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Abstract. In the Arctic, the sea surface salinity (SSS) plays
a key role in processes related to water mixing and sea ice.
However, the lack of salinity observations causes large un-
certainties in Arctic Ocean forecasts and reanalysis. Recently
the Soil Moisture and Ocean Salinity (SMOS) satellite mis-
sion was used by the Barcelona Expert Centre to develop an
Arctic SSS product. In this study, we evaluate the impact of
assimilating this data in a coupled ocean–ice data assimila-
tion system. Using the deterministic ensemble Kalman filter
from July to December 2016, two assimilation runs respec-
tively assimilated two successive versions of the SMOS SSS
product on top of a pre-existing reanalysis run. The runs were
validated against independent in situ salinity profiles in the
Arctic. The results show that the biases and the root-mean-
squared differences (RMSD) of SSS are reduced by 10 % to
50 % depending on the area and highlight the importance of
assimilating satellite salinity data. The time series of fresh-
water content (FWC) further shows that its seasonal cycle
can be adjusted by assimilation of the SSS products, which
is encouraging of the assimilation of SSS in a long-time re-
analysis to better reproduce the Arctic water cycle.

1 Introduction

The Arctic Ocean is undergoing a dramatic warming, result-
ing in the loss of sea ice as documented by previous studies
(e.g., Johannessen et al., 1999; Stroeve and Notz, 2018). Sea
ice melt contributes freshwater to the Arctic Ocean, together
with precipitation and river flux, and has far-reaching effects

on the Arctic Ocean environment (Carmack et al., 2016). The
Arctic observing system, compared to other oceans, lacks the
capability to provide a complete picture of ocean salinity,
particularly because of obstruction by sea ice. A complete re-
construction of Arctic environmental variables thus requires
a data-assimilative numerical model capable of propagating
information below sea ice during the winter, as practiced by
ocean operational forecast systems (such as Dombrowsky et
al., 2009; Fujii et al., 2019). As with other ocean data assimi-
lation (DA) applications, Arctic reanalysis products of ocean
and sea ice play an important role in understanding climate
change and its mechanisms. In recent years, many studies
(e.g., Storto et al., 2019; Uotila et al., 2019) evaluated the
quality of the Arctic reanalysis products and recommended
experiments to maximize the usefulness of new observations,
as done by Kaminski et al. (2015) and Xie et al. (2018). How-
ever, there are no impact studies of salinity observations in
the Arctic to our knowledge.

Ocean salinity has been used to study the water cycle for
the last 20 years (e.g., Curry et al., 2003; Boyer et al., 2005;
Yu, 2011; Yu et al., 2017). A recent review paper showed a
stabilization of the freshwater content (FWC) in the Arctic
Basin, although observations indicate that the Beaufort Gyre
keeps getting fresher (Solomon et al., 2021). Salinity varia-
tions have far-reaching implications for ocean mixing, wa-
ter mass formation, and ocean general circulation but suffer
from large uncertainties in the Arctic, mainly due to sparse
observations and the lack of a steady-state reference time pe-
riod (e.g., Stroh et al., 2015; Xie et al., 2019). Measuring
sea surface salinity (SSS) from passive microwave remote
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sensing is a comparatively new but promising way to reduce
the uncertainty in salinity. Launched in November 2009, the
Microwave Imaging Radiometer using Aperture Synthesis
(MIRAS) instrument of the European Space Agency’s (ESA)
Soil Moisture and Ocean Salinity (SMOS) mission measures
the brightness temperatures (TB) of the sea surface at differ-
ent frequency bins. The passive 2-D interferometric radiome-
ter on the satellite operating in L-band (1.4 GHz) is sensitive
to water salinity and is sufficiently free from electromag-
netic interference (e.g., Font et al., 2010; Kerr et al., 2010).
Since May 2010, SMOS operationally provides SSS records
over the global ocean (Mecklenburg et al., 2012). During
the last 12 years, large improvements have been introduced
in the SMOS data-processing chain, increasing the accuracy
and coverage of the salinity data up to levels that were un-
thinkable at the beginning of the mission (Martin-Neira et al.
2016, Olmedo et al., 2018; Reul et al., 2020; Boutin et al.,
2022).

Furthermore, the assimilation of satellite-derived SSS
products using an ensemble DA method has been found
to significantly improve the surface and subsurface salinity
fields in the tropics (Lu et al. 2016). The advantages of as-
similating three SSS products from SMOS, Aquarius (ref.,
Lee et al., 2012), and the Soil Moisture Active Passive Mis-
sion (SMAP; e.g., Tang et al., 2017) into a global ocean
forecast system using a 3D-Var DA method have also been
demonstrated by Martin et al. (2019). Their results show the
benefits of assimilating both the SMOS and SMAP datasets
in the intertropical convergence zone in the tropical Pacific.
However, very few studies have investigated the impact of
assimilating SSS products in the Arctic or at high latitudes.
Since the beginning, the SSS retrieval from SMOS in cold
regions has been very challenging for three main reasons:
(i) the lower sensitivity of TB to salinity in cold waters
leads to larger errors (Yueh et al., 2001; e.g, the sensitivity
drops from 0.5 to 0.3 KPSU−1 when sea surface tempera-
ture decreases from 15 to 5 ◦C); (ii) land–sea and ice–sea
contaminations resulting from abrupt changes of TB values
across these two interfaces, combined with the large ground
footprint of SMOS; (iii) the requirement of a well-observed
steady-state period for the removal of biases. Addressing
these challenges in the SMOS salinity retrieval approach,
Olmedo et al. (2017) introduced a non-Bayesian retrieval
method to de-bias the Level 1 baseline (L1B) salinity against
the reference SSS from Argo data (Argo, 2022). Level 1
data from the satellite are available within 24 h, but the ad-
ditional processing steps require high-quality auxiliary data,
so Levels 3 and 4 SSS are only provided in delayed mode.
Starting with the ESA L1B (v620) product from SMOS, the
Barcelona Expert Centre (BEC) released version 2.0 of the
Arctic gridded SSS product (25 km resolution; Olmedo et al.,
2018). Xie et al. (2019) evaluated the V2.0 SSS product
and another gridded Arctic SMOS SSS product developed
by LOCEAN (Boutin et al., 2018) during the years 2011–
2013. These two SSS observation sets, together with an Arc-

tic reanalysis (Xie et al., 2017) and one objective analysis
product (Greiner et al. (2021) describe an updated version of
this product), were validated against in situ observations and
compared with two climatology datasets: the World Ocean
Atlas of 2013 (WOA2013; Zweng et al., 2013) and the Polar
science center Hydrographic Climatology (PHC 3.0; Steele
et al., 2001). They found considerable discrepancies among
the different gridded SSS products, especially in the fresh-
est seawater (< 24 psu). The intercomparison of these Arctic
SSS products shows room for improvement of the SMOS-
based SSS in the Arctic.

Recently, under the framework of the ESA project
Arctic+Salinity (AO/1-9158/18/I-BG) and further develop-
ment of the non-Bayesian scheme (Olmedo et al., 2017),
the effective resolution of SSS data was enhanced both in
space and time (Martínez et al., 2022). The new version
of the SSS product (V3.1) has the capability to monitor
mesoscale structures and river discharges (e.g., Martínez
et al., 2022). This new product provides daily maps (Level 4)
of 9 d averages in the Arctic on a regular 25 km grid and cov-
ers a longer time period of 2011–2019; these are released
through the BEC portal (http://bec.icm.csic.es/ and also
at DOI: https://doi.org/10.20350/digitalCSIC/12620; last ac-
cess: May 2022). The major differences in the estimation of
the two SSS products (V2.0 and V3.1) are detailed in the
Algorithm Theoretical Baseline Document (ATBD) of the
Arctic+Salinity project (Martínez, 2020). Figure 1 shows
that, in comparison to V2.0, V3.1 provides wider coverage
in the marginal seas around the Arctic and is also fresher, as
indicated by the 26 psu isoline.

The two successive versions of the BEC SMOS SSS prod-
ucts are assimilated into the TOPAZ Arctic reanalysis system
(detailed in Sect. 2) during the summer of 2016. These two
assimilation runs are compared to the Arctic reanalysis with-
out assimilation of satellite SSS data, which is identical to the
product ARCTIC_REANALYSIS_PHYS_002_003 in the
Copernicus Marine Services. The model validation against
independent observations presents the differences stemming
from these two SSS products, although they are from the
same initial data source (SMOS). Their impact on the assimi-
lation in the Arctic coupled ice–ocean model shows large dif-
ferences, thereby motivating further efforts to improve SSS
retrievals in the cold Arctic.

The paper is organized as follows: Sect. 2 briefly describes
the coupled ocean and sea ice data assimilation system and
the assimilation experiments; Sect. 3 describes the in situ
observations and the validation metrics; results presented in
Sect. 4 include the validation using independent SSS obser-
vations, separated into different ocean basins. Sect. 4 also
examines the impact of SSS assimilation on the weekly in-
crements of other related variables near the surface and ex-
plores the integrated effect on the freshwater simulated by
the model. In Sect. 5, the findings of this study and future
perspectives are summarized.
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Figure 1. Monthly SSS of August (a, b) and September (c, d) in 2016 from SMOS products of BEC V2.0 (a, c) and V3.1 (b, d). Note: the
solid isolines of SSS are 22, 26, 28, 30, 32, 34, and 35 psu.

2 Assimilation system and experimental design

2.1 The Arctic ocean and sea ice coupled data
assimilation system

TOPAZ is a coupled ocean and sea ice data assimilation
system, built using the deterministic ensemble Kalman fil-
ter (DEnKF; Sakov et al., 2012) to simultaneously assimi-
late multiple types of observations for the ocean and sea ice
(Xie et al., 2017). The ocean model in this system uses ver-
sion 2.2 of the Hybrid Coordinate Ocean Model (HYCOM;
Chassignet et al., 2003) with a low-distortion square grid at a
horizontal resolution of 12–16 km. The river discharge input
is climatological, using the ERA-Interim (Dee et al., 2011)
runoffs channeled in a simple hydrological model, which
tends to underestimate the amplitude of the seasonal cycle
and thus produces a saline bias at the surface (Xie et al.
2019). The coupled sea ice model uses a single-category
thermodynamic model (Drange and Simonsen, 1996) and
dynamics by the modified elastic–viscous–plastic rheology
(Bouillon et al., 2013) from an early version of the CICE
model (Lisæter et al. 2003). The model covers the Arctic
Ocean and the whole north Atlantic Ocean (shown in Fig. 1

in Xie et al., 2017). A seasonal inflow of Pacific Water is im-
posed across the Bering Strait, based on observed transports
(Woodgate et al., 2012). At all lateral boundaries, the tem-
perature and salinity stratifications are relaxed to a climatol-
ogy combining version 2.0 of WOA2013 and version 3.0 of
PHC with a 20-grid-cells buffer zone. To avoid a potential
model drift, the surface salinity is relaxed to the combined
climatology as mentioned above, with a 30 d timescale, but
the relaxation is suppressed wherever the difference from cli-
matology exceeds 0.5 psu to avoid the artificial formation of
bulk surface freshwater layers.

For simplification, the two steps of the assimilation sys-
tem can be translated by the following concept expressions
(update and model propagation):

Xa = Xf+K(y−HXf), (1)
Xf =M(Xa), (2)

where the matrix X represents the model state with all 3-
D and 2-D variables needed by the model forward inte-
gration, represented by the operator M . The subscripts “a”
and “f” respectively indicate the analyzed model state ob-
tained through optimization after DA and the model fore-
cast. The vector y is composed of the quality-checked ob-
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servations during the weekly cycle, and the observation op-
erator H gives the model equivalent of the observations. The
innovation term (in parentheses in Eq. 1) represents the dif-
ferences between the model and the various observations in
the observation space.

For the ensemble data assimilation method, the matrix X
includes the dynamical members of the model states as dif-
ferent columns and further evolutes according to Eqs. (1)
and (2), as described in the DEnKF. The TOPAZ model
runs an ensemble of 100 members. The K matrix (Kalman
gain) is calculated using the ensemble covariance matrix.
Like other square root versions of the ensemble Kalman fil-
ter, the DEnKF splits Eq. (1) into two steps: the K calcu-
lation is applied to the ensemble mean, and the anomalies
are updated to match a target analysis covariance (more de-
tails in Sakov et al., 2012). Using a 7 d assimilation cycle,
we use the DEnKF to assimilate different types of ocean
and ice observations, including along-track sea level anomaly
(SLA), sea surface temperature (SST), in situ profiles of
temperature and salinity, sea ice concentrations (SIC), and
sea ice drift products all sourced from the Copernicus Ma-
rine Environment Monitoring Services (CMEMS; https://
marine.copernicus.eu, last access: February 2023). The same
TOPAZ system provides a 10 d forecast of ocean physics and
biogeochemistry in the Arctic (Bertino et al., 2021) every day
via the CMEMS portal.

2.2 Assimilation experiments and the observation
error estimate for SSS

To evaluate the impact of the assimilation of two versions of
the SSS products on TOPAZ model runs, a control assimila-
tion experiment (Exp0) and two parallel assimilation exper-
iments (ExpV2, ExpV3) for a 6 month time period (July to
December 2016) were performed. Exp0 assimilates all avail-
able ocean and sea ice data, except the satellite SSS products.
On the other hand, ExpV2 and ExpV3 additionally assimilate
the BEC SSS products V2.0 and V3.1, respectively. Details
of the three assimilation runs are listed in Table 1.

Observation error is a key parameter in any DA system:
too-small values lead to overfitting, while too-large values
make the assimilation inefficient. The salinity errors from
passive microwave instruments were previously estimated
by Vinogradova et al. (2014): the zonal average of standard
errors north of 60◦ N was estimated at 0.6 psu. In a recent
study, Xie et al. (2019) evaluated the SMOS-based SSS prod-
ucts using in situ observations and revealed a strong regional
dependence of the V2.0 product errors: they are smaller
than 0.4 psu in the Northern Atlantic but increase dramat-
ically to 1 psu in the Nordic seas and to over 2 psu in the
central Arctic. Undoubtedly, the salinity observation errors
from passive microwave instruments are higher in high lati-
tudes than they are elsewhere. Furthermore, in the Beaufort
Sea (as Fig. 12a in Xie et al., 2019), the errors of the SSS
V2.0 product and the Arctic reanalysis product from TOPAZ

(same as Exp0 used in this study) both show an inverse rela-
tionship between SSS values and SSS errors. Hence, we use
an empirical error function for ExpV2 and ExpV3 adjusted
to the discrepancies as shown in Eq. (3), following Xie et al.
(2019):

ESSS =max

Eint,

0.6+
6

1+ exp
(

SSS−16
5

)


2 , (3)

where Eint is the instrumental error variance estimated by
the data provider – that part is absent from the V2.0 product.
Equation (3) yields more conservative error estimates than
the providers, which also prevents the discontinuities caused
by strong assimilation updates (as an example noticed by
Balibrea-Iniesta et al., 2018). The settings for all other obser-
vation types are identical to those applied in Xie et al. (2017).
By construction, the observation errors are always larger for
the V3.1 than for the V2.0 product, but in fresh waters they
are identical. This implies that the assimilation may pull the
analysis closer to the V2.0 than to the V3.1 product in the
more saline waters, but they are otherwise treated on equal
footing, ignoring the a priori expectation that the most recent
product should be more reliable.

3 In situ SSS observations for validation

All in situ salinity profiles were collected from various repos-
itories and cruises (as shown in Fig. 2). Salinity measure-
ments were extracted near the surface over the Arctic domain
during the experimental time period. The sanity check proce-
dures include the following: (i) location check to remove SSS
observations in the model land mask; (ii) omission of the in-
valid profiles if the top depth is deeper than 8 m; (iii) removal
of the redundant observations. Since the model does not re-
produce local gradients of the vertical salinity profiles shown
in Supply et al. (2020), all the salinity profiles are averaged
over the upper 8 m below the surface. This also avoids the
loss of the profiles that do not reach the surface.

– Data from the Beaufort Gyre experiment project
(BGEP).

The BGEP has maintained an observing system in the
Canadian Basin since 2003 and provides in situ ob-
servations over the Beaufort Gyre every summer. Al-
though the BGEP has maintained three bottom-tethered
moorings since 2003, the shallowest depth of the
measured profiles for temperature and salinity is be-
low 50 m. Hence, in this study, we only use the conduc-
tivity temperature depth (CTD) dataset from the cruise
in 2016 (https://www2.whoi.edu/site/beaufortgyre/data/
ctd-and-geochemistry/, last access: 14 February 2022).
SSS observations from these CTD profiles in the time
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Table 1. Settings of the three assimilation runs in 2016 with and without SSS.

Assimilated obs. Initial model states End date of assimilation SSS observation errors

Exp0 SST, SLA, T/S profile, SIC, SIT, and SID 6 Jul 28 Dec n/a
ExpV2 SSS V2.0 + obs. used in Exp0 6 Jul 28 Dec Eq. (3)
ExpV3 SSS V3.1+ obs. used in Exp0 6 Jul 28 Dec Eq. (3)

n/a: not applicable.

Figure 2. Locations of the observed SSS from in situ profiles and surface samples by cruises from July to December 2016. The marks note
six observation sources; see the details in Sect. 2.3. The marginal seas delineated are the Beaufort Sea (BS), Chukchi Sea (CS), East Siberian
Sea (ESS), Laptev Sea (LS), Kara Sea (KS), Barents Sea (BSS), Greenland Sea (GS), Norwegian Sea (NS), and Baffin Bay (BB). The main
rivers around the Arctic region are the Mackenzie River (MR), Pechora River (PR), the Ob (OB), Yenisey River (YR), Lena River (LR), and
Indigirka River (IR). TP indicates the Taymyr Peninsula.

period from 13 September to 10 October 2016 are rep-
resented by the red triangles in Fig. 2.

– Data from Oceans Melting Greenland (OMG).

The project Oceans Melting Greenland was funded by
NASA to understand the role of the ocean in melt-
ing Greenland’s glaciers. Over a 5 year campaign, this
project collected temperature and salinity profiles by
Airborne eXpendable Conductivity Temperature Depth
(AXCTD) launched from an aircraft (e.g., Fenty, et al.,
2016). The deployed probe can sink to a depth of
1000 m, connected with a float by a wire. The measured
temperature and conductivity are then sent back to the
aircraft. These salinity profiles collected during the first

OMG campaign in 2016 are downloaded from https:
//podaac.jpl.nasa.gov/dataset/OMG_L2_AXCTD/ (last
access: 10 February 2022). The SSS from OMG dis-
tributed around Greenland from 13 September to 10 Oc-
tober 2016 is shown as the inverted blue triangles in
Fig. 2.

– Data from the International Council for the Exploration
of the Sea (ICES).

Salinity profiles were also obtained from the ICES por-
tal (https://www.ices.dk, last access: November 2022).
Shown as light-blue squares in Fig. 2, the locations of
the profiles during the last 6 months of 2016 are dense in
the Nordic Seas and are restricted to north of 58◦ N for
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this study. Valid salinity profiles from ICES (last access:
9 February 2022) are obtained from 6 July to 23 Novem-
ber in 2016.

– Data from other cruises at the Arctic Data Center
(ADC).

Surface salinity observations from scientific cruises are
obtained from the Arctic Data Center portal (https:
//arcticdata.io/catalog/data; last access: 17 February
2022). During the model experiment, the first relevant
cruise in ADC was SKQ201612S, which was operated
by University of Alaska Fairbanks with the RV Siku-
liaq. This cruise collected data from Nome, Alaska, on
3 September 2016, heading to the northeast Chukchi
Sea and then back to Nome at the end of September
2016. The temperature and salinity profiles were col-
lected by a Sea-Bird 911 CTD instrument package. All
measurements at each station were done both down-
and upcast-ways. To produce water column profiles at
each station, the downcast data were binned at 1 m in-
tervals (Go ni et al., 2021). Besides the CTD profiles
of SKQ201612S, more seawater samples were collected
via the surface underway system on the RV Sikuliaq.
Through a sea chest below the waterline (e.g., 4–8 m),
the uncontaminated seawater was pumped into the ship,
and the corresponding filtration system supplied sam-
ples every 3 h to the sensors (More details in Go ni
et al., 2019). These SSS observations were obtained on
9–27 September, indicated as blue crosses in Fig. 2.

Moreover, SSS measurements were also collected from
the Sea-Bird CTD on board Sir Wilfrid Laurier (SWL) but
only in July 2016. This cruise is part of the annual monitor-
ing from the Canadian Coast Guard Service (Cooper et al.,
2019). The SSS observations are obtained near the Bering
Strait, close to the Pacific boundary of our model.

After filtering the diurnal signals by daily averages in ob-
served surface salinity, all valid SSS measurements from the
above data sources are compared with the daily average SSS
of the three assimilation experiments listed in Table 1. The
model data have been collocated with the observations for
validation. To estimate the forecast differences to observa-
tions, we use the standard statistical moments:

Bias=
∑N

i=1

∑Oi

1

(
HXi − yi

)
/
∑N

i=1
Oi, (4)

MSD=

√∑N

i=1

∑Oi

1

(
HXi − yi

)2
/
∑N

i=1
Oi, (5)

where i is the ith day, Oi represents the number of observa-
tions on this day, and N represents the total number of days
depending on the source of observations. Then Xi represents
the model daily average of the ensemble mean at the obser-
vation time. H is an operator to extract the SSS simulation
from the model at the observed location. The model perfor-
mance can then be quantitatively compared between the three
assimilation runs.

In addition, we further introduce a two-sample Student’s t
test to evaluate the significance of the change of SSS bias
in ExpV2 and ExpV3 with respect to Exp0. Compared to in
situ observations, the SSS misfits in Exp0 are the error ar-
ray e1. The corresponding error array from ExpV2 or ExpV3
is called e2. Thus, considering the null hypothesis H0 that
e1 and e2 are the means of indiscernible random draws, the t
value can be calculated as follows:

t =
|e2− e1|√

s2
1/(n1− 1)+ s2

2/(n2− 1)
,

where s1 (s2) is the standard deviation in the e1 (e2), and n1
(n2) is the number of observations. For every t value, the p
value from the above equation is the probability that random
errors would prove H0 wrong. Low p values (< 0.05) indi-
cate that the change of bias due to assimilation is significant.

4 Results

4.1 Diagnosing using assimilation statistics

The SSS innovations in the two assimilation runs of ExpV2
and ExpV3 are compared in Fig. 3, together with the number
of assimilated SSS observations and the ensemble spread cal-
culated by the ensemble standard deviation. The total number
of observations is at its maximum in September, when the sea
ice cover is minimal. Since both versions of the SSS product
share the same time frequency (9 d average) and gridded for-
mat, the number of assimilated observations in the two runs
reached a maximum in the middle of September (gray lines in
Fig. 3). But the maximal number of SSS in ExpV3 is shown
to be higher than in ExpV2. For ExpV2, the root mean square
(RMS) of the SSS innovation varies between 0.4 and 1.2 psu,
but the mean of SSS innovation, calculated as the observa-
tion minus the model simulation (see the bracket in Eq. 1),
shows a saline bias of 0.4 psu, highest in September. How-
ever, in ExpV3, the salinity bias quickly disappears after a
few data assimilation cycles. The RMS of the SSS innova-
tion is larger in ExpV3 between 0.6 and 1.6 psu, which can
partly be explained by the higher effective resolution of the
V3.1 product and the double-penalty effect. In ExpV3, the
RMS of the SSS innovation (the red line) jumps down af-
ter the first SSS assimilation step. The RMS of SSS innova-
tions and the observation errors both decrease from summer
to winter, following a seasonal cycle as the areas of fresher
water get gradually ice covered. The domain-averaged ob-
servation errors are only slightly larger in ExpV3 than in
ExpV2, as explained above, and the RMS of SSS innova-
tions becomes lower than the observation errors near the end
of the run, which indicates that the observation errors for the
V2.0 SSS have been overestimated.

In Fig. 4a and b, the SSS maps are shown for the control
run (Exp0) in August and September 2016, respectively. For
Exp0 in August, low-salinity waters are found in the Beaufort
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Figure 3. Innovation statistics of SSS in the Arctic (> 60◦ N) from ExpV2 (a) and ExpV3 (b). The line with red triangles is the root-
mean-squared innovation, and the dotted blue line shows the mean of innovations north of 60◦ N. The gray line represents the number of
observations assimilated, and the green line with inverted triangles is the observation error standard deviation in the two runs.

Sea near the Mackenzie River and along the East Siberian
coast. In September, the fresher waters, below 30 psu, bridge
the two areas in Exp0, probably due to sea ice melt, although
the lowest salinity near the Siberian coast remains unchanged
from August to September (as indicated by the 28 psu iso-
line). Compared with the SSS observations from SMOS
(Fig. 1), these two low-salinity waters are clearly underes-
timated in Exp0. Meanwhile, the relatively saline 32 psu iso-
line crosses both the Eurasian Basin and Baffin Bay. In the
Laptev Sea, due to the significant effects of river runoff and
ice melt, the salinity shows a strong gradient from the south-
east to the northern part. During winter, the salinity increases
to 34 psu, and it decreases in summer to nearly 30 psu (Janout
et al., 2017). In the northwest Laptev Sea, the saline tongue
of 32 psu extends eastward to the Taymyr Peninsula (TP).
North of the TP, the Kara Sea freshwater meets with the At-
lantic Water pathways from the Fram Strait and Barents Sea
(shown in Fig. 1 of Janout et al., 2017). Close to the TP, the
observations at the mooring profiles in Janout et al. (2017)
show much fresher surface salinity (29 psu) than the subsur-
face salinity (32 psu) in summer. Compared to the SMOS
SSS maps (shown in Fig. 1), only the V3.1 product shows the

32 psu isolines around the TP. Another difference between
the two SMOS products arises in the Chukchi Sea, where the
V3.1 product is more saline than both the V2.0 product and
SSS in Exp0.

Figure 4c–f shows the SSS differences in August and
September 2016 between the SSS assimilation runs and the
control run. Figure 4c and d both show a freshening of the
coastal areas in the Kara Sea, Laptev Sea, and East Siberian
Sea, but in ExpV3 the freshening is stronger and wider
(Fig. 4e and f). In the Beaufort Sea, ExpV2 mainly brings
a local freshening near the mouth of the Mackenzie River in
August, which then spreads out along the coast in September.
The freshening in the BS brought by ExpV3 affects a broader
area, even including the Canadian Archipelago. ExpV3 also
freshens the SSS on both sides of Greenland Island. From
August onwards, the SSS in ExpV3 freshens by over 1 psu
along the whole east Greenland coast, which clearly does not
happen in ExpV2. In fact, the 32 psu isoline in ExpV3 (not
shown) extends hundreds of kilometers further to the south-
east Greenland coast in comparison to Exp0 and ExpV2.
The rest of the Greenland coast is also fresher by 0.5 psu in
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Figure 4. (a, b) Monthly simulated SSS (unit: psu) from Exp0 in August (a) and September 2016 (b). The black isolines indicate the 26, 28,
30, 32, 34, and 35 psu, respectively. (c–f) Monthly SSS differences in ExpV2 (c, d) and ExpV3 (e, f) with respect to Exp0. The black lines
are −3, −1, 1, and 3 psu.

ExpV3 during both months. This is a sign of a consistent
change in the V3.1 product.

Even though most of the SSS assimilation leads to a fresh-
ening of the surface, a few locations show higher salinity than
Exp0, these are different from ExpV2 to ExpV3. For exam-
ple, the saline increment near the Bering Strait is larger in

ExpV3 in excess of 1 psu, consistently with the difference
between the two remote sensing products (Fig. 1).

Other increases in SSS concern small areas near estuaries
and are more common in ExpV3. The increase to the west of
the Yamal Peninsula can be explained by a model setup bias
in the location of the Ob river but is compensated for by the
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Table 2. Evaluation of SSS misfits (unit: psu) in the three assimilation runs according to the six areas indicated by the dashed blue lines
in Fig. 2. The numbers in bold indicate the smallest misfit, with a reduction of at least 9 % relative to Exp0. The overall score depends on
whether the bias and RMSD are reduced by at least 9 %. If both criteria are met, the score equals 1; it is 2 if only one of them is met, and it
is 3 otherwise. The ∗ subscript means the bias changes passed the significance test using Student’s t test (α= 0.05).

Areas in Fig. 2 Number of obs. Bias (psu) RMSD (psu) Overall score

Exp0 ExpV2 ExpV3 Exp0 ExpV2 ExpV3 ExpV2 ExpV3

BS 98 2.81 2.43 2.08 2.87 2.54 2.28 1∗ 1∗

CS 137 2.32 1.96 1.91 2.62 2.26 2.19 1∗ 1∗

BSS 189 1.35 1.34 1.30 2.50 2.49 2.47 3 3
NS 669 0.43 0.44 0.37 1.19 1.19 1.16 3 2
GS 254 0.50 0.51 0.24 1.43 1.43 1.28 3 1∗

BB 89 0.35 0.37 0.12 1.22 1.20 1.22 3 2

SSS assimilation. In the above comparisons of SSS maps, the
central Arctic is not discussed, since the region is covered by
sea ice and the effect of assimilation is indirect.

4.2 Comparison with independent in situ observations

Quality-checked in situ observations in the central Arctic
are very unevenly distributed. After pooling all platforms to-
gether, we further investigate the SSS misfits in six subre-
gions of the Arctic (Fig. 2 and Table 2). This section will
present the statistics of differences to independent in situ ob-
servations, separately considering marginal seas.

Beaufort Sea (BS). Figure 5 shows the scatterplots of SSS
in the three runs against in situ observations from BGEP,
OMG, and ICES. In the Beaufort Sea (Fig. 5a–c), the ob-
served SSS varies in a range of 26–29 psu. The range of
SSS in Exp0 is much smaller, between 29–31 psu, with a
saline bias of 2.6 psu and an RMSD of 2.7 psu, but other-
wise, it shows a reasonably linear relationship (r = 0.59).
The SSS bias in Exp0 has the same value as in Xie et al.
(2019), although it is estimated using the BGEP observations
in a different time period (2011–2013). The range of SSS in
ExpV2 is slightly improved to 28–30.5 psu. Further, the bias
is reduced by 0.5 psu, corresponding to bias and RMSD re-
ductions of, respectively, 13.5 % and 10.5 % with respect to
Exp0. In ExpV3, the SSS range is much closer, between 26.5
and 30.5 psu, and the resulting bias and RMSD reductions
of SSS are, respectively, 26.3 % and 17.3 % with respect to
Exp0. Both the bias reductions in ExpV2 and ExpV3 rela-
tive to Exp0 pass the significance test (α= 0.0) through Stu-
dent’s t test. Furthermore, compared to all in situ SSS in BS
(Fig. 7a–c), the SSS misfits in ExpV3 show a stronger re-
duction by 26.0 % for bias and 20.6 % for RMSD. ExpV2
reduces these errors by half as much (13.5 % for bias and
11.5 % for RMSD). These results clearly indicate that the
new version of the SSS is more beneficial for data assimi-
lation in the Beaufort Sea.

Chukchi Sea (CS). Figure 6 shows the SSS deviations as
a function of time during the SKQ cruise route. Figure 6a
shows the surface levels from CTDs. The saline bias (2.8 psu)

is more pronounced than in the Beaufort Sea, which we at-
tribute to the proximity to the model boundary in the Bering
Strait, relaxed to climatological values, where the interannual
variability of Pacific water is not included. After assimilat-
ing SSS products, a reduction of the bias is observed during
September: by 15.5 % in ExpV2 and up to 22.2 % in ExpV3.
The comparison to underway surface water samples (Fig. 6b)
also shows an error reduction of around 15 %, though there
are fewer differences between ExpV2 and ExpV3.

Considering other cruise data in the CS (Fig. 7d–f), the
SSS in Exp0 shows almost uniform values, with a saline bias
of about 2.3 psu and an RMSD of 2.6 psu. A recent obser-
vational study by Goñi et al. (2021) shows that the surface
salinity of the CS during late summer varies between 28–
30 psu during the time period 2016–2017. The range of SSS
observations considered here is slightly broader (27–32 psu).
The assimilation of SSS products reduces the misfits (bias
and RMSD). As in the BS, the SSS in ExpV3 has more
significant reductions in bias (17.7 %) and RMSD (16.4 %).
After assimilation, the deviations are in the same range as
that found in the BS. All the bias reductions in ExpV2 and
ExpV3 are significant compared to Exp0 through the t test
(α= 0.05).

Greenland Sea (GS). Most SSS observations around
Greenland are from the OMG program, shown as the down-
ward blue triangles in Fig. 2. Considering first all SSS obser-
vations from OMG, the SSS misfits in the three runs (shown
in Fig. 5d–f) show smaller bias and RMSD than in the BS and
the CS. However, the SSS in ExpV3 still brings significant
error reductions, with reductions of 32.6 % and 9.4 % of the
bias and RMSD compared to Exp0. Notably, the SSS misfits
in ExpV2 are almost identical to those in Exp0, which indi-
cates that the V2.0 SSS product was not informative there.

We now separate the evaluation into the east and west of
Greenland, covering the GS and Baffin Bay (BB) areas, as
shown in Fig. 2 (also listed in Table 2). Figure 8a–c shows
that all SSS observations available in the GS vary between 27
and 35 psu. This large range includes fresh coastal waters,
Arctic water, and Atlantic Water. The three assimilation runs
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Figure 5. Scatterplots of SSS in the TOPAZ assimilation runs against in situ profiles (top: from BGEP in the Beaufort Sea; middle: from
OMG in both Greenland seas; bottom: from ICES in the Nordic Seas, as indicated in Fig. 1 and descriptions in Sect. 3). The statistics of
SSS misfits are indicated in each panel with the bias and the RMSD, respectively; the number of observations is given between parentheses.
The dashed dark line represents the linear regression, and r is the linear correlation coefficient. All the correlation coefficients are over the
95 % significance test.

show different saline biases, especially for salinities lower
than 30 psu. While in observations the minimum salinity is
below 28 psu, it only reaches 30 psu in ExpV3 and 31 psu
in both Exp0 and ExpV2. As a result, the bias reduction

in ExpV3 is over 50 %, and the RMSD decreased by about
10.5 % in the GS. ExpV2 is disappointingly similar to Exp0.
This is also the case in BB (shown in Fig. 8d–f), where dif-
ferences between ExpV2 and Exp0 are less than 0.02 psu. In
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Figure 6. Model-minus-observations SSS differences in the three
assimilation runs against the SSS recorded in the Beaufort Sea and
the Chukchi Sea along the SKQ cruise in 2016: (a) from CTD pro-
files; (b) from surface water samples underway in the same cruise.
The biases are indicated in the same order, and the corresponding
RMSD are between parentheses.

contrast, ExpV3 reduces the SSS bias but does not signifi-
cantly reduce the RMSD in the BB. One possible explana-
tion is the double-penalty effect because the V3.1 product
has a higher effective resolution than V2.0. This can be seen
in Fig. 8, as the ExpV3 values are more scattered.

Finally, we examine the SSS deviations in the Barents
Sea and the Norwegian Sea. The SSS bias and RMSD are
the lowest in ExpV3 in Table 2, even though the reductions
are not as significant as in the area of fresher surface wa-
ters. Compared to the ICES observations distributed in the
North Atlantic and the Nordic Seas (blue squares in Fig. 2),
the scatterplots of Exp0 and ExpV2 are nearly identical (see
Fig. 5g–i). The minimum salinity in these two runs is 32 psu.
The SSS bias and RMSD in both runs are also similar (dif-
ferences less than 0.01 psu). In contrast, lower salinity val-
ues (below 32 psu) are found in ExpV3, although the saline
bias remains around 0.5 psu on average. Notably, the SSS
in ExpV3 shows that data assimilation can reduce the bias
by 15 % compared to Exp0, but the RMSD only reduced
by about 0.03 psu, which is also possibly due to the double-
penalty effect. This also suggests that the improvements near
the coast will be the next challenge for future versions of the
SSS product.

4.3 Impact analysis of SSS assimilation

The above section has demonstrated that the assimilation of
remote-sensing SSS generally improves the match to inde-
pendent in situ measurements, although the improvements
are location dependent. Since large areas are void of in situ
measurements, the increment for other surface variables will
also be interpreted for understanding the impacts incurred.
The increments are the differences between the analysis and
the forecast. The calculation of them is the result of the in-
novations of all assimilated observations multiplied by the
Kalman gain, as computed in Eq. (1). Since the DEnKF up-
date is multivariate, we present the impact of the assimila-
tion on other model variables closely related to the SSS: SST
and SIC. Since the only difference in the setting between the
three runs is the assimilation of SSS, we can attribute the dif-
ferences to the impact of SSS observations. In theory, if both
the model and observations were unbiased, the increments
of other assimilated variables should generally decrease be-
cause of the presence of a new SSS term in the denomi-
nator of the Kalman gain (the ensemble covariance matri-
ces contain off-diagonal blocks of correlation between SSS
and dynamically related variables, and so the assimilated ob-
servations usually compete with each other). However, the
SSS biases originating either from the model or observations
also affect the other model variables and increase the innova-
tions on the following assimilation step and thus the consecu-
tive increments. Hypothetically, wherever the forecast errors
are caused by SSS errors, the increments of other variables
should diminish. Figure 9 compares the time-averaged incre-
ments of SIC and seawater temperature in the top 3 m layer
(considered as SST here) in the three runs. The sign of the
increments remains overall the same across the three exper-
iments, both for SST and SIC. The SST increments in the
three runs are negative in the open ocean and positive near
the ice edge, as shown in the right column of Fig. 9.

The SST increments in Exp0 and in ExpV2 are nearly
identical, but in ExpV3 there are a few areas such as in the
Kara Sea and in the Laptev Sea where the SST increments
have been suppressed. These are locations where the SSS
and SST are positively correlated, so the updated SSS by as-
similation is also helpful in reducing the water temperature
misfits near the surface. The changes in SST are, however,
small with respect to the large SSS differences in Fig. 4. In
Exp0, the SIC increments are small (< 5 %) inside the ice
pack. The satellite SIC observations are assimilated every
week and help to correctly position the ice edge (Sakov et al.,
2012). The increments exceed 5 % along the ice edge, as can
be seen in the northern Barents Sea.

The assimilation of the V2.0 SSS product also shows min-
imal differences from Exp0, partly because of the conserva-
tive sea ice mask in the V2.0 SMOS SSS. The SIC incre-
ments are opposite to those of SST, showing that the assimi-
lation warms the surface water where ice is removed, which
is consistent with Lisæter et al. (2003). Only minor differ-
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Figure 7. Scatterplots of SSS (unit: psu) in the three assimilation runs Exp0, ExpV2, and ExpV3 against the CTD observations collected by
different cruises in 2016. (a–c) Beaufort Sea; (d–f) Chukchi Sea, as shown in Fig. 1. All the correlation coefficients are over the 95 % signif-
icance test.

ences between ExpV2 and ExpV0 are visible along all areas
swept by the ice edge during the 6 month experiment, for
example in the Kara Sea. In contrast, the assimilation of the
V3.1 SSS product shows larger changes in SIC increments
than in ExpV2, with a broader area of negative increments
(removed ice) in the northern Barents Sea. This is not visibly
related to the SST increments but to the freshening caused by
the assimilation of V3.1 SSS, as SSS and SIC are positively
correlated in the northern Barents Sea, as shown by Fig. 2 in
Sakov et al. (2012). The increased SIC increments may be an
indication that the SSS freshening could be excessive.

Since the whole water column is updated by assimilation,
the freshwater content is also modified by the assimilation of
SSS. There are, however, complex relationships between SSS
and FWC, as shown by Fournier et al. (2020). The changes
in FWC in the Arctic are calculated as in Eq. (6) derived
from Proshutinsky et al. (2009), although this method was
initially intended for the Beaufort Sea. Applying the same
formula for interpolation of in situ observations, Proshutin-
sky et al. (2020) estimated the time-averaged summer fresh-

water content in the Beaufort Gyre region in two time peri-
ods (1950–1980 and 2013–2018). In the latter period, they
located the FWC center in the Beaufort Sea around (150◦W,
75◦ N) and drew the 20 m isoline over more than 5◦ of lati-
tude and nearly 30◦ of longitude on average. When compared
to the earlier reference period, the FWC in the Beaufort Sea
has increased, and its center has shifted westward.

Following Proshutinsky et al. (2009), the model FWC in
the Arctic is estimated as follows:

FWC=
∫ zref

z0

(
1−

S(z)

Sref

)
dz, (6)

where the reference salinity value Sref is taken at 34.8 psu,
zref is the depth of the reference salinity or the sea bed, and
S(z) is the salinity profile. Figure 10 shows the FWC on two
representative days, 20 September and 20 October 2016. In
Exp0, the reanalysis reproduces the typical FWC distribution
in the Arctic, with a maximum in the Beaufort Sea.

The 20 m isolines in Fig. 10a and d show an increase in
spatial coverage during October, consistent with Rosenblum
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Figure 8. Scatterplots of SSS (unit: psu) in the three assimilation runs Exp0, ExpV2, and ExpV3 against CTD observations from OMG and
ICES in 2016. (a–c) East Greenland Sea; (d–f) Baffin Bay, as shown in Fig. 1. The statistics of SSS misfits are indicated in each panel with
the bias and the RMSD, respectively, and the number of observations is given between parentheses. The dashed dark line represents the linear
regression, and r is the linear correlation coefficient. All the correlation coefficients are over the 95 % significance test.

et al. (2021), but the 20 m isoline does not extend as far as
170◦ E compared to Proshutinsky et al. (2020). After the as-
similation of SSS products (either V2.0 or V3.1), the ampli-
tude and the spatial distribution of the FWC maximum in-
crease slightly in the Beaufort Sea (see Fig. 10b and c). A
much larger increase of FWC appears on the East Siberian
shelf and in the coastal areas of the Laptev Sea and east-
ern Kara Sea, although to a different extent in ExpV2 and in
ExpV3. In the eastern Kara Sea, the FWC increases over a
wider area in ExpV2 than in ExpV3. To the west of the Ya-
mal Peninsula, ExpV3 shows a negative anomaly related to
an incorrect location of the model river runoff, corrected in
later versions of the model. The SSS assimilation is able to
correct the related fresh bias. In the central Arctic, although
the assimilated SSS measurements are masked by the sea
ice cover, the FWC differences north of 84◦ N are more pro-
nounced in October than in September, which indicates the
advection of SSS increments by the Transpolar Drift Stream
(Rigor et al., 2002; Balibrea-Iniesta et al., 2018). These re-

sults suggest that the SSS assimilation of both versions of
SMOS satellite-based acts compensates for the insufficient
river summer runoff, redistributes the freshwater in the Arc-
tic, and adjusts the freshwater budget. However, because of
the limited in situ data, the above assessment remains pre-
liminary.

Further, we compare the daily time series of Arctic-
averaged FWC from the three runs to the north of 70◦ N
(Fig. 11). The FWC increases in October–November to reach
its maximum and gradually decreases thereafter. The impact
of the week-long data assimilation cycles is visible as instan-
taneous jumps on the three curves of the time series, but the
assimilation of SSS does not cause unrealistic imbalances.
The FWC increases substantially by about 25 cm due to SSS
assimilation. Notably, the assimilation of version 3.1 SSS
causes a faster increase during the first 2 months. Due to
the absence of ground truth data in 2016, the above com-
parison is not fully verified, but the timing of the peak is in
better agreement with the seasonal freshwater storage pre-
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Figure 9. Averaged increments for the 6 month period (a, b in Exp0; c, d in ExpV2; e, f in ExpV3). The figure shows the European Arctic
for clarity. (a, c and e) Sea ice concentration (unit: %) with isolines of ± 5 %. (b, d and f) SST with isolines of ± 0.1 ◦C.

sented by the Ice-Tethered Profiler (ITP) data in Fig. 4a of
Rosenblum et al. (2021). In addition, we also notice that the
amplitude of the seasonal FWC seems too small in all exper-
iments in Fig. 11, which can be related to insufficient thick
ice in TOPAZ (Uotila et al., 2019). More concrete evidence
about the changed FWC will be provided when the longer
assimilation of the satellite-based SSS product is finished in
the near future.

5 Summary and discussions

The gridded SSS products from the SMOS satellite undoubt-
edly provide a way to constrain errors in salinity, especially
for an ocean reanalysis system. The present study is the
first observing-system simulation experiment for the assim-
ilation of SMOS SSS in the Arctic. In this study, based on
the TOPAZ reanalysis system, we compared a reanalysis as-
similating conventional observations with two new reanaly-
sis runs which additionally assimilated two versions of the
SMOS SSS products from BEC.

After comparison with independent SSS observations
from CTD and surface water samples along cruise tracks,
near-surface salinity errors have been significantly reduced
compared to the control experiment (Exp0). In the Beaufort

Sea, the SSS bias and RMSD in ExpV3 are reduced, respec-
tively by 26.0 % and 20.6 %. In ExpV2, the RMSD reduc-
tion is smaller (by 11.5 %). In the Chukchi Sea, the reduc-
tion in SSS misfits in ExpV3 (bias:17.7 %; RMSD: 16.4 %)
is also larger than in ExpV2 (bias: 15.5 %; RMSD: 13.7 %).
Around Greenland, the difference between the two products
is even more pronounced, with a significant reduction in the
SSS bias (32.6 %) and RMSD (9.4 %) in ExpV3, while there
is no notable improvement in ExpV2. The difference is larger
in the east Greenland Sea. The direct assimilation of SSS
from SMOS is more efficient at constraining the near-surface
salinity than the multivariate impact of other observations.
This finding is also consistent with other SSS assimilation
experiments in the tropics (Chakraborty et al., 2015; Tran-
chant et al., 2019). Conversely, when considering the mul-
tivariate impact of SSS on SIC (in Fig. 9), we find that the
assimilation of the V2 product does not affect the assimila-
tion of sea ice concentrations, while the V3.1 product causes
an increase in the negative increments, which could be an in-
dication of excessive freshening along the Siberian coast. In
contrast, the increments of SST in the open ocean are smaller
in ExpV3, indicating a synergy effect of SST and SSS. Over-
all, our data assimilation system did not detect obvious in-
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Figure 10. (a, b) Freshwater contents (unit: m) on 20 September and 20 October 2016 in the Arctic Ocean from the three assimilation runs:
Exp0. The interval of isolines is 4 m. (c–f) The FWC differences in ExpV2 (c, d) and ExpV3 (e, f) concerning those in Exp0. The black lines
indicate −2 and 2 m differences.

consistencies between the SMOS SSS product and other as-
similated observations.

Furthermore, this study shows error reductions of SSS
when assimilating the V3.1 product from SMOS, even out-
side of the central Arctic in the Nordic Seas and along the
Norwegian coast. Moreover, our analysis shows how the spa-
tial distribution of Arctic FWC changes as a result of assim-
ilating the two SMOS products. The time series of averaged
FWC north of 70◦ N shows that the FWC in the whole cen-
tral Arctic can be increased by about 25 cm using DA. Our

experiments show that the Arctic FWC can be redistributed
horizontally after assimilation, but the latter effect requires a
longer assimilation run to be evaluated.

As a summary of the quantitative SSS comparisons (Ta-
ble 2), the overall score of each assimilation setup for each
subregion can be defined by its ability to reduce the SSS bias
and RMSD by more than 9 % relative to Exp0 (Fig. 2). The
threshold value of 9 % is not fully arbitrary, referring to the
reduction of SSS RMSD in GS, where the bias reduction is
significant (through the t test). If both bias and RMSD meet

https://doi.org/10.5194/os-19-269-2023 Ocean Sci., 19, 269–287, 2023



284 J. Xie et al.: Assimilation of sea surface salinities from SMOS

Figure 11. Arctic-wide averaged freshwater content (unit: m) in
the central Arctic (> 70◦ N) from July to December 2016 for Exp0
(dashed dark), ExpV2 (dashed blue), and ExpV3 (dotted red).

this objective, we give a score of 1, but we give a score of 2 if
only one of them is met. If neither of them exceeds 9 %, the
score is set to 3. Thus, outside of the central Arctic, the v2.0
SSS product loses its impact on the TOPAZ system, but the
V3.1 SSS brings about significant impacts across the Arctic
and further out and clearly benefits from its refined effec-
tive resolution (Martínez et al., 2022). Since there was little
evidence of a double-penalty effect in the validation RMSD
apart from at Baffin Bay, we consider the assimilation of the
higher-resolution signals to be efficient. However, the assim-
ilation did not improve the SSS significantly in the Barents
Sea or in other areas where SSS gradients are weak. These
may require a higher accuracy to distinguish the Atlantic wa-
ters from other water masses of salinity only slightly below
35 psu. To further improve the SSS product, a combination
with the Aquarius sensor using the same L-band frequency
(e.g., Lee et al., 2012) and SMAP (e.g., Tang et al., 2017;
Reul et al., 2020) is desirable.
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