertainty in these time series is considerably reduced
by the observations. For instance, at this location, the timing
of the spring bloom was left very uncertain by the NEMO–
PISCES simulation, probably because it is very dependent to
the uncertain parameters that have been perturbed. But, even
if partial and imperfectly accurate, the observations contain
a lot of information about this, so that the variety of possi-
bilities left in the posterior ensemble is much smaller (with
both methods). In this respect, it must already be noted that
the solution at a given time is influenced by both past and
future observations. This is an important advantage over se-
quential ensemble filters, in which only past observations can
influence the solution obtained at a given time.

Second, to illustrate the resulting maps of surface chloro-
phyll concentration, we choose to focus on 26 May 2019,
when there is a good coverage of observations (see Fig. 1),
with which the results can be compared. For this date,
Fig. 5 (LETKF algorithm) and Fig. 6 (MCMC sampler) dis-
play three members of the posterior ensemble (panels a–c)
and three quantiles (20 %, 50 % and 80 %) of the posterior
marginal ensemble distributions (panels d–f). This gives an
idea of individual possibilities and of the spread of the en-
semble and can be directly compared to the same informa-
tion provided for the prior ensemble in Fig. 2. Again, we can
see that, with both methods, the spread of the ensemble is
considerably reduced by the observation constraint, with all

posterior members getting closer to the observed situation.
Even if there are differences between methods (see discus-
sion below), most observed structures are present in the two
ensemble analyses. In both cases, however, there remains a
variety of possibilities in terms of location and amplitude of
the structures, as a result of the substantial uncertainty in the
observations (a 30 % observation error standard deviation).
At first glance, despite the use of completely different al-
gorithms (LETKF and MCMC sampler), the two ensemble
analyses are generally reasonable and quite similar. They can
thus be discussed together in more detail.

5.1.1 Space and time localization

Regarding the formulation of the inverse problem, the main
difference between the two solutions is the localization
scheme, which also contains the only free parameters of the
inverse algorithm (i.e. not included in the definition of the
problem in Sect. 3). The localization parameters used in our
experiments are given in Table 2. In both cases, we have to
specify a length scale and a timescale, but there is no direct
correspondence between the parameters used in the two al-
gorithms because their behaviour is not the same. In princi-
ple, they must be set so that the effect of remote observa-
tions vanishes when the ensemble correlation becomes non-
significant, but this always requires some additional tuning.

Not enough localization means that remote observations
keep too much influence: the fit to local observation is lost,
the ensemble spread is too small, and the solution thus be-
comes unreliable. Too much localization means that rele-
vant remote observations are missed, the ensemble spread is
too large, and the solution becomes inaccurate. In our ex-
periments, localization has been tuned heuristically to obtain
a good compromise on the scores presented below: a suf-
ficient ensemble spread to keep the solution reliable (rank
histogram) and a good fit to independent observations (prob-
abilistic score) in the analysis and in the forecast. Regarding
the local structure of the solution, we can see, by compar-
ing Figs. 5 and 6, that covariance localization tends to be
more respectful of the local correlation structure of the prior
ensemble (by construction), while domain localization can
trigger small scales that are not present in the prior ensemble.
There are situations in which this can make a big difference,
but this may not be so important in the present application.

5.1.2 Reliability

The most important property of the analysis results is the re-
liability of the ensemble, i.e. the consistency with indepen-
dent verification data. This can be evaluated using rank his-
tograms as explained in Sect. 3.4 for the prior ensemble. To
keep independent surface chlorophyll observations, we per-
formed two additional analysis experiments: one using obser-
vations from the odd days only, which we can validate using
observations from the even days, and another one using ob-
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Figure 4. Ensemble surface chlorophyll time series at 47.25◦ N, 26◦W. The black curves represent 40 members of the prior ensemble (as
produced by the NEMO–PISCES simulator), the blue curves represent 40 members of the ensemble analysis (using observations for the
entire period), and the red curves represent 40 members of the ensemble forecast (using only observations until 25 May). The forecast thus
starts on 25 May (vertical grey line). These results are shown for the LETKF algorithm (a) and the MCMC sampler (b).

Table 2. Localization parameters used in the LETKF algorithm and in the MCMC sampler. In the LETKF algorithm, the localizing function
is set to be isotropic (with a Gaussian-like shape) in the metrics defined by the grid of the model. In the MCMC sampler, the localizing
correlation is set to be isotropic on the sphere (degrees are along great circles); the localizing sample is generated using a Gaussian spectrum
in the basis of the spherical harmonics (in the horizontal) and a Gaussian spectrum in the basis of the harmonic functions (in time), so that
the sample correlation structure is also Gaussian and the localizing correlation structure as well. There is no localization along the vertical
coordinate.

Method Parameter Space Time

LETKF influence radius 4.5 grid points 7.5 d
algorithm cut-off radius 12 grid points 20 d

MCMC localizing sample decorrelation scale 0.8◦ 7.5 d
sampler localization decorrelation scale 0.33◦ 3.1 d

servations from the even days only, which we can validate
using observations from the odd days. By aggregating the
ranks of the verification data from these two experiments, we
can obtain a rank histogram based on all available observa-
tions, as was done for the prior ensemble.

Figure 3 displays the rank histogram obtained for the en-
semble analysis performed with the LETKF algorithm (panel
b) and with the MCMC sampler (panel c). In both cases, the
resulting ensemble is not underdispersive, except for a very
small excess of observations above the maximum of the en-
semble in the case of the MCMC sampler. Underestimating
the posterior uncertainty is never a good idea, and this can
be directly avoided here by tuning the localization parame-

ters until the posterior ensemble spread is sufficient (which
is always possible, as long as the prior ensemble is itself reli-
able). Regarding this particular diagnostic, the localization of
the LETKF could have been tuned towards less localization
to decrease the spread of the posterior ensemble and make
the overall rank histogram flatter. However, it must be kept
in mind that this diagnostic aggregates a variety of different
situations in space and time and that other diagnostics also
matter (e.g. the reliability of the forecast; see below).

5.1.3 Probabilistic scores

To further compare the ensemble analysis with verification
data, we must not only check the consistency between the
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Figure 5. Ensemble analysis obtained with the LETKF algorithm for surface chlorophyll concentration (in mg m−3) on 26 May 2009. The
figure displays three members of the ensemble (a–c) and three quantiles (20 %, 50 % and 80 %) of the marginal ensemble distributions (d–f).
The x axis and y axis represent longitude and latitude, respectively.

Table 3. Global CRPS (in mg m−3), using all available surface chlorophyll observations over the full time period of the experiments. The
scores of the analyses aggregate the scores from two simulations: one using observations from the odd days only, which is validated using
observations from the even days, and another one using observations from the even days only, which is validated using observations from the
odd days.

Experiment Reliability Resolution Total CRPS

Prior ensemble 4.9× 10−3 0.1070 0.1119
LETKF ensemble analysis 1.0× 10−3 0.0727 0.0737
MCMC sampler ensemble analysis 0.2× 10−3 0.0712 0.0714

results and the data but also quantify the amount of informa-
tion that the analysis provides about the data. This is done
here using the continuous ranked probability score (CRPS),
which is defined from the misfit between the marginal cumu-
lative distribution function (cdf) of the ensemble (regarded
as a stepwise function increasing by 1/m at the value of each
ensemble member) and the cdf associated with the corre-
sponding observation (regarded as a Heaviside function, in-
creasing by 1 at the value of the observation). The CRPS can
be decomposed as the sum of a reliability component (char-
acterizing the consistency between the ensemble and the ob-
servations) and a resolution component (characterizing the
amount of information provided by the ensemble). Roughly

speaking, if the misfit is due to observations falling systemat-
ically outside of the range of the ensemble, it will contribute
to the reliability component of the score. Conversely, if the
misfit is due to the spread of the ensemble, it will contribute
to the resolution component of the score. In the case of Gaus-
sian variables, the gain of information brought by the obser-
vations (i.e. the resolution component of the score) is often
characterized by variance ratios, which could have been com-
puted here for the transformed variables (by anamorphosis).
But we have preferred providing an assessment of the origi-
nal concentration variable using the CRPS.

Table 3 provides the value of the score obtained for the
prior ensemble and for the analysis obtained by each of the
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Figure 6. Ensemble analysis obtained with the MCMC sampler for surface chlorophyll concentration (in mg m−3) on 26 May 2009. The
figure displays three members of the ensemble (a–c) and three quantiles (20 %, 50 % and 80 %) of the marginal ensemble distributions (d–f).
The x axis and y axis represent longitude and latitude, respectively.

two methods. Again, in the case of the analyses, the score
is an aggregate computed from two different experiments, so
that only independent observations are used to evaluate the
scores. From the table, we see that the total score and the
resolution component of the score are very similar with the
two methods. Moreover, it must be noted that the contribu-
tions to this score are quite heterogeneous in space and time,
with none of the methods systematically outperforming the
other in terms of CRPS misfit.

In terms of reliability, the score obtained with the MCMC
sampler (0.2×10−3 mg m−3) is here better than that obtained
with the LETKF algorithm (1.0×10−3 mg m−3), but the two
results can be regarded as sufficiently good, as a direct result
of the tuning of the localization parameters. In this respect,
it must also be noted that more accurate observations would
make a more stringent test of reliability. With large obser-
vation uncertainties, the necessary conditions of reliability
tested with these scores are more easily achieved.

5.1.4 Numerical cost

Table 4 provides the numerical cost of the two analysis ex-
periments (with the LETKF and the MCMC sampler). A
comparison of the computational complexity of the two al-

Table 4. Dimension of the problem and cost of the analysis exper-
iments. The time to read input data and write output data is not
included in the clock time.

Size of the estimation vector 28867200
Size of the observation vector 182837
Size of the prior ensemble 40
Size of the updated ensemble 40
Number of processors used 640
Clock time for the LETKF analysis 271 s
Clock time for the MCMC sampler analysis 1761 s

gorithms as a function of the size of the problem is presented
in Brankart (2019). It is here just briefly particularized to our
application. From this table, we can see that, as applied in
this study, the MCMC sampler is about 6.5 times more ex-
pensive than the LETKF algorithm. But this directly depends
on choices that have been done in terms of parameterization
and implementation.

In both algorithms, the computational complexity is lin-
ear in the size of the estimation vector (n) and in the size
of the observation vector (p), so that this has no influence
on their relative cost. In the LETKF, the cost is quadratic in
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the size of the updated ensemble, which must be the same as
the size of the prior ensemble (m). Moreover, the cost is also
proportional to the volume of the space–time domains used
by the localization algorithm (defined by the cut-off length
scale and timescale in Table 2). For given influence scales,
this domain is difficult to reduce without risking space–time
discontinuities in the resulting fields. In the MCMC sam-
pler, the cost is linear in the size of the updated ensemble
(m′), which can be different from the size of the prior en-
semble (m). This is an advantage because it is possible to
compute only a few members at a much smaller cost (for
example eight members at a cost 5 times smaller) and then
compute more and more members as deemed useful for a
given application (for example 200 members at a cost 5 times
larger). But the cost is also proportional to the number of it-
erations N needed to reach the solution. This makes the cost
of the MCMC sampler much less predictable than the cost of
the LETKF algorithm because this depends on the number
of degrees of freedom that must be controlled and the level
of accuracy required. In the experiments performed for this
paper, N is set to 30000 to be sure that the convergence has
been reached. But experiments done with N = 10000 itera-
tions do not show a very substantial difference in the scores
and in the results; the distance to the observations is only
slightly larger. And the cost is reduced to a third of what is
given in Table 4).

In terms of implementation, it must also be noted that the
MCMC sampler is much easier to code and parallelize that
the LETKF algorithm. Providing that the ensemble equiva-
lent to the observations is provided as an input, each proces-
sor can deal separately with a block of the state vector and a
block of the observation vector, with almost no communica-
tion between them, except the summation of the distributed
components of the cost function (and a few other scalar quan-
tities like the random coefficient to the global perturbation).
This is possible in this algorithm because the inverse problem
is solved globally and because covariance localization is ob-
tained implicitly through global Schur products, computed
separately in estimation space (to iterate the solution, with
random perturbations) and in observation space (to compute
the corresponding perturbations and evaluate the cost func-
tion).

5.2 Statistical forecast

If we now reduce the observation vector to include only ob-
servations before a given time t0, the result of the inverse
problem can be interpreted as an ensemble analysis before t0
and an ensemble forecast after t0. This forecast is a time
extrapolation based on the statistics of the prior ensemble,
with space and time localization. In our case, it is a nonlin-
ear statistical forecast, since it is based on the linear space–
time correlation structure for nonlinearly transformed vari-
ables (by anamorphosis). Figure 4 (red curves) shows the re-
sult obtained with the LETKF algorithm (panel a) and the

MCMC sampler (panel b), when the last date of observation
is 25 May 2019 (as represented by the vertical grey line in the
figure). In both cases, the spread of the posterior ensemble
increases during the forecast, and starts increasing before t0
when the lack of future observations begins. At t0 indeed,
only half of the observations used in the analysis are avail-
able (as would also be the case for the ensemble analysis in
a sequential Kalman filter).

Regarding the future (t > t0), we see that extrapolation in
time is much more sensitive to the particulars of the local-
ization method. In the LETKF algorithm (with domain lo-
calization), the problem is solved locally and separately for
each time (and each horizontal location), and the influence
of the past observations (before t0) decreases with time as a
result of the time decorrelation present in the prior ensemble
and the superimposed localizing influence functions (as pa-
rameterized by the influence radii). This influence is then cut
off when the local domain does not include t0 anymore (in
our case, at t0+ 20 d, when the posterior members become
exactly equal to the prior members). In the MCMC sampler
(with covariance localization), the problem is solved globally
for the whole time period and the influence of past observa-
tions (before t0) decreases with time as a result of the time
decorrelation present in an augmented version of the prior
ensemble, whose covariance is localized by a Schur prod-
uct with a localizing correlation function. This influence thus
vanishes with time, but there is no cut-off time here, since
there is no boundary to the domain of influence. These dif-
ferences explain why the forecast can behave somewhat dif-
ferently in the solution produced by the two methods.

5.2.1 Forecast accuracy

To further evaluate the forecast, we consider two ensemble
forecasts obtained for the same date (26 May 2019), but
with a different time lag with respect to the last observation.
The first one is a 1 d forecast, with the last observation on
25 May 2019 (Fig. 1d), and the second one is a 4 d fore-
cast, with the last observation on 22 May 2019 (Fig. 1a).
The date of the forecast (26 May) is chosen so that the re-
sults can be directly compared to the observations in Fig. 1
(panel e), to the prior ensemble in Fig. 2, and to the ensemble
analyses in Fig. 5 (LETKF algorithm) and in Fig. 6 (MCMC
sampler). The ensemble forecast is described by three quan-
tiles (20 %, 50 % and 80 %) of the marginal distributions, as
shown in Fig. 7 (for the LETKF algorithm) and in Fig. 8 (for
the MCMC sampler). The two figures include the 1 d forecast
(panels a–c) and the 4 d forecast (panels d–f).

In these figures, we can see that the accuracy of the fore-
cast deteriorates with time, and the spread of the ensem-
ble increases accordingly. After 1 d, the ensemble forecast
is still very similar to the ensemble analysis and the obser-
vations (not used anymore in the inversion problem). Only
a few structures are missing from the median, and the en-
semble spread is not that much larger (see the scores be-
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Figure 7. Ensemble forecast obtained with the LETKF algorithm for surface chlorophyll concentration (in mg m−3) on 26 May 2009. The
figure displays three quantiles (20 %, 50 % and 80 %) of the marginal ensemble distributions, as obtained for the 1 d forecast (a–c) and the
4 d forecast (d–f). The x axis and y axis represent longitude and latitude, respectively.

low for a more precise quantification). After 4 d, the situa-
tion becomes more fuzzy. The forecast still contains valu-
able information, and we can still recognize the main pat-
terns of the observed surface chlorophyll concentration, but
most local structures are missed or not correctly positioned.
The posterior uncertainty described by the ensemble spread
is also substantially larger but still much smaller than the
prior uncertainty. These general features of the 1 and 4 d en-
semble forecasts are shared by the two methods, but there
are also differences in their behaviour. On the one hand, the
LETKF algorithm tends to keep more small-scale structures
and extreme chlorophyll concentrations (both low and high
values), which are inherently more uncertain and require a
larger spread. On the other hand, the MCMC sampler tends
to produce a smoother solution (consistently with the prior
ensemble) with less extreme values, which leads to some-
times missing the possibility of small-scale structures in the
forecast. This different behaviour of the two methods can be
attributed to the difference in the space–time localization al-
gorithm.

About the respective accuracy of the 1 and 4 d forecasts,
it is important to remark that the conclusions drawn above
are not general. They depend on the correlation structure

of the prior ensemble, which may be very heterogeneous
in space and time, and on the availability of observations.
For instance, in our case study, if we look at the observation
coverage in Fig. 1, we see that we have one good observa-
tion coverage 1 d before 26 May and another one 4 d before
26 May, which is why we decided to illustrate the results with
a 1 and a 4 d forecast. In this example, the 2 d forecast or the
3 d forecast would have been no better than the 4 d forecast
since there are only very few observations available on 23
and 24 May. The capacity to make a forecast is obviously
dependent on the availability of observations. In addition, it
must be noted that our case study is not strictly speaking a
forecast, since we used a prior ensemble simulation in which
the atmospheric forcing is based on a reanalysis. For our ex-
periment to be a real forecast, the prior simulation should
have used an atmospheric forecast rather than a reanalysis.
This would not be a difficulty in an operational context, and
it is not likely to make a big difference in the illustration pre-
sented in this paper (at least for the short-term forecast).

5.2.2 Probabilistic scores

Table 5 provides a more quantitative assessment of the fore-
cast, with the probabilistic scores obtained for 26 May 2019,
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Figure 8. Ensemble forecast obtained with the MCMC sampler for surface chlorophyll concentration (in mg m−3) on 26 May 2009. The
figure displays three quantiles (20 %, 50 % and 80 %) of the marginal ensemble distributions, as obtained for the 1 d forecast (a–c) and the
4 d forecast (d–f). The x axis and y axis represent longitude and latitude, respectively.

i.e. using all surface chlorophyll observations available on
that day. The scores are given for the 1 and 4 d forecasts
and compared to the scores obtained for the prior ensem-
ble and the analysis, always on the same day. In addition
to the CRPS (reliability and resolution), we have also com-
puted the RCRV score (reduced centred random variable),
which is a measure of the reliability of the ensemble (and
thus says nothing about the resolution) in terms of bias and
spread (Candille et al., 2007; Candille et al., 2015). More
precisely, the reduced variable is defined as the misfit be-
tween each piece of verification data and the corresponding
ensemble mean, and then normalized by the ensemble stan-
dard deviation. If the ensemble is reliable, the expected value
of this reduced variable (bias) must be 0 and its standard de-
viation (spread) must be 1 % or 100 %. If the bias is positive
(negative), this means that the ensemble is systematically too
small (too large) as compared to the verification data. If the
spread of the reduced variable is too large, above 100 % (be-
low 100 %), this means that the spread of the ensemble is too
small (too large) to be consistent with the verification data.
As for the CRPS, if the verification data are observations, the
ensemble must be perturbed by the observation error before
computing the score.

The figures of the scores provided in Table 5 show first that
the prior ensemble and the analyses (LETKF and MCMC)
are quite reliable for that date, with biases well below 10 %
of the ensemble spread and a quite accurate ensemble spread,
as confirmed by the low value of the CRPS reliability com-
ponent. The largest misfit to reliability is in the LETKF anal-
ysis, which is somewhat overdispersive. Regarding the fore-
cast, the 1 d forecast is still as reliable as the analysis, except
for the MCMC 1 d forecast, which is somewhat underdis-
persive (134 % RCRV spread). In terms of resolution, with
a score of about 0.13 mg m−3, the 1 d forecast is not very
far from the analysis (about 0.1 mg m−3) and still much bet-
ter than the prior ensemble (about 0.25 mg m−3). By con-
trast, in the 4 d forecast, both reliability and resolution de-
grade substantially. The bias grows to about −16 % (for the
LETKF algorithm) and −8 % (for the MCMC sampler), and
the MCMC ensemble forecast becomes even more underdis-
persive (165 % RCRV spread). This is confirmed by their
larger CRPS reliability score, which is similar but presum-
ably for different reasons (one because of the larger bias and
the other because of the underdispersion of the ensemble). As
already observed in Figs. 7 and 8, the forecast also contains
much less information than the analysis, with a CRPS resolu-
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Table 5. CRPS (in mg m−3) and RCRV score (in %) for 26 May 2019. Since this is an odd day in the time sequence, the scores of the
analyses come from the experiment using observations from the even days only, so that the observations used for validation are independent.

CRPS RCRV

Method Experiment Reliability Resolution Bias Spread

Prior ensemble 1.0× 10−3 0.251 4.8 107.6

analysis 5.8× 10−3 0.098 6.3 78.8
LETKF 1 d forecast 4.9× 10−3 0.129 −0.8 100.3
algorithm 4 d forecast 9.8× 10−3 0.184 −16.1 113.2

biased analysis 13.4× 10−3 0.100 34.3 88.2

MCMC analysis 1.6× 10−3 0.099 7.6 102.6
sampler 1 d forecast 1.0× 10−3 0.131 3.8 134.1

4 d forecast 9.5× 10−3 0.204 −8.3 165.1

tion growing to about 0.18 mg m−3 for the LETKF algorithm
and 0.20 mg m−3 for the MCMC sampler but still substan-
tially better than the prior ensemble (about 0.25 mg m−3).

In order to illustrate the importance of correctly applying
the observation constraint when observation errors are non-
Gaussian, we have added one line of scores in Table 5 for
the LETKF algorithm (named “biased analysis”). In this bi-
ased analysis, the algorithm is exactly the same except that
the anamorphosis transformation of the observations is per-
formed using the simplified algorithm in Annex A1, rather
than the more general algorithm in Annex A2, which is much
needed in our application. With the simplified algorithm,
there is indeed a strong bias on the ensemble analysis (about
one-third of the ensemble spread), in which the chlorophyll
concentration is systematically too small as compared to the
observations. The CRPS reliability score is also substantially
increased, but the nature of the problem is less apparent with
this score. In our problem, this spurious effect is large be-
cause the observation errors are large, but it is important
to remain cautious when a Gaussian approximation of non-
Gaussian observation errors is needed, as in Kalman filters
(with or without anamorphosis). There is no such difficulty
with the MCMC sampler, in which the observation constraint
can be applied using the native observation error probability
distribution. This special attention to observation errors was
only needed on the LETKF side to make the level of reliabil-
ity of the two solutions coincide.

5.3 Ecosystem indicators

Up to now, the ensemble analysis and forecast have been di-
agnosed in terms of the observed variable only. In the follow-
ing, we move to the diagnostic of non-observed quantities,
starting with variables that can be expected to be well con-
trolled by the observations towards ecosystem indicators that
are more likely to depend on uncontrolled processes: (i) the
phenology of the bloom, (ii) the vertically integrated trophic

efficiency, and (iii) the downward flux of particulate organic
matter at 100 m depth.

5.3.1 Phenology

As a simple characterization of the phenology of the spring
bloom (at a given location in 3D), we use the first date at
which the chlorophyll concentration reaches half of its max-
imum value (at that particular location) over the whole time
period. This definition has the advantage of being as closely
related to the observations as possible and of not being too
sensitive to small uncertainties in the value of the concentra-
tions. Unlike the maximum, it is indeed likely to occur at a
time of strong time derivative of the concentration. Figure 9
shows the resulting description of phenology for the surface
chlorophyll concentration, as obtained for the prior ensem-
ble (panels a–c), the LETKF analysis (panels d–f), and the
MCMC sampler analysis (panels g–i). The figure displays
quantiles of each of these ensembles (from left to right: 20 %,
50 % and 80 %). It is important to emphasize here that phe-
nology has been computed first for each ensemble member,
and then the quantiles have been derived from the phenology
ensemble, not the other way around. The result is a prob-
ability distribution for phenology, which we describe by a
few quantiles. In the figure, we can see that the prior uncer-
tainty in phenology is quite large and that this uncertainty is
strongly reduced by the observation constraint, in a way that
is very similar in the two methods.

Furthermore, from the ensemble experiments, it is possi-
ble to explore if the phenology of chlorophyll is linked to
the phenology of zooplankton (using the same definition as
above). Figure 10 shows a scatter plot of these two dates at
the same location already used for Fig. 4 (47.25◦ N, 26◦W
surface value, at the centre of the region). The figure com-
pares the result obtained with the LETKF algorithm (panel a)
and the MCMC sampler (panel b). The figure displays mem-
bers of the prior ensemble (black dots) and of the ensemble
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Figure 9. Quantiles of phenology (in days). Prior ensemble (a–c), LETKF analysis (d–f), and MCMC sampler analysis (g–i). The x axis and
y axis represent longitude and latitude, respectively.

analysis (blue dots). The small black dots in panel b repre-
sent members of an augmented version of the prior ensemble
(200 members), with covariance localization. It is obtained
with the MCMC sampler, used exactly as for the analysis (at
a much lower cost) but without the observation constraint. It
is more representative of the prior ensemble that is actually
used by the MCMC sampler, since it includes localization.

In the figure, we can see that the prior ensemble mainly
opens three possible time windows in which chlorophyll phe-
nology can take place. They are represented in the figure
by the three light green areas, which can be seen to corre-

spond to peaks of the prior surface chlorophyll concentration
in Fig. 4. These three windows can presumably be associated
with favourable conditions offered by the physical forcing
(in terms of light, temperature, and/or mixing) for the phy-
toplankton bloom to occur. The specific phenology in each
member then depends on how the biogeochemical model be-
haves, as a function of the stochastic perturbation applied to
each of them. From these three modes of the prior distribu-
tion, the observation constraint makes the ensemble analysis
select just the third one, in which the posterior probability is
concentrated (with both methods). Correspondingly, the phe-
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Figure 10. Scatter plot of phenology (in days) for chlorophyll (x axis) and zooplankton (y axis). At 47.25◦ N, 26◦W. With the LETKF
algorithm (a) and the MCMC sampler (b). Prior ensemble (black), augmented prior (small black dots), and analysis (blue).

nology of zooplankton displays the same three windows in
the prior ensemble (in light blue in Fig. 10), with a small
general shift forward in time. But the posterior uncertainty is
here larger:±5 d for zooplankton rather than±1 d for chloro-
phyll (at this location).

About the posterior uncertainty in the phenology of zoo-
plankton, it must be emphasized that this largely depends on
the assumptions that have been made to describe the prior un-
certainties. For instance, in the prior ensemble simulation de-
scribed in Sect. 2, uncertainties in the grazing of phytoplank-
ton by zooplankton have not been taken into account. These
uncertainties may have an influence on the dependence be-
tween the behaviours of phytoplankton and zooplankton and
thus increase uncertainties in the phenology of zooplankton,
as compared to what is shown in Fig. 10.

5.3.2 Trophic efficiency

Trophic transfer efficiency (or trophic efficiency) measures
the part of energy that is transferred from one trophic level
to the next and is a common indicator used to characterize
food availability to high trophic level organisms of economic
or ecological importance and, for instance, how this avail-
ability is affected by environmental changes (Eddy et al.,
2021). Trophic efficiency is usually computed as the ratio
of production at one trophic level to production at the next
lower trophic level. However, since those specific diagnos-
tics are rarely recorded explicitly, it is common to use the
ratio between the biomass of upper and lower trophic levels
as a proxy measure of the trophic transfer efficiency within
the food web (Armengol et al., 2019; Eddy et al., 2021).
Here, trophic efficiency is evaluated as the ratio between the
biomasses of primary producers and consumers vertically in-
tegrated over the 0–200 m layer.

The computation of this indicator first requires vertical
profiles of phytoplankton and zooplankton, and this depends
on the ability of the inverse methods to extrapolate the sur-
face information in depth. Figure 11 displays vertical pro-
files of chlorophyll concentration (panels a and c) and mi-
crozooplankton concentration (panels b and d), as obtained
with the LETKF algorithm (panels a and b) and the MCMC
sampler (panels c and d). It is shown for the same location as
in Fig. 10 (47.25◦ N, 26◦W, at the centre of the region) and
for the median date obtained for the chlorophyll phenology
(day 55, 8 May) in the ensemble analyses. By virtue of the
anamorphosis transformation, all posterior ensemble mem-
bers gently follow the same general vertical structure as the
prior ensemble, without overshooting or obvious inconsis-
tent behaviours. Only the spread of the ensemble is reduced,
towards values that are somewhat different in the two meth-
ods. At that date and location, the chlorophyll concentration
is larger with the MCMC sampler, and the microzooplankton
concentration is smaller.

More importantly, we see that, in all profiles, the depth
of the active layer is about the same in all members, which
means that we assumed no prior uncertainty on this. This can
only mean that uncertainties are missing in the prior NEMO–
PISCES simulator (presumably in the physical component),
and the consequence is that our results probably underesti-
mate uncertainties in the vertical integrals. In any case, these
uncertainties could not have been controlled using ocean
colour observations only and would have required involving
other types of observations.

With this caution in mind, Fig. 12 displays time series of
the vertically integrated trophic efficiency at the same loca-
tion, as obtained with the LETKF algorithm (panel a) and the
MCMC sampler (panel b). The figure is organized exactly as
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Figure 11. Vertical profile of chlorophyll (in mg m−3, a, c) and microzooplankton (in mmol C m−3, b, d). At 47.25◦ N, 26◦W, 8 May 2019.
With the LETKF algorithm (a, b) and the MCMC sampler (c, d). Prior ensemble (black) and analysis (blue).

Fig. 4, at the same location but for a different variable. From
day 0 to day 60, the ratio slightly increases from 0.3 to 0.5,
a range that is in line with the value given in this area by
the trophic model of Negrete-García et al. (2022). After the
bloom (see Fig. 4), the trophic efficiency increases towards
values closer to 1 and above 1, which is indicative of a tran-
sition from a bottom–up to a top–down control of the phy-
toplanktonic population. In the prior ensemble, we can still
distinguish the three possible windows for the occurrence
of the bloom, while it is reduced to 1 in the posterior en-
semble (with a smaller spread), consistently with the poste-
rior phenology estimates. However, the quantitative accuracy
and reliability of the trophic efficiency estimates entirely de-
pend on the reliability of the prior ensemble and in particular
on the reliability of the correlation between the trophic effi-
ciency and the observed variable (see discussion at the end
of Sect. 5.3.3).

5.3.3 Downward flux of particulate organic matter

The downward flux of particulate organic matter (POM) re-
lates to the biological gravitational pump, i.e. the sinking of
organic matter under direct action of gravity. It is one con-
stituent of the biological carbon pump, which includes the

ensemble of processes that transfer carbon from the surface
ocean (where it is balanced with atmospheric CO2 concen-
tration through air–sea exchanges) and deeper oceanic lay-
ers where carbon is regarded as “stored” on larger timescales
(Claustre et al., 2021). There are many ongoing discussions
on how to optimally infer biological carbon pump indica-
tors from model simulations, sustained by the obvious im-
portance of such indicators in the frame of global change
(e.g. Galí et al., 2022). In our case, we stick to the simple
definition of multiplying the concentrations of two classes of
organic matter at the 100 m horizon (below the active layer;
see Fig. 11) with their specific sinking velocities and sum-
ming up both contributions. To understand the results below,
it is important to note that (i) the model simply considers
fixed sinking rates (parameters) for each class of POM and
(ii) those parameters are not part of the uncertainty consid-
ered to build the prior ensemble. The spread of this indicator
in the prior ensemble therefore remains intimately related to
that of phytoplankton production.

Figure 13 displays a scatter plot of this indicator (y
axis) vs. surface chlorophyll concentration (x axis) for
26 May 2019, at the same location as before (47.25◦ N,
26◦W, at the centre of the region), as obtained with the
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Figure 12. Time series of trophic efficiency. At 47.25◦ N, 26◦W. With the LETKF algorithm (a) and the MCMC sampler (b). Prior (black),
analysis (blue), and forecast (red).

LETKF algorithm (panel a) and the MCMC sampler (panel
b). The figure displays members of the prior ensemble (black
dots), of the ensemble analysis (blue dots), and of the 4 d
ensemble forecast (red dots). With both methods, the spread
of the analysis and forecast is strongly reduced as compared
to the prior ensemble. The two methods produce a similar
ensemble analysis. With the MCMC sampler, the forecast is
compatible with the analysis but with a larger spread. With
the LETKF algorithm, however, the 4 d forecast is incom-
patible with the analysis. This happens to be a location at
which the 4 d LETKF forecast of chlorophyll (but not the 1 d
forecast) is biased as compared to the analysis. This could
already have been observed in Fig. 7, where, at the centre of
the region, there is a pattern with a low value of the surface
chlorophyll concentration in all quantiles, which is incom-
patible with both the analysis and the observations. This bias
in the forecast here translates into the forecast of the indica-
tor.

The reliability of the indicator estimate depends on the
reliability of the prior correlations between this indicator
and the observed variable (as described by the black dots
in Fig. 13). The reliability of the forecast also depends on
the reliability of the time correlation (and the time local-
ization scheme). Both depend on the modelling assumptions
embedded in the NEMO–PISCES simulator. These assump-
tions here combine a deterministic framework (providing in-
formation about the behaviour of the system) and a stochas-
tic parameterization (accounting for uncertainties). As in any
modelling system, unreliable assumptions will produce un-

reliable results. For instance, in this example, we neglected
uncertainties in the sinking velocities, so that the confidence
in the indicator is certainly overestimated. It is even possi-
ble that no valuable information about this indicator can be
obtained from surface chlorophyll only, in view of the cur-
rent modelling knowledge and missing uncertainties. But the
same difficulty can be expected for any complex system, in
which uncertainties are often ignored or not modelled ade-
quately, which can lead to artificially low uncertainty esti-
mates in certain indicators.

6 Conclusions

In this paper, a simplified approach has been introduced to
perform a 4D ensemble analysis describing the evolution of
the ocean ecosystem. In our example, it is based on prior
ensemble statistics from a stochastic NEMO–PISCES sim-
ulator and ocean colour observations. The observations are
used as constraints to condition the 4D prior probability dis-
tribution. The results show that it is possible to produce an
ensemble solution that is continuous in time, consistent with
the observations, and with a reliable description of the poste-
rior uncertainty (at least for the observed variable). Further-
more, attempts have been made to extrapolate the results into
the future from past observations. The resulting 4D ensem-
ble statistical forecast is shown to be most often reliable (at
least for the observed variable) and to contain valuable infor-
mation about the evolution of the ecosystem for a few days
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Figure 13. Scatter plot of surface chlorophyll concentration (in mg m−3) vs. particular organic carbon (POC) flux at 100 m depth (in
mg C m−2 d−1). At 47.25◦ N, 26◦W, on 26 May 2019. With the LETKF algorithm (a) and the MCMC sampler (b). Prior (black), aug-
mented prior (small black dots), analysis (blue), and 4 d forecast (red).

after the last observation. However, as a result of the short
decorrelation timescale in the prior ensemble, the spread of
the ensemble forecast increases quickly with time.

In terms of method, the inverse problem has been solved
using two very different algorithms: the analysis step of the
LETKF (with domain localization) and an MCMC sampler
(with covariance localization). The performance of the two
algorithms are enhanced by applying a nonlinear transforma-
tion to the estimation variables (anamorphosis). These two
methods being so different from each other, the most impor-
tant conclusion that can be drawn is certainly that common
features displayed by the two results validate each other. Dif-
ferences between the results are more difficult to interpret be-
cause it is difficult to separate the effect of the method and
the effect of the tuning of localization (which cannot be made
equivalent in the two algorithms). On the one hand, covari-
ance localization (with a localizing correlation function) is
more flexible, and it has a better theoretical justification, so
that the Bayesian inverse problem remains global, and the
local correlation structure of the prior ensemble can be pre-
served better. On the other hand, domain localization (with a
decreasing influence function) is more like an ad hoc solution
with only a few parameters, and there is no global Bayesian
formulation of the problem anymore, so that there is more
risk of triggering non-physical small scales when the local
domain are shifted from each other (to solve the global prob-
lem piece by piece). However, in our experiments, it can hap-
pen that this simple scheme, with just a weighted decrease in
the influence of the past observations, can produce a more
accurate ensemble forecast but also occasionally bigger bi-
ases.

The key practical advantage of the approach presented in
this study, as compared to standard data assimilation, is to

decouple the resolution of the inverse problem from the ap-
plication of the complex numerical model (here the NEMO–
PISCES stochastic simulator), which is only used as a sup-
plier of prior input data. This has given us the possibility of
focusing on a small subregion, in which the inverse prob-
lem is well-conditioned and to solve the problem globally in
time for a full 3-month time period, thus avoiding the filter-
ing approach, in which only past observations can influence
the analysis at a given time. Without the need to re-initialize
the model, it has also been possible to concentrate on a few
variables of interest and indicators that are not model state
variables. As long as the prior ensemble statistics are reliable
for a subset of the model variables, an analysis and forecast
can directly be obtained for these variables and associated in-
dicators without going through the burden of estimating the
full state vector. In terms of method, this simplified approach
has allowed us to try using a more general iterative algorithm
to solve the problem, thus avoiding the Kalman approach, in
which only linear constraints are possible (linear observation
operator and Gaussian observation errors). In our results, this
did not bring many improvements because much care has
been taken to perform the anamorphosis transformation of
the non-Gaussian observation error probability distribution
required by the Kalman algorithm. But this is still an ap-
proximation, which is not necessary in the MCMC sampler.
Moving to a nonlinear method, solving the problem globally,
also offers new perspectives in terms of constraints that can
be applied to the solution, such as nonlocal and nonlinear
observation operators or nonlocal and nonlinear dynamical
constraints (as long as the associated cost function is not too
expensive to evaluate).

The main theoretical shortcoming of this approach is that
the complex dynamical model is no longer directly used to
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constrain the solution. However, it must be recognized that
this is not always possible in practice. As long as most of
the model state variables remain unobserved (and there are
23 state variables in PISCES) and often poorly correlated to
the observed variables, it can be a very difficult task to ini-
tialize properly a dynamical model forecast (or to adjust an
even larger number of model parameters), especially if the
model is very sensitive to small inconsistencies in the ini-
tial state. Ad hoc adjustments and simplifications are then
usually needed to avoid model failure or unrealistic results.
In other words, in the case of non-observability and non-
controllability of the dynamical system, the problem can be-
come ill-conditioned, and it can be worthwhile starting from
a simplified approach in which these problems do not occur.

Regarding the operational applications, this approach of-
fers the possibility of being more flexible and less dependent
on the behaviour of the global data assimilation system. It
can quickly focus on a specific region of interest and produce
targeted products to meet dedicated users’ requirements, at a
small additional cost. This can be done without any new tech-
nical development, using the same algorithm already in use
in the dynamical data assimilation system (e.g. the LETKF
algorithm), and the simplified framework can serve as a test
bed for more advanced inverse methods (e.g. the MCMC
sampler).

The main condition to perform such a 4D analysis and
forecast of the evolution of the ecosystem is to produce a reli-
able prior ensemble simulation based on the complex dynam-
ical model. This is not an easy prerequisite, which requires
identifying the most important sources of uncertainty in the
system and developing stochastic perturbations schemes to
take them into account. Reliability must then be checked
against observations, so that the inversion can concentrate
on regions where uncertainties have been sufficiently under-
stood and where reliable products can be delivered. Concern-
ing the non-observed variables (like the ecosystem indica-
tors), the reliability of the results entirely depends on the as-
sumption made to produce the prior ensemble, which must
be questioned and checked wherever possible. In our results
about the indicators, we have mentioned that important un-
certainties have been neglected, so that the posterior uncer-
tainty on the indicators is certainly underestimated. However,
the situation is similar in dynamical forecasting systems, in
which the reliability of the ensemble forecast also depends
on the modelling assumptions. Any progress towards a bet-
ter understanding of the model uncertainties is thus directly
beneficial to both types of system.

Appendix A: Anamorphosis transformation of the
observations

The following algorithms have been implemented to address
the problem of transforming the observations. We first con-
sider a simplified particular case allowing a more efficient

algorithm before addressing the general problem. In both
cases, the objective is to produce an unbiased transformed
observation, with a consistent observation error standard de-
viation.

A1 The observation error probability density function
is symmetric and does not dependent on the true
state

In this particular case, the transformation of the probability
distribution for observation error is straightforward, and can
be obtained using the following algorithm for each observa-
tion (assuming independent observation errors).

1. Compute the anamorphosis transformation A for each
observed quantity from the ensemble equivalent of the
observation: H(xi), i = 1, . . .,p (where xi is an ensem-
ble member and H is the observation operator).

2. Produce a sample of perturbed observations: yo
j = y

o
+

εj , where yo is the observation and the perturbations
εj are sampled from the observation error probability
distribution.

3. Transform the sample using the anamorphosis transfor-
mation A.

4. Use the mean and covariance of the transformed sam-
ple as parameters for the transformed observation error
probability distribution (assumed to be Gaussian).

A2 General observation error probability distribution

In the general case, when the observation error probabil-
ity distribution depends on the true state of the system or
when it is not symmetric, perturbations with this distribu-
tion cannot be added to the observations. They can only be
applied to a model equivalent to the observations H(xi). In
this case, applying the simplified algorithm above can lead
to substantial biases in the transformed observations, espe-
cially for bounded variables (when observations are close to
the bounds). It is then important to use a more general algo-
rithm to obtain the transformed observation and observation
error.

1. Sample a rank r for the observation error (uniformly
between 0 and 1).

2. Perturb each member of the ensemble with an ob-
servation error with this same given rank: yi =

F−1(r), where F is the cumulative distribution func-
tion (cdf) of the observation error probability distribu-
tion p[yi |H(xi)], conditioned on the member that is be-
ing perturbed.

3. Compute the anamorphosis transformation A from this
transformed ensemble.
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4. Transform the observation with A to obtain a trans-
formed perturbed observation.

5. Repeat the above steps for a sample of ranks to obtain a
sample of transformed observations.

6. Use the mean and covariance of the transformed sam-
ple as parameters for the transformed observation error
probability distribution (assumed to be Gaussian).

It is easy to see that this more general algorithm is equiv-
alent to the simplified algorithm above in the particular case
of observation errors that have a symmetric probability dis-
tribution, which does not depend on the state of the system.
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