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Abstract. Autonomous and expendable profiling-float arrays
such as those deployed in the Argo Program require the trans-
mission of reliable data from remote sites. However, existing
satellite data transfer rates preclude complete transmission
of rapidly sampled turbulence measurements. It is therefore
necessary to reduce turbulence data on board. Here we pro-
pose a scheme for onboard data reduction and test it with
existing turbulence data obtained with a modified SOLO-II
profiling float. First, voltage spectra are derived from shear
probe and fast-thermistor signals. Then, we focus on a fixed-
frequency band that we know to be unaffected by vibrations
and that approximately corresponds to a wavenumber band
of 5–25 cpm. Over the fixed-frequency band, we make simple
power law fits that – after calibration and correction in post-
processing – yield values for the turbulent kinetic energy dis-
sipation rate ε and thermal-variance dissipation rate χ . With
roughly 1 m vertical segments, this scheme reduces the nec-
essary data transfer volume 300-fold to approximately 2.5 kB
for every 100 m of a profile (when profiling at 0.2 m s−1).
As a test, we apply our scheme to a dataset comprising 650
profiles and compare its output to that from our standard
turbulence-processing algorithm. For ε, values from the two
approaches agree within a factor of 2 87 % of the time; for χ ,
they agree 78 % of the time. These levels of agreement are
greater than or comparable to that between the ε and χ val-
ues derived from two shear probes and two fast thermistors,
respectively, on the same profiler.

1 Introduction

Measurements of oceanic turbulence have been made since
the 1950s using platforms and sensors of various shapes and
sizes (Lueck et al., 2002). Complete resolution of the tur-
bulence requires measuring temperature and velocity gradi-
ents at millimeter-to-centimeter scale. Hence, sampling tur-
bulence is data intensive. Whereas conventional profiling
measurements of temperature, conductivity, and pressure are
typically sampled at 1 Hz (e.g., Argo floats; Roemmich et al.,
2019a), a turbulence profile involves sampling multiple sen-
sors at 100–1000 Hz. A relatively minimal requirement of
five separate signals sampled at 100 Hz and recorded at 16-bit
resolution equates to 1 kB s−1 or 500 kB per 100 m of profil-
ing range at 0.2 m s−1 profiling speed. For floats, this is not
a trivial volume of data. For example, transmitting only 3 kB
of data from a Deep SOLO float takes 100–200 s (Roemmich
et al., 2019b). Extended surfacings are also presented with
the danger of surface vessels and vandals. Ultimately, raw
turbulence profiles are 2–3 orders of magnitude too large to
transmit in a reasonable amount of time.

One approach to reducing turbulence data is given by
Rainville et al. (2017), who use it for multi-month glider mis-
sions. On board the glider, they calculate spectra of raw volt-
age signals reported by the shear probes and fast thermistors
and then band average each of these spectra into 12 bins. Af-
ter transmission, these binned values are calibrated and fit
to model spectra. In other words, they (i) postpone calibra-
tion and (ii) minimize the data manipulation and processing
that happens on board. These two strategies are shared by
our scheme (and also shared by the reduction scheme de-
veloped for χpods; Becherer and Moum, 2017). Otherwise,
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however, our scheme differs from that of Rainville et al.
(2017), as it does not suit our scientific goals of measuring
turbulence over the upper ∼ 120 m at high vertical resolu-
tion (e.g., ∼ 1 m) and as frequently as possible (see Sect. 2).
Two shear probes and two fast thermistors would produce
(2+ 2)× 12= 48 spectral values per segment. Even without
considering the other profiling quantities, the spectral values
could add up to >20 kB per dive for our scenario. We would
be spending as much time transmitting the data as actually
measuring the ocean.

Our scheme is for profiling instruments that contain shear
probes and, optionally, fast thermistors (Sect. 2). First, we
document the necessary calibration details (Sect. 3). Next,
we compress raw shear voltages by way of simple power
law fits and show how ε is derived from these fits in post-
processing (Sect. 4). A test of the scheme employing 650
profiles demonstrates that little accuracy is sacrificed in re-
turn for a large reduction in data volume (Sect. 5). Knowing
ε from the shear probe measurements makes possible a simi-
lar method for deriving χ from fast-thermistor measurements
(Sects. 6 and 7). Adapting the scheme to a different profiler
requires minimal modification (Sect. 8). For our setup, the
scheme reduces the dataset size by a factor of ∼ 300: only
2.5 kB for each 100 m of a profile (Sect. 9).

2 The Flippin’ χSOLO (FCS)

We intend our data reduction scheme to be sufficiently gen-
eral so as to be portable to all vertical turbulence profilers
that contain shear probes. It can also be used with gliders if
a measure of flow speed past the sensors is available (e.g.,
Greenan et al., 2001; Merckelbach and Carpenter, 2021). In
a general sense, some of the values specified herein ought to
be considered variables (Sect. 8). However, we do have a par-
ticular platform for which we are developing the scheme, the
Flippin’ χSOLO (FCS), and the values used here are chosen
for the objective of detailed upper-ocean profiling.

FCS is a descendant of the SOLO-II profiling float (Roem-
mich et al., 2004) with the addition of a turbulence package
and extra functionality. The turbulence package includes two
shear probes (Osborn, 1974) to measure small-scale veloc-
ity gradients from which ε is computed, two fast thermistors
to measure small-scale temperature fluctuations from which
χ is computed, and a pressure sensor from which profiling
speed is derived. FCS also includes a three-axis accelerom-
eter that is used to measure the surface wave field (although
with a method not described in this paper). Accelerometer
data from when FCS is profiling are not used in our reduc-
tion scheme. FCS and its measurements are described more
completely in the companion paper (Moum et al., 2023).

To reverse profiling direction, FCS adjusts buoyancy and
flips via internal shifting of the battery pack. This causes
the turbulence sensors to always point into undisturbed fluid.

Flipping therefore permits profiling on both descent and as-
cent, including sampling of the upper 5 m on the ascent.

As a prototype, a standard (non-flipping) SOLO float with
a modified χpod (Moum and Nash, 2009) attached was de-
ployed in the Bay of Bengal to measure the suppression of
turbulence by salinity stratification (Shroyer et al., 2016).
This instrument – named χSOLO – did not have shear probes
and therefore could not have provided estimates of ε within
mixed layers. (Values of ε can be approximated from χ , but
only if there is stratification.) Nevertheless, χSOLO’s suc-
cess motivated the development of the FCS units with flip-
ping capabilities and fully integrated turbulence packages.
These new instruments retained the χ or C in their name
despite their ability to also directly measure ε from shear
probes.

Two FCS units were vetted over 4 days in May 2019 off the
Oregon coast. During this period, each unit profiled from the
surface to ∼ 120 m and back at a typical speed of 0.2 m s−1.
Adding time at the surface, each dive cycle took ∼ 30 min,
and we obtained 650 profiles in total. In this 2019 experi-
ment, one of the shear probes on one of the two units mal-
functioned. Hence, the dataset for this paper contains approx-
imately 25 % less shear data than fast-thermistor data.

3 Conversion of measured voltages to physical units

The core of our data reduction scheme uses power law
fits of voltage spectra that are calculated on board and
subsequently converted to meaningful turbulence quantities
in post-processing. Additional voltage quantities are also
recorded to determine temperature, pressure, and profiling
speed.

3.1 Nomenclature and conventions

– All quantities measured by FCS that are discussed in
this paper are sampled at 100 Hz.

– All voltage spectra are frequency spectra and are de-
noted by 9x(f ) (where x is a label, such as s for shear)
with units of V2 Hz−1.

– Physical spectra of shear and temperature gradient are
wavenumber spectra and are denoted by 8x(k) with
units of s−2 cpm−1 and K2 m−2 cpm−1, respectively.
Figure 4 is an exception in which shear spectra are fre-
quency spectra: 8s(f ).

– Wavenumber k has the unit cycles per meter (cpm). Ex-
pressions quoted from other papers may differ by fac-
tors of 2π for wavenumbers in radians per meter.

– The Kraichnan model spectrum 8Kr primarily depends
on the dissipation rates of turbulent kinetic energy and
temperature variance (ε and χ ), but it also depends on
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the molecular viscosity ν and molecular thermal diffu-
sivityDT. For brevity, we write8Kr(k,ε,χ) rather than
the more complete 8Kr(k,ε,χ,ν,DT). Similarly, the
Nasmyth spectrum is written as 8Na(k,ε) rather than
8Na(k,ε,ν). In cases where the arguments are unam-
biguous or unimportant, we simply write 8Na and 8Kr.

– A pair of angle brackets, 〈·〉, denotes the mean value
over a segment of length: Nseg = 512 data points. This
equates to ∼ 1 m at our nominal profiling speed of
0.2 m s−1.

– To calculate spectra for a given 512-element voltage
segment, we first remove the linear trend, then we
use three half-overlapping, Hamming-windowed, 256-
element subsegments (i.e., Nfft = 256; Noverlap = 128).

In general, the values of Nseg and Nfft are variables. Our
choices are based on the 100 Hz sampling (∼ 500 cpm) and
the goals of FCS, which include obtaining high-vertical-
resolution turbulence data, especially near the surface. For
different turbulence profilers or different scientific goals,
longer segments and/or more overlapping subsegments may
be more appropriate (see Sect. 8).

We do not pursue the possibility of using accelerometers to
decontaminate spectra (e.g., Levine and Lueck, 1999); three
subsegments is too few for this to work well. Rather, we fo-
cus on a frequency band that we know to be unaffected by
vibration.

3.2 Shear calibration

The voltage reported by the shear probe Vs is linearly pro-
portional to shear:

uz =
α

W 2Vs, (1)

α = 1/(2
√

2ρGsTsSs), (2)

where W is the flow speed past the sensor. The overall en-
gineering calibration α includes the seawater density ρ, the
analog circuit gain Gs (equal to 1 for FCS circuitry), the
probe sensitivity Ss (∼ 0.25× 10−3 V m2 N−1), and the dif-
ferentiator time constant Ts (∼ 1 s). The linearity in Vs admits
a simple link between the physical and voltage spectra:

8uz(k)=
1

H 2
s (k)

α2

W 39s(f ), (3)

whereH 2
s (k) is the transfer function that accounts for (i) spa-

tial averaging by the shear probe of high-wavenumber mo-
tions and (ii) analog and digital filtering of the raw voltage
signal (see Appendix A). Note also the use above of the fol-
lowing relation:

9(f )=9(k)
dk
df
=
9(k)

W
. (4)

3.3 Temperature and temperature gradient calibration

Two voltage signals are recorded for each fast thermistor.
VT is the voltage output directly related to T , and VTt is the
differentiated output, which improves resolution at high fre-
quencies (& 10 Hz). Temperature is related to VT through a
quadratic calibration:

T = C1T +C2T VT +C3T V
2
T , (5)

〈T 〉 = C1T +C2T 〈VT 〉+C3T 〈VT 〉
2, (6)

where C1T , C2T , and C3T are coefficients determined from
laboratory calibrations. Equation (6) is technically an ap-
proximation because it contains 〈VT 〉2 and not 〈V 2

T 〉, but over
5 s time scales this changes 〈T 〉 by . 0.001 ◦C (estimated
from the 2019 dataset).

The gradient of the temperature calibration is

∂T

∂VT
= C2T + 2C3T VT = C2T + 2C3T 〈VT 〉. (7)

Consequently, the small-scale vertical temperature gradient
Tz is linearly proportional to the differentiated voltage VTt .
To demonstrate, we first rewrite Tz in terms of more directly
measured quantities:

Tz =
∂T

∂z
=
∂T

∂VT

∂VT

∂t

∂t

∂z
. (8)

The first quantity on the right-hand side is Eq. (7), the last is
1/W , and the second is

∂VT

∂t
=
VTt

CTt
, (9)

where CTt is the gain of the analog differentiator.
Rewriting Eq. (8), the aforementioned linear relationship

between Tz and VTt becomes

Tz =

(
C2T + 2C3T 〈VT 〉

CTtW

)
VTt . (10)

The relationship between physical and voltage spectra is
therefore

8Tz(k)=
1

H 2
Tt (k)

(
C2T + 2C3T 〈VT 〉

CTt

)2 1
W
9Tt (f ). (11)

Again, we have invoked Eq. (4), and the transfer function
H 2
Tt (k) is defined in Appendix A.

3.4 Pressure and profiling-velocity calibration

Pressure has a linear calibration:

P [dbar] =
C1P +C2PVP

1.45psidbar−1 −patm. (12)

In our usage, the coefficients C1P and C2P are recorded
in units of psi and psi V−1, respectively, and calibrated un-
der total pressure. Subtracting atmospheric pressure makes
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P = 0 at the sea surface. The constant C1P must account
for the vertical position of the pressure sensor on the in-
strument relative to the shear probes and thermistors. Hence,
C1P differs between upcasts and downcasts. For the reduced
dataset, we record the last pressure voltage in each seg-
ment. For example, with Nseg = 512, we save the 512th,
1024th, and 1536th values of VP for the first three segments.
The average pressures in the second and third segments are
0.5(VP (1024)+VP (512)) and 0.5(VP (1536)+VP (1024)),
respectively. The average pressure in the first segment is
found by extrapolation.

The flow speed past the sensors, denoted W , is derived
from the rate of change of the pressure voltages just de-
scribed:

〈W 〉 =
C2P

1.45
|1VP |

Nseg1t
, (13)

where 1t is the sampling period (here 0.01 s), and 1P is
VP (1024)−VP (512) and VP (1536)−VP (1024) for the sec-
ond and third segments, respectively. Extrapolation is again
used for the first segment.

No smoothing is necessary before calculating 1VP be-
cause its magnitude is so much larger than the quantization
of the signal (this being the limiting factor for precision of
pressure recorded by FCS). In physical units, P is precise to
0.003 dbar, which is O(300) times smaller than 1P .

Wave orbitals can introduce variability when W is small
(. 0.15 m s−1). As a diagnostic we calculate and record the
minimum value of W for each segment. This also helps to
identify the beginning and end of profiles, as shown in Ap-
pendix B. In standard processing, we would derive W(t)
from the pressure signal low passed at 2 Hz. To avoid the
need to low-pass filter the signal on board, we instead make
10 estimates of W(t) per segment and take the minimum of
these:

Wmin =
C2P

1.45
min

(
|1VP (ti)|

501t

)
︸ ︷︷ ︸

Calculate on board

, (14)

where ti = 1, 51, 101, . . . , 501. Even with this sampling
of every 50th element, which follows from subsampling a
100 Hz signal at 2 Hz, 1VP (ti) is large enough that smooth-
ing is unnecessary.

In this paper, we immediately discard all segments in
which Wmin < 0.05 m s−1. This threshold is reached only at
the top and bottom of profiles, if at all. Note, however, that
this does not imply that a segment withWmin > 0.05 m s−1 is
trustworthy. Even segments with Wmin closer to 0.15 m s−1

should be treated with particular caution. Signs that a seg-
ment is questionable are that 〈W 〉 andWmin differ by ∼ 20 %
or more and that spectral fit scores are low (see Sects. 4.3 and
6.3). These two issues often co-occur because of the nonlin-
ear relationship between shear and profiling speed (Eq. 1).
Low-frequency variations inW ultimately lead to spectra that

are redder than expected and hence have low fit scores. Such
segments should be discarded. There is not a simple way to
correct the spectra given the nonlinearity.

4 Reduction of shear data

In this section, we are ultimately going to fit measured spec-
tra to an inertial subrange model that does not necessarily
apply at the relevant frequencies or wavenumbers. We will
elaborate as we go, but we want to emphasize in advance
that measured spectra do not need to conform to an inertial
subrange model for us to obtain accurate values of ε. The
inertial subrange is merely a convenient starting point.

4.1 Summarizing Nasmyth spectra with f 1/3 fits

Shear measurements ideally capture both the inertial and vis-
cous subranges and hence use a wide band of the measured
spectrum to derive values for ε. In practice, noise and sensor
resolution limit how well the true environmental spectrum
is resolved. Conventional work-arounds exploit the Nasmyth
model spectrum 8Na(k,ε) (Nasmyth, 1970; Oakey, 1982).
One approach is to iterate toward a solution in which the in-
tegral of 8Na over a specific wavenumber band matches that
of the measured spectrum8uz (e.g., Moum et al., 1995). An-
other is to find the best fit of8uz to8Na by using maximum-
likelihood estimation together with a model of the expected
statistical distribution of the spectral coefficients being fitted
(e.g., Bluteau et al., 2016).

Here we develop a new and simpler two-stage approach to
fitting shear spectra to 8Na. In the first stage, we use an f 1/3

power law fit over a fixed-frequency range of fl to fh= 1–
5 Hz, where f 1/3 follows from the assumption that we are
fitting over the inertial subrange. In the second stage, we cor-
rect for this often-invalid assumption.

In the inertial subrange, shear spectra are proportional to
k1/3 and hence also to f 1/3, since f =Wk. With Nfft = 256
and 100 Hz sampling (Sect. 3.1), spectral coefficients are sep-
arated by frequency increments of 100 Hz / 256= 0.39 Hz,
so there are 10 coefficients between 1 and 5 Hz. (Our pro-
cessing code will actually use bounding frequencies of 0.98
and 4.88 Hz, as these are half-integer multiples of 0.39 Hz,
but for brevity we will write these as 1 and 5 Hz throughout.)

Our choice of fl = 1 Hz is dictated by a requirement that
we avoid low-frequency contamination induced by (i) advec-
tion by wave orbital motion and (ii) pitch and roll motions of
the profiler. Together, these dominate below 0.3 Hz. Setting
fl = 0.5 Hz would add only one more spectral coefficient.
Our choice of fh = 5 Hz is a trade-off between maximizing
the bandwidth of the fit and minimizing how much the mea-
sured spectra are subject to either noise or viscous roll off.
Other profilers may benefit from different frequency bounds
(see Sect. 8).
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Our inertial subrange assumption is often false. Indeed,
“assumption” is perhaps a misnomer, as we do not expect
it to be true; we know that viscous roll off will often occur
at frequencies lower than 5 Hz (25 cpm for a nominal value
of W = 0.2 m s−1). However, because there exists an analyt-
ical expression for the viscous roll off, we are able to derive
an exact expression that quantifies how much ε is underesti-
mated. This is the second stage of our approach. We derive
an expression for the correction function FNa in such a way
that it can be calculated in post-processing. The benefits of
this approach are that (i) we can fit uncalibrated (i.e., volt-
age) spectra, and (ii) it simplifies the actual onboard fitting
routine (Sect. 4.2).

The full Nasmyth spectrum and its inertial range approxi-
mation are as follows (Lueck, 2013):

8Na(k,ε)=
ε3/4

ν1/4
8.05(kη)1/3

1+ (20.6kη)3.715 , (15)

8Na(k . 0.02/η,ε)= 8.05k1/3ε2/3, (16)

where η = (ν3/ε)1/4 is the Kolmogorov length scale.
Let εinit denote the initial value of ε that comes from fitting

a measured spectrum to the approximate form in Eq. (16) us-
ing the simple power law fitting method in Appendix C rather
than fitting to the full form in Eq. (15). As noted earlier, the fit
will be over the fl–fh= 1–5 Hz range which, given our nom-
inal value of W = 0.2 m s−1, equates to kl–kh= 5–25 cpm.

Consider two contrasting examples of low and high turbu-
lence with ε = 1× 10−9 and 1× 10−6 W kg−1, respectively
(Fig. 1a). For now, assume the measured spectrum to be fit
is itself a Nasmyth spectrum. For ε = 10−6 W kg−1, the f 1/3

fit lies on top of 8Na. Conversely, the f 1/3 fit for the smaller
ε value is seemingly meaningless: the f 1/3 fit (dashed line)
does not even match the sign of the slope of 8Na. Worse
yet, naively inverting this initial fit produces the underesti-
mate εinit = 1.2× 10−10 W kg−1, which is 8 times smaller
than the true value of ε. However, by adjusting by a factor
of 1/FNa, defined in the following paragraph, the fit (dotted
line) looks like a hypothetical extrapolation of the inertial
subrange. Equivalently, εinit is corrected to the true value of
ε as

ε = εinit/F
3/2
Na . (17)

In our example, 1× 10−9 W kg−1
= 1.2×

10−10 W kg−1 / 0.2383/2. The value of 0.238 is the so-
lution to an implicit equation, derived below, that depends
on εinit and W . For clarity, our demonstration starts by
assuming that we know ε rather than εinit.

Nasmyth spectra can be flattened to unity over the inertial
subrange with the normalization 8.05k1/3ε2/3 (Fig. 1b). Val-
ues of FNa are based on the mean of these flattened spectra
over the wavenumber range kl–kh (= fl/W–fh/W ):

FNa =
1

kh− kl

kh∫
kl

8Na(k,ε)

8.05k1/3ε2/3 dk. (18)

Figure 1. Calculation of the correction function FNa for two val-
ues of ε. For ε = 1× 10−6 W kg−1, a k+1/3 power law is a good
approximation of the Nasmyth spectrum over the frequency range
fl–fh (1–5 Hz) for a profiling speed of W = 0.2 m s−1. Although
the same is not true for ε = 1× 10−9 W kg−1, we can account for
the roll off with a factor of FNa. FNa can be defined in terms of ei-
ther ε (Eq. 18) or εinit (Eq. 19). Panel (b) takes the former approach.
In practice, we must take the latter approach, since we do not know
ε until after it is derived from εinit and FNa.

To remove the dependence of the true value of ε, we substi-
tute Eq. (17) to produce an implicit function for FNa, which
can be solved numerically:

1
kh− kl

kh∫
kl

8Na

(
k,εinit/F

3/2
Na

)
8.05k1/3ε

2/3
init /FNa

dk−FNa = 0. (19)

Note how the two forms of FNa (Eqs. 18 and 19)
are defined with different arguments. For our ex-
ample, FNa (ε = 1× 10−9 W kg−1)=FNa(εinit =

1.2× 10−10 W kg−1)= 0.238. Hereafter, we use the
latter: FNa(εinit).

With fl and fh fixed, FNa is a function of three variables:
εinit, W , and ν. FNa is closer to 1 (less of a correction) for
larger values of εinit (Fig. 1). It is also closer to 1 for higher
values ofW (Fig. 2), since kl and kh decrease with increasing
W (i.e., kl–kh move closer to the inertial subrange).
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Figure 2. The correction function FNa for ν = 1×10−6 m2 s−1 and
fl–fh= 1–5 Hz.

To simplify calculations in the upcoming section, we make
one final change to Eq. (19) using the following substitution:

8Na(k,ε)→H 2
s (k) 8Na(k,ε). (20)

Therefore,

1
kh− kl

kh∫
kl

H 2
s (k) 8Na

(
k,εinit/F

3/2
Na

)
8.05k1/3ε

2/3
init /FNa

dk−FNa = 0. (21)

Think of this substitution in Eq. (20) as inverting the conven-
tional way that H 2

s (k) is invoked. Usually, a measured shear
spectrum is amplified at high wavenumbers by 1/H 2

s (k) and
is then fit to the model spectrum 8Na. Here, instead of am-
plifying the measured spectrum, we reduce the model spec-
trum. With this latter approach, H 2

s (k) is calculated and ap-
plied only during the post-processing stage. (It changes FNa
by only ∼ 5 %, since we fit over relatively low wavenum-
bers.)

4.2 Obtaining εinit from shear voltage spectra

Since ε can be reconstructed from εinit, we require an expres-
sion linking εinit to the shear voltage spectrum 9s. Equating
Eqs. (3) and (16) gives

α2

W 39s(f )= 8.05k1/3ε
2/3
init , (22)

where we have left out H 2
s (k), since it has been incorporated

into FNa. Rearranging and substituting k = f/W gives

ε
2/3
init f

1/3
=

α2

8.05W 8/39s(f ). (23)

Then, to solve for εinit, we use a least-squares fit (see Ap-
pendix C):

ε
2/3
init =

α2

8.05W 8/3

∑
f f

1/39s∑
f f

2/3︸ ︷︷ ︸
Calculate on board

, (24)

where the sums are understood to be over the range fl–
fh. The quantities α, W , and εinit are calculated in post-
processing.

4.3 Quality control of the shear spectral fits

Measured shear spectra are often quality controlled either by
manual visual inspection or, more objectively, by quantify-
ing the level of mismatch between them and their associated
model. Possible mismatch quantities include the mean ab-
solute deviation or the variance of the ratio 8uz/8Na (e.g.,
Ruddick et al., 2000; Bluteau et al., 2016). We cannot cal-
culate such quantities with our reduced scheme because we
do not know what each spectrum should look like until we
calculate its ε value in the post-processing stage. (Recall that
8Na is a function of ε.) By this stage, we have lost informa-
tion about the spectral shape through the summing operation
in Eq. (24).

To retain at least some information about the shape of each
voltage spectrum, we will split the 1–5 Hz range and com-
pute two fits rather than one. Doing so allows for a first-order
check that the spectrum over the 1–5 Hz range approximately
follows the expected shape.

Mathematically, there is nothing special about our choice
fl–fh = 1–5 Hz. In theory, we can split the 1–5 Hz range
into two (1–3 and 3–5 Hz) and obtain a value of εinit for
each. These values will differ, but so will the associated
values of FNa. For a measured spectrum that conforms to
a Nasmyth spectrum, the two values of ε calculated with
Eq. (17) will not differ (Fig. 3). We therefore calculate on
board the sums in Eq. 24 over both fl–fm and fm–fh, where
the middle frequency fm = 3 Hz. (In our code, fm is actually
7.5× 0.39 Hz= 2.93 Hz for the reason given in Sect. 4.1.)
Hence, for each spectrum, we are able to post-process to re-
cover two independent estimates of ε, denoted εl–m and εm–h.
The mean of these two provides a single, final value for ε, and
their ratio quantifies the match of a measured spectrum to a
Nasmyth spectrum over the range fl–fh:

ε =mean(εl–m,εm–h) , (25)

ε fit score=
min(εl–m,εm–h)

max(εl–m,εm–h)
. (26)

The best possible fit score is 1; the lower the score, the poorer
the fit. The example spectra in Fig. 4 show that a high fit
score does not necessarily imply small residuals. Rather, fits
with high scores are typically those with random residuals,
meaning that a given measured spectral coefficient is just as
likely to be above the fit as it is to be below it. Fits with
low fit scores are typically those with autocorrelated residu-
als, meaning that the sign and/or magnitude of a residual is
correlated with that of its neighbors. In practice, we expect
a range of ε fit scores: instantaneous and unaveraged spectra
differ from the Nasmyth spectrum because they are derived
from a limited sampling of a statistical process and because
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Figure 3. A visual demonstration of how the ε fit score (Eq. 26) characterizes better and worse fits. For all three of these hypothetical spectra,
ε values from the two fits (1–3 and 3–5 Hz) average to ε = 1.0× 10−8 W kg−1. Only in panel (a), however, does the measured spectrum
agree well with the Nasmyth spectrum for this ε value. In practice, the initial fits would be undertaken on voltage spectra; here, we are using
physical units for simplicity. In all three examples, the kinematic viscosity is ν = 10−6 m2 s−1.

Figure 4. Examples of measured shear spectra exhibiting a range of ε fit scores (Eq. 26). The best fits are at the top with progressively
worse fits (lower scores) moving downward. The examples in each column have (left) ε = 10−9–10−8, (middle) ε = 10−8–10−7, and
(right) ε = 10−7–10−6 W kg−1. Each score is only based on spectral coefficients from 1–5 Hz, but lower and higher frequencies are shown
for reference.

https://doi.org/10.5194/os-19-193-2023 Ocean Sci., 19, 193–207, 2023



200 K. G. Hughes et al.: Turbulence data reduction scheme

of non-stationarity, anisotropy, and inhomogeneity of the tur-
bulence.

When ε is small (. 10−9 W kg−1), the fit score may be
consistently low if spectral coefficients in the fm–fh range
are affected by noise, and consequently εm–h� εl–m. For
such cases, we choose to use only the lower-frequency fit. We
would rather have a more accurate estimate of ε and forgo the
fit score than have a biased-high ε value with a biased-low fit
score. (Either way, the small values of ε in question will have
minimal effect on any averages, given that turbulence distri-
butions have high kurtosis, so high values dominate means.)
Specifically,

ε = εl–m
ε fit score = –

}
if 0.1W

(εl–m

ν3

)1/4
< fm, (27)

where the threshold is equivalent to k < 0.1/η, with η being
the Kolmogorov length scale estimated from εl–m. For refer-
ence, 8Na peaks at k = 0.026/η and rolls off to 11 % of its
maximum by k = 0.1/η (see Eq. 15).

5 Test of the reduction scheme for ε

To test the accuracy of the shear reduction scheme described
in the previous section, we apply it retrospectively to the
dataset from the 2019 test cruise (Sect. 2). We compare
the results to those obtained with the standard processing
scheme. This standard scheme (Appendix D) features a more
sophisticated despiking routine than that used for our reduced
scheme, which employs a 3-standard-deviations threshold fil-
ter (Appendix E).

A profile-by-profile comparison of the two schemes is
shown in Fig. 5. The comparison is then extended to all 650
profiles (> 77 000 segments of shear), where we find that ε
from the reduced scheme (εinit/F

3/2
Na ) is within a factor of

2 of that from the standard scheme 87 % of the time over
the full range of measured values, 10−10 < ε < 10−4 W kg−1

(Fig. 6a–b). For comparison, in only 72 % do we obtain a
factor-of-2 agreement between the two independent values of
ε measured on the unit with two working shear probes (not
shown). Further, to obtain this 87 % agreement, we clearly
need the correction function FNa: Fig. 6c shows that the un-
corrected values εinit only have 1 : 1 agreement with ε from
the standard scheme if ε & 10−7 W kg−1. For the lowest val-
ues of ε, the ratio is closer to 1 : 30.

To demonstrate the ability of the ε fit score to character-
ize spectra, we show two-dimensional histograms of non-
dimensionalized spectral coefficients from all 77 000 mea-
sured shear spectra separated into three classes based on their
ε fit score: 0.67–1.00, 0.33–0.67, and 0.00–0.33. Only the
lowest-scoring class fails to collapse to the Nasmyth spec-
trum (Fig. 7c, f).

Figure 5. Testing the proposed data reduction scheme for shear
measurements against the standard processing approach. One up-
ward and one downward profile from each of the two FCS units
were arbitrarily chosen for this comparison.

Figure 6. Statistical test of the proposed data reduction scheme for
ε based on all 650 profiles (77 000 segments). (a) A comparison
that includes the dependence on ε. (b) Further summarized data that
exclude this dependence. (c) Same as for panel (a) but uncorrected
(FNa= 1).

6 Reduction of fast-thermistor data

The scheme to reduce fast-thermistor data to enable measure-
ment of χ is much like the scheme to reduce shear data. As in
Sect. 4, we first show how we summarize a model spectrum
in terms of a power law fit and a correction factor. (In this
case, the correction factor partly depends on the values of ε
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Figure 7. As the ε fit score decreases from top to bottom, there is
a corresponding decrease in the level of agreement and tightness
of spread between (i) non-dimensionalized, measured shear spectra
and (ii) the Nasmyth spectrum. The two-dimensional histograms in
the left column include only spectral coefficients with frequencies
between fl and fh; those in the right column include all frequencies.
The total number of spectra in this figure is lower than in Fig. 10
because some low-ε spectra do not have scores (Eq. 27) and because
one of the shear probes failed (Sect. 2).

calculated in Sect. 4.) Then we derive the implementation in
terms of voltages and calculate a spectral-fit metric.

6.1 Summarizing Kraichnan spectra with f 1 fits

Here we take the Kraichnan spectrum8Kr (Kraichnan, 1968)
as our model; for its low-wavenumber approximation, we
use the viscous–convective subrange, which scales as k+1.
In units of K2 m−2 cpm−1, 8Kr and its approximation are as
follows (e.g., Peterson and Fer, 2014):

8Kr(k,ε,χ)= 4π2kχq
√
ν/ε exp

(
−
√

6q2πkλB
)
, (28)

8Kr(k� λ−1
B ,ε,χ)= 4π2kχq

√
ν/ε, (29)

where the Batchelor length scale λB = (νD2
T/ε)

1/4, and q is
a constant taken to be 5.26. This expression does not include
a k+1/3 inertial–convective subrange, which we ignore here,
as it increases by less than 1 % the integral of the temperature

gradient spectrum from k = 0 to k =∞ and therefore has
negligible effect on our results.

A fit against Eq. (29) can be rearranged to give χinit, which
is related to χ through the correction function FKr as

χ = χinit/FKr. (30)

FKr is not raised to a power like FNa (Eq. 17). For small
values of k, 8Kr ∝ χ , whereas 8Na ∝ ε

2/3.
The derivation of FKr is equivalent to FNa. We therefore

present only the result:

1
kh− kl

kh∫
kl

H 2
Tt (k) 8Kr(k,ε,χinit/FKr)

4π2k(χinit/FKr)q
√
ν/ε

−FKr = 0. (31)

Note that FKr(ε,χinit,W) depends on the underestimate χinit,
whereas it depends on the “true” or “corrected” value of ε as
calculated in Sect. 4.

6.2 Obtaining χinit from fast-thermistor voltage spectra

Like we did for εinit in Sect. 4.2, we derive the expression
for χinit in three steps. First, equate the right-hand sides of
Eqs. (11) and (29) (excluding the transfer function H 2

Tt (k),
which is incorporated into Eq. 31):(
C2T + 2C3T 〈VT 〉

CTt

)2 1
W
9Tt (f )= 4π2kχq

√
ν/ε. (32)

Then, rearrange while substituting k = f/W to get

χinitf
1
=

1
4π2q

√
ν/ε

(
C2T + 2C3T 〈VT 〉

CTt

)2

9Tt . (33)

Finally, solve for χinit using a least-squares fit (Appendix C):

χinit =
1

4π2q
√
ν/ε

(
C2T + 2C3T 〈VT 〉

CTt

)2 ∑
f f 9Tt∑
f f

2︸ ︷︷ ︸
Calculate on board

. (34)

6.3 Quality control of the temperature gradient
spectral fits

The approach to quality controlling the fast-thermistor data is
the same as that for shear (Sect. 4.3). That is, we fit 9Tt over
fl–fm and fm–fh (1–3 and 3–5 Hz). This ultimately provides
two estimates of χ for each spectrum, which are combined as
follows:

χ =mean(χl–m,χm–h) , (35)

χ fit score=
min(χl–m,χm–h)

max(χl–m,χm–h)
. (36)

We do not apply a low χ threshold equivalent to Eq. (27).
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Figure 8. Testing the proposed data reduction scheme for fast-
thermistor measurements. The profiles used are the same as those
chosen in Fig. 5.

7 Test of the reduction scheme for χ

Profiles of χ from the reduced scheme compare well to the
standard processing, albeit with a small bias in one direc-
tion for low values and in the other direction for high values
(Fig. 8). Across all values, the two approaches agree within a
factor of 2 78 % of the time (Fig. 9). By comparison, 82 % of
segments exhibit a factor-of-2 agreement between χ values
from the two fast thermistors on the same unit.

Compared to shear spectra, non-dimensionalized tempera-
ture gradient spectra have lower fit scores. Especially for the
lowest fit scores, the measured temperature gradient spec-
tra tend to be too high at lower frequencies and too low at
frequencies near fh (Fig. 10a–c). As frequency increases be-
yond fh, the effects of noise and thermal-response correc-
tions (Appendix A) begin to dominate.

There are three reasons for the poorer fits to temperature
gradient spectra compared to that for shear. First, shapes of
temperature gradient spectra are often more variable; the best
choice for the non-dimensional spectral model can be de-
bated (e.g., Sanchez et al., 2011). Second, the temperature
gradient fits depend on ε, so uncertainties in ε propagate
into the calculation of χ . Third, for our 2019 experiment,
the recorded temperature gradient signals were occasionally
affected by digitization noise as a consequence of sampling
mixed layers. (Shear signals were not affected by digitization
noise.)

Figure 9. Statistical test of the proposed data reduction scheme for
χ . Equivalent to Fig. 6, except for the use of χ instead of ε. In total,
there are 100 000 segments of data.

Figure 10. Same as for Fig. 7 but for temperature gradient rather
than shear.
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8 Recommendations

8.1 Setting the scheme’s parameters

Our scheme requires a few user-defined parameters: fl, fh,
Nseg, and Nfft. For this paper, we based these partly on the
profiling speed and scientific goals of FCS. For a different
profiler, we suggest the following:

– Choose fh based on a typical profiling speed such that
kh = fh/W ≈ 25 cpm for a nominal profiling speed W .
For a wide range of ε values, 25 cpm is close to, or be-
yond, the peak of the Nasmyth spectrum (Fig. 1). As
an example, if FCS profiled at ∼ 0.5 m s−1, we would
consider setting fh ≈ 12 Hz.

– Ensure that there are no known issues such as vibrations
that are likely to adversely affect spectral coefficients
within the fl–fh range. If, however, there are known is-
sues within the desired frequency range, then an alter-
native approach (one that we did not test) is to use ac-
celerometer signals to correct spectra that are contami-
nated by vibrations (Levine and Lueck, 1999; Goodman
et al., 2006).

– Define fl and fh separately for shear and temperature
gradient if appropriate. Although we set them to be
equal here, this is not necessary.

– Use more than two fitting bands if desired. We use only
two bands (1–3 and 3–5 Hz) so as to minimize the file
size to be transmitted, but there is nothing preventing
there being three or more bands (e.g., adding a 5–7 Hz
band). Indeed, this would enable improved estimates of
the fit scores (Eqs. 26 and 36) and more flexibility to
discard noise-affected bands as in Eq. (27). If file size is
less of an issue such that it is possible to send back fit
values for many more than two bands, then the Rainville
et al. (2017) scheme outlined in Sect. 1 may be a better
choice than ours.

– Choose Nseg and Nfft based on scientific goals and,
possibly, any logistical constraints; the data reduction
scheme is agnostic to these numbers. For example, at the
expense of vertical resolution, we could halve the file
size of our transmitted dataset by doubling Nseg from
512 to 1024.

– Reasonable choices forNfft areNseg/2 orNseg/4, which
correspond to three or seven half-overlapping subseg-
ments, respectively. There is little to be gained by divid-
ing a segment into even more subsegments so as to pro-
duce smoother spectra before fitting. As Ruddick et al.
(2000) note, the choice is analogous to fitting a line to
20 points at once or first clumping them into groups of,
say, five and then fitting the four averaged points.

8.2 Evaluating the reduced data

One step that cannot be automated is the heuristic evaluation
of the reduced turbulence data after they have been converted
from voltage quantities to physical ones. For this evaluation,
we recommend looking into multiple quantities. First con-
sider the fit scores (Eqs. 26 and 36). We recommend discard-
ing any ε or χ values with an associated fit score lower than
0.33. Note, however, that these scores are not a perfect mea-
sure of fit. They should be used together with other quality
control checks such as comparing

– W andWmin (Eqs. 13 and 14) to check whether the pro-
filing speed is constant over a segment;

– ε values from the two shear probes; and

– turbulent features in successive profiles.

The last point is most applicable for a vertical profiler cy-
cling rapidly – for example, twice per hour for FCS. In this
case, the profiler is nominally sampling the same vertical
fragment of the ocean on a timescale comparable to that over
which turbulence evolves. In our experience, many turbulent
patches extend over 5–10 profiles.

Recall, also, that all uncertainty in ε propagates into the
calculation of χ (Sect. 7). If ε for a given segment cannot be
trusted, neither can χ .

9 Conclusions

We have developed a data reduction scheme applicable to
vertical profiling of turbulence variables in which each ∼ 5 s
segment is distilled to 12 quantities (Scheme 1). In post-
processing, we reconstruct estimates of ε and χ , associated
quality control metrics, and other quantities such as the tem-
perature and profiling speed. The raw data that go into the
12 quantities are seven different voltages (VP ; VT and VTt
for each thermistor; and Vs for each shear probe). Hence, for
each 512-element segment, we effectively reduce the data by
a factor of 512× 7/12≈ 300.

This reduction compresses the output data file size for
each dive from megabytes to kilobytes. For example, the
total amount of data per dive (two profiles) can be esti-
mated assuming our nominal dive depth and profiling ve-
locity of 120 m and 0.2 m s−1. Each dive creates 12× 2×
120 m / (0.2 m s−1

× 5.12s)≈ 2800 quantities. Transmitting
each quantity as a 16-bit float or integer equates to approxi-
mately 6 kB per dive. This can be reduced by one-third if the
spectral-fit metrics are suitably scaled logarithmically and
then transmitted as 8-bit integers.

One luxury we lose is the ability to inspect the raw signals.
Typically this would help to (i) cultivate faith in the data,
(ii) flag which segments to discard, and (iii) inform work-
arounds such as filtering out potential narrowband vibrations
in shear spectra. Our scheme accounts for this constraint in
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Scheme 1. Summary of the data reduction scheme. Each 512-element segment of data is ultimately compressed down to the 12 highlighted
quantities that are then transmitted. These are calibrated and/or converted into turbulence quantities in post-processing.

two ways. First, we fit spectra over relatively low frequencies
(1–5 Hz) that are unlikely to be affected by noise or vibration.
Second, we reduce the data in a way that uses as little arith-
metic as possible. Obviously, we cannot reverse-engineer the
raw signals, but by making the onboard calculations simple,
we give ourselves the best chance to later fix or identify any
unforeseen issues.

Although the onboard reduction eliminates possibilities in
how we process turbulence data, it opens up possibilities in
how we obtain turbulence data. By visualizing how turbu-
lence evolves over successive dives in near-real time, we can
concentrate on regions of interest by adapting the dive sched-
ule to profile more frequently or to different depths. If instead
we encounter quiescent periods, we might consider profiling
less frequently, thereby conserving battery life. Our ultimate
objective is to treat FCS floats as expendable.

Appendix A: Transfer functions for FCS sensors

Voltage signals from shear probes and thermistors are a
smoothed representation of the true environmental signal. If

the smoothing is a spatial effect, it is described by a transfer
function H 2(k). If the smoothing is a temporal effect, it is
more natural to use H 2(f ). We can use these interchange-
ably because f =Wk, and thereforeH 2(f )=H 2(Wk). For
FCS, there are three components to the transfer function for
each sensor:

H 2
s (k)=H

2
SP(k) H

2
AA(f ) H

2
D(f ), (A1)

H 2
Tt (k)=H

2
FT(f ) H

2
AA(f ) H

2
D(f ), (A2)

where we have used the following shorthand: SP is shear
probe, FT is fast thermistor, AA is anti-aliasing, and D is
digital. We describe each of these in turn.

Shear probes built and calibrated by the Ocean Mixing
Group are very close in dimension to those examined by Nin-
nis (1984), who measured their wavenumber response and
represented it as

H 2
SP (k)=

4∑
n=0

an

(
k

k0

)n
, (A3)

where a0 = 1.000, a1 =−0.164, a2 =−4.537, a3 = 5.503,
a4 =−1.804, and k0 = 170 cpm.
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Temporal averaging of temperature at high frequencies
due to the thermal response of the fast thermistor is modeled
using a double-pole filter:

H 2
FT(f )=

1(
1+ (f/fc)2

)2 , (A4)

where the cut-off frequency fc = 30 Hz. This comes from
Nash et al. (1999), who measured the frequency response
for two different thermistors on an instrument profiling at
0.3 m s−1 and found cut-off frequencies of 25.1 and 36.7 Hz
(see their Fig. A2). The 30 Hz value is the approximate mean
of these two values.

Raw shear and thermistor voltage signals are both subject
to two filters. First, an analog anti-aliasing filter (two-pole
Butterworth) with an fc = 40 Hz cut-off:

H 2
AA(f )=

1
1+ (f/fc)4

. (A5)

After the analog signal is anti-aliased, it is digitized at
400 Hz. Before subsampling to the final 100 Hz output, the
signal is digitally filtered. For the 2019 FCS cruise, the sig-
nal was convolved with a symmetric 29-element kernel in
which the first 15 elements were

gi = (216
− 1)−1

×[52,221,393,427,174,0,0,0,0,0,

1970,5054,8202,10558,11433]. (A6)

This is a sinc kernel but with negative values set to zero.
(We are currently investigating better choices for future im-
plementations). The filter has a half-power (−3 db) point at
25 Hz.

Appendix B: Identifying the start and end of a profile

Early in our processing routine, we partition the raw volt-
age signals into 512-element segments. In order to discard
the segments in which FCS was not profiling, we need ro-
bust (yet simple) criteria that demarcate the start and end of a
profile. For the start, we search for the first three consecutive
segments in whichWmin > 0.05 m s−1. For the end, we swap
the inequality.

A drawback of this approach is the appearance of a quan-
tity in physical units (0.05 m s−1). This is the one instance
where we hard code a calibration coefficient in the onboard
software rather than applying it in post-processing. Fortu-
nately, the relevant coefficient can be approximated as con-
stant: C2P = 76.7 psi V−1 (barring a redesign of the circuitry
or the use of a different brand or model of pressure sensor).
For the two units already built, C2P = 76.81 psi V−1 and
76.53 psi V−1. By comparison, among the four shear probes
on the two units, the calibration coefficients vary by 30 %.

At least for the initial implementation of our scheme, we
do not include an algorithm to detect the surface to within

centimeters. Doing so would let us work backward to put
our uppermost depth bin as close to the surface as possi-
ble. However, we expect that this could be a fragile part of
the scheme. Further, FCS lacks a micro-conductivity sensor,
which is likely the sensor best suited for identifying the air–
sea interface (e.g., Ward et al., 2014).

Without surface detection, the depths of the uppermost
bins will be realized randomly. In the worst cases, we would
discard the top ∼ 1 m (5 s at ∼ 0.2 m s−1). To alleviate this,
we may use half-overlapping bins near the surface. The exact
implementation will be determined later in the development.

Appendix C: Least-squares fitting of power laws

In this paper, we use power law fits to derive turbulence quan-
tities: 9s = Aεf

1/3 and 9Tt = Aχf 1, where Aε and Aχ are
substitutes for the expressions in Eqs. (23) and (33). With
only a single parameter for each fit, implementing a least-
squares fit is easy.

Assume we are fitting the vector 9i to the function Af ni
where n is either 1/3 or 1. The sum of squared residuals is
therefore∑

r2
i =

∑(
9i −Af

n
i

)2
. (C1)

The minimum with respect to A is where the derivative is
zero:

∂

∂A

∑
r2
i =

∑
−2f ni

(
9i −Af

n
i

)
= 0. (C2)

Hence,

A=

∑
f ni 9i∑
f 2n
i

. (C3)

We had originally intended to find A by following
Becherer and Moum (2017), who were fitting f 1/3 spectra.
Their simpler method, A=

∑(
9i/f

n
i

)
, is equivalent to a

least-squares fit, except the quantity minimized is the sum of
the squares of the adjusted residuals, where adjusted means
divided by f n. Differences can be ignored when n= 1/3 but
not when n= 1.

Appendix D: Standard processing of FCS turbulence
measurements

The standard processing of FCS turbulence data differs from
the reduced scheme in three ways. First, raw data are de-
spiked differently (Appendix E). Second, the 100 Hz raw
voltage signals are calibrated into physical quantities right
away. Hence, means and spectra are calculated in physical
units and not in voltage units. Third, the integration of spec-
tra occurs over a variable wavenumber band, which is found
iteratively.
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When integrating shear spectra (after correction; see Ap-
pendix A) to find ε, we follow the approach used for the
Chameleon profiler (Moum et al., 1995). A first estimate
of ε is made by integrating over k = 4–10 cpm. This value
provides a first estimate of the Kolmogorov wavenumber
ks = (ε/ν

3)1/4/2π . (The lower limit for Chameleon is 2 cpm,
but we increase this for FCS given its slower profiling speed
and hence the possibility of contamination by waves at lower
wavenumbers.) The upper integral limit is then set to 0.5ks
(with a minimum of 10 cpm and a maximum of 45 cpm).
The Nasmyth spectra (Eq. 15) is integrated over the same
wavenumber range. If the measured and Nasmyth integrals
are within 1 %, then ε is set to be equal to the integral of
the Nasmyth spectrum over all k. Otherwise, ε and ks are
adjusted iteratively until the two integrals agree.

A similar but non-iterative approach is used for integrating
Tz spectra to find χ . The model spectrum is the Kraichnan
spectrum (Eq. 28), and again, the lower limit of integration
is 4 cpm. The upper limit is the Batchelor wavenumber kb =
(ε/νD2

T)
1/4/2π (with a maximum defined by kW = 15 Hz).

Appendix E: Identifying and removing noise and spikes
in the shear signals

To properly despike the raw output of a shear probe requires
several steps. Lueck et al. (2018) describe a process in which
the signal is high-passed, then rectified, and then low-passed
to derive a measure of the local variance. A value is defined
as a spike if it is more than 8 times (or a similar threshold)
higher than the local variance. Spikes are replaced with an
average based on surrounding points. This process is then re-
peated on the new signal and so on until no spikes are identi-
fied.

In our standard processing of FCS data, we use the
Lueck et al. (2018) despiking routine. For our data reduction
scheme, we use an approach that is easier to implement and
quicker to compute, albeit one that is less precise. For each
512-element segment of data, a spike is defined as any data
point larger than 3 standard deviations from the mean. These
spikes are replaced by the mean of the remaining values in
the segment.

Code availability. Our MATLAB implementation of the process-
ing code is available from https://doi.org/10.5281/zenodo.7644701
(Hughes and Vutukur, 2023) or https://github.com/
OceanMixingGroup/flippin-chi-solo (last access: 17 February
2023).

Data availability. Raw and processed data for the 2019 experiment
are available at https://doi.org/10.5281/zenodo.5719505 (Hughes,
2022) or https://kghughes.com/data (last access: 17 February 2023).
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