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Abstract. A thermodynamic potential is derived for seawater
as a function of Conservative Temperature, Absolute Salin-
ity and pressure. From this thermodynamic potential, all the
equilibrium thermodynamic properties of seawater can be
found, just as all these thermodynamic properties can be
found from the TEOS-10 (the International Thermodynamic
Equation of Seawater – 2010; IOC et al., 2010) Gibbs func-
tion (which is a function of in situ temperature, Absolute
Salinity, and pressure). Present oceanographic practice in the
Gibbs SeaWater Oceanographic Toolbox uses a polynomial
expression for specific volume (and enthalpy) in terms of
Conservative Temperature (as well as of Absolute Salinity
and pressure), whereas the relationship between in situ tem-
perature and Conservative Temperature is based on the Gibbs
function. This mixed practice introduces (numerically small)
inconsistencies and superfluous conversions between vari-
ables. The proposed thermodynamic potential of seawater,
being expressed as an explicit function of Conservative Tem-
perature, overcomes these small numerical inconsistencies,
and in addition, the new approach allows for greater com-
putational efficiency in the evaluation of sea surface temper-
ature from Conservative Temperature. It is also shown that
when using Conservative Temperature, the thermodynamic
information in enthalpy is independent of that contained in
entropy. This contrasts with the cases where either in situ
temperature or potential temperature is used. In these cases, a
single thermodynamic potential serves the important purpose
of avoiding having to impose a separate consistency require-
ment between the functional forms of enthalpy and entropy.

1 Introduction

1.1 Present practice

The TEOS-10 (the International Thermodynamic Equation
of Seawater – 2010; IOC et al., 2010) Gibbs function of sea-
water is a thermodynamic potential whose arguments are Ab-
solute Salinity, in situ temperature, and pressure. The adop-
tion in 2010 of TEOS-10 as the official description of the
thermodynamic properties of seawater came with the recom-
mendation that the observed variables Practical Salinity SP
and in situ temperature, together with longitude, latitude, and
pressure, be used to form Absolute Salinity SA and Conser-
vative Temperature 2, and it is these variables, SA and 2,
that take the place of Practical Salinity SP and potential tem-
perature θ in our oceanographic research and in the publica-
tion of our results in journals (IOC et al., 2010; Valladares et
al., 2011a, b; McDougall and Barker, 2011; Pawlowicz et al.,
2012; Spall et al., 2013). Conservative Temperature is pro-
portional to the potential enthalpy of seawater referenced to
the pressure of the standard atmosphere (McDougall, 2003;
IOC et al., 2010; Graham and McDougall, 2013).

The Absolute Salinity variable of TEOS-10 is defined
on the Reference-Composition Salinity Scale of Millero
et al. (2008) as an approximation to the mass fraction of
dissolved material in seawater. As described in Pawlow-
icz (2010, 2011) and Wright et al. (2011), while the Gibbs
function of a multi-component solution such as seawater
should depend on the concentrations of all its constituents,
Absolute Salinity on the Reference-Composition Salinity
Scale is defined so that its use yields accurate values of the
specific volume of seawater.
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This paper was motivated by the following question: “is
it possible to define a thermodynamic potential in terms
of Conservative Temperature rather than, for example, in
terms of in situ temperature, as is the case for the TEOS-10
Gibbs function of seawater (Feistel, 2008; IAWPS, 2008)?”.
Progress had already been made towards answering this
question in Appendix P of the TEOS-10 Manual (IOC et al.,
2010) where it was shown that if expressions were available
for both the enthalpy and the entropy of seawater as func-
tions of Absolute Salinity, Conservative Temperature, and
pressure, then all the thermodynamic properties of seawater
could be derived.

While in situ temperature is an observed variable, its de-
pendence on pressure (even for adiabatic variations of pres-
sure at constant salinity) and its non-conservative nature un-
der turbulent mixing processes have led to the adoption of
Conservative Temperature in order to approximate the “heat
content” per unit mass of seawater. It is Conservative Tem-
perature that is now used as the temperature axis of “salinity–
temperature” diagrams and as the model’s temperature vari-
able in ocean models (McDougall et al., 2021) because
it is approximately conserved under mixing processes: the
amount of non-conservation is typically 2 orders of magni-
tude less than that of potential temperature. In order to facil-
itate the use of Conservative Temperature in oceanography,
Roquet et al. (2015) provided a 75-term polynomial for spe-
cific volume, v̂ (SA,2,P ), as a function of Absolute Salin-
ity, SA Conservative Temperature2, and pressure P , and this
polynomial underlies approximately 75 of the 280 algorithms
in the Gibbs Seawater (GSW) Oceanographic Toolbox. The
hat over a variable indicates that it is being expressed as a
function of Conservative Temperature (rather than the in situ
absolute temperature T = T0+ t , where t is the in situ tem-
perature on the Celsius temperature scale and T0 = 273.15 K
is the Celsius zero point). While the polynomial expression
v̂ (SA,2,P ) is as accurate in the oceanographic range of
salinity as our present knowledge of seawater properties, it
does not give exactly the same values for specific volume
as are obtained by using the original TEOS-10 Gibbs func-
tion. One consequence of this approximation is that there is
at present a slight inconsistency in the conversions between
different types of temperature variables using the Gibbs func-
tion compared with using the Roquet et al. (2015) polyno-
mial v̂ (SA,2,P ). For example, the in situ and potential tem-
peratures, t and θ respectively (both measured on the Cel-
sius temperature scale), are related through the Gibbs func-
tion through the implicit relationship gT (SA,T0+ t,P ) =

gT (SA,T0+ θ,Pr) (where the T subscripts denote partial
differentiation, Pr is the reference pressure of the poten-
tial temperature, and g (SA,T0+ t,P ) is the Gibbs function).
These temperatures are also related through the forward
expression (T0+ t)/(T0+ θ)= ĥ2 (SA,2,P )/c

0
p in terms

of the 2 derivative of enthalpy: note that ĥP (SA,2,P )=

v̂ (SA,2,P ) and that c0
p and T0 are constants. By “forward

expression” we mean that the calculation is performed with-
out doing a series of iterations such as that which occurs
in a Newton–Raphson iterative calculation that is often re-
quired in thermodynamic calculations. When the Roquet et
al. (2015) polynomial of v̂ (SA,2,P ) is used to evaluate
ĥ2 (SA,2,P ), the differences in temperature compared with
using the Gibbs function are small, being no larger than
10−4 K, but we would prefer if they did not exist, and the
use of the thermodynamic potential of this paper in place of
the Gibbs function eliminates both these small inconsisten-
cies as well as the need for superfluous conversions between
different temperature variables.

1.2 Thermodynamic fundamentals

The First Law of Thermodynamics (see sections 49, 57, and
58 of Landau and Lifshitz (1959) and Appendix B of IOC et
al., 2010),

ρ

(
du
dt
+P

dv
dt

)
=−∇ ·FQ+ ρε, (1)

expresses how the material derivatives of internal energy, u,
and specific volume, v, are related and how they respond to
the local rate of heating by the divergence of the heat flux ∇ ·
FQ and by the dissipation of turbulent kinetic energy per unit
mass ε. In Eq. (1), t stands for time, not in situ temperature;
we trust the context makes this use obvious. The symbols
used in this paper can be found in Table 1.

Equation (1) illustrates how the work performed by the
environment on the fluid parcel due to its change in vol-
ume at pressure P , −Pdv changes the internal energy
du. The molecular, boundary, and radiative fluxes of heat
are represented by FQ, and the contribution of the non-
conservative nature of Absolute Salinity to the First Law is
ignored here; this is discussed in the two paragraphs follow-
ing Eq. (A.21.13) in Appendix A.21 of the TEOS-10 Manual;
IOC et al. (2010), where this contribution was shown to be a
factor of 30 smaller than the ρε term in Eq. (1) which itself
is routinely ignored. The detailed derivation of the First Law
(starting from the conservation of total energy) can be found
in Appendix B of IOC et al. (2010).

Clausius (1876) considered the cyclic reversible exchange
of heat between a control volume and the environment and
inferred that there must be a state variable, which he named
entropy, η, whose total derivative is related to the total deriva-
tives of internal energy du and volume dv by the following
differential relationship,

dh− vdP = du+P dv = T dη+µdSA, (2)

and the first part of this equation has been added using the
definition of specific enthalpy, h≡ u+Pv. This relation-
ship (Eq. 2) is now called the fundamental thermodynamic
relationship (FTR), and the total differentials represent dif-
ferences between equilibrium states (de Groot and Mazur,
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Table 1. Table of symbols.

Quantity Symbol Units Comments

Standard Ocean Reference
Salinity

SSO g kg−1 35.165 04 g kg−1, corresponding to the Standard Ocean Practi-
cal Salinity of 35

Absolute Pressure P Pa When Absolute Pressure is used it should always be in pascals
(Pa), not in megapascals (Mpa), nor in decibars (dbar).

sea pressure. Sea pressure is
the pressure argument to all the
GSW Toolbox functions.

p dbar equal to P −P0 and usually expressed in decibars not pascals

one standard atmosphere P0 Pa exactly 101 325 Pa (= 10.1325 dbar)

Absolute Salinity SA = S
dens
A g kg−1 Absolute Salinity is measured on the Millero et al. (2008)

Reference-Salinity Scale.

temperature t ◦C

Absolute Temperature T K T/K ≡ T0/K + t/
(
◦
)
= 273.15+ t/

(
◦
)

temperature derivatives T K When a quantity is differentiated with respect to in situ temper-
ature, the symbol T is used in order to distinguish this variable
from time.

Celsius zero point T0 K T0 ≡ 273.15 K

potential temperature θ ◦C

Conservative Temperature 2 ◦C

the “specific heat”, for use with
Conservative Temperature

c0
p J kg−1 K−1 c0

p ≡ 3991.86795711963 J kg−1 K−1. This 15-digit number is
defined to be the exact value of c0

p . c0
p is the ratio of potential

enthalpy h0 to 2.

specific enthalpy h J kg−1 h= u+Pv

specific potential enthalpy h0 J kg−1 specific enthalpy referenced to zero sea pressure

specific isobaric heat capacity cp J kg−1 K−1 cp = ∂h/∂T |SA,P

specific internal energy u J kg−1

specific Gibbs function (Gibbs
energy)

g J kg−1

specific Helmholtz energy f J kg−1

specific entropy η J kg−1 K−1

density ρ kg m−3

thermal expansion coefficient
with respect to Conservative
Temperature 2

α2 K−1 α2 = v−1 ∂v/∂2|SA,P =−ρ
−1 ∂ρ/∂2|SA,P

saline contraction coefficient at
constant Conservative Temper-
ature

β2 kg g−1 β2 =−v−1 ∂v/∂SA|2,P = ρ
−1 ∂%/∂SA|2,P . Note that the

units for β2 in the GSW Oceanographic Toolbox are consis-
tent with SA being in grams per kilogram (g kg−1).

isothermal compressibility κ t Pa−1

isentropic and isohaline com-
pressibility

κ Pa−1

chemical potential of water in
seawater

µW J g−1
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Table 1. Continued.

Quantity Symbol Units Comments

chemical potential of sea salt in
seawater

µS J g−1

relative chemical potential of
(sea salt and water in) seawater

µ J g−1 µ= (∂g/∂SA)T ,P = (∂h/∂SA)η,P = µ
S
− µW

dissipation rate of kinetic en-
ergy per unit mass

ε J kg−1 s−1
=m2 s−3

adiabatic lapse rate 0 K Pa−1

sound speed c m s−1

specific volume v m3 kg−1 v = ρ−1

1984, Chap. III, Sect. 2) that are separated by vanishingly
small differences of state variables. This restriction is satis-
fied for infinitesimally small reversible changes of infinites-
imally small seawater parcels, ensuring that the in situ tem-
perature T , the relative chemical potential µ, and the pres-
sure P are unambiguously defined. Callen (1985, Sect. 4.2)
explains that Eqs. (1) and (2) apply to “quasi-static” pro-
cesses that are defined as a series of vanishingly small prop-
erty changes occurring between a dense succession of “lo-
cal” equilibrium states. It is only for such quasi-static pro-
cesses that -P dv can be identified as mechanical work and
T dη as the heat transfer, for otherwise there are choices to
be made of the values of P and T , choices that would intro-
duce errors into Eqs. (1) and (2). The infinitesimally small
differences dh, dP , dη and dSA in Eq. (2) need not only rep-
resent difference in time between successive states but may
equally well represent difference between states that are well
separated in space and time. The key feature is to realize
that, for example, when Absolute Salinity and pressure are
both constant, the temperature T is unambiguously defined
in all three parts (hT , T , and ηT ) of the differential equation
hT (SA,T ,P )= T ηT (SA,T ,P )= cp (SA,T ,P ). Bearing in
mind this type of restriction, the First Law of Thermodynam-
ics, Eq. (1), and the FTR, Eq. (2), may be combined into the
following form of the First Law,

ρ

(
dh
dt
− v

dP
dt

)
= ρ

(
du
dt
+P

dv
dt

)
= ρ

(
T

dη
dt
+µ

dSA

dt

)
=−∇ ·FQ+ ρε. (3)

This version of the First Law may be combined with the
equation for the conservation of mass (the so-called “con-
tinuity” equation, ∂ρ/∂t +∇ · (ρu)= 0, where the bold u is

the velocity vector) and rearranged into the form

ρ
dη
dt
=

∂

∂t
(ρη)+∇ · (ρuη) = −∇ ·

(
1
T
FQ−

µ

T
F S
)

+FQ · ∇

(
1
T

)
+F S · ∇

(
−
µ

T

)
+
ρε

T
. (4)

In doing this rearrangement we have used the evolution equa-
tion of Absolute Salinity,

ρ
dSA

dt
=

∂

∂t
(ρSA)+∇ · (ρuSA)=−∇ ·F

S, (5)

where F S is the flux of Absolute Salinity caused by molecu-
lar diffusion. This form (Eq. 5) of an evolution equation for
a variable is the “conservative” form because the right-hand
side of this equation is minus the divergence of a molecu-
lar flux (see the formal definition of a conservative variable,
Eq. (A.8.1) of the TEOS-10 Manual; IOC et al., 2010). Using
Gauss’ integral theorem, it is concluded that the total amount
of such a variable in the ocean is then set only by the flux
of the variable at the ocean boundaries. Since mixing occurs
between fluid parcels only when the fluid parcels are brought
together to the same location and therefore the same pressure,
it follows that apart from the warming due to the dissipation
of turbulent kinetic energy, enthalpy is a conservative quan-
tity during an individual mixing process. This is the single
most important fact about thermodynamics of importance to
physical oceanography. Graham and McDougall (2013) have
exploited this fact and have further particularized it by say-
ing that “apart from the warming caused by the dissipation of
turbulent kinetic energy, potential enthalpy referenced to the
pressure of the mixing process is conserved during the mix-
ing process”. The reasons that we can make this statement
are that (i) enthalpy enters Eq. (3) as density times the mate-
rial derivative of enthalpy, and (ii) mixing processes occur at
constant pressure. We are not able to make the corresponding
statement about entropy because it enters Eq. (3) as density
times T times the material derivative of entropy (and also be-
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cause of the non-constancy of µ). The presence of this mul-
tiplicative factor, T , is key to explaining why enthalpy is an
isobaric–conservative variable, while entropy is not.

We note that there is a fundamental difference in the lan-
guage and symbols used in thermodynamics versus in fluid
dynamics. As we have noted, the FTR, Eq. (2), applies only
to reversible processes, and yet the FTR has been combined
with the First Law of Thermodynamics, Eq. (1), to arrive at
Eqs. (3) and (4) which are written in typical fluid dynamics
form using material derivatives. There is a disconnect here, a
disconnect that is common in the literature and is the source
of much confusion. In fluid dynamics we do not require mix-
ing processes to occur only for an instant and then to have
these process switch off while the fluid slowly comes to ther-
modynamic equilibrium (as would be required to technically
obey the thermodynamic restrictions associated with the FTR
which we have used). Rather, in fluid dynamics we imagine
the mixing processes and the dissipation of turbulent kinetic
energy to occur continuously. Moreover, a state of thermo-
dynamic equilibrium has spatially uniform fields of in situ
temperature and chemical potential, and such a state is not
what we observe or expect in the ocean which is mixed by
turbulent mixing processes (see the discussion of this point
on the last page of Appendix B of IOC et al., 2010). Hence
it is clear that the restrictions associated with use of the FTR
are not fulfilled when we combine it with the First Law and
write the result using fluid dynamic notation and interpreta-
tion as though it might apply to the real ocean. We conclude
that there are small thermodynamic inconsistencies involved
with combining the FTR and the First Law into the forms of
Eqs. (3) and (4). This same inconsistency is common to all
advanced thermodynamics textbooks and is rarely discussed;
a rare mention of the issue appears on the last page of Sect. 49
of Landau and Lifshitz (1959). Importantly, we point out be-
low (in the paragraph that contains our Eq. 6) that in physical
oceanography we do not need to use the evolution of entropy
as it appears in Eqs. (3) and (4), but rather we exploit the fact
that entropy is a function only of state variables and so can be
expressed in the functional form η̈ (SA,h,P ). This sidesteps
the otherwise annoying conceptual issues that would arise
when applying fluid mechanics concepts and fluid mechani-
cal mathematical nomenclature (such as material derivatives)
to the FTR where the same symbols have a different and
more restrictive meaning.

A test of the conservative nature (or otherwise) of an
oceanographic variable is to consider the turbulent mixing
of two seawater parcels. If the total amount of the variable
in the final mixed product is the sum of the amounts in the
two original parcels, then the variable is conservative. This
is rigorously true for enthalpy in an isobaric mixing process
(apart from the dissipation of turbulent kinetic energy which
needs to be budgeted separately) and is close to being true of
Conservative Temperature (McDougall, 2003; Graham and
McDougall, 2013).

Temporarily setting aside the reservations we have out-
lined above with the evolution expressions for entropy in
the forms Eqs. (3) and (4), it is customary to note from
Eq. (4) that entropy is not a conservative variable because
of the three terms FQ · ∇ (1/T ), F S · ∇ (−µ/T ), and ρε/T .
The Second Law of Thermodynamics can be stated in many
forms, and when considering the mixing of a pair of fluid
parcels, the Second Law requires that the entropy of the fi-
nal mixture must be not less than the sum of the entropies
contained in the initial two fluid parcels. This is clearly
true for the last term in Eq. (4) because the dissipation
of turbulent kinetic energy, ε, is always non-negative. The
non-negative production of entropy means that the terms in
Eq. (4) involving the molecular fluxes of heat FQ and salt
F S , namely FQ·∇ (1/T ) and F S ·∇ (−µ/T ), also need to be
non-negative, and this requirement is shown by Landau and
Lifshitz (1959) to be satisfied when the Gibbs function, g,
satisfies gT T < 0 and gSASA > 0. The TEOS-10 Gibbs func-
tion of seawater satisfies this thermodynamic stability condi-
tion.

To understand and quantify the non-conservative produc-
tion of entropy when turbulent mixing occurs between dif-
ferent seawater parcels, a different approach is required be-
cause the production terms FQ ·∇ (1/T ) and F S ·∇ (−µ/T )
in Eq. (4) involve complicated products of the gradients of in
situ temperature, of pressure, and of salinity, bearing in mind
that the molecular fluxes of heat and salt contain contribu-
tions from baro-diffusion and the Soret and Dufour effects
(see Appendix B of IOC et al., 2010). These products of gra-
dients would need to be averaged over the temporal and spa-
tial scales of the turbulent mixing event. Such a formidable
averaging task has never been undertaken and is probably im-
possible. Fortunately, there is a much simpler way of evaluat-
ing the non-conservative production of entropy due to turbu-
lent mixing, namely, to exploit the fact that entropy is a state
variable, so that it can be expressed as a function of salin-
ity, enthalpy, and pressure, η̈ (SA,h,P ) (here the cup over a
variable’s name indicates that it is being expressed as a func-
tion of enthalpy, h). Graham and McDougall (2013) used this
approach to show that the irreversible production of entropy,
δη, that occurs when two seawater parcels of equal mass mix
to completion is, to lowest expansion order,

δη = −
1
8

{
η̈hh(1h)

2
+ 2η̈hSA1h1SA+ η̈SASA(1SA)

2
}
, (6)

where 1h and 1SA are the differences between the val-
ues of enthalpy and Absolute Salinity of the initial seawater
parcels. Graham and McDougall (2013) also developed the
evolution equation for entropy in the presence of turbulent
epineutral and dianeutral turbulent mixing (their Eq. 48), and
this work is summarized in Sect. A.16 of IOC et al. (2010).
There it is shown that the sign-definite nature of the produc-
tion of entropy for the turbulent mixing process places ex-
actly the same requirements on the Gibbs function of sea-
water as molecular diffusion does, namely that gT T < 0 and
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gSASA > 0. Using this method which recognizes that entropy
is a state variable so that it is possible to express entropy in
the functional form η̈ (SA,h,P ) largely circumvents the the-
oretical difficulty of using the FTR in real fluid situations that
are clearly not in a state of thermodynamic equilibrium.

The T dη term in Eq. (2) describes the exchange of an in-
finitesimally small amount of heat and constitutes the orig-
inal definition of entropy by Clausius (1876), so that, for
example, if a seawater parcel is heated reversibly at con-
stant pressure and salinity, this input of heat is equal to both
dh and T dη. The last term, µdSA, describes the influence
of changes in Absolute Salinity on enthalpy at constant en-
tropy and pressure; that is, µ is the relative chemical po-
tential defined by µ= ∂h/∂SA|η,P , which is also given by
µ= ∂u/∂SA|v,P . While the FTR relates the total derivatives
of the several thermodynamic quantities only for thermody-
namically reversible processes, importantly all of enthalpy,
internal energy, specific volume, entropy, and relative chem-
ical potential are state variables so that they can be expressed
as functions of, for example, (SA,T ,P ). That is, after a se-
ries of irreversible processes (such as events in which tur-
bulent kinetic energy is dissipated), the differences in these
variables are still given by the differences in their functional
expressions. Specifically, knowing the values of salinity, tem-
perature, and pressure both before and after the occurrence of
an irreversible process, the difference in entropy after this ir-
reversible process is given by the difference between the final
and initial values of η(SA,T ,P ), under the assumption that
the fluid sample under consideration is at thermodynamic
equilibrium both before and after that process. Given this,
the nature of the processes occurring between the initial and
final times is irrelevant.

In practice the FTR is used extensively in the construction
of the thermodynamic potentials that describes seawater, so
that all the thermodynamic variables are related to each other
using equations that apply for reversible processes. Because
each of these thermodynamic variables are state variables,
the use of the FTR is justified; its use essentially finds a route
through parameter space caused by a series of reversible pro-
cesses, even though there are many other ways of traversing
between two (SA,T ,P ) states, specifically, ways that involve
irreversible processes. Thermodynamic state variables, by
definition, never depend on the process history that has led to
the actual state. Rather, “the actual state of the world depends
only on the most recent past, without being directly influ-
enced, so to speak, by the memory of the distant past” wrote
Henri Poincaré in a report to the International Congress of
Physics in 1900 (Poincaré and Goroff, 1993, pI18).

Two important characteristics of oceanographic variables
are (i) whether they are “potential” variables and (ii) whether
they are conservative variables: these characteristics are dis-
cussed at length in Sects. A.8 and A.9 of IOC et al. (2010).
For example, Absolute Salinity is a potential variable since
if the salt flux divergence, ∇ ·F S , is zero then the salinity
of a fluid parcel is unchanged even though its pressure may

vary: this follows from the conservation equation of Absolute
Salinity, ρdSA/dt =−∇·F S of Eq. (5) (where, again, we are
neglecting the influence of the non-conservative source term
of Absolute Salinity). A potential variable is independent of
pressure when the pressure change occurs isentropically and
without change in Absolute Salinity. From Eq. (3), if in ad-
dition to being isohaline, both ∇ ·FQ = 0 and ε = 0 so that
there is no net flux of heat across the boundaries of the fluid
parcel and no dissipation of turbulent kinetic energy inside
the parcel, then entropy η is also constant, showing that en-
tropy also has the potential property; indeed this is a funda-
mental definitional property of entropy. Potential enthalpy,
potential density, and potential temperature, θ , all have the
potential property, by construction.

Since Conservative Temperature 2 is defined as being
proportional to potential enthalpy, h(SA,T0+ θ,P0), it is
also a potential variable and can be regarded as a function
2̃(SA,θ) of only SA and θ . It follows that entropy, which
is also a potential variable, obeys η = η(SA,T0+ t,P )=

η(SA,T0+ θ,P0) =−gT (SA,T0+ θ,P0) and so can be ex-
pressed as a function of SA and 2 only, η = η̂ (SA,2) and is
not a separate function of in situ pressure. Note that molec-
ular diffusion acts primarily to flux heat down the tempera-
ture gradient (up the gradient of 1/T ) and, in the presence
of a pressure gradient (such as that caused by the gravita-
tional hydrostatic balance), does not act to eliminate entropy
gradients. In contrast, turbulent mixing, by exchanging fluid
parcels, acts to flux potential properties (such as entropy and
Conservative Temperature) down the gradients of these po-
tential variables and, in the presence of a pressure gradient,
establishes a gradient of in situ temperature.

1.3 An introduction to thermodynamic potentials

The fundamental thermodynamic relationship of Eq. (2) can
be regarded as an expression for the total derivative of en-
thalpy when it is expressed as a function of (SA,η,P ), and
the three partial derivatives with respect to these variables
are µ, T , and v. Thermodynamically speaking, this form of
enthalpy, namely ḧ (SA,η,P ), is the most natural thermody-
namic potential of seawater because turbulent mixing events
in the ocean occur at constant pressure rather than at con-
stant volume (here the bracket over a variable’s name in-
dicates that it is being expressed as a function of entropy).
This is because for mixing between seawater parcels to oc-
cur, these parcels need to be in contact with each other, ir-
respective of whether the seawater parcels have previously
travelled through physical space vertically or along a surface
of constant potential density. This need for identical geoloca-
tion is why turbulent mixing between a pair of fluid parcels
occurs at a given value of pressure. The “heat-like” argument
of ḧ (SA,η,P ), namely entropy, is a potential variable, and
this potential property leads to simple expressions for quan-
tities such as the adiabatic and isentropic compressibility,
κ =−ḧ−1

P ḧPP . But entropy, η, is neither an observed quan-
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tity (cf. in situ temperature T ), nor is it an almost conserva-
tive quantity (cf. Conservative Temperature 2). The Gibbs
function g (SA,T ,P ) has proven to be a practically more
useful thermodynamic potential than ḧ (SA,η,P ) because its
heat-like argument, T , is an observed quantity, even though
T is neither a potential variable, nor is it an almost conser-
vative variable. We note, from the FTR, that an alternative to
ḧ (SA,η,P ) as a thermodynamic potential is internal energy
as a function of (SA,η,v) where specific volume (or density)
takes the place of pressure as an independent variable, and
the partial derivatives are µT and −P . For completeness it
may be mentioned that the thermodynamic potential of pure
water, which is part of TEOS-10, is a Helmholtz function
expressed as a function of (T ,v) which permits the joint de-
scription of liquid and gaseous water by a single mathemati-
cal expression (Wagner and Pruß, 2002).

Importantly, all thermodynamic potentials obey the three
general criteria which characterize axiomatic systems (Feis-
tel, 2008, 2018). That is, thermodynamic potentials must ex-
hibit consistency (that is, they exclude the possibility of de-
ducing two different mathematical expressions for the same
property), independence (that is, they prevent any derived
function from being deducible from another one), and com-
pleteness (that is, they provide an equation for every equilib-
rium thermodynamic bulk property). For an arbitrary given
thermodynamic property equation, the validity of these cri-
teria is not trivially fulfilled and needs to be demonstrated in
order to regard that equation a thermodynamic potential. The
new thermodynamic potentials of this paper do obey these
three essential criteria.

1.4 A guide to this paper

In this paper we derive a new thermodynamic potential of
seawater, φ̂ (SA,2,P ), whose heat-like variable is Conser-
vative Temperature, 2, which, while not being a measured
quantity, is a potential variable and is also close to being
100 % conservative. We also find a new thermodynamic po-
tential, ψ̃ (SA,θ,P ), whose heat-like variable is potential
temperature, θ . Of the three desirable attributes of the heat-
like argument of a thermodynamic potential, namely (i) be-
ing an observed quantity, (ii) being a potential variable, and
(iii) being nearly conservative, 2 has two of these attributes,
while all of T , θ , and η have only one attribute each.

In Sect. 2 we compare two ways of defining the proper-
ties of seawater. In one way we claim to have knowledge of
both enthalpy and entropy as functions of in situ temperature;
that is, we claim to know both h(SA,T ,P ) and η(SA,T ,P ).
In the other case we claim to know enthalpy and entropy
as functions of Conservative Temperature; that is, we claim
to know both ĥ (SA,2,P ) and η̂ (SA,2). We show that the
ĥ (SA,2,P ) and η̂ (SA,2) pair provides a clean separation
of the heat and buoyancy information, namely specific vol-
ume, internal energy, isentropic compressibility, and sound
speed, all of which are found from ĥ (SA,2,P ) alone, while

the information in η̂ (SA,2) is needed to relate2 to the other
temperature variables and to evaluate the chemical potentials.
This contrasts with the (SA,T ,P ) case where these same
thermodynamic properties, namely specific volume, internal
energy, isentropic compressibility, and sound speed, all de-
pend on both h(SA,T ,P ) and η(SA,T ,P ). Also, the infor-
mation in h(SA,T ,P ) and η(SA,T ,P ) is not independent of
each other since these functions need to satisfy the constraint
hT = T ηT . In contrast, there is no such consistency require-
ment between the ĥ (SA,2,P ) and η̂ (SA,2) functions be-
cause in the equation, ĥ2 (SA,2,P )= T η̂2 (SA,2), in situ
temperature T is not an independent variable in this case.

In Sect. 3 we find a new thermodynamic potential
φ̂ (SA,2,P ) from which both enthalpy ĥ (SA,2,P ) and en-
tropy η̂ (SA,2) can be found, and we argue that this thermo-
dynamic potential is as fundamental as the Gibbs function
and that the approach using φ̂ (SA,2,P ) has several advan-
tages over the Gibbs function, owing to the facts that (i) Con-
servative Temperature is a potential variable, and (ii) it is an
almost conservative variable. The formation of the combined
logarithm and polynomial construction of the expression for
η̂ (SA,2) is described in Sect. 4, while Sect. 5 describes
how the new thermodynamic potential is used in observa-
tional oceanography and in numerical ocean models. The pa-
per ends with the Conclusions section, Sect. 6.

2 Thermodynamic potentials versus knowledge of both
enthalpy and entropy

2.1 Four known thermodynamic potential functions

The FTR, Eq. (2), in its original form, du+P dv = T dη+
µdSA, is an expression for the total derivative of internal
energy in terms of the total derivatives of its natural (or
conjugate) variables, Absolute Salinity, entropy, and spe-
cific volume. This describes the thermodynamic potential
u(SA,η,v), and we describe this as the most basic or “orig-
inal” thermodynamic potential because it follows from the
original form of the FTR. Enthalpy is obtained through the
Legendre transformation of internal energy by adding the
product of pressure and specific volume, h≡ u+Pv, so that,
from the FTR we have dh− vdP = T dη+µdSA, which is
equivalent to the total differential of the thermodynamic po-
tential h(SA,η,P ), written in terms of its canonical inde-
pendent variables. Note that the original form of the FTR,
namely du+P dv = T dη+µdSA, can be deduced from the
expression for the total derivative of enthalpy, dh= T dη+
µdSA+ vdP , if and only if one also knows that enthalpy is
defined in terms of internal energy by h≡ u−Pv.

The Gibbs function g (SA,T ,P ) is found from the Legen-
dre transformation of enthalpy by subtracting the product of
entropy and absolute temperature, g ≡ h−T η ≡ u+Pv−T η.
The total differential of the Gibbs function, dg = dh−ηdT −
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T dη, can be found from the FTR (Eq. 2) to be

dg = µdSA− ηdT + vdP, (7)

with the three partial derivatives of g (SA,T ,P ) beingµ, −η,
and v. We can think of the Gibbs function being formed
from laboratory-derived measurements of these three partial
derivatives. Note that the FTR can only be deduced from this
expression for the total derivative of the Gibbs function if
and only if one also knows that the Gibbs function is de-
fined in terms of enthalpy by g = h−T η. The Helmholtz free
energy f (SA,T ,v) is found from the Legendre transforma-
tion of internal energy by subtracting the product of entropy
and absolute temperature, f = u− T η. The total differential
of the Helmholtz free energy is df = µdSA− ηdT −P dv.
Again, the FTR can only be deduced from this expression
for the total derivative of the Helmholtz free energy if and
only if one also knows that f = u− T η. The Gibbs func-
tion and the Helmholtz free energy are the thermodynamic
potentials that prove useful for describing phase transitions
because they both have in situ temperature as an independent
variable, and in situ temperature is common to both phases
during an equilibrium phase transition.

Each of the thermodynamic potentials h(SA,η,P ),
g (SA,T ,P ), and f (SA,T ,v) follow from the original ther-
modynamic potential u(SA,η,v) by a Legendre transforma-
tion (and in the case of the Gibbs function, via a sequence of
two such transformations) which have the effect of changing
the natural (or canonical) independent variables of each ther-
modynamic potential. In each of these three cases, the origi-
nal form of the FTR is not deducible from the differential ex-
pression of the new thermodynamic potential unless one also
knows how the thermodynamic potential is defined in terms
of internal energy. In the present paper we present a new ther-
modynamic potential of seawater, and even though its deriva-
tion does not rely on a Legendre transformation, it has the
same important characteristic described above, namely that
if one knows both the definition of the new thermodynamic
potential and the expression for its total differential, then the
FTR follows, with the detailed proof of this to be found in
Appendix D.

2.2 The case of h(SA,T ,P ) and η(SA,T ,P )

The discussion of the derivation, definition, and use of
the Gibbs function can be approached via a slightly dif-
ferent line of reasoning. We introduce this alternative line
of reasoning because it resonates with the same line of
reasoning that we use to derive/justify the thermodynamic
potential φ̂ (SA,2,P ) of this paper. In this alternative
way of approaching the Gibbs function, one again takes
µ(SA,T ,P ), η (SA,T ,P ), and v (SA,T ,P ) to be known
functions of seawater, but instead of forming a Gibbs func-
tion g (SA,T ,P ) according to its total differential, Eq. (7),
we form the total derivative of enthalpy in the functional form
(SA,T ,P ), by substituting the total differential of entropy,

dη = ηSAdSA+ ηT dT + ηP dP , into the FTR, obtaining

dh=
(
µ+ T ηSA

)
dSA+ T ηT dT + (v+ T ηP )dP, (8)

with the three partial derivatives of h(SA,T ,P ) be-
ing

(
µ+ T ηSA

)
= (µ− T µT)T ηT , and (v+ T ηP )=

(v− T vT ) respectively. We can think of enthalpy being
formed from these three partial derivatives using laboratory-
derived measurements of µ(SA,T ,P ), η(SA,T ,P ) and
v (SA,T ,P ). Note that the FTR in the original form,
du+P dv = T dη+µdSA, follows from this expression for
the total derivative of enthalpy by using the total differential
of entropy, dη = ηSAdSA+ ηT dT + ηP dP , as well as the
knowledge of the definition of enthalpy in terms of internal
energy, h≡ u+Pv. Having formed h(SA,T ,P ) by inte-
grating its differential definition, Eq. (8), and also separately
knowing η(SA,T ,P ), all the thermodynamic properties
can be found. Despite that, however, the combination of
h(SA,T ,P ) and η(SA,T ,P ) is not fully equivalent to a
thermodynamic potential as this function pair violates the
criterion of independence. This is evident from the heat
capacity for which two different equations can be found,

cP =

(
∂h

∂T

)
SA,P

= T

(
∂η

∂T

)
SA,P

. (9)

Therefore, any suitable thermodynamic potential must intrin-
sically ensure the validity of the consistency condition be-
tween enthalpy and entropy,(
∂h

∂T

)
SA,P

≡ T

(
∂η

∂T

)
SA,P

. (10)

This identity holds for the TEOS-10 Gibbs function, as can
be deduced from Eq. (8) which relies on the differential form,
Eq. (7), of the Gibbs function, and its definition in terms of
enthalpy and entropy, g = h− T η.

The last step in this alternative narrative that leads to
the Gibbs function is to note that it is more convenient
to combine the knowledge contained in h(SA,T ,P ) and
η(SA,T ,P ) into the single function, g = h− T η, whose T
derivative gives−η (using hT = T ηT ), and enthalpy can then
be found by simply adding T η to g = h− T η.

Comparing the traditional with the alternative reasoning
surrounding the Gibbs function, we see that via the tradi-
tional approach, in order to deduce at the FTR from knowl-
edge of the Gibbs function one needs to know both (i) how
the Gibbs function is found from the observed data, namely,
the differential expression Eq. (7) and (ii) the definition of
the Gibbs function in terms of enthalpy and entropy, g =
h− T η. Similarly, with the alternative approach of arriv-
ing at the Gibbs function, use of the same observed data of
µ(SA,T ,P ), η (SA,T ,P ), and v (SA,T ,P ) to define spe-
cific enthalpy according to Eq. (8) also needs knowledge
of how enthalpy is related to internal energy (h≡ u+Pv)
in order to arrive at the FTR. In this alternative approach
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both entropy η(SA,T ,P ) and enthalpy h(SA,T ,P ) are now
known, and all the thermodynamic variables follow. That is,
having formed enthalpy h(SA,T ,P ) from its partial deriva-
tives (Eq. 8), there is no need for an additional defini-
tion; the Gibbs function and its definition do not need to
be introduced. Rather, the two functions h(SA,T ,P ) and
η(SA,T ,P ) can be regarded as a pair of functions that to-
gether define all the thermodynamic properties of seawater.
In this alternative reasoning, the Gibbs function g (SA,T ,P )

is introduced as the last step, for the sole purpose that all the
thermodynamic quantities can be derived from a single func-
tion rather than having to carry along the two separate func-
tions h(SA,T ,P ) and η(SA,T ,P ). In this case, the adop-
tion of the Gibbs function rather than using the two func-
tions h(SA,T ,P ) and η(SA,T ,P ) serves the additional im-
portant service that the consistency requirement, hT = T ηT ,
does not need to be separately enforced.

2.3 The case of ĥ(SA,2,P ) and η̂(SA,2)

Now we consider the case of Conservative Temperature 2
taking the place of in situ temperature T as the indepen-
dent temperature variable. Appendix P of IOC et al. (2010)
has shown that if expressions for both enthalpy and en-
tropy are known in the functional forms ĥ (SA,2,P ) and
η̂ (SA,2), this information is sufficient to derive all the
thermodynamic quantities. This can be understood from re-
alizing that η = η̂ (SA,2) is equivalent to providing the
implicit definition of 2= 2̈(SA,η) so that knowledge
of ĥ (SA,2,P ) and η̂ (SA,2) is equivalent to knowing
ḧ (SA,η,P )= ĥ

(
SA, 2̈ (SA,η) ,P

)
, so that the three partial

derivatives of ḧ (SA,η,P ) can be written in terms of the par-
tial derivatives of ĥ (SA,2,P ) and η̂ (SA,2) (see Table 2
for these expressions). Since ḧ (SA,η,P ) is a well-known
and fundamental thermodynamic potential, this completes
the discussion of why all thermodynamic properties can be
found from knowledge of the two functions ĥ (SA,2,P ) and
η̂ (SA,2). IOC et al. (2010) stopped short of finding a single
thermodynamic potential in terms of (SA,2,P ); this is done
in the present paper.

There are two useful features that follow directly from
the definition of Conservative Temperature as being pro-
portional to potential enthalpy referenced to P0, i.e. c0

p2≡

ĥ (SA,2,P0). The first feature is that that entropy has the
functional form η = η̂ (SA,2) and is not a function of pres-
sure: this feature is due to Conservative Temperature pos-
sessing the potential property (as both entropy and Abso-
lute Salinity do). The second feature is the very simple
form of the first derivatives of enthalpy at P0, namely that
ĥ2 (SA,2,P0)= c

0
p and ĥSA (SA,2,P0)= 0. Specific en-

thalpy is now defined in terms of (SA,2,P ) from its total
differential,

dh=
(
µ+ T η̂SA

)
dSA+ T η̂2d2+ vdP, (11)

which is simply a rearranged version of the Fundamen-
tal Thermodynamic Relation (FTR) in the form dh−
vdP = µdSA+ T dη, since dη = η̂SAdSA+ η̂2d2. Knowl-
edge of µ̂ (SA,2,P ), T̂ (SA,2,P ), and v̂ (SA,2,P ) is
needed to find these partial derivatives in Eq. (11), while
η̂ (SA,2) can be found from integrating the first two par-
tial derivatives of Eq. (11) evaluated at P0, namely 0=
µ̂ (SA,2,P0)+ (T0+ θ) η̂SA and c0

p = (T0+ θ) η̂2, where
(T0+ θ)= T̂ (SA,2,P0), together with the arbitrary assign-
ment η̂ (SSO,0◦)= 0. After having formed both η̂ (SA,2)

and ĥ (SA,2,P ) from the differential form Eq. (11), we
know from Appendix P of IOC et al. (2010) that all the ther-
modynamic variables of seawater follow, so that if one is
willing to define seawater properties using these two func-
tions, no more work is required. However it is convenient to
define all the thermodynamic properties from a single ther-
modynamic potential function, and in this paper we have
found such a function, φ̂ (SA,2,P ), given by Eq. (14) be-
low, which contains the information of both η̂ (SA,2) and
ĥ (SA,2,P ) and from which these two functions can be
found.

Note that in this (SA,2,P ) case, specific volume,
v = ĥP ; internal energy, u= ĥ−P ĥP ; and the isen-
tropic compressibility, κ =−ĥPP /ĥP , depend only on
enthalpy, ĥ (SA,2,P ), and are independent of entropy,
η̂ (SA,2). This contrasts with the (SA,T ,P ) case where
specific volume, v = hP − T ηP ; internal energy, u= h−
PhP + T PηP ; and the isentropic compressibility, κ =

−
(
hPP ηT −hT ηPP + η

2
P

)/
(hP ηT −hT ηP ), depend not

only on enthalpy, h(SA,T ,P ), but also on entropy,
η(SA,T ,P ). The simpler expressions for specific volume,
internal energy, isentropic compressibility, and sound speed
in the (SA,2,P ) case compared with the (SA,T ,P ) case are
also a feature of the ḧ (SA,η,P ) thermodynamic potential
and are due to the Conservative Temperature variable being
a potential variable.

In the next section we introduce the new thermodynamic
potential φ̂ (SA,2,P ) and then compare its derivation and
properties with the corresponding derivation and properties
of the Gibbs function. This leads to a discussion of whether
φ̂ (SA,2,P ) is as thermodynamically fundamental as the
Gibbs function g (SA,T ,P ).
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Table 2. Expressions for various thermodynamic variables based on different thermodynamic potentials.

Expressions based on
ḧ (SA,η,P )

Expressions based on
g (SA,T ,P )

Expressions based on
h(SA,T ,P ) and η(SA,T ,P )

Expressions based on
ĥ (SA,2,P ) and η̂ (SA,2)

T T = ḧη T T = hT /ηT .
This is a necessary consistency
condition between h(SA,T ,P )
and η(SA,T ,P ) .

T = (T0+ t)= ĥ2/η̂2

θ T0+ θ = ḧη (SA,η,P0) gT (SA,T0+ θ,P0)=
gT (SA,T ,P ).
This is an implicit
equation for θ .

η(SA,T0+ θ,P0)=
η(SA,T ,P ).
This is an implicit
equation for θ .

(T0+ θ)= c
0
p/η̂2

2 2= ḧ (SA,η,P0)/c
0
p 2=

g (SA,T0+ θ,P0)/c
0
p

− (T0+ θ)gT
(SA,T0+ θ,P0)/c

0
p

2= h(SA,T0+ θ,P0)/c
0
p 2;2≡ ĥ (SA,2,P0)/c

0
p

h ḧ(SA,η,P ) g− T gT h(SA,T ,P ) ĥ (SA,2,P )

g ḧ− ηḧη g (SA,T ,P ) h− T η ĥ− η̂ĥ2/η̂2

η η −gT η(SA,T ,P ) η̂ (SA,2)

v ḧP gP hP − T ηP ĥP

u ḧ−P ḧP g− T gT −PgP h−PhP + T PηP ĥ−P ĥP

µ ḧSA gSA hSA − T ηSA ĥSA − η̂SA ĥ2/η̂2

µW ḧ− ηḧη − SAḧSA g− SAgSA

(
h− SAhSA

)
− T

(
η− SAηSA

) (
ĥ− SAĥSA

)
−

(
ĥ2/η̂2

)(
η̂− SAη̂SA

)
f ḧ− ηḧη −P ḧP g−PgP (h− T η)−P (hP − T ηP ) ĥ− η̂ĥ2/η̂2−P ĥP

κ −ḧPP /ḧP −gPP /gP +

(gT P )
2/(gP gT T )

−

(
hPP ηT −hT ηPP + η

2
P

)
/

(hP ηT −hT ηP )

−ĥPP /ĥP

0 ḧPη −gT P /gT T −ηP /ηT ĥP2/η̂2

α2
c0

p ḧPη

ḧP ḧη(SA,η,P0)
−
gPT
gP

c0
p

(T0+θ)gT T
−

ηP
(hP−T ηP )

c0
p

(T0+θ)ηT
ĥP2/ĥP

β2 −
ḧPSA
ḧP
+
ḧPη

ḧP

ḧSA (SA,η,P0)

ḧ(SA,η,P0)
Expression too large to
fit here.

Expression too large to fit here. −ĥPSA/ĥP
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3 A thermodynamic potential of seawater in terms of
Conservative Temperature

3.1 Defining the thermodynamic potential φ̂(SA,2,P )

Since Conservative Temperature 2 is the temperature vari-
able that is recommended for use in marine science under
TEOS-10 (taking the place of potential temperature θ) it is
of interest to determine if a thermodynamic potential of sea-
water can be found in terms of 2. From Appendix P of IOC
et al. (2010), and Sect. 2 above, we know that if we can find
a single function from which enthalpy and entropy can be
found in the functional forms ĥ (SA,2,P ) and η̂ (SA,2),
our aim will have been achieved. It is possible to find sev-
eral such functions from which ĥ (SA,2,P ) and η̂ (SA,2)

can be derived, and some of these are described in Appendix
A. The one we suggest, Eq. (14) below, is motivated from
Sect. 5 of Feistel (2008) (the paper that derived the Gibbs
function of seawater as incorporated into TEOS-10), where
the differential expression for the Gibbs function, Eq. (3),
was integrated along an arbitrary but convenient path through
(SA,T ,P ) space, first with respect to Absolute Salinity from
the Absolute Salinity of Standard Seawater SSO at T = T0
and P = P0, then with respect to in situ temperature at the
given Absolute Salinity and at P = P0, and finally with re-
spect to pressure at the given values of Absolute Salinity and
in situ temperature, so that the Gibbs function can be written
as

g (SA,T ,P )=

∫ SA

SSO

µ
(
SA
′,T0,P0

)
dSA
′

−

∫ T

T0

η
(
SA,T

′,P0
)

dT ′

+

∫ P

P0

v
(
SA,T ,P

′
)

dP ′, (12)

where g (SSO,T0,P0) was chosen to be zero with no loss
of generality. This integration method results in a path-
independent function g (SA,T ,P ) if and only if the three
integrands satisfy the integrability conditions (Maxwell re-
lations) µT =−ηSA , µP = vSA , and −ηP = vT .

In this paper we adopt a similar integration of entropy and
specific volume but now with respect to Conservative Tem-
perature (rather than in situ temperature) to define the new
thermodynamic potential of seawater φ̂ (SA,2,P ) as

φ̂ (SA,2,P )=

∫ P

P0

v̂
(
SA,2,P

′
)

dP ′

−

∫ 2

0
η̂
(
SA,2

′
)

d2′ (13)

or equivalently (since we know that v = ĥP and c0
p2 ≡

ĥ (SA,2,P0))

φ̂ (SA,2,P )≡ ĥ (SA,2,P )− c
0
p2

−

∫ 2

0
η̂
(
SA,2

′
)

d2′. (14)

Note that (i), entropy η̂ (SA,2) is not a function of pressure,
and (ii), unlike in Eq. (12), we find that in Eq. (13) we do not
need to perform a salinity integral of relative chemical poten-
tial µ in order to fully define the thermodynamic properties
of seawater from φ̂ (SA,2,P ). Expressions for ĥ (SA,2,P )

and η̂ (SA,2) are obtained from φ̂ (SA,2,P ) as follows:

ĥ (SA,2,P )= c
0
p2+ φ̂ (SA,2,P )− φ̂ (SA,2,P0)

= c0
p2+

∫ P

P0

φ̂P
(
SA,2,P

′
)

dP ′, (15)

η̂ (SA,2)= − φ̂2 (SA,2,P0)= − φ̂2 (SA,2,P )

+

∫ P

P0

φ̂P2
(
SA,2,P

′
)

dP ′, (16)

and from Appendix P of IOC et al. (2010), we know that all
the thermodynamic variables follow once we have expres-
sions for ĥ (SA,2,P ) and η̂ (SA,2). For example, the con-
version formula of Conservative Temperature to in situ tem-
perature follows from φ̂ (SA,2,P ) to be

T̂ (SA,2,P )=
ĥ2

η̂2

=−
c0

p + φ̂2 (SA,2,P )− φ̂2 (SA,2,P0)

φ̂22 (SA,2,P0)
. (17)

Hence, we conclude that φ̂ (SA,2,P ), defined by Eq. (14),
is a thermodynamic potential of seawater. The expressions
for several thermodynamic variables in terms of φ̂ (SA,2,P )

can be found in Appendix C.
In summary, we are using polynomial fits to entropy and

enthalpy (or equivalently, specific volume), as functions of
Conservative Temperature, knowing from Appendix P of
IOC et al. (2010) that these fits in the forms ĥ (SA,2,P )

and η̂ (SA,2) are sufficient to define all the thermodynamic
variables of seawater. We have then found a way, Eq. (14),
to combine these two polynomial functions into one function
from which both ĥ (SA,2,P ) and η̂ (SA,2) can be found.

3.2 Is the thermodynamic potential φ̂(SA,2,P )
equivalent to the Gibbs function?

In Sect. 2 we suggested that internal energy expressed as a
function of Absolute Salinity, entropy, and specific volume is
the most natural thermodynamic potential, but since mixing
processes in the ocean occur at constant pressure rather than
at constant volume, a more useful thermodynamic potential
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for seawater is enthalpy in the functional form ḧ (SA,η,P ).
Once one knows that enthalpy is defined in terms of internal
energy by h≡ u+Pv, the FTR in its original form, du+
P dv = T dη+µdSA, follows from ḧ (SA,η,P ). Similarly,
forming the Gibbs function from “observations” (that is,
knowledge) of µ(SA,T ,P ), η(SA,T ,P ) and v (SA,T ,P ),
using the total differential dg = µdSA− ηdT + vdP is not
equivalent to the FTR since there is no link to the total differ-
entials of either enthalpy or internal energy. Rather, to pro-
ceed from knowledge of the total differential of the Gibbs
function to the FTR one needs the additional knowledge
that g ≡ u+Pv− T η. The same result for our new thermo-
dynamic potential, φ̂ (SA,2,P ), is proven in Appendix D,
namely that knowledge of its definition, Eq. (14), and its to-
tal derivative, Eq. (C17), leads directly to the FTR.

In Sect. 2 we introduced an alternate route to deriv-
ing the Gibbs function, using knowledge/observations of
µ(SA,T ,P ), η(SA,T ,P ), and v (SA,T ,P ) together with the
differential form Eq. (8) of enthalpy, h≡ u+Pv to find en-
thalpy in the form h(SA,T ,P ), which embodies the FTR.
During this process, the constraint hT = T ηT must be en-
forced. The combination of the information in h(SA,T ,P )

and η(SA,T ,P ) serves to define all the thermodynamic
quantities of seawater, and the FTR follows from Eq. (8)
without the need to introduce another function. The last step
in this discussion of the Gibbs function is to introduce it as
g (SA,T ,P )= h(SA,T ,P )−T η(SA,T ,P ) for the sole pur-
pose that all the thermodynamic quantities can be derived
from a single function.

Similarly, we showed in the (SA,2,P ) case that
knowledge/observations of µ̂ (SA,2,P ), T̂ (SA,2,P ) and
v̂ (SA,2,P ) together with the differential form Eq. (11) give
both enthalpy and entropy in the forms ĥ (SA,2,P ) and
η̂ (SA,2) which also embody the FTR. In this case however
a single thermodynamic potential is not needed either to ar-
rive at the FTR or to be able to derive all the thermodynamic
quantities of seawater. In both the (SA,T ,P ) and (SA,2,P )

cases a single thermodynamic potential can be found, in one
case as g (SA,T ,P )= h(SA,T ,P )− T η(SA,T ,P ) and in
the other as (Eq. 14), φ̂ (SA,2,P )= ĥ (SA,2,P )− c

0
p2−∫ 2

0 η̂
(
SA,2

′
)

d2′.
We conclude that the new thermodynamic potential

φ̂ (SA,2,P ) and the Gibbs function g (SA,T ,P ) are equiv-
alent thermodynamic potentials of seawater. Both thermody-
namic potentials are found from observations of, in one case,
µ, η, and v and, in the other case, µ, T , and v, to constrain
various derivatives of either h(SA,T ,P ) or ĥ (SA,2,P ),
from which the FTR follows. All the thermodynamic prop-
erties of seawater can be derived from these expressions for
enthalpy along with their corresponding expressions for en-
tropy. Given these pairs of expressions for enthalpy and en-
tropy, corresponding thermodynamic potential functions can
be found in the form of the Gibbs function or in the form
of φ̂ (SA,2,P ). This summarizes the identical nature of the

derivations of the two thermodynamic potentials from the
viewpoint of the slightly different derivation of the thermo-
dynamic potentials as described in Sect. 2. In Appendix D
we describe the equivalence of these two potential functions
on the basis of their differential expressions and their defini-
tions.

Having argued that the two thermodynamic potentials,
g (SA,T ,P )and φ̂ (SA,2,P ) are equivalent, we add a prac-
tical caveat regarding how φ̂ (SA,2,P ) has actually been
found, that is, how we formed the polynomial expressions
for v̂ (SA,2,P ) and η̂ (SA,2), that appear in the definition
of φ̂ (SA,2,P ) in Eq. (13). First, all the most accurate data
of thermodynamic quantities (such as specific volume, sound
speed, isobaric specific heat capacity, “heat of mixing”, tem-
perature of maximum density, and freezing point depression)
were absorbed into the TEOS-10 Gibbs function of seawa-
ter g (SA,T0+ t,P ) (Feistel, 2003, 2008). It is natural to
absorb this information into a Gibbs function because all
the laboratory data were obtained at measured values of in
situ temperature, and the Gibbs function has in situ tempera-
ture as its heat-like independent variable. Second, the conver-
sion between in situ and potential temperature used the im-
plicit relationship gT (SA,T0+ t,P ) = gT (SA,T0+ θ,P0)

which involves the Gibbs function. Third, the conversion
between potential temperature and Conservative Tempera-
ture used the Gibbs function-based equation of potential en-
thalpy, h(SA,T0+ θ,P0), which is equated to c0

p2. Fourth,
using this conversion between t and 2, we were able, in
Roquet et al. (2015), to form a polynomial expression for
v̂ (SA,2,P ) from the Gibbs-function-based values of v =
gP (SA,T0+ t,P ). Fifth, and lastly, using the now known
conversion between θ and 2, we are able in this paper to
form an algorithm for η̂ (SA,2) from the Gibbs function-
based values of η̃ (SA,θ)= −gT (SA,T0+ θ,P0).

In summary, we have used the TEOS-10 Gibbs function of
seawater to relate the different temperature variables and to
evaluate both specific volume and entropy, which were then
fitted with polynomials in the three independent variables SA,
2, and P . In performing these polynomial fits, we ensured
that in the oceanographic range of salinity, the v̂ (SA,2,P )

and η̂ (SA,2) polynomials fitted the Gibbs function-derived
values of specific volume and entropy more accurately than
these variables are known from the underlying laboratory
measurements. In this way we claim that the thermody-
namic potential φ̂ (SA,2,P ) and the TEOS-10 Gibbs func-
tion g (SA,T0+ t,P ) are equally accurate in representing the
thermodynamic properties of seawater in the oceanographi-
cally relevant range of salinity.
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4 An approximate polynomial expression for entropy

4.1 An analogy with a perfect gas

In order to construct an accurate polynomial expression for
the thermodynamic potential of seawater φ̂ (SA,2,P ) of
Eq. (13), we will integrate the 75-term polynomial expres-
sion for specific volume v̂ (SA,2,P ) of Roquet et al. (2015)
with respect to pressure to obtain ĥ (SA,2,P ) (using the fact
that ĥP = v), and we also need to find an accurate expression
for entropy, η̂ (SA,2), which we will develop in this section.

The specific entropy of a perfect gas can be expressed in
terms of the Celsius potential temperature θ (with reference
sea pressure of pr = 0dbar, that is, reference absolute pres-
sure of Pr = P0 ≡ 101325Pa) by

ηgas
= c

gas
p ln(1+ θ/T0) , (18)

where entropy is defined so that it is zero at a Celsius tem-
perature of 0◦ (see Eqs. J.6 and J.7 of IOC et al., 2010). In
general, the enthalpy and internal energy of a perfect gas are
a general function of (only) temperature, but here we have
restricted attention to the “calorically perfect gas”, where the
specific isobaric heat capacity cgas

p is a constant. The enthalpy
of a perfect gas (e.g. dry air) is also defined to be zero at a
Celsius temperature of 0◦, so the potential enthalpy of a per-
fect gas is h0

= c
gas
p θ , and if a “conservative temperature of

a perfect gas” were to be defined, then it would be simply
equal to potential temperature θ .

One wonders how accurate a correspondingly simple log-
arithm expression would be for the entropy of seawater, de-
fined by either c0

p ln(T0+ θ)+constant or by c0
p ln(T0+2)+

constant. The constants can be chosen so that it makes the es-
timate of entropy zero if θ = 0◦ or 2= 0◦ in the two cases
respectively, since entropy is zero for Standard Seawater
(SA = SSO) at this temperature. That is, we examine the two
estimates c0

p ln(1+ θ/T0) and c0
p ln(1+2/T0) as approxi-

mations to the entropy of seawater. (Note that for seawater,
c0

p is approximately 4 times as large as the isobaric specific
heat capacity of air, cgas

p ). The errors in using these two ap-
proximate expressions can be seen in Fig. 1a and b. It is
seen that the expression involving Conservative Temperature,
c0

p ln(1+2/T0), is a better approximation to entropy than
is the one involving potential temperature, c0

p ln(1+ θ/T0),
with the maximum error being less by approximately an or-
der of magnitude. The relative accuracies of these approxi-
mate expressions to the specific entropy of seawater can be
understood from the following expressions for the total dif-
ferential of entropy in terms of θ and2 (see Eqs. A.12.7 and
A.12.8 of IOC et al., 2010):

dη = cp (SA,θ,P0) d
(
ln
[
1+ θ/T0

])
− µT (SA,θ,P0) dSA, (19)

dη = c0
p
(T0+2)

(T0+ θ)
d
(
ln
[
1+2/T0

])
−
µ̂ (SA, 2,P0)

(T0+ θ)
dSA. (20)

The partial derivative with respect to Absolute Salinity that
has been used in Eq. (19), namely η̃SA = ηSA (SA,θ,P0), is
also given by −µT (SA,θ,P0) since both expressions are
−gT SA (SA,θ,P0), while the other partial derivative, η̃θ =
cp (SA,θ,P0)/(T0+ θ), can be gleaned from hT = T ηT
(from Eq. 8) evaluated at P0, noting that cp (SA,θ,P0)=

hT (SA,θ,P0) is the specific isobaric heat capacity of sea-
water evaluated at P0 and at the potential temperature θ . The
partial derivatives η̂SA and η̂2 used in Eq. (20) can be gleaned
from Eq. (11) evaluated at P0, noting that ĥSA (SA,2,P0)=

0. The contributions of the terms in dSA are small in compar-
ison to the leading terms on the right-hand sides of Eqs. (19)
and (20), and the specific heat capacity cp (SA,θ,P0) varies
by 5.5 % in the ocean, whereas the ratio (T0+2)/(T0+ θ)

varies by no more than 0.67 %, and this explains why the ap-
proximate expression η ≈ c0

p ln(1+2/T0) outperforms η ≈
c0

p ln(1+ θ/T0) by about an order of magnitude.
While the fit to entropy is better in Fig. 1b than in Fig. 1a,

neither is particularly accurate for our purposes. For ex-
ample, in determining potential temperature θ from η̂2 =

c0
p/(T0+ θ), the remaining error in Fig. 1(b) amounts to an

error in potential temperature of approximately 0.5◦, while
that in Fig. 1a, using η̃θ = cp (SA,θ,P0)/(T0+ θ), amounts
to about 10◦.

4.2 Adding a simple function of Absolute Salinity

The Second Law of Thermodynamics requires that en-
tropy must be produced when mixing occurs, and the ap-
proximation c0

p ln(1+2/T0) does not allow for the pro-
duction of entropy when mixing occurs between seawater
parcels of different Absolute Salinities but the same value
of Conservative Temperature. The TEOS-10 Gibbs-function-
derived expression for specific entropy contains the term
a (SA/SSO) ln(SA/SSO), with the coefficient a being a =

−9.310292413479596 J kg−1 K−1 (this is the value of the
coefficient derived from the g110 coefficient of the Gibbs
function (Appendix H of IOC et al., 2010), allowing for our
version of the normalization of salinity, (SA/SSO)). This term
was derived by Feistel (2008) to be theoretically correct at
very small Absolute Salinity values, relying on Plank’s the-
ory of ideal solutions and the now-exact value of the molar
gas constant. Here we use the slightly different value a =
−9.309495003228781 J kg−1 K−1 that comes from a least-
squares fit incorporating a particular polynomial form, as de-
scribed below and tabulated in Appendix B. This slightly dif-
ferent value of a allows a more accurate fit to the entropy data
over the whole range of oceanographic salinities rather than
only at vanishingly small salinities.
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Figure 1. Panels (a) and (b) are contour plots of c0
p ln(1+ θ/T0)− η and c0

p ln(1+2/T0)− η respectively, while panels (c) and (d) show
c0

p ln(1+ θ/T0)+a (SA/SSO) ln(SA/SSO)−η and c0
p ln(1+2/T0)+a (SA/SSO) ln(SA/SSO)−η respectively. All panels in this figure are

in the units of entropy, namely J kg−1 K−1.

The accuracy of the approximate expression
c0

p ln(1+2/T0)+ a (SA/SSO) ln(SA/SSO) is shown in
Fig. 1d. There is no improvement over c0

p ln(1+2/T0)

near zero Absolute Salinity, but at intermediate salinity
values the fit is improved over that of c0

p ln(1+2/T0)

by approximately an order of magnitude. Over the whole
(SA,2) plane, this simple theoretically inspired estimate of
entropy, illustrated in Fig. 1d, is in error by no more than
0.2 % of the full range of entropy. In contrast, when the same
expression is used with potential temperature (see Fig. 1c) in
place of Conservative Temperature, the relative error is 4 %
of the full range of entropy.

4.3 The full expression for η̂(SA,2)

In order to obtain an expression for η̂ (SA,2) suitable for
combining with the 75-term polynomial for specific volume
v̂ (SA,2,P ) of Roquet et al. (2015) to form the thermo-
dynamic potential of seawater φ̂ (SA,2,P )of Eq. (13), we
have added a polynomial in powers of s =

[
SA/SSO

]0.5 and
τ = 2/40◦, with the highest power of each being 8, so that
our final approximate expression for η̂ (SA,2) is

η̂ (SA,2)= c
0
p ln(1+2/T0)

+ a (SA/SSO) ln(SA/SSO)+P {8,8}(s,τ ) , (21)

and the 45 coefficients of the eighth-order bi-polynomial
P {8,8} are listed in Appendix B. The error of Eq. (21) in
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approximating η̂ (SA,2) is shown in Fig. 2a, from which we
see that the typical error is 2× 10−6 J kg−1 K−1.

When the thermodynamic potential φ̂ (SA,2,P ) of
Eq. (13) or Eq. (14) is used to obtain all the thermodynamic
properties of seawater, one of the key variables that is ob-
tained from entropy in the form η̂ (SA,2) is the potential
temperature θ referenced to P0, and this is found from the
derivative of entropy with respect to Conservative Tempera-
ture, namely

η̂2 =
c0

p

(T0+ θ)
. (22)

This relationship was originally derived from the FTR by
McDougall (2003) and can be deduced from Eq. (11); see
also Eq. (A.12.8) of the TEOS-10 Manual (IOC et al., 2010).
When the polynomial-based approximate form of η̂ (SA,2),
Eq. (21), is used to evaluate the potential temperature from
Eq. (22), the error is as shown in Fig. 2b, where we see that
the typical error is 10 µK, with maximum errors of 60 µK at
SA = 0 g kg−1. Since this error seems acceptable in oceano-
graphic applications, and since the 75-term polynomial for
v̂ (SA,2,P ) of Roquet et al. (2015) is as accurate in the
oceanographic range of salinity as the data to which the orig-
inal Gibbs function of Feistel (2008) was fitted, we conclude
that the thermodynamic potential φ̂ (SA,2,P ) of Eq. (13) or
Eq. (14), which is written in terms of Conservative Tempera-
ture, is equally as accurate as the Gibbs function g (SA,T ,P )

and will therefore prove sufficiently accurate for use in phys-
ical oceanography as the thermodynamic potential of seawa-
ter in the oceanographic range of salinity.

5 Numerical implementation

When calculating Conservative Temperature 2 from obser-
vations of in situ temperature t using the Gibbs function
approach, the first step is to calculate the potential temper-
ature θ at the reference pressure P0 by equating the val-
ues of entropy at the in situ pressure P and at the refer-
ence pressure P0, that is, by solving the implicit relationship
gT (SA,T0+ t,P )= gT (SA,T0+ θ,P0). The second step is
to evaluate the parcel’s potential enthalpy, h(SA,T0+ θ,P0),
being g (SA,T0+ θ,P0)− (T0+ θ)gT (SA,T0+ θ,P0), and
the third step is to divide potential enthalpy by c0

p. The com-
putationally expensive step is the first, typically involving a
Newton-type iterative procedure.

When adopting the approach of the present paper, the
conversion from in situ temperature t to Conservative Tem-
perature 2 is also computationally expensive, since, from
Eq. (11), 2 is obtained by finding the zero of the function
ĥ2/η̂2−(T0+ t). This is done by first evaluating both an ap-
proximate polynomial for 2 as a function of (SA,T0+ t,P )

and an approximation to the second derivative of 2 with
respect to in situ temperature, by differentiating the poly-
nomial. Then only one pass though the accelerated Newton

method of McDougall et al. (2019) is needed to evaluate2 to
machine precision. This code takes approximately the same
time to compute2 as using the Gibbs function approach does
described in the previous paragraph.

Having converted observations of in situ temperature into
Conservative Temperature, other calculations are more com-
putationally efficient when using the enthalpy and entropy
combination of ĥ (SA,2,P ) and η̂ (SA,2) of the present pa-
per rather than the Gibbs function g (SA,T ,P ). For example,
during the running of an ocean model, the sea surface tem-
perature is needed as the input temperature for bulk air-sea
flux formulae. With the approach of the present paper, this
is a forward calculation requiring only the evaluation of η̂2
since in this case the sea surface temperature, θ , is given by
the simple forward expression (T0+ θ)= c

0
p/η̂2. This cal-

culation is a factor of 3 less computationally expensive than
the corresponding calculation based on the Gibbs function
(where an iterative Newton-based algorithm is required).

Similar gains in computational efficiency occur when eval-
uating potential density at a variety of reference pressures
when using v̂ (SA,2,P ) compared with the Gibbs function
approach. These computational gains occur because the po-
tential specific volume, referenced to an arbitrary reference
pressure Pr , is available from the forward polynomial ex-
pression v̂ (SA,2,Pr), whereas with the Gibbs function ap-
proach, the potential temperature referenced to Pr needs to
be evaluated, and this involves an iterative calculation.

We have written algorithms to evaluate all of the thermo-
dynamic quantities of seawater using only one or both of
ĥ (SA,2,P ) and η̂ (SA,2), and we have not found the need
to use the new thermodynamic potential φ̂ (SA,2,P ) itself
nor any of its derivatives. That is, the most direct and compu-
tationally efficient way of adopting the approach of this paper
was found to be to use ĥ (SA,2,P ) and η̂ (SA,2) rather than
their parent function φ̂ (SA,2,P ). This is because the ther-
modynamic information in ĥ (SA,2,P ) is independent of
that in η̂ (SA,2) and would suggest that the fact that we have
found a thermodynamic potential for seawater in the func-
tional form, φ̂ (SA,2,P ), is of theoretical thermodynamic
interest but so far has not yielded a practical benefit.

6 Conclusions

While in situ temperature is relatively simple to measure in
the ocean, it is neither a potential property, nor is it a con-
servative property, and these deficiencies of in situ tempera-
ture have led to the adoption of Conservative Temperature 2
for use in physical oceanography. This switch to Conserva-
tive Temperature since the introduction of TEOS-10 in 2010
has motivated the quest of this paper: to find a thermody-
namic potential of seawater in terms of Conservative Tem-
perature, Absolute Salinity and pressure. Roquet et al. (2015)
have provided a 75-term polynomial for specific volume in
the form v̂ (SA,2,P ), and this is the basis for many of the
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Figure 2. (a) The error in the fit Eq. (21) to entropy (in units of 10−6 J kg−1 K−1). (b) The error in evaluating potential temperature θ (in
µK) from Eqs. (21) and (22).

functions in the Gibbs Seawater (GSW) Oceanographic Tool-
box of TEOS-10. But to date, the conversions between in situ
temperature and Conservative Temperature have been done
using the TEOS-10 Gibbs function, and this is not 100 %
consistent with the use of the Roquet et al. polynomial for
v̂ (SA,2,P ).

When the Roquet et al. (2015) 75-term polynomial for
specific volume, v̂ (SA,2,P ), is integrated with respect to
pressure (noting that v̂ = ĥP ) and the resulting polyno-
mial for enthalpy is used in the expression for the ratio of
the in situ and potential temperatures, (T0+ t)/(T0+ θ)=

ĥ2 (SA,2,P )/c
0
p, the difference between these tempera-

tures, |t − θ |, compared with evaluating this temperature dif-
ference using the Gibbs function, is not quite zero, with typ-
ical values being less than 10−4 K (the standard deviation
of the temperature difference is 4× 10−5 K; see Table 3 of
Roquet et al., 2015). From Fig. 2b above we see that the
use of the η̂ (SA,2) expression of the present paper has er-
rors when relating potential and Conservative temperatures
of 10−5 K. The sum of these tiny temperature differences
amounts to less than 10−4 K, representing the difference
in evaluating Conservative Temperature from in situ tem-
perature using the Gibbs function versus using the Roquet
et al. (2015) expression for v̂ (SA,2,P ) together with the
present expression for η̂ (SA,2). These inconsistencies in
temperature between the two approaches are small, being
more than an order of magnitude smaller than the under-
lying experimental error in the laboratory data from which
the TEOS-10 Gibbs function was derived. While these dif-
ferences are small, it is preferable if all the thermodynamic
quantities are 100 % consistent with each other, and the ap-
proach presented in the present paper ensures this.

In this paper we have provided an accurate expres-
sion for entropy as a function of Conservative Tempera-
ture, η̂ (SA,2), and this can be used in conjunction with
v̂ (SA,2,P ) from Roquet et al. to relate in situ tempera-

ture and Conservative Temperature. These relationships be-
tween the different temperature variables can be performed
consistently, to machine precision and without further ref-
erence to the Gibbs function g (SA,T ,P ). Appendix P of
IOC et al. (2010) has shown that knowledge of both en-
thalpy and entropy in the functional forms ĥ (SA,2,P ) and
η̂ (SA,2) is sufficient to derive all thermodynamic variables,
so it seems advisable that when the 75-term polynomial of
Roquet et al. (2015) is used, it is used in conjunction with
the expression for η̂ (SA,2) of the present paper. When the
results of the present paper are implemented in the Gibbs
SeaWater (GSW) Oceanographic Toolbox of TEOS-10 (Mc-
Dougall and Barker, 2011), the functions that will be changed
are (i) those that calculate one of η, 2, and θ, T from another
one; (ii) the adiabatic lapse rate; (iii) the calculation of the
three chemical potentials and the Gibbs function; and (iv) the
provision of the new thermodynamic potential φ̂ (SA,2,P ).

Converting from observed values of in situ temperature to
Conservative Temperature takes a similar amount of com-
puter time using the (SA,2,P ) approach of the present pa-
per as when using the Gibbs function, but the subsequent
calculations of various temperatures and potential densities
are more computationally efficient using the (SA,2,P ) ap-
proach since these quantities require only simple forward (as
opposed to iterative) calculations.

In the (SA,2,P ) case, specific volume, internal energy,
isentropic compressibility, and sound speed depend only
on enthalpy, ĥ (SA,2,P ), and are independent of entropy,
η̂ (SA,2), whereas the expressions for the corresponding
variables in the (SA,T ,P ) case depend not only on en-
thalpy, h(SA,T ,P ) but also on entropy, η(SA,T ,P ). In the
(SA,2,P ) case, the additional information in η̂ (SA,2) is
needed to switch between the “temperature-like” variables
η, θ, T 2 and to evaluate the chemical potentials. Thus the
ĥ (SA,2,P ) and η̂ (SA,2) pair provides a clean separa-
tion of the heat and buoyancy information (derivable from
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ĥ (SA,2,P ) alone) from the information in η̂ (SA,2) that
is needed to relate the various temperature variables and
the chemical potentials. Also, unlike in the (SA,T ,P ) case,
there is no consistency requirement between ĥ (SA,2,P )

and η̂ (SA,2).
Moreover, we have been able to combine the expressions

for specific volume and for entropy into a single thermo-
dynamic potential function, φ̂ (SA,2,P ), Eq. (14), repeated
here,

φ̂ (SA,2,P )= ĥ (SA,2,P )

−

∫ 2

0

[
c0

p + η̂
(
SA,2

′
)]

d2′,

=

∫ P

P0

v̂
(
SA,2,P

′
)

dP ′

−

∫ 2

0
η̂
(
SA,2

′
)

d2′, (23)

from which all the thermodynamic quantities of seawater can
be derived (see Appendix C). The clean separation of the var-
ious thermodynamic information between the ĥ (SA,2,P )

and η̂ (SA,2) pair of functions, as well as the new-found
ability to form the thermodynamic potential φ̂ (SA,2,P ),
perhaps provides a theoretical boost to using Conserva-
tive Temperature as the temperature variable in physical
oceanography as recommended by TEOS-10 (Valladares et
al., 2011a, b). The thermodynamic potential, φ̂ (SA,2,P ), is
both complete (in that every thermodynamic property can be
derived from it) and consistent (in that there is only one ex-
pression for each thermodynamic quantity). As an aside, we
mention that we have also been able to find a thermodynamic
potential of seawater, ψ̃ (SA,θ,P ), in terms of potential tem-
perature θ , Eq. (A8), repeated here:

ψ̃ (SA,θ,P )≡ h̃ (SA,θ,P ) − [T0+ θ ] η̃ (SA,θ) ,

=

∫ P

P0

ṽ
(
SA,θ,P

′
)

dP ′ + g (SA,θ,P0) ,

=

∫ P

P0

ṽ
(
SA,θ,P

′
)

dP ′

−

∫ θ

0
η̃
(
SA,θ

′
)

dθ ′ + g
(
SA,0◦,P0

)
. (24)

We note in passing that the first terms on the last lines of
Eqs. (23) and (24), namely the pressure integral terms, are
equal to each other, while the second terms, the temperature
integral terms, are not the same. The last line of Eq. (24) has
the same form as Eq. (12) but now with θ replacing T − T0.

The fact that we have been able to form the new thermo-
dynamic potential, φ̂ (SA,2,P ), is perhaps less important
than the key insight of Appendix P of IOC et al. (2010) that
knowledge of both ĥ (SA,2,P ) and η̂ (SA,2) is sufficient to
describe all the thermodynamic properties of seawater. We
now better appreciate this insight and also the importance of

the fact that the thermodynamic information in ĥ (SA,2,P )

is completely independent of that in η̂ (SA,2). While find-
ing a thermodynamic potential for seawater in the functional
form φ̂ (SA,2,P ) is of theoretical thermodynamic interest,
so far this has not yielded a practical benefit that exceeds the
knowledge of both ĥ (SA,2,P ) and η̂ (SA,2) individually.
That is, these two functions, together, act like a thermody-
namic potential, and we have not actually found a pressing
need to combine them into a single function, even though we
have been able to do so. By contrast, the thermodynamic in-
formation in enthalpy is not independent of that in entropy
when expressed as functions of (SA,θ,P ), so that finding
the thermodynamic potential, ψ̃ (SA,θ,P ), in terms of po-
tential temperature does add value because its use automat-
ically enforces the consistency requirement h̃θ (SA,θ,P0)=

[T0+ θ ] η̃θ (SA,θ).
The thermodynamic independence of the information con-

tained in ĥ (SA,2,P ) and η̂ (SA,2) appears to be a unique
feature, due to the use of Conservative Temperature. For
example, when changing thermodynamic potentials from
u(SA,η,v) to h(SA,η,P )= u(SA,η,P )+Pv (SA,η,P ),
one cannot simply use the combination of u(SA,η,P ) and
v (SA,η,P ) effectively as a thermodynamic potential with-
out first imposing the consistency constraint uP (SA,η,P )=

−PvP (SA,η,P ). Similarly, when forming the Helmholtz
function by f (SA,T ,v)= u(SA,T ,v)− T η(SA,T ,v), one
cannot simply use u(SA,T ,v) together with η(SA,T ,v) ef-
fectively as a thermodynamic potential without first impos-
ing the constraint uT (SA,T ,v)= T ηT (SA,T ,v). So, among
all the thermodynamic potential functions in common use,
it is only when the temperature-like variable is Conservative
Temperature that the thermodynamic information in enthalpy
is independent of that in entropy so that the combined knowl-
edge of ĥ (SA,2,P ) and η̂ (SA,2) can be used to define all
the thermodynamic properties of seawater without the need
of an additional consistency constraint.

Appendix A: Alternative thermodynamic potentials in
terms of Conservative Temperature and potential
temperature

Equation (14) (or Eq. 13) above is the proposed definition
of the thermodynamic potential of seawater defined with re-
spect to Conservative Temperature, but it is not the only pos-
sible functional form, and here we present other possibili-
ties. Equations (13) and (14) resemble the integral definition
of the Gibbs function, Eq. (12), and now we follow an anal-
ogy with the g = h− T η definition of the Gibbs function by
considering the following three possible thermodynamic po-
tentials:

ϕ̂ (SA,2,P )≡ ĥ (SA,2,P )− T0 η̂ (SA,2) (A1)
$̂ (SA,2,P )≡ ĥ (SA,2,P )− [T0+2] η̂ (SA,2) (A2)
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π̂ (SA,2,P )≡ ĥ (SA,2,P )− c
0
pη̂ (SA,2)/η̂2 (SA,2),

(A3)

where in the last equation c0
p/η̂2 (SA,2) is another way of

writing [T0+ θ ]. In each of these cases, enthalpy can be
found using the same functional form as Eq. (15); that is,

ĥ (SA,2,P )= c
0
p2+ ϕ̂ (SA,2,P )− ϕ̂ (SA,2,P0)

= c0
p2+

∫ P

P0

ϕ̂P
(
SA,2,P

′
)

dP ′,

= c0
p2+ $̂ (SA,2,P )− $̂ (SA,2,P0)

= c0
p2+

∫ P

P0

$̂P
(
SA,2,P

′
)

dP ′,

= c0
p2+ π̂ (SA,2,P )− π̂ (SA,2,P0)

= c0
p2+

∫ P

P0

π̂P
(
SA,2,P

′
)

dP ′. (A4)

In the case of ϕ̂ (SA,2,P ), entropy is readily found from

η̂ (SA,2) =
[
c0

p2− ϕ̂ (SA,2,P0)
]
/T0. (A5)

In the case of $̂ (SA,2,P ), values of entropy can be evalu-
ated from

η̂ (SA,2) =
[
c0

p2− $̂ (SA,2,P0)
]
/ [T0+2] , (A6)

but to obtain a functional expression (for example, a poly-
nomial) for η̂ (SA,2) requires equating powers of SA and
2 between [T0+2] η̂ (SA,2)and

[
c0

p2− $̂ (SA,2,P0)
]
.

This is quite possible but is a little less convenient than using
Eq. (16) or Eq. (A5).

In the case of π̂ (SA,2,P ), entropy must obey the differ-
ential equation

η̂2 (SA,2)
[
π̂ (SA,2,P0)− c

0
p2
]
+ c0

pη̂ (SA,2)= 0, (A7)

whose solution is not straightforward. For example, if
π̂ (SA,2,P0)were a polynomial in SA and2, then η̂ (SA,2)

cannot be a polynomial because if it were, the powers of 2
would be unbalanced in Eq. (A7).

We conclude that both Eqs. (14) and (A1) are straight-
forward to use as thermodynamic potentials in terms of
(SA,2,P ), while, with a little more effort, Eq. (A2) can
also be made to work. However, Eq. (A3), whose right-hand
side can be expressed as ĥ (SA,2,P )− [T0+ θ ] η̂ (SA,2),
is unworkable. We have a slight preference for Eq. (14) over
Eqs. (A1) or (A2) because when using Eq. (14), entropy
arises as a temperature derivative of the thermodynamic po-
tential, as it does for the Gibbs function, whereas in Eqs. (A5)
and (A6), entropy is proportional to the difference between
c0

p2 and the thermodynamic potential.
We note that the functional form of Eq. (A2) also works

as a thermodynamic potential when potential temperature

θ is used in place of 2 as the heat-like variable, with
the caveat that the η̃ (SA,θ) and h̃ (SA,θ,P ) functions that
are used to construct this thermodynamic potential, (A8),
need to satisfy the consistency relationship h̃θ (SA,θ,P0) ≡

[T0+ θ ] η̃θ (SA,θ). This thermodynamic potential is

ψ̃ (SA,θ,P )≡ h̃ (SA,θ,P ) − [T0+ θ ] η̃ (SA,θ) ,

=

∫ P

P0

ṽ
(
SA,θ,P

′
)

dP ′ + g (SA,θ,P0) ,

=

∫ P

P0

ṽ
(
SA,θ,P

′
)

dP ′

−

∫ θ

0
η̃
(
SA,θ

′
)

dθ ′ + g
(
SA,0◦,P0

)
, (A8)

with the expressions for h̃ (SA,θ,P ) and η̃ (SA,θ) being

h̃ (SA,θ,P ) = ψ̃ (SA,θ,P ) − [T0+ θ ] ψ̃θ (SA,θ,P0) ,

(A9)

η̃ (SA,θ) = − ψ̃θ (SA,θ,P0) . (A10)

These expressions for enthalpy and entropy are similar to the
corresponding expressions in terms of the Gibbs function,
with the difference being that entropy here is evaluated at
P0 rather than at the in situ pressure P (this last observation
also applies to Eq. 16). If we restrict attention to processes
occurring at P0, the thermodynamic potential Eq. (A8) is
a Legendre transformation of the thermodynamic potential
ḧ (SA,η,P ). At this pressure, Eq. (A8) is the Gibbs func-
tion. The other thermodynamic potentials discussed in this
paper (as well as Eq. A8 at pressures other than P0) are not
the result of Legendre transformations. The second line of
Eq. (A8) has exploited the fact that the pressure derivative
of h̃ (SA,θ,P ) is specific volume. In this form of Eq. (A8)
a new polynomial expression for η̃ (SA,θ) is not required.
Rather, the Gibbs function itself is used, along with a poly-
nomial expression for ṽ (SA,θ,P ).

Of the other functional forms we have used above, namely
Eqs. (14), (A1), and (A3), the only other viable form we have
found as a function of (SA,θ,P ) is one that is similar to (14),
being

ϑ̂ (SA,θ,P )≡ h̃ (SA,θ,P ) −

∫ θ

0
η̃
(
SA,θ

′
)

dθ ′. (A11)

Differentiating Eq. (A11) with respect to potential tempera-
ture at P0, and using h̃θ (SA,θ,P0)= [T0+ θ ] η̃θ (SA,θ), it
is found that entropy must obey the differential equation

ϑ̃θ (SA,θ,P0)= [T0+ θ ] η̃θ (SA,θ) − η̃ (SA,θ) . (A12)

To obtain a functional expression (for example, a polyno-
mial) for η̃ (SA,θ) requires equating powers of SA and θ in
Eq. (A12). This is quite possible but is less convenient than
using Eq. (10). Having found η̃ (SA,θ), this can be integrated
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with respect to θ and used, together with ϑ̂ (SA,θ,P ), to find
enthalpy, h̃ (SA,θ,P ), from Eq. (A11).

If one did want to express all the thermodynamic variables
in terms of (SA,θ,P ), a thermodynamic potential such as
Eq. (A8) is required (as opposed to using the two separate
functions h̃ (SA,θ,P ) and η̃ (SA,θ)) because the use of the
thermodynamic potential ensures that the consistency rela-
tionship h̃θ (SA,θ,P0)= [T0+ θ ] η̃θ (SA,θ) is obeyed, just
as using the Gibbs function is much preferred to using the
two functions h(SA,T ,P ) and η(SA,T ,P ) because the con-
sistency requirement hT = T ηT is automatically satisfied
when using the Gibbs function. By contrast, the use of one
of the thermodynamic potentials of this paper in terms of
(SA,2,P ) is not required to ensure any consistency prop-
erty. Rather, the existence of these thermodynamic potentials
(Eq. 13 or Eq. 14), Eqs. (A1) and (A2), provides a thermo-
dynamic “completeness” to the use of Conservative Temper-
ature in marine science. The use of one of these thermody-
namic potentials (Eq. 13 or Eq. 14), Eqs. (A1) and (A2), is
equivalent to simply using the combination of ĥ (SA,2,P )

and η̂ (SA,2).

Appendix B: The polynomial-based expression for
entropy

The polynomial-based expression for specific entropy as a
function of Absolute Salinity and Conservative Temperature
is given by Eq. (21) as the sum of the two dominant log-
arithm terms plus an eighth-order polynomial in the two
dimensionless variables s =

[
SA/SSO

]0.5 and τ = 2/40◦,
where SSO = 35.16504 g kg−1 is the Standard Ocean Refer-
ence Salinity (IOC et al., 2010),

η̂ (SA,2)= c
0
p ln(1+2/T0)

+ a (SA/SSO) ln(SA/SSO)+P {8,8}(s,τ ) , (B1)

where T0 = 273.15 K is the Celsius zero point, c0
p =

3991.86795711963 J kg−1 K−1, the least-squares fit gives
the constant a =−9.309495003228781 J kg−1 K−1, and
the eighth-order polynomial coefficients are given by

P {8,8}(s,τ )=

(((((((ETA08 · τ +ETA17 · s+ETA07) · τ
+ (ETA26 · s+ETA16) · s+ETA06) · τ
+ ((ETA35 · s+ETA25) · s+ETA15) · s
+ETA05) · τ + (((ETA44 · s+ETA34) · s
+ETA24) · s+ETA14) · s+ETA04) · τ
+ ((((ETA53 · s+ETA43) · s
+ETA33) · s+ETA23) · s+ETA13) · s
+ETA03) · τ + (((((ETA62 · s+ETA52) · s

+ETA42) · s+ETA32) · s

+ETA22) · s+ETA12) · s+ETA02) · τ
+ ((((((ETA71 · s+ETA61) · s+ETA51) · s
+ETA41) · s+ETA31) · s+ETA21) · s+ETA11) · s
+ETA01) · τ + (((((((ETA80 · s+ETA70) · s
+ETA60) · s+ETA50) · s+ETA40) · s+ETA30) · s
+ETA20) · s+ETA10) · s+ETA00, (B2)

and the 45 constants (each of which has units of J kg−1 K−1)
are given by

ETA00=−3.7102436569e− 01;

ETA10= 3.0834502223e− 04;
ETA20=−3.2916987818e+ 00;
ETA30= 7.2818259040e+ 00;
ETA40=−5.6657256773e+ 00;
ETA50= 2.8402903938e+ 00;
ETA60=−8.9615123138e− 01;
ETA70= 1.0035964794e− 01;
ETA80= 1.8140964105e− 03;
ETA01= 3.0779211774e− 02;
ETA11= 1.5006196848e− 03;
ETA21= 1.2029316021e− 01;
ETA31= 3.7464975805e− 01;
ETA41=−6.0590428227e− 01;
ETA51= 6.4365865093e− 02;
ETA61= 2.4626795446e− 02;
ETA71=−1.0335853091e− 02;
ETA02= 2.3045093877e+ 00;
ETA12=−5.4154968624e− 03;
ETA22=−2.5098282844e+ 00;
ETA32= 1.9163697628e− 02;
ETA42= 9.6230320461e− 02;
ETA52= 3.7953034101e− 02;
ETA62=−5.1206778774e− 04;
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ETA03=−8.4974032876e− 01;

ETA13=−1.3727475447e− 02;
ETA23= 8.6969911602e− 01;
ETA33= 1.1127539375e− 01;
ETA43=−8.7616123860e− 02;
ETA53=−1.6250024449e− 02;
ETA04= 4.1807750439e− 01;
ETA14= 5.1388181100e− 02;
ETA24=−3.1917000611e− 01;
ETA34=−4.4999965986e− 02;
ETA44= 3.3822211876e− 02;
ETA05=−1.9191736060e− 01;
ETA15=−5.3890029514e− 02;
ETA25= 9.3472917957e− 02;
ETA35=−4.9779616704e− 04;
ETA06= 6.6066546976e− 02;
ETA16= 2.4144978278e− 02;
ETA26=−1.2850921670e− 02;
ETA07=−1.3678360946e− 02;
ETA17=−4.1337102429e− 03;
ETA08= 1.1180283076e− 03.

Appendix C: Expressions for thermodynamic variables
in terms of ĥ(SA,2,P ), η̂(SA,2) and φ̂(SA,2,P )

C1 Expressions for entropy and enthalpy in terms of
g(SA,T ,P ) and φ̂(SA,2,P )

Equations (15) and (16) for entropy η and enthalpy h in
terms of φ̂ (SA,2,P ) are compared to the corresponding ex-
pressions for these variables in terms of the Gibbs function
g (SA,T ,P ),

η = − φ̂2 (SA,2,P0) = − φ̂2 (SA,2,P )

+

∫ P

P0

φ̂P2
(
SA,2,P

′
)

dP ′

= −gT (SA,T ,P ) = −gT (SA,T ,P0)

−

∫ P

P0

gPT
(
SA,T ,P

′
)

dP ′, (C1)

and

h= c0
p2+ φ̂ (SA,2,P )− φ̂ (SA,2,P0)

= c0
p2+

∫ P

P0

φ̂P
(
SA,2,P

′
)

dP ′

= g (SA,T ,P )− T gT (SA,T ,P )

= h(SA,T ,P0)+

∫ P

P0

gP
(
SA,T ,P

′
)

dP ′

− T

∫ P

P0

gPT
(
SA,T ,P

′
)

dP ′. (C2)

There are some similarities between these expressions using
the two different thermodynamic potentials, and there are dif-
ferences. When expressed using Conservative Temperature,
η̂ (SA,2) is not a separate function of pressure, so that in the
first line of Eq. (C1), where − φ̂2 (SA,2,P ) is evaluated at
pressure P , this pressure dependence needs to be subtracted.
In Eq. (C2) note that h(SA,T ,P0) is not the same as poten-
tial enthalpy c0

p2 except when the in situ pressure P happens
to be P0.

C2 Variables expressed using ĥ (SA,2,P ) and
η̂ (SA,2) compared with h(SA,T ,P ) and
η (SA,T ,P )

Considering changes occurring at constant Absolute Salinity
and pressure, the FTR in the forms Eqs. (8) and (11) shows
that in situ temperature T = T0+ t is given by

T = ∂h/∂η|SA,P
= hT /ηT = ĥ2/η̂2. (C3)

The hT /ηT part of this equation is a consistency re-
quirement between the temperature dependence of the
h(SA,T ,P ) and η(SA,T ,P ) expressions. That is, expres-
sions for h(SA,T ,P ) and η(SA,T ,P ) cannot be formed in-
dependently of each other but rather must satisfy the consis-
tency relationship, T = hT /ηT , since T is one of the inde-
pendent variables. If necessary, however, the required con-
sistency may be established by the integration

η(SA,T ,P )=

∫ T

T0

hT
(
SA,T

′,P
)

T ′
dT ′+ η(SA,T0,P ), (C4)

so that h(SA,T ,P ) in combination with an independent
function η(SA,T0,P ) taken at an arbitrary reference tem-
perature T0 together provide the necessary information.
The corresponding relationship in the (SA,2,P ) case, T =
ĥ2/η̂2, does not impose any such consistency requirement
on ĥ (SA,2,P ) or η̂ (SA,2) because T is not an indepen-
dent variable in this case.

The expression for specific volume in terms of the Gibbs
function is very neat and compact, being v = gP , while
the corresponding expression in terms of h(SA,T ,P ) and
η(SA,T ,P ) is v = hP − (hT /ηT )ηP (see Eq. 8). Since SA,
2, and η are all potential variables, when the material
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derivative of enthalpy in the FTR is expressed in the form
ĥSAdSA+ ĥ2d2+ ĥP dP , one finds (from Eq. 11 by consid-
ering the adiabatic and isohaline situation when dSA = dη =
d2= 0) that specific volume is given by ĥP ; hence we have

v = gP = hP − (hT /ηT )ηP = ĥP . (C5)

Note that specific volume can also be expressed in terms
of ĥ (SA,2,P ) and η̂ (SA,2) as v = ĥP −

(
ĥ2/η̂2

)
η̂P be-

cause η̂P is zero, and so the last two equalities in Eq. (C5)
are more similar than they appear to be.

In terms of the Gibbs function, the adiabatic lapse rate
(the rate of change of in situ temperature during an adia-
batic and isohaline change in pressure; see McDougall and
Feistel, 2003) is 0 = −gT P /gT T , while using the two ex-
pressions in terms of enthalpy and entropy gives (by differ-
entiating ĥ2/η̂2 (from Eq. C3) with respect to pressure)

0 =−gT P /gT T =−ηP /ηT = ĥP2/η̂2

= vT /ηT = v̂2/η̂2, (C6)

where the last two expressions are written in terms of spe-
cific volume and entropy. Another expression for 0 that cor-
responds to −ηP /ηT is −

(
∂2/∂P |SA,T

)
/
(
∂2/∂T |SA,P

)
.

The relative chemical potential µ= gSA = ∂h/∂SA|η,P =

ḧSA can be expressed as (from the partial differentials in
Eqs. 8 and 11)

µ= hSA − (hT /ηT )ηSA = ĥSA −

(
ĥ2/η̂2

)
η̂SA , (C7)

and the chemical potential of water in seawater, µW
= g−

SAgSA , can be expressed as

µW
=
(
h− SAhSA

)
− (hT /ηT )

(
η− SAηSA

)
=

(
ĥ− SAĥSA

)
−

(
ĥ2/η̂2

)(
η̂− SAη̂SA

)
. (C8)

Again, it is interesting that these expressions for µ and µW,
written in terms of enthalpy and entropy, have the same form
whether as functions of (SA,T ,P ) or (SA,2,P ).

The adiabatic and isohaline compressibility has the fol-
lowing compact expression in terms of ĥ (SA,2,P ),

κ =−ĥPP /ĥP , (C9)

but because in situ temperature does not possess the potential
property, the expressions in terms of (SA,T ,P ) are not as
compact, being

κ =−gPP /gP + (gT P )
2/(gP gT T )

=−

(
hPP ηT −hT ηPP + η

2
P

)
/(hP ηT −hT ηP ) . (C10)

It is interesting that κ can also be expressed by the same
expression as this last one in Eq. (C10), even when en-
thalpy and entropy are functions of (SA,2,P ), namely as

−

(
ĥPP η̂2− ĥ2η̂PP + η̂

2
P

)
/
(
ĥP η̂2− ĥ2η̂P

)
, because η̂P

and η̂PP are both zero. That is, the last expressions in
Eqs. (C9) and (C10) are more similar than they appear to
be.

These expressions for the various thermodynamic vari-
ables are summarized in Table 2.

C3 The constraints on thermodynamic variables
revealed by cross-differentiation

When we take the second-order cross-derivatives of the ther-
modynamic potential ḧ (SA,η,P ), we find the following re-
lations between the observed quantities v, T , and µ:

T̈P = v̈η (C11)
µ̈P = v̈SA (C12)
µ̈η = T̈SA , (C13)

and the second-order cross-derivatives of the Gibbs func-
tion g (SA,T ,P ) give the following relations between
the observed quantities v (SA,T ,P ), η (SA,T ,P ), and
µ(SA,T ,P ) (the so-called Maxwell relationships):

−ηP = vT (C14)
µP = vSA , (C15)
µT =−ηSA . (C16)

For our new thermodynamic potential, φ̂ (SA,2,P ), we
write the total differential of φ̂ (SA,2,P ) in the form (us-
ing Eqs. 11 and 14)

dφ̂ =
{
µ̂+ T η̂SA −

∫ 2

0
η̂SA

(
SA,2

′
)

d2′
}

dSA

+

{
T η̂2− c

0
p − η̂

}
d2+ v̂dP, (C17)

which involves the three partial derivatives,

φ̂SA = µ̂+ T η̂SA −

∫ 2

0
η̂SA

(
SA,2

′
)

d2′ (C18)

φ̂2 = T η̂2− c
0
p − η̂ (C19)

φ̂P = v̂, (C20)

so that the three cross-derivatives yield

T̂P η̂2 = v̂2, (C21)

µ̂P + T̂P η̂SA = v̂SA , (C22)

µ̂2+ T̂2η̂SA = T̂SA η̂2, (C23)

after subtracting the two terms −η̂SA and T̂ η̂SA2 that appear
in both φ̂SA2 and φ̂2SA and would have appeared on both
sides of Eq. (C23).

Note that the equality between −ηP and vT in Eq. (C14)
does not resemble the balance T̂P η̂2 = v̂2 in Eq. (C21), and

https://doi.org/10.5194/os-19-1719-2023 Ocean Sci., 19, 1719–1741, 2023



1740 T. J. McDougall et al.: A thermodynamic potential of seawater

moreover we know that the corresponding pressure deriva-
tive of entropy, η̂P , is zero. Rather, the expression Eq. (C21)
for the adiabatic lapse rate, 0 = T̈P = T̂P =

(
v̂2/η̂2

)
, res-

onates with the result T̈P = v̈η of Eq. (C11). The additional
term T̂P η̂SA =

(
v̂2/η̂2

)
η̂SA in Eq. (C22) compared with the

corresponding formulae in Eqs. (C12) or (C15) is small (be-
ing less than 0.5 % of both v̂SA and µ̂P ). The relationship
Eq. (C23) that comes from equating φ̂SA2 and φ̂2SA has some
similarities with both Eqs. (C13) and (C16), with T̂2η̂SA ap-
pearing to be an additional term in one case and T̂SA η̂2 in the
other case.

It can be shown by coordinate transformation that each of
Eqs. (C21)–(C23) contains exactly the same information as
Eqs. (C14)–(C16). That is, each of the equations Eqs. (C21)–
(C23) can be found by transforming the corresponding equa-
tion in Eqs. (C14)–(C16) from (SA,T ,P ) coordinates into
(SA,2,P ) coordinates.

Appendix D: Deducing the FTR from the differential of
a thermodynamic potential and its definition in terms of
enthalpy and entropy.

The fundamental thermodynamic relationship (FTR) can be
deduced from knowledge of the total differential of the Gibbs
function dg = µdSA− ηdT + vdP together with the defini-
tion of the Gibbs function in terms of enthalpy and entropy,
g ≡ h− T η. Here we demonstrate the corresponding result
for φ̂ (SA,2,P ), namely that the FTR can be found from
knowledge of the total differential of φ̂ (SA,2,P ) as well as
its definition in terms of enthalpy and entropy.

We write the total differential of φ̂ (SA,2,P ) in the form
of Eq. (C17):

dφ =
{
µ̂+ T η̂SA −

∫ 2

0
η̂SA

(
SA,2

′
)

d2′
}

dSA

+

{
T η̂2− c

0
p − η̂

}
d2+ v̂ (SA,2,P )dP, (D1)

and we use the definition of φ̂ (SA,2,P ) in the form
Eq. (14), repeated here:

φ̂ (SA,2,P )= ĥ (SA,2,P )

−

∫ 2

0

[
c0

p + η̂
(
SA,2

′
)]

d2′, (D2)

and we ask whether the FTR can be deduced from knowledge
of Eqs. (D1) and (D2), in direct analogy to what is possible
for the Gibbs function.

Because of the definition of Conservative Tempera-
ture, c0

p2≡ ĥ (SA,2,P0), we know that η = η̂ (SA,2),
ĥ2 (SA,2,P0)= c

0
p, and ĥSA (SA,2,P0)= 0. Equating the

three partial derivatives that appear in Eq. (D1) with the cor-
responding expressions from differentiating Eq. (D2) shows
that ĥSA = µ+ T η̂SA , ĥ2 = T η̂2, and ĥP = v, so that the

expression, Eq. (11), for the total derivative of enthalpy has
been found. Using dη = η̂SAdSA+ η̂2d2, the FTR, Eq. (2),
follows, and the analogy with the Gibbs function is complete.
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