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Abstract. The residence time measures the time spent by
a water parcel or a pollutant in a given water body and is
therefore widely used in environmental studies. The adjoint
method introduced by Delhez et al. (2004) to compute this
diagnostic is revised here to take into account the effect of
the initialization and of the boundary conditions.

In addition to the equation for the mean residence time, it
is suggested to solve a simple advection-diffusion problem to
quantify the effect of the initialization and clarify the inter-
pretation of the results.

Using the two same equations but with modified bound-
ary conditions, the method can also be used to quantify the
accumulated time spent by water/tracer parcels in a control
domain. This diagnostic is called “exposure time”.

Analytical and realistic model results are used to illustrate
the concepts.

1 Introduction

The residence time of a water parcel in a water body is usu-
ally defined as the time taken by this parcel to leave this water
body (e.g.Bolin and Rhode, 1973; Takeoka, 1984; Zimmer-
man, 1988; Monsen et al., 2003; Braunschweig et al., 2003).
As such, it is a valuable diagnostic tool to describe and under-
stand environmental issues. The residence time provides in-
deed a global measure of the influence of the hydrodynamic
processes on the aquatic systems. In environmental studies,
this time scale can be compared with characteristic biochem-
ical activity rates to understand the dynamics of a system
(e.g.Nixon et al., 1996; Braunschweig et al., 2003; Hydes
et al., 2004) or assess the vulnerability of a water domain to
potential pollution and eutrophication problems (e.g.Vollen-
weider, 1976). In a different context, the residence time can
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be used as a measure of the time spent by eggs or larvae in a
suitable habitat (e.gWang et al., 2003; Harley et al., 2004).

Basically, the residence time is a property of each water
parcel ; it is Lagrangian by nature. Indeed, the straightfor-
ward procedure to assess the residence time consists in in-
jecting some tracer in the flow, following the path of these
tracer parcels and registering the time when they leave the
domain of interest. This procedure can be equally applied in
real world experiments or in numerical model simulations.

Mathematically, the mean residence timeθ̄ (t, x) at timet

and locationx can be computed by monitoring the temporal
evolutionm̃(t,x)(t+τ ) of the mass of the tracer in the control
region at the timet+τ after a unit point release at(t, x). Fol-
lowing Bolin and Rhode(1973) andTakeoka(1984), one can
write

θ̄ (t, x) =

∫ 1

0
τ dm̃(t,x) (1)

Delhez et al.(2004) introduced an alternative procedure de-
signed for numerical models. They showed that the resi-
dence time can be computed as the solution of an advection-
diffusion problem with a unit source term and appropriate
boundary conditions. The method provides the variations in
space and time of the residence time with a single model run.
The method doesn’t require any Lagrangian module. It is
Eulerian by nature which makes it more appropriate to long-
term and large scale simulations than the straightforward La-
grangian approach. Considering the potential discrepancies
between the Lagrangian and Eulerian descriptions of diffu-
sion, the Eulerian approach of the residence time is closer
to the Eulerian hydrodynamic models and represents a more
direct diagnostic of the model results.

In their paper,Delhez et al.(2004) raise the issue of
the appropriate definition of the residence time when water
parcels leaving the domain of interest are allowed to re-enter
at later times. They also mention the problem associated
with the fact that a finite range simulation cannot provide the
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2 E. J. M. Delhez: Transient residence and exposure times

residence time of all the water parcels nor the mean residence
time.

The purpose of this paper is to clarify these two issues
and complement the adjoint method advocated byDelhez et
al. (2004) with appropriate definitions and additional control
variables.

2 Backward procedure for the computation of the resi-
dence time

Because of diffusion, different water parcels released at the
same location and the same time follow different paths, exit
the control domainω at different times and have therefore
different residence times inω. To describe this situation,Del-
hez et al.(2004) define the cumulative distribution function
D(t, τ, x) as the fraction of the mass of the tracer released at
time t and locationx whose residence time is larger or equal
to τ . This is also the mass of tracer in the control region at
time t+τ following a unit release at timet and locationx,
therefore

D(t, τ, x) = m̃(t,x)(t + τ) (2)

This cumulative distribution function is shown to satisfy
∂D

∂t
−

∂D

∂τ
+ v · ∇D + ∇ ·

[
K · ∇D

]
= 0

D(t, 0, x) = δω(x)

(3)

wherev is the velocity vector,K denotes the symmetric dif-
fusion tensor and

δω(x) =

{
1 if x ∈ ω

0 if x 6∈ ω
(4)

is the characteristic function of the control regionω.
The zeroth order moment of the cumulative distribution

function, i.e.

θ̄ (t, x) =

∫
∞

0
D(t, τ, x)dτ (5)

is the mean residence time ifD satisfies particular boundary
conditions (Delhez et al., 2004).

Assuming thatD(t, τ, x) decreases to zero whenτ tends to
infinity, i.e. that the whole material is eventually flushed out
of the control region, Eq. (3) can be integrated with respect to
τ to simplify the problem into the more classical differential
problem

∂θ̄

∂t
+ δω + v · ∇ θ̄ + ∇ ·

[
K · ∇ θ̄

]
= 0 (6)

for θ̄ (t, x). For θ̄ to be equal to the mean residence time,
Eq. (6) must be solved with the boundary condition thatθ̄

vanishes on the boundaryδω of the control domain.
Equations (3) and (5) are derived from the adjoint of the

forward advection-diffusion problem. They must therefore

be integrated backwards in time with homogeneous bound-
ary conditions. The integration backwards in time is clearly
necessary for stability reasons associated with the apparent
negative diffusion term in Eqs. (3) and (6). It is also a conse-
quence of the fact that one does not know in advance the fate
of the particles.

3 Finite range simulation

In principle, Eqs. (3) and (6) must be integrated backwards
from t=+∞ in order to be able to describe the full distribu-
tion of residence times, including the fate of particles with a
very large residence time. In practice, of course, the equation
is integrated backwards from some finite timeT at which the
real conditions are unknown. As a result, the solution will not
provide the exact mean residence time until the uncertainty
about the initial conditions has disappeared. Intuitively, one
can expect that the effect of the initial conditions smears out
after a period of integration of several multiples of the resi-
dence time.

A more accurate appraisal of the effect of the initial con-
ditions can be given by a careful analysis of Eq. (3). Clearly,
the uncertainty about what happens after the “initial” time
T affects only the cumulative distributionD(t, τ, x) in the
range ofτ>T −t . As t decreases, while proceeding with the
backward integration, an increasing portion of the distribu-
tion of the residence time is uncovered.

If the initial condition at timeT is D=0, thenD is also
zero for allτ>T −t ,∫

∞

0
D(t, τ, x)dτ =

∫ T −t

0
D(t, τ, x)dτ (7)

and the solutionθ̄ of Eq. (6) characterizes only the water
parcels with a residence time smaller thanT −t . While θ̄

tends to the mean residence time for large values ofT −t , the
actual rate of convergence is not known.

To quantify the proportion of water parcels whose contri-
bution is taken into account in̄θ , we propose to solve the
adjoint problem

∂C∗

T

∂t
+ v · ∇C∗

T + ∇ ·

[
K · ∇C∗

T

]
= 0

C∗

T (T , x) = δω(x)

(8)

in addition to Eq. (6). After Delhez et al.(2004), the solution
C∗

T (t, x) of this problem can indeed be interpreted as the pro-
portion of the initial point release at(t, x) that is still present
in the control domain at timeT . Conversely,

C̃∗

T (t, x) ≡ 1 − C∗

T (t, x) (9)

represents the proportion of water parcels whose residence
time can be computed with a model run in the time window
[t, T ]. This quantity can be used to quantify the represen-
tativeness of the solution of Eq. (6) as the mean residence
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E. J. M. Delhez: Transient residence and exposure times 3

time. Therefore, the scalar field with concentrationC∗

T (t, x)

is called the “control scalar” in this paper.
To clarify the concepts introduced in this section, it is in-

teresting to consider the highly idealized system of a one-
dimensional domainx ∈ (−∞, ∞) and compute the mean
residence time in the control domainω=(−∞, 0]. We as-
sume that the velocity field is uniform but varies with time as
in Fig. 1. Diffusion is first neglected to ease the understand-
ing.

From the discussion above, the residence time is obtained
as the solution̄θ of

∂θ̄

∂t
+ u(t)

∂θ̄

∂x
+ 1 = 0, x ∈ ω

θ̄(t, 0) = 0 when u(t) > 0
(10)

This equation must be integrated backwards from some “ini-
tial” time T taken here asT =3T (Cf. Fig. 1). As the true
“initial” conditions at that time are unknown we take

θ̄ (T , x) = 0 (11)

The solution of the problem Eqs. (10–11) at different times
is shown in Fig.2.

At time t=2T , the residence time varies linearly between
T at x=−UT and 0 atx=0. This is precisely the time for
a water parcel to be advected from its location att=2T to
the boundary of the control domain by the velocity fieldU

acting betweent=2T andt=3T .
The residence time forx<−UT seems to be a constant,

equal to the elapsed timeT of the backward simulation. This
is however an artefact of the initialization of the computation
at timeT . The water parcels released atx<−UT at time
t=2T do not have time enough to exit the control domain;
they are still inω at t=T . Therefore the residence time of
these water parcels cannot be settled since their exit time is
unknown.

The resolution of the appropriate form of Eq. (8),
∂C?

T

∂t
+ u(t)

∂C?
T

∂x
= 0, x ∈ ω

C?
T (T , x) = 1, x ∈ ω

C?
T (t, 0) = 0 when u(t) > 0

(12)

is useful to identify the part of the solution of Eq. (10) that
is affected by the initialization and/or cannot be interpreted
as the residence time. The solutionC?

T plotted in Fig.2 con-
firms that the particles located atx<−UT at timet=2T do
not leave the domain during the simulation period.

A quick look at the distribution of the control scalar at
t=T , tells us that none of the particles present in the control
domain at this time can leave the control domain beforet=T .
Their residence time is therefore unknown. The value ofθ̄ is
just a lower bound of the residence time.

A similar analysis can be done from the results att=0. In
this case, the residence time increases linearly from zero at

T = 3T2TT0

3U

−2U

U

u(t)

t

Fig. 1. Temporal evolution of the velocityu(t).

the origin toT at x=−3UT . The residence time cannot be
computed in the leftmost part of the control domain.

Similar results are obtained if some diffusion is added to
the dynamics (Fig.2). In this case, one must solve

∂θ̄

∂t
+ u(t)

∂θ̄

∂x
+ κ

∂2θ̄

∂x2
= 0, x ∈ ω

θ̄(T , x) = 0, x ∈ ω

θ̄(t, 0) = 0

(13)

and
∂C?

T

∂t
+ u(t)

∂C?
T

∂x
+ κ

∂2C̄?
T

∂x2
= 0, x ∈ ω

C?
T (T , x) = 1, x ∈ ω

C?
T (t, 0) = 0

(14)

by backward integration fromt=T . Similar conclusions are
obtained with, of course, smoother spatial distributions of
the residence time and of the control scalarC?

T . Because of
diffusion, the initialization is seen to affect the results in a
larger part of the control domain and/or for earlier timest .
The spatial distribution of the control scalar is not strictly
equal to unity in the control domain, even in its leftmost part.
This shows that some water parcel can now escape the con-
trol domain by diffusion within the studied time window. In
such areas,̄θ provides a lower bound for the residence time
but cannot be interpreted as a valid approximation of the res-
idence time unlessC?

T is close to zero.

4 A priori estimate of the initialization time

The computation ofC∗

T is useful to check the influence of the
initialization a posteriori, i.e. once the simulation has been
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Fig. 2. Temporal evolution of̄θ andC∗
T

from a backward integration of the equations for the mean residence time fromt=T . Results without

diffusion (thick curve) and with diffusion (thin curve,κ=U2T /4).

carried out. For practical applications, it is also desirable to
have some a priori estimates of the spin-up time. A com-
promise must indeed be found between the necessity to take
the “initial time” T as large as possible to remove the effect
of the initialization and the wish to reduce the length of the
numerical simulations. Obviously, the ideal duration of the
simulation depends on the residence time it-self; the larger
the residence time, the larger the duration of the simulation.
As a rule of thumb, one could argue that the simulation win-
dow [t, T ] should be as large as twice the mean residence
time for the results at timet to be significant. As the resi-
dence time is not known a priori, rough estimates based on
simplified models can be used to chooseT .

In an advection dominated flow, the backward integration
of Eq. (8) produces a front generated at the boundary of the
control domain and moving into it. IfU c denotes the char-
acteristic velocity of the flow and if the model is allowed to
spin-up for1t , then the space swept by the front during that

time interval can be characterized by the advective length
scaleU c1t . In the meantime, horizontal diffusion smears
out the front over a length scale which is some multipleα,
sayα=3, of the diffusion length scale

√
Kc1t whereKc is

some characteristic (explicit and implicit) horizontal diffu-
sion coefficient. This spreading reduces the influence of the
boundary signal in the interior of the control domain. There-
fore, C∗

T will be close to zero only at locations whose dis-
tance to the outflow boundary of the control domain is less
than

Lc
= U c1t − 3

√
Kc1t (15)

At such locations, the residence time can be reasonably ob-
tained from the solution of Eq. (6) after a spin-up time of1t .
If L denotes the horizontal dimension of the whole control
domain, then the model should be allowed to spin-up for1t

such that

L ≤ Lc
= U c1t − 3

√
Kc1t (16)
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E. J. M. Delhez: Transient residence and exposure times 5

The estimate (15) applies reasonably well to the 1-D case
discussed above if the reversal of the flow (Fig.1) is properly
taken into account. For instance, considering the initializa-
tion att=T and looking at the results att=2T , Eq. (15) gives
(takingU c

=3U andKc
=U2T /4)

Lc
= −1.5UT (17)

which confirms that the residence time computed by Eq. (6)
cannot be considered to be significant at any point of the
control domain (Fig.2). For the conditions prevailing for
t ∈ [0, T ] (U c

=3U andKc
=U2T /4) Eq. (15) predicts that

the initialization at timet=T would produce reasonable es-
timates of the residence time att=0 for

x > 1.5UT (18)

which can be confirmed by inspection of Fig.2.

5 Residence time vs. age theory

The two Eqs. (8) and (6) are very similar to the two equation
system introduced byDelhez et al.(1999) to compute the age
of tracers. In the case of a conservative tracer, these can be
written as

∂C

∂t
+ v · ∇C = ∇ · (K · ∇C) (19)

and

∂α

∂t
+ v · ∇α = C + ∇ · (K · ∇α) (20)

whereC is the concentration of the tracer andα is the so-
called age concentration. The mean ageā is related toC and
α by

ā =
α

C
(21)

The method discussed here for the computation of the
residence time can therefore be understood as an exten-
sion of the Constituent-oriented Age Theory (Delhez et al.,
1999; Deleersnijder et al., 2001; Delhez and Deleersnijder,
2002). This consolidated theory is hence called “Constituent-
oriented Age and Residence time Theory” (CART).

In the system (19)–(20), C measures the concentration of
the tracer that, taking into account the effect of initializa-
tion, contributes to the age concentration. It plays therefore
a similar part as the control scalarC∗

T in the computation of
the residence time. The age concentrationα accumulates the
contribution to the mean age of the different tracer parcels
formingC. It is comparable tōθ .

From this similarity of the concepts, it is tempting to mod-
ify the definition of the mean residence time according to

θ̄

C̃∗

T

(22)

as only the water parcels forming̃C∗

T are taken into account
in θ̄ . This ratio would be interpreted as the mean residence
time of the water parcels iñC∗

T . However, this approach is
not appropriate. The residence time is a Lagrangian property
inasmuch as it can be computed for each and every water par-
cel by attaching a “virtual clock” to each parcel and recording
its exit time from the control domain. But the path of a single
virtual water parcel subjected to Fickian diffusion does not
make sense in its own. The paths of different parcels form-
ing a given patch are not independent from each other. This
is best demonstrated by the contradiction which arises if one
selects the parcels accounting forC̃∗

T (t0, x)=1−C∗

T (t0, x) at
some initial timet0<T and use this as initial conditions of a
forward simulation; while the definition of̃C∗

T implies that it
vanishes in the control domain at timeT , the forward simu-
lation will produce a non zero distribution at that time. The
particles accounting for̃C∗

T (t0, x) all manage to escape the
control domain only because other particles immersed in the
same diffusive environment remain inω. With the Fickian
model of diffusion, it is impossible to separate the fate of the
particles that leave the control domain within a given time
window and those that do not. The arguments leading to
Eq. (22) are therefore inappropriate.

6 Residence time and exposure time

The physical interpretation of̄θ as the mean residence time
in the control domainω depends on the boundary conditions
used to solve Eqs. (3) or (6).

The residence time is usually defined as the time taken
for a water parcel to leave the control domain for the first
time (e.g.Bolin and Rhode, 1973; Takeoka, 1984; Zimmer-
man, 1988; Monsen et al., 2003). To compute this diagnostic,
called strict residence time inDelhez et al.(2004), Eq. (3) or
Eq. (6) must be solved with homogenous boundary condi-
tions prescribed on the boundaryδω of the control domain
ω. In particular,θ̄ must vanish at the boundary of the control
domain.

With such boundary conditions, water parcels leaving
the domain at some time are not allowed to re-enter and
D(t, τ, x), which represents the mass in the control domain
at time t+τ after a unit injection, is a decreasing function
of τ . This decreasing behavior is of course expected from
the interpretation ofD as a cumulative distribution function.
It is also required to transform the usual definition of the
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Fig. 3. Temporal evolution of̄θ andC∗
T

from a backward integration of the equations for exposure time fromt=T . Results without diffusion

(thick curve) and with diffusion (thin curve,κ=U2T /4).

residence time (1) into (5) along

θ̄ (t, x) =

∫ 1

0
τ dm̃(t,x) = −

∫
∞

0
τ

dm̃(t,x)

dt
(t + τ)dτ

= −

[
τ m̃(t,x)(t + τ)

]∞

0
+

∫
∞

0
m̃(t,x)(t + τ)dτ

=

∫
∞

0
m̃(t,x)(t + τ)dτ

=

∫
∞

0
D(t, τ, x)dτ = 2̄(t, x) (23)

(assuming that̃m(t,x) decreases to zero for largeτ ).
In Delhez et al.(2004), it is proposed to solve Eqs. (3)

or (6) with boundary conditions allowing the water parcels
to re-enter in the control domain. In this case, the mass
m̃(t,x)(t+τ) is no longer a decreasing function of the delay
τ . Therefore, the first equality in Eq. (23) is not valid and
the solution of Eqs. (3) or (6) cannot be interpreted as the
residence time any more. StillD and θ̄ have an interesting

interpretation: they can be regarded as measures of the to-
tal time spent by the water parcels in the control domain. In
particular,θ̄ measures the area under the curvem̃(t,x)(t+τ)

for the whole range of values ofτ (or τ in [0, T −t] for finite
range simulations). We propose therefore to call this quantity
“exposure time”.

The concept of exposure time and its computation can also
be demonstrated with the idealized one-dimensional system
introduced above. This time, Eqs. (6) and (8) must be solved
in the whole spatial domainx ∈ (−∞,∞) without prescrib-
ing auxiliary conditions at the boundaryx=0 of the control
domain. The results are shown in Fig.3.

At all times and locations, the value reported forθ̄ mea-
sures the total time spent by the water parcels in the control
domain between the current timet and the initialization time
T . The concentrationC∗

T of the control scalar can be used to
identify the water parcels that are still in the control domain
at t=T and those which left (and did not re-enter) the domain
before that time.

Ocean Science, 2, 1–9, 2006 www.ocean-science.net/os/2/1/
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x

UT ,
θ̄

T

t/T

Fig. 4. Temporal evolution of the location (thin curve) and exposure
time (thick curve) of particles released atx=−1.5UT (plain curve)
andx=−0.75UT (dashed curve) at timet=0.

At t=2T , the spatial distributions of̄θ andC∗

T are iden-
tical to those computed in the previous section. This is
of course due to the fact that the velocity is positive for
t ∈ (2T , 3T ), i.e. that all the water parcels are leaving the
control domain.

Betweent=2T andt=T , all the water parcels that left the
domain are advected back into the control domain by the re-
versing flow (Fig.1). The value ofθ̄ plotted in the left panel
for t=T is affected by the initialization att=T in the range
x<UT as shown by the value ofC?

T in this part of the do-
main. The results forx>UT are not affected by the initial-
ization. The values reported forθ̄ in this range can therefore
be understood as the true exposure time of the water parcels,
i.e. as a measure of the time spent by the water parcels in the
control domain. This measure is representative inasmuch as
the water parcels have left the control domain beforet=T .
Of course, a reversal of the flow att>T could however push
the parcels back into the control domain at later times.

Particles inx<−2UT at t=0 are still in the control do-
main att=T while those located atx>−2UT at time t=0
have all left the control domain att=T . The latter exhibit
exposure times between 0 and 2T . The stair-case distri-
bution of θ̄ reflects the different paths of the parcels. As
shown in Fig.4 in the particular case of particles released at
x=−1.5UT andx=−0.75UT , some particles are present in
the control domain during two distinct time intervals while
others spent their time inω in one single time interval. In
both cases, the exposure time is the accumulated time spent
in the control domain.
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Fig. 5. Schematic view of the general circulation in the English
Channel and location of stations A and B.

Similar results are obtained when diffusion is added to the
system (Fig.3). As for the residence time, the spatial dis-
tribution are smoother and the effect of the initialization is
increased by diffusion. This last effect appears even worse
in Fig. 3 than in Fig.2. There is indeed no strong boundary
condition atx=0 which can constrain the solution and make
it converge faster.

7 Realistic application

The concepts introduced above are illustrated here with
results of realistic simulations carried out with a three-
dimensional hydrodynamic model of the Northwestern Eu-
ropean Continental Shelf (Delhez and Martin, 1992). The
model domain covers the whole shelf between 48◦ N and
62◦ N. The shelf break (200 m isobath) is the Western bound-
ary. The model horizontal resolution is 10′

×10′ in longitude
and latitude. Sigma coordinates, with 10 levels, are used in
the vertical.

A schematic description of the residual circulation in this
region is shown in Fig.5. In addition to this picture, the
region is known for its strong tidal signal with a characteristic
tidal velocity of about 1 m/s.

For this illustration, the Eastern Basin of the English Chan-
nel is taken as control domain (Fig.5). The residence
time and exposure time are computed from the results of
(backward) simulations running from September 1995 to
July 1993. Realistic 6 hourly wind forcing data (NCEP-
reanalysis) are used to force the model.

The Figs.6 and7 show time series of the residence time
and exposure time and related control scalar concentrations
at the surface at two stations A and B in the control domain
(see Fig.5 for the location of these stations). Snapshots of
the spatial distribution of the residence time can be found in
Delhez et al.(2004).

In both Figs.6 and 7, the concentration of the control
scalar is seen to decrease with a time scale that is of the same
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Fig. 6. Time series of the residence time (thick solid curve) and
exposure time (light solid curve) at station A (see Fig.5 for loca-
tion). The corresponding time series for the concentration of the
control scalar (right axis) are plotted with dotted lines (thick curve
– residence time/light curve = exposure time).

order of magnitude as the mean residence/exposure time.
The control scalar for the residence time decreases slightly
more rapidly than its counterpart for the exposure time. The
potential biais introduced by the initialisation procedure can
be neglected after about 220 days at station A and after about
40 days at station B.

The time average values of the residence times at sta-
tions A and B are, respectively, around 85 and 7 days. As
expected from the definition of the two concepts, the expo-
sure time is larger than the residence time at all times and
locations.

The differences between the two concepts are small at sta-
tion B which is located close to the downstream boundary of
the control region. At station A, on the contrary, large dif-
ferences are computed. The residence time at this location
shows large temporal oscillations which do not appear in the
time series of the exposure time. These oscillations are in-
duced by episodes during which the influence at station A of
the western boundary of the control domain increases (These
events are poorly sampled by the 10 day model outputs and
will be the subject of further investigations).

8 Conclusion

The method introduced byDelhez et al.(2004) provides a
versatile tool to diagnose complex flows. In this paper, we
showed how the issues of boundary conditions and initial
conditions must be approached.

According to the kind of boundary conditions that are ap-
plied to the numerical tracer, the method delivers the true
residence time or the exposure time. Both concepts provide
interesting information about the combined effects of advec-
tion and diffusion and are useful in different contexts. Aware-
ness about the differences of the two concepts is essential for
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Fig. 7. Time series of the residence time (thick solid curve) and
exposure time (light solid curve) at station B (see Fig.5 for loca-
tion). The corresponding time series for the concentration of the
control scalar (right axis) are plotted with dotted lines (thick curve
– residence time/light curve = exposure time).

the correct interpretation of these diagnostics. The true res-
idence time in a control domainω measures the (average)
time spent by water/tracer parcels inω until they leave this
control domain. The newly introduced exposure time mea-
sures the accumulated time during which a control region is
affected by a pollutant released in this region, even if the
presence of the pollutant inω is intermittent.

Both academic and realistic examples demonstrate the dif-
ferent dynamics of these two diagnostics.

By resorting to the computation of a control scalar, the ef-
fect of the initialization on the computed residence/exposure
times can be assessed. The concentration of the control scalar
must be as small as possible to avoid any bias of the results
by the initialization procedure.
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