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Abstract. The global acceleration of sea-level rise (SLR)
during the 20th century is now established. On the local
scale, this is harder to establish as several drivers of SLR
play a role, which can mask the acceleration. Here, we study
the rate of SLR along the coast of the Netherlands from the
average of six tide gauge records covering the period 1890–
2021. To isolate the effects of the wind field variations and
the nodal tide from the local sea-level trend, we use four
generalised additive models (GAMs) which include differ-
ent predictive variables. From the sea-level trend estimates,
we obtain the continuous evolution of the rate of SLR and its
uncertainty over the observational period. The standard error
in the estimation of the rate of SLR is reduced when we ac-
count for nodal-tide effects and is reduced further when we
also account for the wind effects, meaning these provide bet-
ter estimates of the rate of SLR. A part of the long-term SLR
is due to wind forcing related to a strengthening and north-
ward shift of the jet stream, but this SLR contribution decel-
erated over the observational period. Additionally, we detect
wind-forced sea-level variability on multidecadal timescales
with an amplitude of around 1 cm. Using a coherence anal-
ysis, we identify both the North Atlantic Oscillation and the
Atlantic Multidecadal Variability as its drivers. Crucially, ac-
counting for the nodal-tide and wind effects changes the es-
timated rate of SLR, unmasking an SLR acceleration that
started in the 1960s. Our best-fitting GAM, which accounts
for nodal and wind effects, yields a rate of SLR of about
1.72.2

1.3 mm yr−1 in 1900–1919 and 1.51.9
1.2 mm yr−1 in 1940–

1959 compared to 2.93.5
2.4 mm yr−1 in 2000–2019 (where the

lower and upper bounds denote the 5th and 95th percentiles).
If we discount the nodal tide, wind and fluctuation effects

and assume a constant rate of SLR, then the probability (p
value) of finding a rate difference between 1940–1959 and
2000–2019 of at least our estimate is smaller than 1 %. Con-
sistent with global observations and the expectations based
on the physics of global warming, our results show unequiv-
ocally that SLR along the Dutch coast has accelerated since
the 1960s.

1 Introduction

Understanding the current and past rates of sea-level rise
(SLR) is essential to make reliable sea-level projections and
to adapt accordingly. In the Netherlands, the current rate of
SLR is used to estimate the volume of sand that must be sup-
plied to maintain the coastline and avoid a retreat of dunes. It
also estimates how much salt and gas mining can be allowed
under the Wadden Sea. In addition, local sea-level measure-
ments are important to evaluate sea-level projections (Vries
et al., 2014). The rate of SLR could be used as an early warn-
ing indicator for adaptation measures to uncertain climate
change (Haasnoot et al., 2018).

There is now high confidence in an acceleration of global
SLR in the 20th century compared to the previous 3 millennia
and in the period 2006–2018 compared to 1971–2018 (Fox-
Kemper et al., 2021). Dangendorf et al. (2019) found that the
global rate of SLR has accelerated since the 1960s. More re-
cently, Walker et al. (2022) estimated that the rates of SLR
emerged from the background variability of the Common Era
(0–2000 CE) in the middle of the 19th century for the globe
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and in the middle of the 20th century for the Northeast At-
lantic.

Focusing on sea-level change along the coast of the
Netherlands, the existence of an acceleration of SLR is still
debated (Baart et al., 2011; Wahl et al., 2013; Steffelbauer
et al., 2022). There are multiple lines of evidence that an ac-
celeration should already be detectable or will be detectable
soon. The increasing thermal expansion of oceans and faster-
melting glaciers and ice sheets drive the global acceleration
of SLR. These mechanisms are also expected to contribute
to SLR in the North Sea. However, the contribution of mass
loss from the Greenland Ice Sheet is much smaller than the
globally averaged contribution due to gravitational effects
(Slangen et al., 2012). The contribution of glaciers to SLR
in the North Sea is below the global mean value as the North
Sea is relatively close to glaciers, which are mostly based in
the Northern Hemisphere (Slangen et al., 2012). Addition-
ally, the ocean dynamic sea level is expected to rise along the
Northeast Atlantic (Lyu et al., 2020; Hermans et al., 2022),
and dynamic sea-level projections based on climate models
from the Coupled Model Intercomparison Project (CMIP5
and CMIP6) also expect an acceleration. Combined, the ex-
pectation for the climate-driven sea-level change along the
Dutch coast is close to the global mean changes (Vries et al.,
2014; Fox-Kemper et al., 2021).

The data availability along the Dutch coast is much better
than for reconstructed global sea level (Dangendorf et al.,
2019; Frederikse et al., 2020). There are six tide gauges,
homogeneously distributed along the coast, measuring sea
level with very little missing data since at least 1890, which
is favourable for a study of regional SLR acceleration. We
study the average of the six tide gauges to estimate the rate of
SLR along the Dutch coast. Averaging helps to increase the
signal-to-noise ratio and avoids considering processes that
drive differences for local rates of SLR like vertical land mo-
tion and small-scale ocean processes. Furthermore, because
of their proximity, long-term changes at these stations are ex-
pected to be similar (e.g. the differences are not resolved in
the CMIP6 climate models), and an average for the Dutch
coast is sufficient to weigh up adaptation choices. However,
the rates of SLR for the individual tide gauges are included
in Appendix B. The issue with detecting a regional accel-
eration of SLR comes from the large interannual to multi-
decadal variability from atmospheric forcing, which is espe-
cially important for shallow seas like the North Sea (Gill,
1982; Hermans et al., 2020), and from similar variations in
local steric sea level (Bingham and Hughes, 2012). Detecting
the acceleration of SLR requires understanding the sources
of interannual to multidecadal variability and removing them
from tide gauge records (Haigh et al., 2014). To this end,
various authors have used multilinear regression models be-
tween sea levels and atmospheric variables like sea surface
pressure gradients, zonal and meridional surface wind veloc-
ities, and, at times, precipitation. For example, this approach
was applied to Cuxhaven in the German Bight by Dangen-

dorf et al. (2013) and to multiple regions by Calafat and
Chambers (2013). Nevertheless, there is no generally agreed
upon approach for detecting an SLR acceleration from tide
gauge stations. Sometimes the observed records are extended
by sea-level projections, and the acceleration is defined as a
rate of SLR significantly larger than observed, which only
allows for finding an acceleration in the future (Haigh et al.,
2014; Dangendorf et al., 2014a). Some studies compared the
rates of linear SLR over two different periods (Calafat and
Chambers, 2013; Steffelbauer et al., 2022), and others fitted
a second-degree polynomial to the data (Haigh et al., 2014;
Dangendorf et al., 2019). In general, the sea-level variability
due to atmospheric forcing is estimated first by linearly de-
trending the time series. After that, the variability is removed
from the sea-level data before estimating the trend and accel-
eration. Many previous studies of SLR in the North Sea did
not find evidence of a significant SLR acceleration (Calafat
and Chambers, 2013; Wahl et al., 2013; Haigh et al., 2014;
Ezer et al., 2016), whereas Steffelbauer et al. (2022) did. To
detect the acceleration of SLR in the North Sea, Steffelbauer
et al. (2022) analysed the 100-year time series (1919–2018)
of eight tide gauges and found a common breakpoint in the
early 1990s. The average rate of SLR of the stations increases
at the breakpoint from 1.7±0.3 to 2.7±0.4 mm yr−1, which
implies an acceleration of SLR. However, the prior distribu-
tion adopted for the rate of SLR before and after the break-
point assumes that the latter rate can not be smaller than the
former rate, which implies that acceleration is assumed from
the beginning.

In this paper, we use a new time series approach which
uses a generalised additive model (GAM), which allows us
to estimate a nonlinear trend and the optimal multilinear re-
gression model simultaneously. The nodal tide and zonal and
meridional wind are included in the GAM as predictive vari-
ables. Both the zonal and meridional wind are used to reduce
the uncertainty in the estimated rate of SLR. Other authors
did not always include the nodal tide as a predictive vari-
able. Using the GAM, we avoid making strong assumptions
about the shape of the sea-level trend, like the piecewise lin-
ear shape assumed by Calafat and Chambers (2013) and Stef-
felbauer et al. (2022). The sea-level trend is obtained as a
smooth curve representing the long-term change in the data.
This curve is differentiated to compute the rate of SLR as it
evolved over the observational period; this has not been ob-
tained before. We also apply a rigorous parametric bootstrap
method to estimate the uncertainty in the rate of SLR, which
avoids the assumption that the noise is serially uncorrelated.
Furthermore, comparing estimates of the rate of SLR with
and without the effects of wind and nodal tide allows us to
study the influence of these processes on SLR. We also dis-
cuss the physical mechanisms driving the wind-driven sea-
level variations in the North Sea.
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2 Data

2.1 Tide gauge observations

Annual-mean sea-level measurements are used as the av-
erage of the six reference tide gauges along the coast of
the Netherlands: Delfzijl, Den Helder, Harlingen, IJmuiden,
Hoek van Holland and Vlissingen (Fig. 1a). These stations
are used for operational sea-level monitoring because of
their extended temporal coverage and homogeneous distri-
bution along the Dutch coast (Baart et al., 2019). The mea-
surements are made by Rijkswaterstaat and provided by the
Permanent Service for Mean Sea Level and set to the Re-
vised Local Reference (Holgate et al., 2013). They were
retrieved on 1 November 2021 from http://www.psmsl.org/
data/obtaining/, last access: 30 January 2023. The readings
at these stations start between 1862 and 1872 and are gauged
with respect to the mean sea level. However, the data be-
fore 1885 are gauged with respect to readings of the mean
tide which could result in a jump in the data (Woodworth,
2017). Therefore, we only use the tide gauge data after 1890,
as was done for Frederikse and Gerkema (2018) and Baart
et al. (2019).

2.2 Atmospheric reanalysis

We use the monthly mean zonal and meridional wind at 10 m
and atmospheric pressure at sea level from two atmospheric
reanalysis products. The first product, the ERA5 reanalysis,
from the Copernicus Climate Change service Climate Data
Store, is available from 1979–2022 with a backward exten-
sion to 1950 (Hersbach et al., 2020; Bell et al., 2021). ERA5
has a spatial resolution of 0.25◦× 0.25◦. The second prod-
uct, the Twentieth Century Reanalysis Version 3 (20CRv3)
from the National Oceanographic and Atmospheric Admin-
istration (NOAA), is available from 1836 to 2015 (Slivinski
et al., 2019). The data from this analysis have a spatial reso-
lution of 1.0◦× 1.0◦.

3 Method

3.1 Statistical models

Four statistical models were developed and used to sepa-
rate the influence of the different chosen predictive factors
on SLR and to extract the resulting background sea-level
trend. All models are based on the generalised additive model
(GAM, Hastie and Tibshirani, 2017; Wood, 2020) and are
estimated by penalised maximum likelihood. Compared to
a multi-linear regression model, a GAM replaces the strict
assumption of a linear or quadratic shape of the sea-level
trend by a sum of many smooth functions. This offers the
advantage that we are not required to make a priori assump-
tions about the shape of the sea-level trend. In our four mod-
els, the GAM represents the annual-mean sea level averaged

over the six tide gauges as a smooth curve (a linear combi-
nation of many smooth cubic B-spline basis functions) plus
terms representing the influence of the predictive variables.
An overview of the four models and their mathematical de-
scription is given in Table 1. The smooth curve (trend), given
by the first term in the equations in Table 1, represents the
background variation in sea level to be estimated; its exact
meaning depends on the choice of the predictive variables. Its
smoothness is controlled by a penalty term subtracted from
the log likelihood, which is proportional to the time integral
of the squared curvature of the smooth term (Wood, 2020).
The penalty term was assigned a weight tuned to match the
variance of the smooth curve to the variance of a 30-year av-
erage.

The first model (Tr) estimates the sea-level trend only
without using any predictive variables. This setup makes no
assumptions about the drivers of SLR. We use this model
as a reference to evaluate the improvements achieved by in-
creasing the model complexity. In the second model, the in-
fluence of the lunar nodal tide on sea level is added (TrNt).
A sinusoidal wave with unknown amplitude and phase and
a fixed period of 18.613 years, the period of the nodal-tide
potential, are included as predictive variables for the nodal
tide in the GAM. There has been some debate in the litera-
ture about the best way to estimate the influence of the nodal
tide on the sea level in the North Sea. Using linear regres-
sion to estimate the effect of the nodal tide along the Dutch
coast shows an increased magnitude and a shift in the phase
compared to the equilibrium tides (Baart et al., 2011). How-
ever, using a closed sea-level budget, Frederikse et al. (2016)
suggested that there is no indication that the nodal tide devi-
ates from the equilibrium tide in the North Sea between 1958
and 2014. We find that assuming equilibrium tides leaves a
large amount of energy in the spectrum close to the period of
the nodal tide (see Appendix A). Therefore, we decide to use
a linear regression model with an undetermined phase and
amplitude but a fixed period, as in Baart et al. (2011), even
though it might remove some additional variability around
the period of nodal tides. Using this second model, the influ-
ence of the nodal tide on the trend and variability of sea level
can be studied.

The third and fourth models combine trend, nodal tide and
wind effects. For the third model (TrNtW), wind effects are
included by adding u|u| and v|v| (Table 1), where u and v
are, respectively, the zonal and meridional wind from reanal-
ysis obtained from the closest grid cell of each tide gauge
and averaged for the six stations (Fig. 1a). The wind expres-
sion is inspired by the wind stress formulation (Dangendorf
et al., 2019). Along the Dutch coast, the zonal wind is much
more important for sea-level changes than the meridional
wind (Figs. 7 and 8 from Frederikse and Gerkema, 2018,
and Fig. 4 from Dangendorf et al., 2014a). However, includ-
ing both the zonal and meridional wind components reduces
the uncertainty in the estimated rate of SLR more than only
including the zonal component. The fourth model (TrNtPd)
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uses a large-scale pressure gradient as the predictive vari-
able for the wind effect on sea level. As in Dangendorf et al.
(2014b), we compute the Pearson correlation coefficient be-
tween linearly detrended sea level along the Dutch coast and
atmospheric pressure at sea level (Fig. 1b). This shows a sim-
ilar pattern as that previously obtained for the German Bight
(Dangendorf et al., 2014b). The pattern is characterised by a
region of negative correlation over Scandinavia and a positive
correlation over southern Europe and northern Africa. Each
of these regions defines a box where the average pressure is
computed. Then, instead of using the pressure in both boxes
as predictive variables, as in Dangendorf et al. (2014b), we
take the difference between the southern and northern boxes.
This adds only one variable to the model and is physically
motivated by the fact that the pressure gradient is to some ex-
tent related to wind by geostrophy. We combine the variables
representing wind effects from the two reanalysis datasets us-
ing a linear bias correction method (Casanueva et al., 2013)
to obtain one dataset covering the full period of atmospheric
data from 1836–2022. The ERA5 dataset is used as refer-
ence data for the correction. The mean and standard deviation
of the 20CRv3 pressure and wind time series are adjusted
to match the means and standard deviations of 20CRv3 and
ERA5 over the overlap period of 1950–2015.

3.2 Analysis of model output

Using our four GAMs including different predictive variables
enables us to study the background sea-level trend, the influ-
ence of the nodal tide on sea level and the wind influence on
sea level. The wind influence on sea level can be obtained
from the results of TrNtW and TrNtPd. It is described by the
third plus the fourth term (TrNtW) or the fifth term (TrNtPd)
in the model equations given in Table 1. We obtain the re-
gression coefficients from our GAMs over the period from
1890 to 2021. Using these coefficients and the wind data, we
can obtain the wind influence on sea level from 1836–2022,
the period covered by the atmospheric reanalyses. From this,
we obtain the trend of wind-driven sea level using a third-
degree polynomial fit to the annual-mean data. Also, a spec-
tral analysis is performed on the detrended annual-mean data.
The spectra are obtained using a multitaper method (Lees
and Park, 1995). To obtain the low-frequency wind influ-
ence on sea level, the detrended annual-mean sea-level data
are smoothed using local polynomial regression (LOWESS,
Cleveland and Devlin, 1988) with a window of 21 years that
effectively removes high-frequency variability.

Using our four statistical models, we obtain the back-
ground sea-level trend (the first term in the equations in Ta-
ble 1. As a next step, the rate of SLR is obtained by dif-
ferencing these estimated smooth sea-level trends using a 3-
year step. Since a window of 3 years is used, the rates can-
not be computed for the first and last years of the time se-
ries. The rates of SLR resulting from the different models do
not include the same physical processes. The resulting rates

of TrNtW and TrNtPd do not include the contribution from
wind and nodal effects, and TrNt does not include nodal ef-
fects, while Tr includes all processes.

3.3 Uncertainty computation

To estimate our models from the data, we use a generic
method for likelihood-based estimation of GAM (Wood,
2020). It treats the unknown noise terms, the residuals, as in-
dependent, identically distributed normal random variables.
However, checks of the residuals reveal that they are serially
correlated, so the independence assumption is not warranted.
This does not invalidate the method: since only marginal
parameters are estimated, the estimator is consistent under
weak assumptions about the dependence (Sect. 2 of Cox and
Reid, 2004). However, serial dependence of the noise affects
the covariance of the estimated model parameters, so for de-
riving confidence intervals and for testing hypotheses, we
must account for it. Our estimator for the rate of SLR (the
derivative of the smooth-spline estimate of the variation in
sea level) is particularly sensitive to low-frequency compo-
nents of the noise. Our error analysis must account for these
subtle aspects of serial dependence. Therefore, we apply a
parametric bootstrap method based on the noise spectrum,
similar to the wild bootstrap version of the technique in Kirch
and Politis (2011); we estimate the noise spectrum using the
same method as described in the previous section and gen-
erate random instances of the Gaussian process that has this
spectrum. From these, we obtain instances of the sea-level
time series by adding the estimates of the non-random terms.
Then we apply the GAM-based estimator for our models to
each of these instances to obtain an estimate of the rate of
SLR. We use 10 000 iterations for the bootstrap method in
order to obtain convergence. This sample of estimates is used
to derive the error statistics and to test hypotheses.

However, because the estimate of the rate of SLR is sensi-
tive to low-frequency noise, we cannot assume that the noise
spectrum is sufficiently closely approximated by the spec-
trum of the residuals, as Kirch and Politis (2011) do. There-
fore, we need to estimate the noise spectrum from the spec-
trum of the residuals. A simple iterative correction scheme
solves this inverse problem. Given a guess of the noise spec-
trum, we simulate random instances of sea-level time series
as above. For each, we estimate the model coefficients, de-
rive the residuals, estimate their spectra and average these
estimates. Dividing this average by the guess of the noise
spectrum gives the mean effect of model estimation, the quo-
tient. The spectrum of the residuals is then corrected by di-
viding it by this quotient. The result is used as a guess for
the next step. The iteration is initialised with the spectrum of
the residuals. It converges within three to five iterations. The
spectrum of the residuals and the estimated noise spectrum
differ only in the low frequencies as some of the noise in this
band is absorbed in the spline term.
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Table 1. Overview of the equations describing the four GAMs and summary of the statistical model performance. In the model equations, ηt
is the average sea level for the year t , φj t is the value of the smooth B-spline basis function φj for the year t , and αj is the corresponding
coefficient. βj are the coefficients of the predictive variables for wind effects. A is the amplitude , T = 18.613 year is the period, and ϕ is the
phase of the nodal tide. In these equations, the first term describes the sea-level trend, the second term describes the influence of the nodal
tide on sea level, and the third plus the fourth or fifth term gives the wind influence on sea level. The number of degrees of freedom includes
the number of predictive variables and the number of basis functions used by the B-spline method. The deviance is a generalisation of the
sum of squares of residuals used to compare linear regression models.

Model Components Performance

Sea Trend Nodal Zonal Meridional Pressure Degrees of Deviance
level (spline) tide wind wind difference freedom

Tr ηt =
∑
jαjφj t 4.7 1167.0

TrNt ηt =
∑
jαjφj t +Asin(2πt/T +ϕ) 6.6 1033.0

TrNtW ηt =
∑
jαjφj t +Asin(2πt/T +ϕ) +β1|ut |ut +β2|vt |vt 8.6 423.0

TrNtPd ηt =
∑
jαjφj t +Asin(2πt/T +ϕ) +β31pt 7.6 652.0

Figure 1. (a) Location of the six tide gauges used to define the mean sea level along the Dutch coast and of the wind data used from the
atmospheric reanalyses. (b) The correlation coefficient between sea level along the Dutch coast and atmospheric pressure at sea level from
the 20CRv3 reanalysis between 1890 and 2015. Both variables are linearly detrended.

4 Results

4.1 Comparison of the different GAMs

The GAM progressively better fits the data, measured by the
deviance (Table 1), as the complexity of the model increases
(e.g. the number of predictive variables increases), as mea-
sured by the number of degrees of freedom (Table 1). The
deviance is used to compare generalised linear models and
is a generalisation of the sum of squares of residuals used to
compare linear regression models (Wood, 2020). Including
the nodal tide reduces the deviance by 11 %, and including
the wind further reduces the deviance by an additional 33 %
for TrNtPd to 52 % for TrNtW, implying that the best fit is
obtained for TrNtW. The improved fit for TrNtW could be ex-
plained by the fact that, here, the local wind is used, whereas,
for TrNtPd, a simplification of large-scale wind is used. The
resulting fits can be seen in Fig. 2. Only the fit for TrNtW is

shown as it strongly overlaps with the fit for TrNtPd. When
both the zonal and meridional wind are included as predictive
variables, both the deviance and the standard error in estimat-
ing the trend are reduced compared to when only including
the zonal wind. Therefore, we find that using both zonal and
meridional wind as predictive variables for the wind is the
best choice for estimating the sea-level trend. However, when
we include both northern and southern boxes as separate pre-
dictive variables (as is done by Dangendorf et al., 2014b)
instead of using their difference (as we do in TrNtPd), the
standard error in estimating the trend is similar. Therefore,
we choose to use the simplest model for estimating the sea-
level trend.

4.2 Wind influence on sea level

Figure 3a shows the resulting wind influence on sea level,
where the large interannual variability stands out. From these
annual-mean time series, we estimate the wind-driven sea-
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Figure 2. Comparison of the annual tide gauge data averaged over
six tide gauges along the Dutch coast with three sea-level time se-
ries obtained from the generalised additive models (Tr, TrNt and
TrNtW). Only TrNtW is plotted since it overlaps strongly with
TrNtPd – their Pearson correlation coefficient is 0.98.

level trend, as is shown in Fig. 3b. We find a long-term
positive trend of wind influence on sea level. For the sec-
ond period, 1929–2022, the wind-driven trend is 0.13 and
0.14 mm yr−1 for, respectively, TrNtW and TrNtPd. For the
first period, 1836–1928, the wind-driven trend of TrNtW is
0.17 mm yr−1, and the trend of TrNtPd is much larger at
0.42 mm yr−1. An explanation for the large difference at the
beginning of the time series is that the reanalysis data perfor-
mance degrades further back in time due to a lack of ob-
servations. A long-term strengthening of the wind has in-
creased the sea level along the coast of the Netherlands. This
long-term strengthening of wind is consistent with the ob-
served northward shift and increased speed of the jet stream,
which could be due to a decreasing temperature gradient be-
tween the North Pole and the Equator at the height of the
tropopause (Figs. 7d and 9d from Hallam et al., 2022). The
long-term influence of atmospheric drivers on SLR was stud-
ied before for the periods 1953–2003 (Fig. 2c from Dangen-
dorf et al., 2014a) and 1900–2011 (Fig. 12 from Dangendorf
et al., 2014a). However, we consistently find higher rates for
the atmospheric-driven SLR for these periods. Over the pe-
riod 1953–2003, we find trends of 0.73 and 1.01 mm yr−1,
and for the period 1900–2011, we find trends of 0.42 and
0.73 mm yr−1 for, respectively, TrNtW and TrNtPd. Whereas
Dangendorf et al. (2014a) also find a positive trend for the
period 1953–2003, the same authors find a negative trend for
the period 1900–2011, contradicting our results. The differ-
ences can be due to an update in the atmospheric reanalysis
(20CRv3 instead of 20CRv2).

After removing the trend from the data in Fig. 3a, a spec-
tral analysis is performed (Fig. 3c). The spectra of the wind
impact on sea level obtained using both TrNtW and TrNtPd
have a similar shape, but the total variance is larger for
TrNtW compared to TrNtPd, which is a result of the larger
interannual variability of TrNtW, as shown in Fig. 3a. For

both methods, there is more energy in the signal for peri-
ods larger than 2 decades than for smaller periods. Therefore,
the signals are smoothed using a local polynomial regression
(LOWESS, Cleveland and Devlin, 1988) with a window of
21 years that effectively removes high-frequency variabil-
ity (dashed lines in Fig. 3c). The resulting detrended and
smoothed time series (Fig. 3d) show that low-frequency wind
variability can raise or drop sea level by over 2 cm over a
period of 2 to 5 decades. In Appendix C, we discuss how
this low-frequency variability lags low-frequency sea-surface
temperatures in the North Atlantic that have a similar pattern
to the Atlantic Multidecadal Variability.

4.3 Rates of SLR

The rates of SLR obtained from differentiating the estimated
smooth sea-level trend from each of the four models are
shown in Fig. 4, and averages over different periods are
shown in Table 2. Reduction of uncertainty is generally the
main motivation for removing variability due to known atmo-
spheric drivers from the sea-level trend (Dangendorf et al.,
2014a). The rate of change from TrNt has an uncertainty, av-
eraged over time, of 0.29 mm yr−1, whereas Tr has a larger
mean uncertainty of 0.45 mm yr−1. Including the zonal and
meridional wind (TrNtW) as predictive variables further de-
creases the average uncertainty to 0.25 mm yr−1, whereas in-
cluding the pressure difference (TrNtPd) increases the uncer-
tainty again to 0.33 mm.yr. The standard error in estimating
the trend is larger at the time series’ start and end because
there are fewer constraints than in the middle of the time se-
ries (Fig. 4f).

In addition to reducing the uncertainty, the wind also in-
fluences the rate of SLR itself. Both TrNtW and TrNtPd have
lower rates in the first part of the 20th century compared to
Tr and TrNt. From the 1960s onward, the rates of SLR of
TrNtW and TrNtPd increase rapidly. The TrNtW model has
the smallest standard error and estimates the largest rate of
SLR over recent decades, which reached 2.93.5

2.4 mm yr−1 over
the period 2000–2019. For this model, the rate of SLR over
periods before the acceleration in the 1960s is 1.72.3

1.3 mm yr−1

over the period 1900–1919, 1.72.1
1.4 mm yr−1 over the period

1920–1939 and 1.51.9
1.2 mm yr−1 over the period 1940–1959

(Fig. 4 and Table 2). We obtain the probability (the p value)
that the estimated rate difference between the periods 2000–
2019 and a previous period (1900–1919, 1920–1939 and
1940–1959) would be exceeded if the sea level had changed
at a constant rate (Table 3). For the Tr model, we find proba-
bilities between 5 % and 23 % for the different periods. Hav-
ing more predictive variables in the GAM decreases these
probabilities. For the TrNt model, the probability is 15 %
when compared with the period 1900–1919 due to the higher
rates of SLR of this model at the beginning of the 20th cen-
tury. However, for the other periods, we find probabilities
of 1 %, implying that finding these rate differences would
be very unlikely if there had been no acceleration (Mastran-
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Figure 3. Comparison of the wind influence on sea level along the Dutch coast obtained from two different regressors: average zonal and
meridional wind of the six tide gauge stations of Fig. 1a (TrNtW, orange line) and the pressure difference between the northern and southern
boxes of Fig. 1b (TrNtPd, blue line). (a) Time series of annual averages. (b) Trend computed using a third-degree polynomial fit with linear
trend values over the first half and the second half of the total period. (c) Spectra obtained using a multitaper method (Lees and Park, 1995).
Both the detrended time series (solid lines) and the detrended and smoothed time series (dashed lines) are shown. Smoothing is obtained
from a LOWESS method with a window of 21 years. (d) Detrended and smoothed time series shown in panel (a).

drea et al., 2011). For the TrNtW model, we find probabilities
smaller than 1 % for all periods, and in the TrNtPd model, we
find probabilities smaller than 5 % and only 1 % when com-
pared with the period 1940–1959. These probabilities clearly
indicate an acceleration of SLR along the coast of the Nether-
lands since the 1960s, which has been masked by wind field
and nodal-tide variations. This agrees with the global mean
sea level that has accelerated since the 1960s (Dangendorf
et al., 2019).

5 Discussion

By estimating the trend, nodal tide and atmospheric pro-
cesses underlying the wind influence on sea level simulta-
neously using the GAM, we can avoid a priori assumptions
about the sea-level trend, like having a linear or quadratic
shape. Furthermore, the rate of SLR can be computed as a
time-evolving variable over the whole observational period
contrary to being calculated as a constant over an arbitrary
period, as was done in Calafat and Chambers (2013) and
Steffelbauer et al. (2022). In addition, we propose a careful
uncertainty analysis accounting for serially dependent unex-
plained fluctuations, which is used to evaluate the strength
of the evidence for an acceleration. These two elements help
to avoid framing the problem of acceleration detection as bi-

nary. This is important when advising decision makers: sig-
nificance testing based on ad hoc models like a broken-line
trend may lead to a paradigm shift from a steady rate of SLR
in one year to an accelerating rise just years later, as demon-
strated by the results in Calafat and Chambers (2013) and
Steffelbauer et al. (2022). To our best knowledge, the GAM
has not been applied to estimate trends and acceleration in
sea-level data before, and we believe it could help solve sim-
ilar acceleration detection problems in regions other than the
coast of the Netherlands.

Over recent decades, our best-fitting model yields a rate
of SLR of 2.93.5

2.4 mm yr−1 over 2000–2019 (Table 2). This is
in agreement with the results of Steffelbauer et al. (2022)
for the North Sea and of Frederikse et al. (2020) for the
North Atlantic, who find rates of, respectively, 2.73.1

2.3 and
2.73.3

2.1 mm yr−1 over 1994–2018.
When removing the wind influence from the sea-level ob-

servations, the underlying assumption is that this influence is
only due to natural variability and that there is no structural
change due to anthropogenic forcing. However, as we find a
wind-driven trend over the entire period of study 1836–2022
from both the wind and pressure difference model (Fig. 3b),
this trend could also continue in the future. We do not know
of any study investigating the possible cause of such a trend.
If it is caused by climate change due to anthropogenic forc-
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Figure 4. (a–d) The rates of SLR were obtained for four different statistical models. The period shown here is 1891–2019. The dashed
lines show the 5th and 95th percentiles of the uncertainty range computed from a parametric bootstrap method. Numbers in grey under the
curves indicate the mean rates for six consecutive 20-year periods ([1900–1919], [1920–1939], [1940–1959], [1960–1979], [1980–1999] and
[2000–2019]). (e) Median sea-level rates. (f) Standard error of the sea-level rates.

Table 2. The trend values are obtained by averaging the sea-level rate (Fig. 4a–d) over different periods. The lower and upper bounds are
obtained by averaging the 5th and 95th percentiles of the sea-level rate.

Period 1900–1919 1920–1939 1940–1959 1960–1979 1980–1999 2000–2019 1890–1859 1960–2021 1890–2021

Tr 2.22.9
1.4 1.72.3

1.1 1.62.3
1.0 1.82.5

1.2 2.32.9
1.6 2.73.7

1.8 1.92.6
1.1 2.33.0

1.5 2.12.8
1.3

TrNc 2.32.8
1.8 1.72.1

1.3 1.62.0
1.2 1.82.2

1.4 2.32.7
1.9 2.73.4

2.1 1.92.4
1.5 2.32.8

1.8 2.12.6
1.6

TrNcW 1.72.2
1.3 1.72.1

1.4 1.51.9
1.2 1.41.7

1.1 2.22.6
1.9 2.93.5

2.4 1.72.1
1.2 2.22.6

1.8 1.92.3
1.5

TrNcPd 1.92.4
1.3 1.82.2

1.3 1.52.0
1.1 1.51.9

1.0 2.12.6
1.6 2.73.4

2.0 1.82.3
1.2 2.12.7

1.6 1.92.5
1.4

ing, it would be reasonable to expect it to continue in the fu-
ture. Conversely, if it is caused by natural variability, it might
reverse. Most of the CMIP5 and CMIP6 ensembles do not
show a systematic trend associated with wind influence on
sea level in the North Sea over the historical period or in fu-
ture scenarios. So, these models may miss the process driv-
ing the trend in the observations, or the trend in the observa-
tions may be natural variability. In each case, the magnitude
of around 0.15 mm yr−1 over the historical period is small

enough compared to other sources of SLR uncertainty to ne-
glect it when making sea-level projections on timescales of
more than several decades.

The four GAMs indicate a decrease in the rate of SLR
from the beginning of the 20th century until about the 1960s,
with a minimum in the 1940s for Tr and TrNt and in the
1960s for TrNtZw and TrNtPd, as can be seen in Fig. 4.
The decreasing rate of SLR as seen in Fig. 4 could be due
to the strong Arctic warming from 1900–1930 followed by
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Table 3. The p values represent the probability that the estimated rate difference between 2000–2019 and a previous period before 1960
would exceed the computed value if the actual rates were equal during these two periods. For example, for the Tr model, if the sea-level rates
were the same between 1900–1919 and 2000–2019, then there would be a probability of 23 % to compute a rate difference at least as large
as what we measure. On the other hand, for the model TrNtW, the probability of obtaining a rate difference that is at least as large as that
measured under the assumption that the rates are the same is smaller than 1 % for all past periods considered here.

Statistical model r2000−2019 vs. r2000−2019 vs. r2000−2019 vs.
r1900−1919 r1920−1939 r1940−1959

Tr 0.23 0.05 0.06
TrNt 0.15 0.01 0.01
TrNtW < 0.01 < 0.01 < 0.01
TrNtPd 0.05 0.02 0.01

an Arctic cooling from 1930–1970 (Fig. 4, Bokuchava and
Semenov, 2021). This could have influenced the rate of SLR
by reducing the glacier loss rate or decreasing the local steric
change. Since the local sea-level budget is not closed before
1950 (Frederikse et al., 2020), we can only speculate about
the causes of the drop in the rate of SLR.

From daily to interannual timescales, the wind influence
on sea level in shallow seas is well understood through
barotropic theory of the interplay between the Coriolis
force, pressure gradient and surface wind stress (Eq. 3 from
Mangini et al., 2021). On multidecadal timescales, it is pos-
sible that the physical mechanism underpinning the relation
between wind and sea level also involves steric sea-level
change (Chen et al., 2014; Dangendorf et al., 2021). In par-
ticular, baroclinic signals in the deep ocean propagate as a
volume flux into shallow seas (Bingham and Hughes, 2012;
Calafat et al., 2012). However, since the regression coeffi-
cients to obtain the wind influence on SLR are determined
using the annual data, including the large interannual vari-
ability (see the large spectral power of the wind influence es-
timates in Fig. 3c), we think these coefficients mostly reflect
the barotropic wind influence.

We find a strong increase in the rate of SLR between the
1960s and 2000s (Fig. 4). Based on accelerating globally av-
eraged SLR, we expect that the SLR acceleration at the Dutch
coast continues beyond the year 2000. However, the stan-
dard error of the rate of SLR increases due to the approach-
ing end of the time series; therefore, our method cannot say
for certain whether the acceleration persists. One potential
application of the reconstructed SLR evolutions would be
the extrapolation of the observed rate into the near future.
This method was recently used as an additional line of evi-
dence for future sea-level rise by Sweet et al. (2022). In the
model TrNtW (Fig. 4c), the sea-level rate is 1.5 mm yr−1 in
1975 and 2.8 mm yr−1 in 2000. Extrapolation with a con-
stant year 2000 rate until 2100 results in 0.28 m of sea-
level rise. On the other hand, assuming a persistent acceler-
ation of (2.8–1.5) mm yr−1/25 yr= 0.05 mm yr−2, sea-level
rise will be 0.5 m between 2000 and 2100, much higher than
the rise without acceleration. However, given the complex-
ity of changes in the various drivers of global SLR, it would

be naive to assume that the acceleration will remain con-
stant during the remainder of this century. Nonetheless, these
crude extrapolations illustrate the practical significance of
our estimates of the local rates of SLR and the importance
of obtaining the evolution of these rates over time.

In the appendices, we show and discuss our nodal-tide
estimates (Appendix A), the rates of SLR of the individ-
ual tide gauge stations (Appendix B) and the relationship
of the multidecadal wind influence on sea level with two
well-established modes of variability in the North Atlantic,
the North Atlantic Oscillation and the Atlantic Multidecadal
Variability (Appendix C). In Appendix A, we show that the
estimates of the nodal tide in TrNt, TrNtW and TrNtPd have
amplitudes of more than 2.5 times the amplitude of the equi-
librium tide and that they are ahead of the equilibrium tide
by 3 years. However, only correcting the sea level using the
equilibrium tide leaves a large amount of spectral energy
close to the period of the nodal tide. Our hypothesis for the
deviation from equilibrium tide along the Dutch coast, which
needs more extensive research, concerns the steric sea level:
nonlinear dynamics of the nodal tide inside the North Sea
basin could drive vertical-mixing processes that drive steric
sea level. In a budget study (as was done by Frederikse et al.,
2016), these nodal-driven effects are classified as steric ef-
fects in the budget, making the equilibrium tide successful in
closing the budget. In Appendix B, we show the rates of SLR
for the individual tide gauge stations using the GAM TrNtW.
The rates of SLR for the individual stations show large dif-
ferences which could be due to unaccounted-for vertical land
motion, tidal effects, large-scale engineering projects affect-
ing coastal dynamics or measurement errors, especially fur-
ther in the past (Baart et al., 2019). Additional research is
needed to better understand which physical processes drive
the differences in the local sea-level rates.

6 Conclusions

In this study, we estimate the sea-level trend and the influ-
ence of the nodal tide and wind on sea level along the coast
of the Netherlands. We analyse the average of the observa-
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tions from six tide gauges and zonal and meridional wind
and atmospheric pressure at sea level from two reanalysis
data sets. Using four different GAMs, we estimate a smooth
trend and (depending on the model) the effects of the nodal
tide and wind. One model has no predictive variables; oth-
ers have only nodal tide or additionally include zonal and
meridional wind or pressure gradient as predictive variables.
We find that using the local zonal and meridional wind as
predictive variables best estimates the sea-level trend based
on the reduction of the deviance and of the standard error.
The deviance is reduced when more predictive variables are
added to the GAM: by 11 % when adding the nodal tide and
by another 33 % to 52 % when adding the wind forcing.

Estimating the wind influence based on different choices
of predictive variables in TrNtW and TrNtPd shows the
method’s robustness, as both models lead to similar conclu-
sions. We find a long-term sea-level rise due to wind forcing
of 0.13 mm yr−1 or 0.14 mm yr−1 for 1929–2022, depending
on the choice of model (Fig. 3b). The long-term strength-
ening of the wind is consistent with an observed northward
shift and strengthening of the jet stream (Hallam et al., 2022).
Also, we find a low-frequency wind variability which can
raise or drop sea level by about 1 cm over 2 to 5 decades
(Fig. 3d). Using a coherence analysis, we relate this variabil-
ity to both the North Atlantic Oscillation and the Atlantic
Multidecadal Variability (Appendix C). Using the GAMs
TrNt, TrNtW and TrNtPd we obtain estimates of the nodal
tide with amplitudes of more than 2.5 times the amplitude of
the equilibrium tide and a phase that is ahead of the equilib-
rium tide by 3 years (Appendix A).

After obtaining the sea-level trend using the four GAMs,
we obtain the rate of SLR by differentiating the trend. This
results in new insight into the evolution of the rate of SLR
along the coast of the Netherlands over the observational
period (Fig. 4). The rates of SLR, excluding the influence
of the wind, are lower at the beginning of the 20th cen-
tury and larger at the beginning of the 21st century. Our
best-fitting model yields a rate of SLR, excluding nodal and
wind effects, of 2.93.5

2.4 mm yr−1 over 2000–2019 compared to
1.72.3

1.3 mm yr−1 in 1900–1919 and 1.51.9
1.2 mm yr−1 in 1940–

1959 (Table 2). The probability (the p value) of finding a
rate difference between 1940–1959 and 2000–2019 equal to
the one we found when there would not have been an accel-
eration is smaller than 1 % (Table 3). These results provide a
clear indication of an acceleration of SLR. Also, we find, for
the first time, that the acceleration of SLR along the coast of
the Netherlands started in the 1960s. This aligns with global
SLR observations and expectations based on a physical un-
derstanding of SLR related to global warming (Fox-Kemper
et al., 2021; Dangendorf et al., 2019). Furthermore, we ex-
plain that the acceleration of SLR along the Dutch coast has
been difficult to detect due to the masking of the acceleration
by wind field and nodal-tide variations.

Appendix A: Nodal effects on sea level

The nodal effects on sea level are represented by the second
term of the equations shown in Table 1 of our GAMs TrNt,
TrNtW and TrNtPd. Figure A1a shows the estimates of the
nodal tide from different GAMs, as well as the equilibrium
tide. The equilibrium tide is obtained for each of the six tide
gauge stations, whereafter their average is obtained (Wood-
worth, 2012). We find that the nodal-tide amplitude is 1.44,
1.45 and 1.35 cm for, respectively, TrNt, TrNtW and TrNtPd
compared to an amplitude of 0.54 cm for the equilibrium tide.
We also find that their phases are ahead of the phase of the
equilibrium tide by 3 years. Figure A1b shows the spectra
of the residual obtained by subtracting the reconstructed sea
level from the observed sea level, as well as the spectra of the
equilibrium tide. The reconstructed sea level is obtained for
the model TrW, which includes the sea-level trend and zonal
and meridional wind but no nodal tide, and for the models
TrNtW and TrEtW, where the predictive variables are the
same as for TrW but the sea-level data is corrected using the
equilibrium tide. Since the models TrEtW and TrNtW only
differ in the way the nodal tide is obtained, we can study the
effect of the method on the resulting nodal-tide estimation.
The spectra are obtained using a multitaper method (Lees
and Park, 1995). Due to the use of the multitaper method,
the spectrum of the equilibrium tide (Et) is not a single line
at 18.613 years but rather a peak centred around that period
as a result of the windowing. As expected, around the period
of the equilibrium tide, most energy remains in the residuals
of TrW as this model does not include the nodal tide leaving
the nodal-tide signal in the residuals. When the equilibrium
tide is included in the model (TrEtW), the nodal-tide signal
should no longer be included in the residuals, and therefore
the spectrum should contain less power around the period of
the equilibrium tide. We see that, indeed, less power remains
around this period and that the removed power is equal to the
power of the equilibrium tide (Et). However, a lot of energy
remains compared to using TrNtW. This result underlines our
choice to use a statistical estimation for the nodal tide.
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Figure A1. (a) Comparison of the influence of the nodal tide on sea level resulting from the GAMS TrNt, TrNtW and TrNtPd to the
equilibrium tide. (b) Spectra of the residuals for a model including only trend and wind (TrW); including trend, nodal cycle and wind
(TrNtW; and including only trend and wind but with sea level corrected for the equilibrium tide (TrEtW). The residuals are obtained by
removing the estimated sea level from the observed sea level. Also, the spectrum is shown for the equilibrium tide (Et), as well as for the
equilibrium tide period at 18.613 years (Et period).

Appendix B: Rates of SLR for individual tide gauge
stations

In this study, we have used the average of the six tide gauges
along the Dutch coast (Fig. 1a) to estimate the rate of SLR
while reducing the influence of local processes. We obtain
the rates of SLR and their standard errors for each tide gauge
station (Fig. B1). We use TrNtW as the sea-level rates for
the average of the six stations resulting from this GAM have
the lowest standard error (Fig. 4f). The standard errors of
the rates (Fig. B1b) are mostly higher for the individual tide
gauges than for their average. The rates of SLR for the in-
dividual stations show large differences, in particular in the
first half of the observational period. Before the 1960s, the
spread in sea-level rates between the stations is larger than
after; while the rates of some stations increase, for other sta-
tions they decrease. After the 1960s, the rates for most sta-
tions show an overall increase, as well as a smaller spread
between the stations.

Figure B1. The rates of SLR obtained per tide gauge station using the GAM TrNtW. (a) The rates of SLR per tide gauge station, as well as
their average obtained from TrNtW. (b) Standard error of the sea-level rates.
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Appendix C: Multidecadal sea-level variability

In Fig. 3d, we found that our two estimates of wind influ-
ence on Dutch sea level exhibit multidecadal variability with
an amplitude of about 1 cm and a period of 2 to 5 decades.
This multidecadal wind influence estimate was derived by re-
moving third-order polynomial fits of the wind (W) or pres-
sure difference (Pd) components of the TrNtW and TrNtPd
GAMs, respectively (Fig. 3b), and subsequently applying a
21-year LOWESS filter (Fig. 3c). Previous studies have not
revealed this wind-driven low-frequency sea-level variabil-
ity in Dutch sea-level observations. As our two wind influ-
ence estimates are based on the wind at the Dutch coast
and the sea-level pressure difference over Europe, respec-
tively, it stands to reason that they are related to the large-
scale North Atlantic climate state and its internal variabil-
ity. There are two well-established North Atlantic modes
of variability: the North Atlantic Oscillation (NAO), mea-
sured by the pressure difference between the Iceland Low
and the Azores High, and the Atlantic Multidecadal Vari-
ability (AMV), measured by the North Atlantic sea surface
temperature (SST) anomaly. In this paragraph, we analyse
the relation of our low-frequency wind influence estimates to
North Atlantic SSTs, as well as to indices of the NAO and
AMV. We also discuss possible mechanisms for these rela-
tionships.

With Fig. C1, we focus on the correlation of our wind in-
fluence estimates with North Atlantic SSTs. Depending on
the timescale, patterns of anomalous SSTs can be both a
cause and a consequence of anomalous winds through vari-
ous mechanisms of air–sea interactions. On short timescales,
atmospheric variability determines North Atlantic SSTs,
while on multidecadal timescales, the oceanic heat con-
vergence drives the North Atlantic SST signal (Woollings
et al., 2015). The NAO imprints on the SST on inter-
annual timescales in a tripole pattern, while on multidecadal
timescales, the SST anomalies influence the NAO behaviour,
in particular its persistence behaviour. The AMV index mea-
sures the average North Atlantic SST anomaly. Using the
COBE-SST2 reanalysis from 1850–2019 (Hirahara et al.,
2014), we correlate the low-frequency wind influence esti-
mates of Fig. 3 with the similarly detrended and smoothed
North Atlantic SST field. We see generally negative correla-
tions with a tripole pattern with more negative correlations
in the north and south and neutral or even positive correla-
tions in the central North Atlantic. Of particular interest is
the meridional SST gradient around 50◦ N, visible through
the correlation gradient in Fig. C1, which affects the zonal
wind around this latitude.

The NAO is a mode of atmospheric variability that in-
fluences, among others, the storm tracks and hence aver-
age wind over the North Atlantic and the North Sea. The
NAO is known to influence the sea level in the North Sea,
especially in winter (Jevrejeva et al., 2005; Dangendorf
et al., 2012, 2014a). In atmosphere–ocean general circulation

model simulations, Dangendorf et al. (2014b) found a statis-
tically significant relationship between the NAO and atmo-
spherically induced mean sea-level changes in the German
Bight. For our analysis, we use the annual NAO reconstruc-
tion by Jones et al. (1997), which covers the period 1825–
2021 and measures the pressure difference between Gibral-
tar and southwest Iceland. The AMV measures the multi-
decadal variability of the North Atlantic SSTs and is con-
nected to changes in the Atlantic Meridional Overturning
Circulation. We use the annual AMV index time series start-
ing in 1856 provided by the Physical Sciences Laboratory of
the United States National Oceanic and Atmospheric Admin-
istration (Enfield et al., 2001).

Figure C2 shows time series, spectra, coherence and phase
difference of the wind influence estimates, W of TrNCW,
and Pd of TrNcPd, together with indices of the NAO and the
AMV. Panels (a) and (b) show the annual, standardised and
21-year LOWESS smoothed time series. Panels (c) and (d)
show the multitaper spectral estimates of these time series
(like Fig. 3c). The wind influence and NAO spectra are ap-
proximately white, i.e. have similar spectral power at all pe-
riods, while the AMV time series is clearly red with spectral
power concentrated at multidecadal periods. The third row
shows the coherence spectra between pair-wise combinations
of the time series, while the estimated phase difference is
shown in the last row. The highest coherence is observed be-
tween the two wind influence time series, Pd and W, except at
periods close to 20 years with approximately zero phase lag,
suggesting that they measure the same multidecadal wind in-
fluence at sea level. Both wind influence time series show
medium coherence with the NAO, peaking between 20 and
30 years, with little phase difference at periods longer than
20 years. The coherence with the AMV is high for both wind
influence time series being anti-phase at multidecadal peri-
ods, especially after longer than 30 years, meaning higher
North Atlantic SSTs correlate with lower wind-induced sea
levels at the Dutch coast on these multidecadal timescales.
The NAO and AMV are anti-correlated, especially at periods
longer than 10 years, though their coherence is low, a find-
ing consistent with the study by Klavans et al. (2019). We
also investigated the effect of limiting the time series length
to more recent times, e.g. from 1890, where qualitatively the
same relationships hold (not shown).

The picture that emerges from the coherence analysis in
Fig. C2 is that the NAO is positively correlated with the wind
influence on the Dutch sea level, especially around periods
of 20–30 years, and the AMV is negatively correlated, in
particular at periods longer than 30 years. The out-of-phase
NAO–AMV relationship (Fig. C2e) has been found and stud-
ied previously (e.g. Peings and Magnusdottir, 2016). Even
though Pd of TrNcPd reflects a meridional atmospheric pres-
sure gradient similar to the NAO (albeit shifted eastward), the
relatively low Pd–NAO coherence (Fig. C2f) suggests that
the NAO is an inferior proxy for annual sea-level variabil-
ity along the Dutch coast compared to the pressure gradi-
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ent of Pd (Fig. 1b) The overall negative correlation with the
smoothed SSTs of Fig. C1 is also expressed as an out-of-
phase relationship between the wind influence estimates and
the AMV (Fig. C2g, h). Strengthening of the meridional SST
gradient around 50◦ N strengthens the meridional pressure
gradient and hence the zonal westerly winds, which increases
the wind-driven sea-level signal (Hallam et al., 2022). Fur-
thermore, the negative SST correlation north of South Amer-
ica is related to a shift in the intertropical convergence zone,
which triggers an eastward-tilting atmospheric Rossby wave
train that affects wind speeds over Central Europe (Okumura
et al., 2001).

Naturally, there are limitations to this exploratory analy-
sis. We only investigated annual time series and neglected
the seasonality of the effects, though we focus here on mul-
tidecadal timescales. The time series are also relatively short
compared to the multidecadal timescales of interest, which
affects spectral estimation in particular. Furthermore, all ob-
served climate variables used here are subject to anthro-
pogenically forced trends. Removing these trends is neces-
sarily imperfect; we have used cubic polynomial detrending
for the wind influence estimates and the North Atlantic SSTs,
and the AMV time series is only linearly detrended. To inves-
tigate whether the findings are influenced by our choice of
SST reanalysis dataset, we also performed the SST correla-
tion analyses of Fig. C1 with the HadISSTv1.1 SST reanal-
ysis of the Met Office Hadley Centre (1870–2021; Rayner
et al., 2003) and confirmed that the results are very similar
(not shown). Despite these limitations, we can conclude that
the sea-level variability at the Dutch coast at multidecadal
timescales is influenced by both the NAO and the AMV,
though more research is needed.

Figure C1. Correlation pattern of our multidecadal wind influence estimates, W of TrNtW (a) and Pd of TrNtPd (b), with the North Atlantic
sea surface temperature field. Both the wind influence time series and the SSTs at each geographic point are detrended with a third-order
polynomial and smoothed with a 21-year LOWESS filter (see Fig. 3d for the detrended and smoothed wind influence time series).
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Figure C2. Time series analysis of the wind influence estimates, W of TrNtW (left) and Pd of TrNtPd (right), and indices of the North
Atlantic Oscillation (NAO) and Atlantic Multidecadal Variability (AMV). (a, b) The annual, unit standard deviation (SD) time series (thin
lines) together with their 21-year LOWESS-filtered versions (thick lines). (c, d) Multitaper spectral estimates of the annual time series. (e,
f) Spectral coherence estimates of pairs of time series with 5th–95th percentile uncertainty range shaded. (g, h) Phase shift estimates with
uncertainties as error bars. The curved grey lines in the background with labels ranging from 5–40 translate the phase shift in radians to years
at each frequency with a positive (negative) phase denoting the first time series ahead of (lagging behind) the second time series.
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