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Abstract. The adjoint assimilation method has been applied
to coupled ocean and sea ice models for sensitivity studies
and Arctic state estimations. However, the accuracy of the
adjoint model is degraded by simplifications of the adjoint
of the sea ice model, especially the adjoint sea ice rheolo-
gies. As part of ongoing developments in coupled ocean and
sea ice estimation systems, we incorporate and approximate
the adjoint of viscous-plastic sea ice dynamics (adjoint-VP)
and compare it with the adjoint of free-drift sea ice dynam-
ics (adjoint-FD) through assimilation experiments. Using the
adjoint-VP results in a further cost reduction of 7.9 % in com-
parison to adjoint-FD, with noticeable improvements in the
ocean temperature over the open water and the intermediate
layers of the Arctic Ocean. Adjoint-VP adjusts the model in-
put more efficiently than adjoint-FD does by involving differ-
ent sea ice retreat processes. For instance, adjoint-FD melts
the sea ice up to 1.0 m in the marginal seas from May to
June by overadjusting air temperature (> 8 ◦C); adjoint-VP
reproduces the sea ice retreat with smaller adjustments to the
atmospheric state within their prior uncertainty range. These
developments of the adjoint model here lay the foundation
for further improving Arctic Ocean and sea ice estimations
by comprehensively adjusting the initial conditions, atmo-
spheric forcings, and parameters of the model.

1 Introduction

The Arctic Ocean has experienced drastic changes, includ-
ing rapidly declining sea ice (Comiso et al., 2008; Kwok,
2018), increased inventory of freshwater in the western Arc-
tic (Proshutinsky et al., 2019), enhanced warm inflows from
the Pacific Ocean (Woodgate et al., 2012) and the Atlantic
Ocean (Polyakov et al., 2017; Quadfasel et al., 1991), and
increased ocean primary productivity (AMAP, 2021); it has
also been migrating to a new state over the past decades.
These changes potentially impact the climate and weather of
the Northern Hemisphere (Ma et al., 2022; Overland et al.,
2021).

In recent years, progress has been made in satellite tech-
niques (e.g., Kaleschke et al., 2001; Spreen et al., 2008), in
situ observations (e.g., Toole and Krishfield, 2016; Morison
et al., 2007; Polyakov et al., 2017; Proshutinsky et al., 2009;
Schauer et al., 2008), and coupled ocean and sea ice mod-
els. However, the lack of extensive Arctic observations, es-
pecially direct observations of the state variables and fluxes
through the water column, and the deficiencies in the cou-
pled ocean and sea ice model still obscure our understanding
of the Arctic sea ice changes and extremes. Accurate predic-
tions of sea ice are therefore limited (e.g., Yang et al., 2020).

To fill the gaps, research groups have applied data assim-
ilation techniques to ingest available observations into cou-
pled ocean and sea ice models. The resulting reanalyses are
assumed to have higher accuracy since as the development of
models and data assimilation methods progress and the ob-
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servation numbers increase. Most of Arctic’s coupled ocean
and sea ice data assimilation and operational forecasting sys-
tems use statistical methods such as optimal interpolation
(e.g., Lindsay and Zhang, 2006) and ensemble Kalman fil-
ters (e.g., Mu et al., 2018; Sakov et al., 2012). The advan-
tage of these statistical methods is that they ensure a local fit
to available observations (within prior uncertainties of both
model and observations). However, away from the observa-
tions and for the unobserved variables, these methods rely on
the inaccurate spatial covariance of model states for interpo-
lation. In addition, these algorithms can introduce artificial
sink or source terms to the numerical models.

Over recent decades, an adjoint method with a large as-
similation window (years to decades) has been developed in
the framework of Estimating the Circulation and Climate of
the Ocean (ECCO; Heimbach et al., 2019; Stammer et al.,
2002; Wunsch and Heimbach, 2007) to create dynamically
consistent ocean reanalyses. This method iteratively mini-
mizes a cost function that measures the model–data “dis-
tance” by adjusting model input (control variables). The use
of an adjoint model (adjoint of the tangent linear approxima-
tion of the nonlinear model) as a spatiotemporal interpolator
distinguishes this method from the statistical methods. The
resulting reanalysis completely follows the model-governing
equations without having to consider artificial source or sink
terms. However, the qualities of the reanalysis datasets de-
pend on the accuracy of the tangent linear approximation.

Despite the application of the coupled ocean and sea ice
adjoint model in sensitivity studies (Heimbach et al., 2010;
Kauker et al., 2009; Koldunov et al., 2013) and reanalyses
(Fenty and Heimbach, 2013; Koldunov et al., 2017; Lyu et
al., 2021b; Nguyen et al., 2021), we have to omit the ad-
joint of sea ice dynamics (Fenty et al., 2017; Nguyen et al.,
2021) or simplify it to the adjoint of a free-drift sea ice model
(Koldunov et al., 2017; Lyu et al., 2021b) to ensure numeri-
cal stability of the adjoint model. Toyoda et al. (2019) noted
that further inclusion of the adjoint of sea ice rheology results
in a much weaker evolution of sensitivity to sea ice velocity
by O (102) in the central Arctic Ocean than the adjoint of
free-drift sea ice dynamics (adjoint-FD). It is expected that
including the adjoint of sea ice rheology could better project
the model–data misfits to the control variables and poten-
tially improve the quality of the reanalysis.

In this study, we incorporate and stabilize the adjoint of
viscous-plastic sea ice dynamics (adjoint-VP; Hibler, 1979;
Zhang and Hibler, 1997), building on prior developments of
the coupled ocean and sea ice model and assimilation sys-
tem (Fenty and Heimbach, 2013; Heimbach et al., 2010;
Koldunov et al., 2017; Lyu et al., 2021b). Using the unprece-
dented sea ice retreat process in 2012 as an example, we eval-
uate the impacts of using the approximated adjoint of sea ice
rheology on estimating the Arctic Ocean, sea ice, and sea ice
retreat processes.

The paper is organized as follows. In Sect. 2, we introduce
the model configurations and assimilation experiments. We

assess the assimilation results in terms of the residual errors
in Sect. 3. We examine adjustments of the control variables
in Sect. 4 and compare the sea ice retreat process in the as-
similation runs in Sect. 5. Section 6 summarizes the results
of this study and discusses the potential for a further devel-
opment of global and Arctic state and parameter estimation
systems.

2 Model configuration and experiment setups

2.1 The coupled ocean and sea ice modeling and
assimilation system

The data assimilation system is based on the adjoint method
in the ECCO framework, using the Massachusetts Institute
of Technology general circulation model (MITgcm; Mar-
shall et al., 1997) coupled with the zero-layer dynamic–
thermodynamic sea ice model of Hibler (1979). The sea ice
dynamics are based on a viscous-plastic sea ice rheology
and are solved using a line successive over-relaxation al-
gorithm (Zhang and Rothrock, 2000). The thermodynamic
sea ice model includes a prescribed subgrid-scale ice thick-
ness distribution with seven thickness categories. On top
of the ice, a diagnostic snow model is applied which
modifies the heat flux and surface albedo, as in Zhang
and Rothrock (2000). The thermodynamic–dynamic sea ice
model simulates changes in sea ice drift (SID), sea ice con-
centration (SIC), and mean sea ice thickness (in volume per
unit area, mean SIT hereinafter). Losch et al. (2010) refor-
mulated the sea ice model on an Arakawa C grid to match
the MITgcm oceanic grid and modified the model codes to
permit efficient and accurate automatic differentiation. The
adjoint of the coupled ocean and sea ice model is generated
by the Transformation of Algorithms (TAF) in FORTRAN
(Giering and Kaminski, 1998).

The pan-Arctic model covers the Arctic Ocean north of
the Bering Strait and the Atlantic Ocean at 44◦ N (enclosed
by black lines in Fig. 1). In the horizontal direction, we use
a curvilinear grid with a resolution of 12–15 km in the Arc-
tic Ocean and ∼ 18 km in the North Atlantic Ocean. In the
vertical direction, the system has 50 z levels ranging from
10 m at the surface to 456 m in the deep ocean. The open
boundaries are provided by a 16 km Atlantic–Arctic Ocean
simulation (Serra et al., 2010). At the ocean surface, we use
the atmospheric state from the National Centers for Environ-
mental Prediction reanalysis 1 (NCEP-RA1; Kalnay et al.,
1996) and bulk formulae (Large and Yeager, 2004) to com-
pute the momentum, heat, and freshwater fluxes. A virtual
salt flux parameterization simulates the dilution and salinifi-
cation of rainfall, evaporation, and river runoff. River runoff
is applied near the river mouth with seasonally varying dis-
charge (Fekete et al., 2002). In addition, unresolved verti-
cal mixing is parameterized using the K-Profile parameter-
ization of Large et al. (1994). The background coefficients
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Figure 1. Map of the pan-Arctic regions showing the model domain
(enclosed by the black lines) and horizontal resolutions (shading).
The red rectangles show the three moorings (Ma , Mb, Md ) from the
Beaufort Gyre Exploration Project (BGEP). Major basins and straits
are labeled as follows: Canada Basin (CB), Makarov Basin (MB),
Eurasian Basin (EB), Chukchi Sea (CS), East Siberian Sea (ESS),
Laptev Sea (LS), Kara Sea (KS), Barents Sea (BaS), Greenland Sea
(GS), Lofoten Basin (LB), Iceland Sea (IS), Norwegian Sea (NS),
Bering Strait (BS), Fram Strait (FS), Barents Sea Opening (BSO),
and Canadian Arctic Archipelago (CAA).

of vertical diffusion and viscosity are set to 10−5 m2 s−1

and 5.6× 10−4 m2 s−1, respectively. Biharmonic viscosity
with a coefficient of 2.2×1011 m4 s−1 represents unresolved
subgrid-scale eddy mixing. The bottom topography is de-
rived from ETOPO2 (Smith and Sandwell, 1997).

The adjoint method brings the model simulation close to
available observations by iteratively adjusting control vari-
ables to minimize a quadric target function J (cost function
hereinafter):

J (Cini,Catm(t))=

T 1∑
t=1

[
y(t)−E(t)x(t)

]T
·R−2 [y(t)−E(t)x(t)

]
+CTiniP

−2Cini

+

T 1∑
t=0

Catm(t)
TQ−2

a Catm(t). (1)

On the right-hand side of Eq. (1), the first term measures
the model–data misfits weighted by the inverse error covari-
ance matrices (R−2). The following section will introduce
the available measurements and their uncertainties (R). The
observations and model state at time t are denoted as y(t)
and x(t), respectively; E(t) maps the model state x(t) to
the corresponding observations y(t). The last two terms are

background terms of the initial condition (Cini) and the time-
varying atmospheric forcing (Catm(t)) weighted by their in-
verse error covariance matrices (P−2 and Q−2

a , respectively),
which penalize their adjustments and provide complete in-
formation on the controls. Following Lyu et al. (2021b), prior
uncertainties of the time-varying atmospheric state (Qa) de-
pend on geographic locations. They are computed as the vari-
ance of the nonseasonal variability of the corresponding vari-
ables using NCEP-RA1.

For simplicity and the robust performance of this coupled
data assimilation system, we choose the initial conditions
(Cini), including temperature, salinity, mean SIT, SIC, and
daily atmospheric state on the model grid (Catm(t)), which
includes 10 m wind vectors, 2 m air temperature, 2 m spe-
cific humanity, precipitation, downwelling long-wave, and
net short-wave radiation as the control variables. In the fu-
ture development of ocean and sea ice state estimation sys-
tems, we further include the river runoff, open boundary con-
ditions, and model parameter uncertainty as control variables
as in previous studies (e.g., Fenty and Heimbach, 2013; Liu
et al., 2012). In this study, we use a 1-year assimilation win-
dow covering the year 2012, resulting in a total number of
∼ 2.7× 108 control variables.

During the optimization process, the adjoint of the coupled
ocean and sea ice model is used to compute the gradients
of the cost function J to the control variables, and a quasi-
Newton algorithm (Gilbert and Lemaréchal, 1989) is used
to iteratively reduce the cost function J . The optimization
process continues until the cost function cannot be further
reduced.

2.2 Observations and prior uncertainties

Both satellite and in situ measurements (Table 1) are used
to constrain the model simulations. In addition, sea ice draft
measurements by upward-looking sonar (ULS) from the
Beaufort Gyre Exploration Project (BGEP, see Fig. 1 for the
locations) are used to independently validate the assimilation
results.

Prior uncertainties are detailed in our previous Arctic syn-
thesis study (Lyu et al., 2021b). Uncertainties in tempera-
ture and salinity depend on the depth and are set to 0.6 ◦C
and 0.3 PSU at the surface and 0.02 ◦C and 0.02 PSU in the
deep ocean; SIC uncertainties consist of representation er-
rors (15 % within 50 km from the coastlines and 10 % over
the open water) and instrument errors. Because of higher er-
rors in low SIC and lower errors over open water, we mod-
ify the representation uncertainties by multiplicative factors
of 0.85, 1.20, 1.10, and 1.00 for the observed SIC ranges of
0.00, < 15 %, 15 %–25 %, and > 25 %, respectively.

The SIT errors are provided by the datasets and interpo-
lated to our model grid. Sea level anomaly (SLA) uncertain-
ties are set to 3.0 cm; SID uncertainties are dominated by rep-
resentation errors and are set to 0.04 m s−1. Sea surface tem-
perature (SST) uncertainties are provided by the datasets. In
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addition, we reduce the weight of the temperature and salin-
ity climatology (WOA18) cost components by factors of 20.0
and 10.0, respectively, to avoid overfitting to the climatology.

2.3 Viscous-plastic sea ice dynamics and its adjoint

In the coupled ocean and sea ice model, the following equa-
tion governs sea ice drift:

m
du

dt
=−mf k×u+ τair+ τocn−∇∅(0)+∇ · σ, (2)

where m is the sea ice mass and u is the sea ice motion vec-
tor; τair and τocn are the wind and ocean drags, respectively;
−∇∅(0) is the tilt of the sea surface; and ∇ · σ is the diver-
gence of the ice stress tensor σij (i= 1, 2), representing the
internal forces of sea ice.

In the viscous-plastic rheology of Hibler (1979), the stress
tensor σij is related to the sea ice strain rate (εij ) and strength
(P ):

σij = 2η
(
εij ,P

)
εij +

[
ζ
(
εij ,P

)
− η

(
εij ,P

)]
εkkδij

−
P

2
δij , (3)

where δij is the Kronecker delta (δij = 1 if i = j , otherwise
0); η and ζ are the bulk and shear viscosities, expressed as:

ζ =
P

21reg
, (4)

η =
P

2e21reg
, (5)

where

1=

[(
ε2

11+ ε
2
22

)(
1+ e−2

)
+ 2

(
1− e−2

)
ε11ε22

+ 4e−2ε2
12

] 1
2
, (6)

where e is the ratio of normal stress to shear stress and is set
to 2.0; 1reg =max(1,1min) with 1min equals 1.0× 10−10.
The sea ice strain rate is computed as follows:

εij =
1
2

(
∂ui

∂xj
+
∂uj

∂xi

)
. (7)

The sea ice strength P depends on mean SIT (H ) and SIC
(C):

P = P ∗H · exp(−C∗ · (1−C)), (8)

where P ∗ and C∗ are the ice compressive strength con-
stant and ice strength decay constant and are set to 2.75×
104 N m−2 and 20.0, respectively.

The dependence of the internal force term (∇ · σ ) on ice
velocity is strongly nonlinear, leading to an unstable adjoint

of the coupled ocean and sea ice system. Therefore, previous
studies (Koldunov et al., 2017; Lyu et al., 2021b) used an
adjoint of a free-drift sea ice model (without an adjoint of
∇ · σ ). Toyoda et al. (2019) pointed out that the full adjoint
of Eq. (2) can be stabilized by eliminating the dependence of
bulk and shear viscosities on the strain rate (εij ).

Following the study of Toyoda et al. (2019), we eliminate
the dependence of bulk and shear viscosities on εij in the ad-
joint of Eq. (2). In addition, we note that there are still strong
sensitivities that hamper the convergence of optimization. We
set the adjoint sensitivities of ice velocity to zero if the local
sensitivity is 50 times larger than the global mean of their ab-
solute values. In addition, we also modify the adjoint model
in the following ways to ensure the stability of the adjoint
model over a 1-year assimilation window:

1. Disable the K-Profile parameterization mixing.

2. Increase the Laplacian horizontal diffusivity of heat
and salinity to 500 m2 s−1 and lateral eddy viscosity to
10 000 m2 s−1.

3. Apply a spatial filter to sensitivity variables calculated
in the adjoint of the thermodynamic sea ice model (see
Appendix in Lyu et al., 2021b, for details).

Since the sea ice dynamic model is solved using an iterative
line successive over-relaxation solver, we note that the ap-
proximated adjoint of the viscous-plastic sea ice dynamics
(adjoint-VP) requires ∼ 1.2 times the computational cost of
using the adjoint of a free-drift sea ice model (adjoint-FD).

Based on adjoint-FD and adjoint-VP, we compute the sen-
sitivities of domain-integrated sea ice volume (SIV) with re-
spect to the atmospheric forcings and the initial conditions
over the period from 1 to 31 January 2012. As reported by
Toyoda et al. (2019), adjoint-FD shows much stronger sen-
sitivities to wind than adjoint-VP does (Fig. 2a, b) in the
central Arctic Ocean. Along the sea ice marginals (SIMs)
of the Atlantic sectors, adjoint-VP reveals that the towards-
ice wind anomalies increase total sea ice (Fig. 2b) since they
prevent ice from drifting to the warm Atlantic water. How-
ever, adjoint-FD shows strong sensitivities along the SIMs of
the Atlantic sectors, but both towards-ice and off-ice wind
anomalies appear (Fig. 2a), potentially resulting in ice con-
vergence.

Furthermore, we add daily wind perturbations, computed
by scaling the adjoint sensitivities (Fig. 2a, b) so that the
maximum perturbations are 1.0 m s−1 to the 6-hourly wind
from NCEP-RA1 and examine their impacts on mean SIT
changes. As expected, mean SIT changes are mainly along
the SIMs in the Atlantic sectors (Fig. 2c, d), and wind per-
turbations from adjoint-FD reduces mean SIT northeast of
Greenland (Fig. 2c). In the central Arctic Ocean with com-
pact ice, the internal forces ∇ ·σ oppose the impacts of wind
perturbations. Therefore, despite the strong adjoint sensitivi-
ties to the wind in adjoint-FD, we note that the resulting wind
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Table 1. Assimilated measurements.

Datasets Resolution Number Source

Sea level anomaly 7.0 km 7.6× 105 Copernicus Marine Environment Monitoring Service,
http://marine.copernicus.eu (last access: 12 March 2023)

Sea surface temperature 25.0 km 2.0× 107 Remote-sensing system,
http://www.remss.com/measurements/sea-surface-temperature/
(last access: 12 March 2023)

T&S profiles – 5.0× 105 Good et al. (2013),
https://www.metoffice.gov.uk/hadobs/en4/ (last access: 12 March 2023)

Sea ice concentration 25.0 km 3.6× 107 Kaleschke et al. (2001) and Spreen et al. (2008), SSMI (2011–2012),
http://icdc.cen.uni-hamburg.de/1/daten/cryosphere.html
(last access: 12 March 2023)

Sea ice thickness 25.0 km 8.9× 106 Ricker et al. (2017),
https://spaces.awi.de/pages/viewpage.action?pageId=291898639
(last access: 12 March 2023)

Sea ice drift 62.5 km 5.8× 105 Lavergne et al. (2019),
https://osi-saf.eumetsat.int/products/osi-405-c (last access: 12 March 2023)

WOA18 1.0◦ 2.9× 107 Zweng et al. (2018),
https://www.nodc.noaa.gov/OC5/woa18/woa18data.html
(last access: 12 March 2023)

Figure 2. Sensitivities of total sea ice volume to wind vectors (in 0.1× km3 (m s−1)−1, shadings represents amplitudes) using the adjoint of
(a) free-drift sea ice dynamics and (b) viscous-plastic sea ice dynamics with modifications in Sect. 2.3. Panels (c)–(d) show the mean SIT
changes by perturbing the wind with the corresponding adjoint sensitivities multiplied by a factor of 10−8. The green lines are the sea ice
extents (SIEs, 15 % SIC) in January 2012.
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perturbations only slightly change the mean SIT (Fig. 2c),
which is comparable to that in adjoint-VP (Fig. 2d).

In addition to overestimating the sensitivities to wind,
adjoint-FD may degrade the usefulness of the adjoint sen-
sitivities in optimization. Therefore, we perform two assim-
ilation experiments to comprehensively evaluate the impacts
of including the approximate adjoint of sea ice rheology on
ocean and sea ice estimations.

3 Model–data misfit reductions and residuals

3.1 Evaluation of the optimization

In this study, we consider iteration 0 to be the control run.
In adjoint-FD and adjoint-VP, the optimizations stall at it-
erations 13 and 32, and the further cost-function reductions
at the last two successive iterations are 0.7 % and 0.2 % of
the total cost, respectively. After the optimizations, the to-
tal cost and norms of the gradients are reduced by 32.3 %
and 59.2 %, respectively, in adjoint-FD and by 40.2 % and
89.3 %, respectively, in adjoint-VP.

Of the individual cost constituents (Table 2), satellite-
observed SST (JSST) and SIC (JSIC) contribute ∼ 25.3 %
and 39.7 % of the total cost, respectively, which are signif-
icantly reduced after optimization. The costs of the tempera-
ture (Jprofile_T ) and salinity (Jprofile_S) profiles are also con-
siderably reduced, especially in the adjoint-VP. The rest of
the cost constituents are also slightly reduced. Overall, in-
cluding the adjoint of sea ice rheology further reduces the
total cost by 7.9 % and the individual cost constituents, espe-
cially JSST, Jprofile_T , and Jprofile_S . Based on iterations 0 and
13 in adjoint-FD, and 32 in adjoint-VP of the optimization,
we will focus on the sea ice state and ocean temperature to
evaluate the impacts of using this approximate adjoint of sea
ice rheology.

3.2 Sea ice state

3.2.1 Residual errors of SIC and SIT

Satellite visible, infrared, and microwave technologies have
been applied to monitor SIC with high frequencies and qual-
ity, which is of high priority in global and Arctic-focused
synthesis (Chevallier et al., 2017; Uotila et al., 2019). Previ-
ous studies (Fenty and Heimbach, 2013; Lyu et al., 2021a,
b) indicated that SIC could be significantly improved by
slightly adjusting the atmospheric forcings. Here, we explore
the residual errors in the optimization runs.

The root mean square errors (RMSEs) of SIC averaged
over 2012 (Fig. 3a–c) and normalized by the prior errors
and averaged over the model domain (Fig. 3d) show the ge-
ographical distribution and temporal evolution of SIC errors,
respectively. The normalized RMSEs in Fig. 3d should be
close to 1.0 if the optimization found a model simulation con-
sistent with the observations and the prior uncertainties.

Figure 3. Root mean square errors (RMSEs) of SIC between the
satellite measurements and (a) the control run, (b) adjoint-FD, and
(c) adjoint-VP averaged over 2012. Panel (d) shows the temporal
variations in RMSEs normalized by prior uncertainties in the three
simulations averaged over the regions covered by sea ice.

The control run (Fig. 3a) shows pronounced RMSEs in the
Beaufort Gyre (∼ 15 %), the central Eurasian Basin (15 %–
20 %), the marginal seas (15 %–20 %), and SIMs of the
Atlantic sector (30 %–50 %). The normalized RMSEs re-
veal that SIC errors remain small (∼ 0.5) in the wintertime
(Fig. 3d), indicating that the control run and the satellite SIC
measurements match well, but they grow quickly from May
to September when the sea ice melts (Fig. 3d). Normalized
RMSEs up to 1.5 are observed in October but quickly drop
in November (Fig. 3d). Therefore, SIC errors are signifi-
cant during the melting and refreezing periods (from May
to November).

Both assimilation experiments reduce the SIC errors to
less than 5 % in the central Arctic Ocean and 10 % in the
marginal seas. SIC errors of up to 20 % persist in the At-
lantic sector, where sea ice shows strong nonlinearity and
the tangent linear model can capture only part of the sea ice
changes (Appendix B in Lyu et al., 2021a). Normalized SIC
errors from May to September are also reduced to nearly 1.0
by assimilation of the daily SIC observations (Fig. 3d). How-
ever, SIC errors in October remain significant (Fig. 3d) since
the observed sea ice recovers much faster than in the control
run and the two assimilation runs (not shown here). This de-
layed sea ice recovery in the model may be related to model
parameter uncertainties, such as the threshold thickness be-
tween thin and thick ice, which determines the initial sea ice
thickness formed in open water.

The control run shows SIT errors of up to 1.0 m in regions
north and south of the Fram Strait and approximately 0.4–
0.7 m in the Beaufort Gyre. In the Beaufort Gyre, the SIT
errors are reduced to less than 0.3 m in adjoint-VP (Fig. 4c)
and approximately 0.3–0.5 m in adjoint-FD (Fig. 4b). Simi-
lar to the SIC errors, SIT errors of up to 1.0 m remain along
the East Greenland Current, which seems to increase in the
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Table 2. Normalized costs and reductions in the two optimization runs.

Cost Control
Adjoint-FD Adjoint-VP

constituent run

Normalized Normalized Percentage Normalized Percentage
cost cost reduction cost reduction
(%) (%) (%) (%) (%)

JTotal 100 67.7 32.3 59.8 40.2
JSLA 2.2 2.1 4.6 2.1 4.6
JSST 25.3 15.4 39.1 12.9 49.0
Jprofile_T 6.9 6.5 5.8 4.3 37.7
Jprofile_S 5.8 5.9 −1.7 4.5 22.4
JSIC 39.7 18.4 53.7 18.1 54.4
JSIT 3.6 3.1 13.9 2.7 25.0
JSID 4.5 4.4 2.2 4.3 4.4
JWOA_T 6.6 6.6 0.0 6.2 6.1
JWOA_S 5.4 5.3 1.9 4.7 13.0

Figure 4. Root mean square errors (RMSEs) of SIT between the
satellite measurements and (a) the control run, (b) adjoint-FD, and
(c) adjoint-VP averaged over 2012. Panel (d) shows the temporal
variations in RMSEs normalized by prior uncertainties in the three
simulations averaged over the regions covered by sea ice.

two assimilation experiments. The temporal evolutions of
normalized RMSEs show that the SIT errors grow quickly
from February to April (Fig. 4d). Both assimilation experi-
ments reduce the SIT errors, especially in adjoint-VP from
January to April (Fig. 4d). However, the normalized RMSEs
of SIT averaged over the model domain remain smaller than
1.0 and seem to grow during the melting season. Again, the
normalized SIT errors of smaller than 1.0 indicates that SIT
uncertainties are too large, and more accurate SIT observa-
tions (e.g., half of the uncertainties) and SIT observations
during the melting season are required to facilitate a signifi-
cant impact on the model simulation.

3.2.2 BGEP mooring measurements

Independent sea ice draft measured by upward-looking sonar
(ULS) on the BGEP moorings (Ma , Mb, and Md in Fig. 1)
is used to validate the simulated sea ice draft. The simulated
snow depth (dsnow) and SIT (dSIT) are used to compute the
sea ice draft following the methods of Tilling et al. (2018):

draft=
ρi× dSIT+ ρs× dsnow

ρw
, (9)

where ρi, ρs, and ρw are the densities of the sea ice, snow,
and water, respectively, and are set to 910.0, 330.0, and
1027.5 kg m−3, respectively, as in our model.

The ULS measurements depict stronger daily to sub-
monthly sea ice draft variability than the model simulations
do, which may be related to ice flow motions. The control
run simulates a delayed ice disappearance process in Ma

(Fig. 5a) and fails to reproduce the sea ice disappearance
processes in Mb (Fig. 5b) and Md (Fig. 5c) from August to
October. After optimization, adjoint-VP and adjoint-FD re-
produce the sea ice melting and refreezing processes well,
although errors of up to 0.5 m remain from January to June.
Overall, the two assimilation runs reproduce the local sea ice
retreat and recovery process well.

3.3 Ocean temperature

Ocean temperature changes are closely related to sea ice
changes. Adjoint-VP introduces more pronounced ocean
temperature changes than adjoint-FD does. Here, we explore
ocean temperature changes after assimilation.

In the Arctic Ocean, adjoint-FD reduces temperature er-
rors only over the top 20 m, while adjoint-VP reduces tem-
perature errors up to 0.4 ◦C over the top 1000 m (Fig. 6a). In
the North Atlantic Ocean, adjoint-VP results a in more pro-

https://doi.org/10.5194/os-19-305-2023 Ocean Sci., 19, 305–319, 2023



312 G. Lyu et al.: Effects of including the adjoint sea ice rheology on estimating Arctic Ocean–sea ice state

Figure 5. Daily time series of the sea ice draft (dotted yellow lines)
and the daily standard deviation (shadings) at the mooring locations
(a) Ma , (b) Mb, and (c) Md compared to the control run and the two
assimilation runs (see the legend) throughout the year 2012. ULS-
observed sea ice drafts are smoothed with a 5 d running average.

Figure 6. RMSEs of potential temperature in the (a) Arctic Ocean
and (b) North Atlantic Ocean in the three runs. The Arctic Ocean
and the North Atlantic Ocean are separated by the black lines in the
bottom subplot.

nounced RMSE reduction up to 0.3 ◦C more than adjoint-FD
(Fig. 6b).

Relative temperature error reductions over the top 50 m re-
veal an overall improvement in temperature with occasional
degradation (Fig. 7a, b). Adjoint-VP results in a more signif-
icant error reduction than does adjoint-FD in the North At-
lantic Ocean (Fig. 7a, b). In the southern Beaufort Gyre, the
Laptev and Kara seas, and north of Svalbard, both adjoint-VP
and adjoint-FD increase the ocean temperature (over 50 m)
since the two optimization runs reproduce the early retreat of
the sea ice well, allowing more solar heating of the open wa-
ter. In the North Atlantic Ocean, adjoint-VP achieves more

considerable temperature changes than does adjoint-FD, both
over the top 50 m (Fig. 7c, d) and from 50 to 700 m (Fig. 7e,
f). In the Arctic Ocean, adjoint-VP further introduces nega-
tive temperature corrections between 50 and 700 m (Fig. 7f),
especially near the profile locations (see dots in Fig. 7b).

In summary, adjoint-FD and adjoint-VP reproduce the SIC
variations well in the Arctic Ocean, which further reduces
ocean temperature errors in the top layer by improving the
atmosphere–ocean heat flux. Adjoint-VP achieves more sig-
nificant corrections to the ocean temperature over the open
water and in the intermediate layer of the Arctic Ocean than
adjoint-FD does.

4 Adjustment of the control variables

The adjoint models project the model–data misfits onto the
gradient of the cost function with respect to all control vari-
ables simultaneously, which is used by the optimization al-
gorithm to adjust the control variables. In this section, we
compare adjustments of the control variables in the adjoint-
FD and adjoint-VP and evaluate contributions of individual
adjustments of the control variables on the cost-function re-
duction. We also compare the adjustments of the control vari-
ables in adjoint-FD and adjoint-VP with differences between
ERA5 (Hersbach et al., 2020) and NCEP-RA1 reanalyses.

Among all the control variables, wind vectors and 2 m
air temperature are considerably adjusted in adjoint-FD and
adjoint-VP but also show significant differences. In addition,
adjoint-VP induces more pronounced adjustments of the ini-
tial temperature and salinity than adjoint-FD does (not shown
here). Here, we concentrate on the adjustments of wind vec-
tors and the 2 m air temperature.

Figure 8 shows the root mean square (RMS) of the ad-
justments of the wind vectors and 2 m air temperature nor-
malized by their prior uncertainties. The normalized RMS of
the adjustments of the control variables should be smaller
than 1.0 if the adjustments are within their prior uncer-
tainties. Adjoint-FD slightly adjusts the wind vectors (with
the normalized RMS of the adjustments being smaller than
0.4, Fig. 8a, b), but the 2 m air temperature is significantly
adjusted (with the normalized RMS of adjustments being
greater than 1.5, Fig. 8c). In adjoint-VP, the wind vectors
and 2 m air temperature are slightly adjusted (Fig. 8d–f) with
their normalized RMS of adjustments being smaller than 0.3.
In addition to the different amplitudes of the adjustments, the
maximum adjustments of the wind vectors appear in June in
adjoint-VP but in May in adjoint-FD (Fig. 8j, k). Throughout
2012, the 2 m air temperature is adjusted more prominently
in adjoint-FD than in adjoint-VP (Fig. 8l).

We note that the adjustments of the three atmospheric state
variables in Fig. 8a–f resemble the SIC (Fig. 3a) and SIT
(Fig. 4a) error patterns, indicating that these adjustments are
mostly determined by sea ice state errors that are projected
on the control variables by the adjoint models rather than the
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Figure 7. Relative temperature error reduction (−
∣∣Topti−Tobs

∣∣−|Tctrl−Tobs|

|Tctrl−Tobs|
× 100 %) over the top 50 m at the profile locations in (a) adjoint-

FD and (b) adjoint-VP. Values > 100 % indicate overadjustment. Panels (c) and (d) show the temperature differences of adjoint-FD and
adjoint-VP to the control run averaged over the top 50 m, respectively. Panels (e) and (f) are the same as (c) and (d), but for the 50–700 m
layers.

Figure 8. Root mean square (RMS) of the adjustments of the (a) wind u component, (b) wind v component, and (c) 2 m air temperature
normalized by their prior uncertainties (dimensionless) in adjoint-FD and averaged over 2012. Panels (d)–(f) are similar to (a)–(c) but for
adjoint-VP. Panels (g)–(i) show the normalized RMS of differences in the (g) wind u component, (h) wind v component, and (i) 2 m air
temperature between ERA5 and NCEP-RA1 reanalyses (normalized by prior uncertainties in assimilation experiments). Panels (j)–(l) are
the area averages of the normalized RMS of adjustments (differences) of the wind u component, wind v component, and 2 m air temperature
(dimensionless) in adjoint-FD and adjoint-VP (ERA5-NCEP).

https://doi.org/10.5194/os-19-305-2023 Ocean Sci., 19, 305–319, 2023



314 G. Lyu et al.: Effects of including the adjoint sea ice rheology on estimating Arctic Ocean–sea ice state

background terms (the second and third terms on the right-
hand side of Eq. 1). Excluding the adjoint of sea ice rheol-
ogy (adjoint-FD) results in overadjustments of 2 m air tem-
perature. With an approximated adjoint of sea ice rheology
(adjoint-VP), we reduce the model–data misfits by slightly
adjusting the control variables. The normalized adjustments
of 0.1–0.6 indicate that the estimated prior uncertainties of
the atmospheric state remain too large.

Using the new generation ERA5 reanalysis, we further
compare the ERA5-NCEP differences against the adjust-
ments of the atmosphere state variables in terms of their
spatial patterns and temporal variability. The ERA5 uses
fractional SIC as surface boundary conditions, but NCEP-
RA1 uses 0 and 1 for ice-free and ice-covered ocean, re-
spectively. The purpose of this comparison is twofold: (1) it
further justifies the rationale of the adjustment amplitudes
and (2) it examines whether the adjustments reflect the dif-
ferences between the old generation NCEP-RA1 reanalysis
and the new generation ERA5 reanalysis. For the wind vec-
tors, the normalized RMS differences between the ERA5
and NCEP-RA1 reanalyses (Fig. 8g, h) are much larger
than the wind vector adjustments in adjoint-FD (Fig. 8a, b)
and adjoint-VP (Fig. 8d, e). For the 2 m air temperature,
the normalized ERA5-NCEP differences (> 1.0, Fig. 8i) are
much larger than the normalized adjustments in adjoint-VP
(< 0.3, Fig. 8f) but smaller than the normalized adjustments
in adjoint-FD (> 1.5, Fig. 8c) in the Kara Sea, the Laptev
Sea, the southern Beaufort Sea, the Eurasian Basin, and the
Makarov Basin. It is evident that the 2 m air temperature
adjustments in adjoint-FD are too large. Averaged over the
model domain and throughout 2012, the ERA5-NCEP differ-
ences are much larger than the adjustments (Fig. 8j–l) in the
two assimilation runs. In addition, the adjustments are larger
from May to August than from September to April, while the
ERA5-NCEP differences are larger in the winter season than
in the summer season (Fig. 8j–l). The comparisons confirm
that the 2 m air temperature is overadjusted in adjoint-FD, es-
pecially from May to July (Fig. 8l). The adjustments of wind
vectors and 2 m air temperature do not resemble the ERA5-
NCEP differences, indicating that the model–data differences
cannot be fully fixed by replacing the old generation NCEP-
RA1 reanalysis with the new generation ERA5 reanalysis.

By replacing the adjusted initial temperature and salinity,
wind vectors, 2 m air temperature, and the remaining control
variables with NCEP-RA1 datasets, we integrate the model
and estimate the contributions of these variables to the total
cost reductions and individual components. Table 3 summa-
rizes the contribution of individual control variables to the
total cost reductions and cost components of SIC, SST, and
temperature profiles.

The small contributions of the adjustments of the remain-
ing control variables (“Remaining variables” in Table 3) to
the cost-function reductions in adjoint-FD and adjoint-VP
highlight the importance of simultaneous adjustments of the
initial temperature and salinity, wind vectors, and 2 m air

temperature. In adjoint-FD, the adjustments of the 2 m air
temperature and wind vectors dominate the cost-function re-
duction, especially the SIC components. In contrast, adjoint-
VP relies more on the adjustments of the wind vectors and
the initial temperature and salinity. Besides, the more pro-
nounced ocean temperature improvements (see Fig. 7) in
adjoint-VP are mostly attributed to the adjustments in the ini-
tial temperature and salinity (Table 3).

Overall, adjoint-FD attributes more of the model–data
misfits to the 2 m air temperature than the adjoint-VP does,
resulting in overadjustments of the 2 m air temperature.
By using an approximated adjoint of the sea ice rheology
(adjoint-VP), we reduce the model–data misfit by slightly
adjusting the control variables. This leads to the conclusion
that the large 2 m air temperature adjustments in adjoint-FD
is likely an overcompensation for wind errors that cannot be
appropriately corrected because of large errors in the respec-
tive cost-function gradients.

5 The impacts on sea ice retreat processes

A unique characteristic of the adjoint-based reanalysis is
that its physical processes are described by the governing
equations of the model, allowing us to quantify the sea ice
loss and the contributions of the sea ice dynamics and sea
ice–ocean–atmosphere fluxes through a closed budget anal-
ysis. In this section, we explore and compare the mean SIT
changes based on the model-governing equation:

dh
dt
=−∇ · (uh)+Foi+Fai+Fres. (10)

The mean SIT tendency dh
dt is dominated by the sea ice ad-

vective flux (−∇ · (uh)), ocean–sea ice heat flux (Foi) at the
sea ice bottom, atmosphere–sea ice flux (Fai) at the sea ice
surface, and a residual term (Fres) including a snow-flooding
effect and a source term to correct negative mean SIT to zero.
The Foi depends on the ocean temperature difference from
freezing temperature (Maykut and McPhee, 1995) and Fai
consists of the radiation and turbulence fluxes over the sea
ice surface. The contributions of the residual terms are small
and therefore we do not show them in the analysis below.

By integrating the mean SIT over the Arctic Ocean (see
Fig. 9 for the locations), we derive Arctic sea ice volume
(SIV) changes. As shown in Fig. 9a, the two assimilation
runs change the total Arctic SIV changes in different ways.
Adjoint-VP reduces the Arctic SIV by reducing the initial
Arctic SIV and changing the SIV tendency from May to Au-
gust. By September, adjoint-VP simulates more sea ice than
the control run. Adjoint-FD slightly increases the initial SIV,
and the signals are invisible by February 2012. From May
to July, adjoint-FD shows a stronger sea ice melting process
than the control run and adjoint-VP. By September, adjoint-
FD simulates the most SIV among the three simulations.
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Table 3. Contributions of the adjustments of 2 m air temperature, wind vectors, initial temperature and salinity (initial T & S), and the
remaining control variables (including initial mean SIT and SIC, 2 m specific humanity, precipitation, downwelling longwave, and net short-
wave radiation) on the total cost reduction, SIC, SST, and temperature profiles in the two optimization runs.

Adjoint-FD (%) Adjoint-VP (%)

2 m air Wind Initial Remaining 2 m air Wind Initial Remaining
temperature vectors T & S variables temperature T & S variables

Jtotal 29.0 17.5 6.0 3.0 5.3 52.6 25.1 5.0
JSIC 25.5 19.8 2.4 1.2 4.5 64.9 10.1 2.4
JSST 41.0 8.6 10.1 5.5 8.4 47.4 29.6 6.4
Jprof_T 3.9 4.9 4.3 4.3 4.4 40.9 182.0 7.9

Figure 9. (a) SIV changes in the Arctic Ocean (see the bottom left
subplot in a) from January to December 2012. (b) SIV tendencies
and contributions from Foi, Fai, and Fadv in adjoint-FD and adjoint-
VP (see the legend).

Based on Eq. (10), we further compare SIV tendencies and
the budget terms in the two assimilation runs (Fig. 9b). The
two assimilation runs reveal that the seasonal SIV changes
are dominated by Fai (magenta lines in Fig. 9b). Through-
out the year, the ocean melts the sea ice from the bottom
(blue lines in Fig. 9b) and net sea ice transport also reduces
the Arctic sea ice (green lines in Fig. 9b). However, we
note that a much stronger sea ice loss process occurs from
20 May to 15 June in adjoint-FD (up to −193.0 km3 d−1)
than in adjoint-VP (up to −125.0 km3 d−1), which is mainly
attributed to Fai anomalies (magenta lines in Fig. 9b).

From 20 May to 15 June, the Arctic Ocean observations
mostly rely on satellite-measured SIC. Both the two opti-
mization runs reproduce the observed sea ice extents (SIEs,
15 % SIC) well on 15 June (green and red lines in Fig. 10a,
d), with adjoint-VP slightly better than adjoint-FD in the Bar-
ents and Kara seas (Fig. 10a, d).

On 20 May, adjoint-FD simulates more sea ice than
adjoint-VP does (Fig. 9a). From 20 May to 15 June, adjoint-
FD destroys the extra sea ice in the southeastern Beaufort
Gyre, the Laptev Sea, the Kara Sea, and north of Svalbard

Figure 10. (a) Differences in
∫ dh

dt integrated from 20 May to
15 June between adjoint-FD and the control run (adjoint-FD mi-
nus the control run), attributed to (b)

∫
Fai and (c)

∫
Fadv differ-

ences. Panels (c)–(f) are the same as (a)–(c) but for adjoint-VP.
The red and green lines in (a) and (d) indicate the model-simulated
(a for adjoint-FD; d for adjoint-VP) and satellite-observed SIEs on
15 June.

and Franz Josef Land through a stronger surface melting Fai
(Fig. 10b). At the same time, Fai results in less sea ice loss
(up to 0.6 m) in adjoint-FD in the central Arctic Ocean. Near
the SIMs, Fadv differences determine the mean SIT differ-
ences (Fig. 10a, c). In contrast, mean SIT differences from
20 May to 15 June between adjoint-VP and the control run
(Fig. 10d) are mostly caused by Fadv differences (Fig. 10f)
and Fai differences have little contribution (Fig. 10e), indi-
cating that adjoint-VP modifies the SID to improve the model
simulation during this period.
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Figure 11. Adjustments of the 2 m air temperature averaged from
20 May to 15 June 2012, in (a) adjoint-FD and (b) adjoint-VP.
Panel (c) shows the 2 m air temperature differences between the
ERA5 and NCEP-RA1 reanalyses (ERA5 minus NCEP-RA1) av-
eraged from 20 May to 15 June 2012. The contour intervals are
2 ◦C.

From 20 May to 15 June, the significant sea surface melt-
ing anomalies (Fig. 10b) are mainly caused by 2 m air tem-
perature adjustments in adjoint-FD (Fig. 11a). As shown, the
2 m air temperature is increased by more than 8 ◦C in the
marginal seas (prior air temperature uncertainties are ∼ 2–
5 ◦C) to facilitate the intense surface melting. In the central
Arctic Ocean, the 2 m air temperature is reduced by 6 ◦C
(Fig. 11a), resulting in less sea ice loss up to 0.6 m (Fig. 10b)
than in the control run. In contrast, adjoint-VP adjusts the 2 m
air temperature within±3 ◦C in the marginal seas (Fig. 11b),
and the adjustments have little impact on the sea ice surface
melting anomalies (Fig. 10e). The 2 m air temperature differ-
ences averaged from 20 May to 15 June between the ERA5
and NCEP-RA1 reanalyses are within ±3 ◦C (Fig. 11c), in-
dicating that adjoint-FD overadjusts the 2 m air temperature
to destroy the extra sea ice. Again, the spatial patterns of 2 m
air temperature adjustments in adjoint-FD and adjoint-VP do
not resemble that of ERA5-NECP differences.

In summary, the two optimization runs successfully re-
produce the sea ice retreat process in 2012 by assimilating
satellite and in situ measurements. However, the sea ice re-
treat processes differ in the two optimized simulations, es-
pecially from May to June, when Arctic Ocean observations
rely mostly on satellite-measured SIC. Considering the am-
plitude of the 2 m air temperature adjustments, the adjust-
ments of the control variables in adjoint-VP are more rea-
sonable than those in adjoint-FD due to the inclusion of the
approximate adjoint of sea ice rheology.

6 Conclusions

The adjoint model is a powerful way to calculate the sen-
sitivities of a target function to model variables and has
been applied to coupled ocean and sea ice models for sen-
sitivity studies (Heimbach et al., 2010; Kauker et al., 2009;
Koldunov et al., 2013) and state estimations (Fenty and He-
imbach, 2013; Koldunov et al., 2017; Lyu et al., 2021b;
Nguyen et al., 2021). However, due to the persistent insta-
bility issues, the adjoint of sea ice dynamics are traditionally
excluded or simplified to the adjoint of free-drift sea ice dy-
namics, which potentially hampers the accuracy of the cou-
pled ocean and sea ice estimation.

Based on the study of Toyoda et al. (2019) and the coupled
ocean and sea ice modeling and adjoint assimilation system
(Lyu et al., 2021a), we approximate the adjoint of viscous-
plastic sea ice dynamics and test the impacts on estimating
the spatiotemporal variations in the Arctic Ocean and sea ice
state.

Two optimizations are performed, one including and one
excluding the adjoint of sea ice rheology. Both assimilation
expriments reduce SIC and SIT errors and reproduce the sea
ice retreat well. With the improved SIC retreat processes,
adjoint-FD and adjoint-VP also show similar ocean temper-
ature changes in the marginal seas and the southern Beau-
fort Gyre, as solar radiation heats the open water quickly as
the sea ice retreats. With the improved adjoint of sea ice dy-
namics, adjoint-VP allows much stronger adjustments of the
initial temperature, resulting in a more significant improve-
ment on the temperature in the North Atlantic Ocean and the
intermediate layer (50–700 m) of the Arctic Ocean.

Although that adjoint-FD computes much stronger sensi-
tivities of the cost function to the wind vectors than adjoint-
VP does, we note that adjoint-FD adjusts more (less) of the
2 m air temperature (wind vectors) than adjoint-VP does. It
is evident that the adjoint sensitivities of wind vectors in
adjoint-FD reduce the cost function less efficiently than those
in adjoint-VP during the optimization. Adjoint-FD strongly
adjusts the 2 m air temperature to reduce the model–data mis-
fits while adjoint-VP slightly adjusts all the control variables
to improve the model simulation.

Using the sea ice budget analysis, we further examine
the sea ice retreat processes in adjoint-FD and adjoint-VP.
We note that adjoint-FD and adjoint-VP show different sea
ice thinning processes from 20 May to 15 June and in the
marginal seas. Adjoint-FD destroys the extra sea ice in the
marginal seas by substantially increasing the 2 m air tem-
perature (up to 8 ◦C), which is much larger than the ERA5-
NCEP differences. In adjoint-VP, the sea ice thinning is mod-
erate with more reasonable adjustments of 2 m air tempera-
ture (within ±3 ◦C) and the size of the adjustments are much
smaller than the ERA5-NCEP differences. Therefore, by in-
cluding the adjoint of sea ice rheology, adjoint-VP projects
the model–data misfits more properly to the control variables
than that in adjoint-FD.
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Parameter uncertainties significantly impact ocean and sea
ice simulations (Lu et al., 2021; Massonnet et al., 2014;
Sumata et al., 2019), and a lack of direct observations of key
parameters potentially results in biases in the model simu-
lations and predictions. The development of the adjoint of
the viscous-plastic sea ice dynamics further introduces three
parameters, including the ice compressive strength constant
(P ∗), ice strength decay constant (C∗), and ratio of normal
stress to shear stress (e), into the adjoint model. Since it
remains unclear how well the tangent linear approximation
could represent the relations between the model parameters
and the model state, in future studies, we will examine the
accuracy of the adjoint sensitivities with respect to the model
parameters and then further improve the ocean–sea ice esti-
mations by jointly estimating the state and parameters.
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