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Abstract. In sequential estimation methods often used in
oceanic and general climate calculations of the state and of
forecasts, observations act mathematically and statistically as
source or sink terms in conservation equations for heat, salt,
mass, and momentum. These artificial terms obscure the in-
ference of the system’s variability or secular changes. Fur-
thermore, for the purposes of calculating changes in impor-
tant functions of state variables such as total mass and en-
ergy or volumetric current transports, results of both filter
and smoother-based estimates are sensitive to misrepresenta-
tion of a large variety of parameters, including initial condi-
tions, prior uncertainty covariances, and systematic and ran-
dom errors in observations. Here, toy models of a coupled
mass–spring oscillator system and of a barotropic Rossby
wave system are used to demonstrate many of the issues that
arise from such misrepresentations. Results from Kalman fil-
ter estimates and those from finite interval smoothing are an-
alyzed. In the filter (and prediction) problem, entry of data
leads to violation of conservation and other invariant rules.
A finite interval smoothing method restores the conservation
rules, but uncertainties in all such estimation results remain.
Convincing trend and other time-dependent determinations
in “reanalysis-like” estimates require a full understanding of
models, observations, and underlying error structures. Appli-
cation of smoother-type methods that are designed for opti-
mal reconstruction purposes alleviate some of the issues.

1 Introduction

Intense scientific and practical interest exists in understand-
ing the time-dependent behavior in the past and future of el-
ements of the climate system, especially those represented
in a reanalysis. Expert practitioners of the methodology of
reanalysis, particularly on the atmospheric side (e.g., Dee,
2005; Cohn, 2010; Janjić et al., 2014; and Gelaro et al.,
2017), clearly understand the pitfalls of the methodologies,
but many of these discussions are couched in the mathe-
matical language of continuous space–time (requiring the
full apparatus of functional analysis) and/or the specialized
language of atmospheric sciences. Somewhat controversial,
contradictory results in the public domain (e.g., Hu et al.,
2020 or Boers, 2021) suggest that, given the technical com-
plexities of a full reanalysis computation, some simple exam-
ples of the known difficulties with sequential analysis meth-
ods could be helpful. For scientists interested in the results
but not fully familiar with the machinery being used, it is
useful to have a more schematic, simplified set of examples
so that the numerous assumptions underlying reanalyses and
related calculations can be fully understood. Dee (2005) is
close in spirit to what is attempted here. As in geophysical
fluid dynamics methods, two “toy models” are used to gain
insight into issues applying to far more realistic systems.

Discussion of even the simplified systems considered be-
low requires much notation. Although the Appendix writes
out the fuller notation and its applications, the basic termi-
nology used is defined more compactly here. Best estimates
of past, present, and future invoke knowledge of both obser-
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vations and models, and both involve physical–dynamical,
chemical, and biological elements.

To understand and interpret the behavior of physical sys-
tems one must examine long-term changes in quantities that
are subject to system invariants or conservation rules, e.g.,
energy, enstrophy, total mass, or tracer budgets. Conserva-
tion rules in physical systems imply that any changes in the
quantity are attributable to identifiable sources, sinks, or dis-
sipation in the interior as well as in the boundary conditions
and that they are represented as such in the governing equa-
tions. In the absence of that connection in, e.g., mass or en-
ergy conservation, claims of physical understanding must be
viewed with suspicion. In climate science particularly, vio-
lations undermine the ability to determine system trends in
physical quantities such as temperature or mass, as well as
domain-integrated diagnostics (integrated heat and mass con-
tent) over months, decades, or longer.

Two major reservoirs of understanding of systems such
as those governing the ocean or climate overall lie with
observations of the system and with the equations of mo-
tion (e.g., Navier–Stokes) believed applicable. Appropriate
combination of the information from both reservoirs gener-
ally leads to improvement over estimates made from either
alone but should never degrade them. Conventional methods
for combining data with models fall into the general cate-
gory of control theory in both mathematical and engineer-
ing forms, although full understanding is made difficult in
practice by the need to combine major sub-elements of dif-
ferent disciplines, including statistics of several types, com-
puter science, numerical approximations, oceanography, me-
teorology, climate, dynamical systems theory, and the obser-
vational characteristics of very diverse instrument types and
distributions. Within the control theory context, distinct goals
include “filtering” (what is the present system state?), “pre-
diction” (what is the best estimate of the future state?), and
“interval smoothing” (what was the time history over some
finite past interval?) and their corresponding uncertainties.

In oceanography, as well as climate physics and chem-
istry more generally, a central tool has become what mete-
orologists call a “reanalysis,” – a time-sequential estimation
method ultimately based on long experience with numerical
weather prediction. Particular attention is called, however, to
Bengtsson et al. (2004), who showed the impacts of obser-
vational system shifts on apparent climate change outcomes
arising in some sequential methods. A number of subsequent
papers (see, for example, Bromwich and Fogt, 2004; Bengts-
son et al., 2007; Carton and Giese, 2008; and Thorne and
Vose, 2010) have noticed difficulties in using reanalyses for
long-term climate properties, sometimes ending with advice
such as “minimize the errors” (see Wunsch, 2020, for one
global discussion).

For some purposes, e.g., short-term weather or other pre-
diction, the failure of the forecasting procedure (consisting of
cycles producing analysis increments from data followed by
model forecast) to conserve mass, energy, or enstrophy may

be of no concern – as the timescale of emergence for de-
tectable consequences of that failure can greatly exceed the
forecast time. In contrast, for reconstruction of past states,
those consequences can destroy any hope of physical in-
terpretation. In long-duration forecasts with rigorous mod-
els, which by definition contain no observational data at all,
conservation laws and other invariants of the model are pre-
served, provided their numerical implementation is accurate.
Tests, however, of model elements and in particular of accu-
mulating errors are then not possible until adequate data do
appear.

We introduce notation essential for the methods used
throughout the paper in Sect. 2. Experiments that examine
the impact of data on reconstruction of invariants in a mass–
spring oscillator system are discussed in Sect. 3. This section
includes the impact of data density and sparsity on recon-
structions of energy, position, and velocity and ends with a
discussion of the structure of the covariance matrix. Section 4
covers the Rossby wave equation and examines a simplified
dynamical system resembling a forced Rossby wave solu-
tion. Here a combination of the Kalman filter and the Rauch–
Tung–Striebel smoother (both defined fully in Bryson and
Ho, 1975 and Wunsch, 2006) is used to reconstruct general-
ized energy and the time-independent transport of a western
boundary current. Results and conclusions are discussed in
Sect. 5.

2 Notation and some generic inferences

All variables, independent and dependent, are assumed to
be discrete. Notation is similar to that in Wunsch (2006).
Throughout the paper italic lowercase bold variables are vec-
tors and uppercase bold variables are matrices.

Let x (t) be a state vector for time 0≤ t ≤ tf =Nt1t ,
where 1t is a discrete time step. A state vector is one that
completely describes a physical system evolving according
to a model rule (in this case, linear),

x (t +1t)= A(t)x (t)+B(t)q (t) , (1)

where 1t is the constant time step. A(t) is a square “state
transition matrix”, and B(t)q (t) is any imposed external
forcing, including boundary conditions, with B(t) a matrix
distributing disturbances q (t) appropriately over the state
vector. Generally speaking, knowledge of x (t) is sought by
combining Eq. (1) with a set of linear observations,

y (t)= E(t)x (t)+n(t) . (2)

Here, E(t) is another known matrix, which typically van-
ishes for most values t and represents how the observations
measure elements of x (t). The variable n(t) is the inevitable
noise in any real observation and for which some basic statis-
tics will be assumed. Depending upon the nature of E(t),
Eq. (2) can be solved by itself for an estimate of x (t). (As
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part of the linearization assumption, neither E(t) nor n(t)
depends upon the state vector.)

Estimates of the (unknown) true variables x (t) and q (t)
are written with tildes: x̃ (t), q̃ ( t ), x̃ (t ,−), x̃ (t ,+). As
borrowed from control theory convention, the minus sign in
x̃ ( t ,−) denotes a prediction of x (t) not using any data at
time t but possibly using data from the past. If no data at t are
used then x̃ (t)= x̃ (t,−). Similarly, the plus sign in x̃(t,+)
indicates an estimate at time t where data future to time t
have also been employed. In what follows, the “prediction”
model is always of the form in Eq. (1), but usually with de-
viations in x (0) and in q (t), which must be accounted for.

In any estimation procedure, knowledge of the initial state
elements and resulting uncertainties is required. A bracket is
used to denote expected value, e.g., the variance matrix of
any variable ξ (t) is denoted,

Pξ (t)=
〈(
ξ̃ (t)− a

)(
ξ̃ (t)− a

)T 〉
, (3)

and where a is usually the true value of ξ (t) or some aver-
aged value. (When ξ is omitted in the subscript, P refers to
x̃.)

Together, Eqs. (1) and (2) are a set of linear simultaneous
equations for x (t) and possibly q (t), which, irrespective of
whether overdetermined or underdetermined, can be solved
by standard inverse methods of linear algebra. For systems
too large for such a calculation and/or ones in which data
continue to arrive (e.g., for weather) following a previous cal-
culation, one moves to using sequential methods in time.

Suppose that, starting from t = 0, a forecast is made us-
ing only the model Eq. (1) until time t , resulting in x̃ (t ,−)
and a model-alone forecast A(t) x̃ (t ,−)+B(t) q̃(t). Should
a measurement y(t +1t) exist, a weighted average of the
difference between y(t +1t) and its value predicted from
x(t+1t,−) provides the “best” estimate, where the relative
weighting is by the inverse of their separate uncertainties. In
the present case, this best estimate at one time step in the
future is given by

x̃ (t +1t)= A(t) x̃ (t,−)+B(t)q(t)+K(t +1t)[
y (t +1t)−E(t +1t) x̃ (t +1t,−)

]
, (4)

K(t +1t)= P(t +1t,−)E(t +1t)T [E(t +1t)

P(t +1t,−)E(t +1t)T +R(t +1t)
]−1

. (5)

As written, this operation is known as the innovation form
of the “Kalman filter” (KF), and K(t +1t) is the “Kalman
gain.” Embedded in this form are the matrices P(t+1t,−)
and R(t +1t), which denote the uncertainty of the pure
model prediction at time t and the covariance of the ob-
servation noise (usually assumed to have zero mean er-
ror), respectively. The uncertainties P(t,−) and P(t) evolve
with time according to a matrix Riccati equation; see Ap-
pendix A, Wunsch (2006), or numerous textbooks such as

Figure 1. Mass–spring oscillator system used as a detailed example.
Although the sketch is slightly more general, here all masses have
the same value,m, and all spring constants and Rayleigh dissipation
coefficients k and r are the same.

Stengel (1986) and Goodwin and Sin (1984) for a fuller
discussion. Although possibly looking unfamiliar, Eq. (4) is
simply a convenient rewriting of the matrix-weighted aver-
age of the model forecast at t+1t with that determined from
the data. If no data exist, both y (t +1t) and E(t +1t) van-
ish, and the system reduces to the ordinary model prediction.

Without doing any calculations, some surmises can be
made about system behavior from Eq. (4). Among them are
the following (a) if the initial condition (with uncertainty
P(0)) has errors, the time evolution will propagate initial
condition errors forward. Similarly, however obtained, any
error in x̃ (t ,−) with uncertainty covariance P(t,−) will be
propagated into x̃ (t+1t). (b) The importance of the data
versus the model evolution depends directly on the ratio of
the norms of E(τ )P(τ,−)E(τ )T and R(τ ). Lastly (c), and
most important for this paper, the data disturbances appear
in the time evolution equation (Eq. 4) fully analogous to the
external source–sink or boundary condition term. Conserva-
tion laws implicit in the model alone will be violated in the
time evolution, and ultimately methods to obviate that prob-
lem must be found.

Although here the true Kalman filter is used for toy models
to predict time series, in large-scale ocean or climate models
this is almost never the case in practice. Calculation of the P
matrices from Eq. (A1 in the Appendix) is computationally
so burdensome that K(t) is replaced by some very approx-
imate or intuitive version, usually constant in time, poten-
tially leading to further major errors beyond what is being
discussed here.
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3 Example 1: mass–spring oscillators

Consider the intuitively accessible system of a mass–spring
oscillator, following McCuskey (1959), Goldstein (1980),
Wunsch (2006), or Strang (2007), initially in the conven-
tional continuous time formulation of simultaneous differ-
ential equations. Three identical masses, m= 1, are con-
nected to each other and to a wall at either end by springs
of identical constant, k (Fig. 1). Movement is damped by
a Rayleigh friction coefficient r . Generalization to differ-
ing masses, spring constants, and dissipation coefficients is
straightforward. Displacements of each mass are ξi (t), with
i = 1,2,3. The linear Newtonian equations of coupled mo-
tion are

m
d2ξ1

dt2
+ kξ1+ k (ξ1− ξ2)+ r

dξ1

dt
= qc1 (t) , (6a)

m
d2ξ2

dt2
+ kξ2+ k (ξ2− ξ1)+ k (ξ2− ξ3)+ r

dξ2

dt
= qc2 (t) ,

(6b)

m
d2ξ3

dt2
+ kξ3+ k (ξ3− ξ2)+ r

dξ3

dt
= qc3 (t) . (6c)

This second-order system is reduced to a canonical form of
coupled first-order equations by introduction of a continuous
time state vector, the column vector,

xc (t)=
[
ξ1 (t) , ξ2 (t) , ξ3 (t) , dξ1/dt, dξ2/dt, dξ3/dt

]T
, (7)

where the superscript T denotes the transpose. Note the mix-
ture of dimensional units in the elements of xc (t), identi-
fiable with the Hamiltonian variables of position and mo-
mentum. Then Eq. (6) becomes (setting m= 1 or dividing
through by it)

dxc (t)

dt
= Acxc (t)+Bcqc (t) , (8)

where

Ac =


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
−2k k 0 −r 0 0
k −3k k 0 −r 0
0 k −2k 0 0 −r

=
{

03 I3
Kc Rc

}
, (9)

defining the time-invariant 3× 3 block matrices Kc and Rc,
symmetric and diagonal, respectively. The structure of Bc de-
pends on which masses are forced. For example, if only ξ2(t)

is forced, then Bc would be the unit vector in the second ele-
ment.

Assuming r, k 6= 0, then Ac is full-rank with three pairs
of complex conjugate eigenvalues but non-orthonormal right
eigenvectors. Ac and Bc are both assumed to be time-
independent. Discussion of the physics and mathematics of
small oscillations can be found in most classical mechanics
textbooks and is omitted here. What follows is left in dimen-
sional form to make the results most intuitively accessible.

3.1 Energy

Now consider an energy principle. Let ξ =

(ξ1(t), ξ2(t), ξ3(t))
T be the position sub-vector. Define,

without dissipation (Rc = 0) or forcing,

Ec (t)=
1
2

[(
dξ

dt

)T (
dξ

dt

)
− ξTKcξ

]
, (10)

dEc (t)

dt
=

1
2
d

dt

[(
dξ

dt

)T (
dξ

dt

)
− ξTKcξ

]
= 0. (11)

Here, Ec is the sum of the kinetic and potential energies (the
minus sign compensates for the negative definitions in Kc).
The non-diagonal elements of Kc redistribute the potential
energy amongst the masses through time.

With finite dissipation and forcing,

dEc (t)

dt
=

(
dξ

dt

)T
Rc

(
dξ

dt

)
+
dξ

dt

T

Bcq (t) . (12)

If the forcing and dissipation vanish then dEc (t)/dt = 0 (see
Cohn, 2010, for a formal discussion of such continuous time
systems.)

3.2 Discretization

Equation (1) is discretized at time intervals 1t using an Eu-
lerian time step,

x (t+1t)= Ax (t)+Bq (t) , t = n1t, (13)

for n≥ 0. The prediction model is unchanged except now

A=


1 0 0 1t 0 0
0 1 0 0 1t 0
0 0 1 0 0 1t

−2k1t k1t 0 1− r1t 0 0
k1t −3k1t k1t 0 1− r1t 0

0 k1t −2k1t 0 0 1− r1t

 (14)

=

{
I3 1tI3

1tKc I3+1tRc

}
(15)

and without the c subscript.
For this choice of the discrete state vector, the energy rate

of change is formally analogous to that in the continuous
case,

E (t)− E (t −1t)
1t

=

(
dξ

dt

)T
R
(
dξ

dt

)
+
dξ

dt

T

Bq (t) , (16)

where E(t) is computed as before in Eq. (10) except now us-
ing the discretized x(t). An example solution for the nearly
dissipationless, unforced oscillator is provided in Fig. 2, pro-
duced by the discrete formulation E (t). The potential and ki-
netic energies through time are shown in Fig. 2c, along with
elements and derived quantities of the state vector in Fig. 2a
and b. Nonzero values here arise only from the initial condi-
tion x (0)= [1,0,0,0,0,0]T necessarily specifying both ini-
tial positions and their rates of change. A small amount of

Ocean Sci., 19, 1253–1275, 2023 https://doi.org/10.5194/os-19-1253-2023



C. Wunsch et al.: Sequential estimation 1257

dissipation (r = 0.5) was included to stabilize the particu-
larly simple numerical scheme. The basic oscillatory nature
of the state vector elements is plain, and the decay time is
also visible.

The total energy declines over the entire integration time,
but with small oscillations persisting after 5000 time steps.
Kinetic energy is oscillatory as energy is exchanged with the
potential component.

3.3 Mass–spring oscillator with observations

Note that if the innovation form of the evolution in Eq. (4) is
used, the energy change becomes

E (t)− E (t −1t)
1t

≈

(
dξ

dt

)T
R
(
dξ

dt

)
+
dξ

dt

T

Bq (t)+
dx (t)

dt

T

K(t)
[
y (t)−E(t)x (t)

]
,

explicitly showing the influence of the observations. With
intermittent observations and/or with changing structures in
E(t), then E (t) will undergo forced abrupt changes that are
a consequence of the sequential innovation.

Given the very large number of potentially erroneous el-
ements in any choice of model, data, and data distributions,
as well as the ways in which they interact when integrated
through time, a comprehensive discussion even of the six-
element state vector mass–spring oscillator system is diffi-
cult. Instead, some simple examples primarily exploring the
influence of data density on the state estimate and of its me-
chanical energy are described. Numerical experiments are
readily done with the model and its time constants, model
time step, accuracies, and corresponding covariances of ini-
tial conditions, boundary conditions, and data. The basic
problems of any linear or linearized system already emerge
in this simple example.

The “true” model assumes the parameters k = 30, r =
0.5, and 1t = .001 and is forced by

q (t) = q1 (t) = 0.1cos[2πt/(2.5Tdiss)] + ε (t) , (17)

shown in Fig. 3a. That is, only mass one is forced in position,
and with a low frequency not equal to one of the natural fre-
quencies. In this case, B= [1,0,0,0,0,0]T and q(t)= q1(t),
a scalar. The dissipation time is Tdiss = 1/r , and ε (t) is a
white noise element with standard deviation 0.1. The initial
condition is ξ1 (0)= 1 with all other elements vanishing; see
Fig. 3b and c for an example of a forced solution of posi-
tions, velocities, and derived quantities. Accumulation of the
influence of the stochastic element in the forcing depends di-
rectly upon details of the model timescales and, if ε (t) were
not white noise, on its spectrum as well. In all cases the cu-
mulative effect of a random forcing will be a random walk –
with details dependent upon the forcing structure, as well as
on the various model timescales.

The prediction model here has fully known initial condi-
tions and A and B matrices, but the stochastic component of
the forcing is being treated as fully unknown, i.e., ε(t)= 0 in
the prediction. Added white noise in the data has a standard
deviation of 0.01 in all calculations.

The experiments and their parameters are outlined in Ta-
ble 1, where “–” is used to indicate that the same conditions
as the nominal truth are used.

3.3.1 Accurate observations: two times and multiple
times

To demonstrate the most basic problem of estimating energy,
consider highly accurate observations of all six generalized
coordinates (i.e., positions and velocity) at two times τ1 and
τ2 as displayed in Fig. 4 with E= I6, i.e., having no obser-
vational null space. The forecast model has the correct initial
conditions of the true state but incorrect forcing: the deter-
ministic component has half the amplitude of the true forcing
and ε(t) is completely unknown. Noise with standard devi-
ation 0.01 is added to the observations. Although the new
estimate of the KF reconstructed state vector is an improve-
ment over that from the pure forecast, any effort to calculate
a true trend in the energy of the system, Ẽ(t), will fail unless
careful attention is paid to correcting for the conservation vi-
olations at the times of the observation.

Until the first data point (denoted with a vertical line in
Fig. 4 in all three panels) is introduced the KF and predic-
tion energies are identical, as expected. Energy discontinu-
ities occur at each introduction of a data point (t = 50001t
and t = 73001t), seen as the vertical jumps in Fig. 4a. After
the first data point the KF energy tends to remain lower than
the true energy, but the KF prediction is nonetheless an im-
provement over that from the prediction model alone. This
change is shown in Fig. 4b, where the differences between
true and predicted energies are plotted alongside the differ-
ences of the energy of the true and KF estimate. Even if the
observations are made perfect ones (not shown), this bias er-
ror in the energy persists (see, e.g., Dee, 2005). Figure 4c of-
fers insight into the KF prediction via the covariance matrix
P(t). The uncertainty in the predicted displacement is small
once new data are inserted via the analysis increment, but it
quickly grows as the model is integrated beyond the time of
analysis.

Figure 5 shows the results when observations occur in
clusters having different intervals between the measure-
ments, the first being sparser observations (300 time steps be-
tween data points) and the second being denser observations
(125 time steps between data points). Visually, the displace-
ment and energy have a periodicity imposed by the observa-
tion time intervals and readily confirmed by Fourier analysis.
Again, the KF solution is the pure model prediction until data
are available, at which point multiple discontinuities occur,
one for every t where data are introduced.

https://doi.org/10.5194/os-19-1253-2023 Ocean Sci., 19, 1253–1275, 2023
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Figure 2. The unforced case with the initial condition vanishing except for ξ1 (1)= 1. Natural frequency and decay scale are apparent.
(a) x1 (t) (solid) and x1 (t)−x3 (3) (dashed). (b) x4 (solid) and x5−x6 (dashed). (c) E (t) showing decay scale from the initial displacement,
alongside kinetic energy (dashed) and potential energy (dot-dashed.)

Table 1. Numerical experiments and corresponding parameters. Common to all configurations are the settings k = 30, r = 0.5, and 1t =
0.001, and observational noise is chosen from a Gaussian distribution. The symbol “–” indicates the same conditions as the nominal truth.

Sect. 3.3.1: accurate observations at
two time steps and multiple time steps

Sect. 3.3.2: fixed position Sect. 3.3.3: observations
of averages

Nominal x0 = (1,0,0,0,0,0)T , forcing given
by q(t) (Eq. 17),

x0 = (1,0,2,0,0,0)T Same as Sect. 3.3.1

truth observational noise standard deviation
is σ(ε(t))= 0.01

All else the same as
Sect. 3.3.1

Prediction x0 = (1,0,0,0,0,0)T , forcing given
by 0.5q(t)− ε(t)

– –

Kalman filter x0 = (1,0,0,0,0,0)T , forcing given
by 0.5q(t)− ε(t),

– –

observational noise standard deviation
is σ(ε(t))= 0.01

A great many further specific calculations can provide in-
sight as is apparent in the above examples and as inferred
from the innovation equation, Eq. (4). For example, the pe-
riodic appearance of observations introduces periodicities in
x̃ (t) and hence in properties such as the energy derived from
it. Persistence of the information in these observations at fu-

ture times will depend upon model time constants including
dissipation rates.

Ocean Sci., 19, 1253–1275, 2023 https://doi.org/10.5194/os-19-1253-2023
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Figure 3. Forced version of the same oscillator system as in Fig. 2. Forcing is at every time step in the mass 1 position alone. (a) The forcing,
q(t), is given by white noise plus the visible low-frequency cosine curve. (b) x1(t) (solid) and x1 (t)− x3 (t) (dashed). (c) Total energy
through time, E (t), alongside kinetic energy (dashed) and potential energy (dot-dashed). Energy varies with the purely random process ε (t)
as well as from the deterministic forcing.

3.3.2 A fixed position

Exploration of the dependencies of energies of the mass–
spring system is interesting and a great deal more can be
said. Turn, however, to a somewhat different invariant: sup-
pose that one of the mass positions is fixed, but with the
true displacement unknown to the analyst. Significant liter-
ature exists devoted to finding changes in scalar quantities
such as global mean atmospheric temperatures or oceanic
currents, with the Atlantic Meridional Overturning Circula-
tion (AMOC) being a favorite focus. These quantities are
typically sub-elements of complicated models involving very
large state vectors.

The true model is now adjusted to include the constraint
that x3 (t)= ξ3 (t)= 2 and thus x6 (t)= dξ3 (t)/dt = 0. That
is, a fixed displacement in mass 3 (and consequently a zero
velocity in mass 3) is used in computing the true state vec-
tor. The forecast model has the correct initial condition and
incorrect forcing: with a deterministic component again hav-
ing half the true amplitude and fully unknown noise ε(t). Ob-
servations are assumed to be those of all displacements and
velocities, with the added noise having standard deviation

0.01. Results are shown in Fig. 6. The question is whether
one can accurately infer that ξ3 (t) is a constant through time.
A KF estimate for the fixed position, x̃3(t)= ξ̃3 (t), is shown
in Fig. 6a and includes a substantial error in its value (and its
variations or trends) at all times. Exceptions occur when data
are introduced at the vertical lines in Fig. 6a and b. Owing
to the noise in the observations, the KF cannot reproduce a
perfect result.

Looking at Fig. 6a, one sees that variations in the position
of mass 3 occur even during the data-dense period. The vari-
ations arise from both the entry of the data and the noise in
the observations. An average taken over the two halves of the
observation interval might lead to the erroneous conclusion
that a decrease has taken place. Such an incorrect inference
can be precluded by appropriate use of computed uncertain-
ties. Also note the impact of the KF on the energy (Fig. 6c, d),
producing artificial changes as in the previous experiment.
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Figure 4. (a) Total energy for the three-mass–spring oscillator system (solid), E (t), the prediction model (dashed), Ẽ(t,−), and the KF
reconstruction (dot-dashed), Ẽ(t). (b) The difference between the truth and prediction total energies (solid) and the difference between
the truth and KF total energies (dashed). Data are introduced at times indicated by the vertical lines and create discontinuities, forcing
E(t)− Ẽ(t) to be near zero. Note that the differences do not perfectly match at time t = 0, but they are relatively small. (c) Estimated velocity
of the first mass (dξ1/dt = x4 (t)) from the Kalman filter, showing the jump at the two times where there are complete near-perfect data.
The standard error bar is shown from the corresponding diagonal element of P(t), in this case given by

√
P44.

3.3.3 Observations of averages

Now consider a set of observations of the average of the po-
sition of masses 2 and 3, as well as of the average velocity
of masses 1 and 2, mimicking the types of observations that
might be available in a realistic setting. Again for optimistic
simplicity, the observations are relatively accurate (including
noise with standard deviation 0.01) and occur in the two dif-
ferent sets of periodic time intervals. The first interval has
observations every 300 time steps and the second every 125
time steps. Prediction begins with the correct initial condi-
tions, and again the forcing has half the correct amplitude
with fully unknown random forcing. Figure 7 displays the
results. Position estimates shown in Fig. 7c are good, but not
perfect, as is also true for the total energy seen in Fig. 7a.
The energy estimate carries oscillatory power with the peri-
odicity of the oncoming observation intervals and appears in
the spectral estimate (not shown) with excess energy in the
oscillatory band and energy that is somewhat too low at the
longest periods. Irregular observation spacing would gener-
ate a more complicated spectrum in the result.

A general discussion of null spaces involves that of the
column-weighted P(τ,−)ET appearing in the Kalman gain.
If E is the identity (i.e., observations of all positions and ve-

locities) and R(τ ) has a sufficiently small norm, all elements
of x (τ ) are resolved. In the present case, with E having two
rows corresponding to observations of the averages of two
mass positions and of two velocity positions, the resolution
analysis is more structured than the identity, with

E=
{

0 1/2 1/2 0 0 0
0 0 0 1/2 1/2 0

}
. (18)

A singular value decomposition E= USVT = U2S2VT2 pro-
duces two nonzero singular values, where U2 denotes the first
two columns of the matrix. At rank 2, the resolution matri-
ces, TU and TV , based on the U and V vectors, respectively,
and the standard solution covariances are easily computed
(Wunsch, 2006). A distributes information about the partially
determined xi throughout all masses via the dynamical con-
nections as contained in P(τ ). Bias errors require specific,
separate analysis.

The impact of an observation on future estimated values
tends to decay in time, dependent upon the model timescales.
Insight into the future influence of an observation can be ob-
tained from the Green function discussion in the Appendix.
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Figure 5. (a) Similar to Fig. 4, but showing the influence of clusters of observations. Shown are true total energy (solid), E(t), plotted
alongside the prediction model energy (dashed), Ẽ(t,−), and calculated from the KF algorithm (dot-dashed), Ẽ(t). (b) The difference between
the “truth” and prediction (solid) alongside the difference between the truth and KF (dashed). (c) The position of mass 2, x2(t), given by the
“true” model (solid), the prediction (dashed), and the KF estimate (dot-dashed). The introduction of data points forces the KF to match the
state vector to observations within error estimates, creating the discontinuities expected. (d) x2(t)− x̃2(t,−) (solid) alongside x2(t)− x̃2(t)
(dashed).

3.4 Uncertainties

In a linear system, a Gaussian assumption for the depen-
dent variables is commonly appropriate. Here the quadratic-
dependent energy variables become χ2-distributed. Thus, ξ2

i

and ξ̇2
i have such distributions, but with differing means and

variances and with potentially very strong correlations, so
they cannot be regarded as independent variables. Determin-
ing the uncertainties of the six covarying elements making
up Ẽ (t) involves some intricacy. A formal analysis can be
made of the resulting probability distribution for the sum in
Ẽ (t), involving non-central χ2 distributions (Imhof, 1961;
Sheil and O’Muircheartaigh, 1977; Davies, 1980). As an ex-
ample, an estimate of the uncertainty could be made via a
Monte Carlo approach by generating N different versions of
the observations, differing in the particular choice of noise
value in each and tabulating the resulting range. These uncer-
tainties can be used to calculate, e.g., the formal significance
of any apparent trend in Ẽ (t). Implicit in such calculations
is having adequate knowledge of the probability distribution
from which the random variables are obtained. An important
caveat is that once again bias errors such as those seen in the
energy estimates in Fig. 7a must be separately determined.

The structure of the uncertainty matrix P depends upon
both the model and the detailed nature of the observations
(see Appendix A; Eq. A2). Suppose observations only pro-
vide knowledge of the velocity of mass 2, x5(t). Consider
P(t = 7124), just before observations become available (i.e.,
the model has mimicked a true prediction until this point),
and P(t = 8250), after 10 observations of x5 have been in-
corporated with the Kalman filter. The resulting P(t) follow-
ing the observations produces highly inhomogeneous vari-
ances (the diagonals of P). In this particular case, one of the
eigenvalues of P(τ ) for τ just beyond the time of any obser-
vation is almost zero, meaning that P(τ ) is nearly singular
(Fig. 8). The corresponding eigenvector has a value near 1
in position 5 and is near zero elsewhere. Because numerous
accurate observations were made of x5(t), its uncertainty al-
most vanishes for that element, and a weighting of values by
P(t)−1 gives it a nearly infinite weight at that time.

3.5 A fixed interval smoother

The Kalman filter and various approximations to it produce
an estimate at any time, τ , taking account of data only at τ or
in the past – with an influence falling as the data recede into
the past at a rate dependent on the model timescales. But in
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Figure 6. (a) Correct value of the constant displacement x3 (t) (solid) and the estimated value from the KF calculation (dot-dashed) with error
bar computed from P. Vertical lines are again the observation times. (b) Correct value of the constant velocity x6 (t) (solid) and the estimated
value from the KF calculation (dot-dashed) with the error bar computed from P. (c) The total energy given by the true model (solid), the
prediction value (dashed), and the KF estimate (dot-dashed). (d) The absolute value of the difference between the truth and prediction (solid),
as well as the absolute value of the difference between the truth and the KF value (dashed).

many problems, such as those addressed (for one example)
by the Estimating the Circulation and Climate of the Ocean
(ECCO) project (Stammer et al., 2002; Wunsch and Heim-
bach, 2007), the goal is to find a best estimate over a finite
interval, nominally, 0≤ t ≤ tf, and accounting for all of the
observations, whether past or future to any τ . Furthermore,
as already noted above, physical sense requires satisfaction
of the generalized (to account for sources and sinks) energy,
mass, and other important conservation rules. How can that
be done?

In distinction to the filtering goal underlying a KF best
prediction, the fixed interval problem is generally known as
that of smoothing. Several approaches exist. One of the most
interesting, and one leading to the ability to parse data versus
model structure impact over the whole interval, is called the
Rauch–Tung–Striebel (RTS) smoothing algorithm. In that al-
gorithm, it is assumed that a true KF has already been run
over the full time interval and that the resulting x̃ (t) , P(t),
x̃ (t ,−), and P(t,−) remain available. The basic idea is sub-
sumed in the algorithm

x̃(t,+)= x̃(t) + L(t +1t)
[
x̃(t +1t,+)− x̃(t +1t,−)

]
, (19)

with

L(t +1t)= P(t)A(t)T P(t +1t,−)−1. (20)

This new estimate, using data future to t , depends upon a
weighted average of the previous best estimate x̃(t) with its
difference between the original pure prediction, x̃(t+1t,−),
and the improvement (if any) made of the later estimate at
t +1t . The latter uses any data that occurred after that time.
Thus a backwards-in-time recursion of Eq. (19) is done –
starting from the best estimate at the final KF time, t = tf,
beyond which no future data occur. The RTS coefficient ma-
trix, L(t +1t), has a particular structure accounting for the
correlation between x̃(t +1t,+) and x̃(t +1t,−) gener-
ated by the KF. Equation (A5) calculates the new uncertainty,
P(t,+).

In this algorithm a correction is also necessarily made to
the initial assumptions concerning q (t), producing a new set
of vector forcings, q̃ (t ,+)= q (t)+ ũ(t), such that the new
estimate, x̃(t,+), exactly satisfies Eq. (1) with q̃ at all times
over the interval. If the true model satisfies energy conser-
vation, so will the new estimate. That the smoothed estimate
satisfies the free-running but adjusted model parameters and
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Figure 7. (a) Results for total energy when observations were of the average of the two positions x2 (t) and x3 (t) and the two velocities
x4 (t) and x5 (t) at the times marked by vertical lines. (b) Total energy differences corresponding to the situation in (a). (c) Results for the
displacement x2(t) estimate when observations were of averages along with error bar from P. (d) Differences between true and predicted
(solid) and between true and KF (dashed).

thus all of its implied conservation laws is demonstrated by
Bryson and Ho (1975) in Chap. 13. Estimated ũ ( t ,+), often
called the “control vector”, has its own computable uncer-
tainty found from Eq. (A5b). In many problems, improved
knowledge of the forcing field and/or boundary conditions
may be equally as or more important than improvement of
the state vector. Application of the RTS algorithm is made in
the following section to a slightly more geophysical example.

4 Example 2: barotropic Rossby waves

Consider the smoothing problem in a geophysical fluid dy-
namics toy model. Realism is still not the goal, which re-
mains as the demonstration of various elements making up
estimates in simplified settings.

4.1 Rossby Wave normal modes

A flat-bottom, linearized β-plane Rossby wave system has a
two-dimensional governing equation for the streamfunction,
ψ ,

∂∇2ψ

∂t
+β

∂ψ

∂x
= 0, (21)

in a square β-plane basin of horizontal dimension L. The
parameter β = df/dy is the variation of the Coriolis param-
eter, f , with the latitude coordinate, y. This problem is rep-
resentative of those involving both space and time structures,
including boundary conditions (spatial variables x,y should
not be confused with the state vector or data variables). Equa-
tion (21) and other geophysically important ones are not self-
adjoint, and the general discussion of quadratic invariants in-
evitably leads to adjoint operators (see Morse and Feshbach,
1953, or for bounding problems, see Sewell et al. (1987),
Chap. 3, 4).

The closed-basin problem was considered by Longuet-
Higgins (1964). Pedlosky (1965) and LaCasce (2002) pro-
vide helpful discussions of normal modes. Relevant real ob-
servational data are discussed by Luther (1982), Woodworth
et al. (1995), Ponte (1997), Thomson and Fine (2021), and
others. The domain here is 0≤ x ≤ L and 0≤ y ≤ L with
the boundary condition ψ = 0 on all four boundaries.

Introduce non-dimensional primed variables t ′ = f t , x =
Lx′, y = Ly′, and ψ ′ = (a2/f )ψ . Letting a be the ra-
dius of the Earth and β = β ′f/a = 1.7, Eq. (21) is non-
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Figure 8. From left to right: (a) the first three diagonal elements of P before any observations of x5 (solid) and after 10 observations of x5
(dashed). (b) The last three diagonal elements of P before any observations (solid) and after 10 observations (dashed.)

dimensionalized as

∂∇ ′
2
ψ ′

∂t ′
+β ′

L

a

∂ψ ′

∂x′
= 0. (22)

Further choosing L= a (since a is of the same order as the
width of the Pacific) and then omitting the primes from here
on except for β ′,

∂∇2ψ

∂t
+β ′

∂ψ

∂x
= 0. (23)

Haier et al. (2006) describe numerical solution methods that
specifically conserve invariants, but these methods are not
used here. Gaspar and Wunsch (1989) employed this system
for a demonstration of sequential estimation with altimetric
data. Here a different state vector is used.

An analytical solution to Eq. (23) is

ψ (t,x,y)=

N∑
n=0

M∑
m=0

exp(−iσnmt)cnme−iβ
′x/σnm

sin(nπx)sin(mπy), (24)

along with the dispersion relation,

σnm =−
β ′/2√

(nπ/L)2+ (mπ/L)2
, (25)

where cnm is a coefficient dependent only upon initial condi-
tions in the unforced case.

A state vector is then

x (t)=
{
cp(t)

}
,

where p is a linear ordering of n and m. Total dimension is
then N ·M , with N and M the upper limits in Eq. (24). State
transition can be written in the now familiar form

xj (t +1t)= exp
(
−iσj1t

)
xj (t) ,

j = 1, . . .,NM. (26)

For numerical examples with the KF and RTS smoother, a
random forcing qj (t) is introduced at every step so that

xj (t +1t)= exp
(
−iσj1t

)
xj (t)+ qj (t),

j = 1, . . .,NM. (27)

Note that with the introduction of a forcing the solution de-
scribed by coefficients cp does not strictly satisfy Eq. (23) but
is rather a simplified version of a forced solution. Discussion
of this dynamical system is still useful for understanding the
difficulties that arise in numerical data assimilation. An ex-
ample of a true forced solution to Eq. (21) is examined in
Pedlosky (1965).

The problem is now made a bit more interesting by ad-
dition of a steady component to ψ : namely, the solution
ψs (x,y) from Stommel (1948), whose governing equation
is

Ra∇
2ψs +β

∂ψs

∂x
= sinπy, (28)

where Ra is a Rayleigh friction coefficient.
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Figure 9. (a) Non-dimensional periods grouped by fixed n and increasing m. (b) Inverse of the periods in (a), giving us the frequencies.

An approximate solution, written in the simple boundary
layer interior form is (e.g., Pedlosky, 1965)

ψs = e
−xβ ′/R′a sinπy+ (x− 1)sinπy, (29)

which leads to a small error in the eastern boundary condition
(numerical calculations that follow used the full Stommel,
1948, solution). The sinπy arises from Stommel’s assumed
time-independent wind stress curl.

The new state vector becomes

x(t)=

{
cp(t)

1

}
, (30)

now of total dimension N ·M + 1.
The state transition matrix A is diagonal with the firstN ·M

diagonal elements given by diag
(
exp

(
−iσj1t

))
and the fi-

nal diagonal element AN ·M+1,N ·M+1 = 1 the overall square
of dimension N ·M+1. A small numerical dissipation is in-
troduced, multiplying A by exp(−b) for b > 0, to accommo-
date loss of memory, e.g., as a conventional Rayleigh dissipa-
tion. The constant b is chosen as 1.8×10−3 in the numerical
code. The matrix operator B is diagonal with the first N ·M
diagonal elements all equal to 1, and BN ·M+1,N ·M+1 = 0 (no
forcing is added to the steady solution). Some special care in
computing covariances must be taken when using complex
state vectors and transition matrices (Schreier and Scharf,
2010).

Consistent with the analysis in Pedlosky (1965), no west-
ward intensification exists in the normal modes, which decay
as a whole. Rayleigh friction of the time-dependent modes is
permitted to be different from that in the time-independent
mean flow – a physically acceptable situation.

If q (t)= 0 and with no dissipation, then Eq. (23) has sev-
eral useful conservation invariants including the quadratic in-
variants of the kinetic energy and of the variance in ψ ,

8(t)= x(t)T x(t)=

N ·M∑
k=1

|xk(t)|
2 (31)

(conjugate transpose), as well as the linear invariant of the
vorticity or circulation – when integrated over the entire
basin domain. As above, estimates of the quadratic and linear
conservation rules will depend explicitly on the initial condi-
tions, forces, distribution, and accuracy of the data, as well
as the covariances and bias errors assigned to all of them.

4.1.1 System with observations

Using the KF plus RTS smoother for sequential estimation,
estimates of 8(t) as well as the transport of the western
boundary current (WBC), TWBC (t), are calculated; the latter
is constant in time, although that is unknown to the analyst.
Random noise in TWBC (t) exists from both physical noise –
the normal modes – and that of the observations y

(
tj
)
, as

would be the situation in nature.
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Figure 10. Stream function at t = 1671t , with the normal modes superimposed on the time–independent Stommel solution. The Coriolis
parameter f is computed at a latitude of 30◦. At later times, the mean flow becomes difficult to visually detect in the presence of the growing
normal modes under the forcing. The markers indicate the locations of the observational data, and the horizontal line at y = 0.5 is the distance
over which the boundary current transport is defined.

Equation (1) with the above A and B is used to generate the
true fields. Initial conditions, x (0), in the modal components
are

xp (0)= 1/(n2
+m2),

p = (n,m),

n= 3,4,5,
m= 4,5, . . .,9 . (32)

Modal periods are shown in Fig. 9. Parameters are fixed as
1t = 29, b = 1.8 ·10−3, and f = 30, and the random forcing
qj has standard deviation 0.002.

The prediction model uses 0.5qp(t) as a first guess for
qp (t), where qp(t) represents the true random forcing val-
ues, and the initial conditions are too large as 1.5x (0). Noisy
observations y (t ) are assumed to exist at the positions de-
noted with red dots in Fig. 10, and the measurement noise
has a standard deviation of 0.001.

The field ψ (t = 1671t) as given by the true model is
shown in Fig. 10, keeping in mind that apart from the time
mean ψ , the structure seen is the result of a particular set of
random forcings.

4.2 Aliasing

In isolation, the observations will time-alias the field if not
taken at a minimum interval of 1/2 the shortest period
present, here 41t . A spatial alias occurs if the separation
between observations is larger than one-half of the shortest
wavelength present (here1y = 1/9). Both these phenomena
are present in what follows, but their impact is minimized by
the presence of the time evolution model.

4.3 Results: Kalman filter and RTS smoother

For the KF and RTS algorithms the model is run for tf = 2000
time steps with the above parameters.

4.3.1 Energy estimates

A KF estimate is computed and the results stored. As in
Sect. 3.1.1, observations are introduced in two intervals, each
with a different density of observations: initially data are in-
troduced with 501t between them and subsequently reduced
to 251t between observations. Observations cease prior to
Tf, mimicking a pure prediction interval following the obser-
vations.
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Figure 11. (a) The energy in the Rossby wave example, i.e., 8(t) defined by Eq. (31), computed from the non-dimensional state vector of
the true model, prediction, KF, and RTS reconstructions. In the KF the initial conditions are 20 % too large, and the forcing is 50 % too small.
Full knowledge of A is assumed. (b) An expanded plot for time steps 380≤ t ≤ 1325 where observations were incorporated into the result.
The RTS smoother produces improved energy, namely one without discontinuities and marginally more accurate than the KF. (c) Difference
between the true values and those from the KF (solid line) and the difference between the true values and RTS smoother values (dashed line).

The estimated values of the quadratic 8(t) are shown in
Fig. 11 for the true values, KF estimates, RTS smoother es-
timates, and the pure model prediction. The KF and predic-
tion estimates agree until the first observation time, at which
point a clear discontinuity is seen. As additional observations
accumulate, 8KF (t) jumps by varying amounts depending
upon the particulars of the observations and their noise. Over
the entire observation interval the energy reconstructed by
the KF remains low – a systematic error owing to the sparse
observations and null space of E. Here the forcing ampli-
tude overall dominates the effects of the incorrect initial con-
ditions. Uncertainty estimates for energy would once again
come from summations of correlated χ2 variables of differ-
ing means. In the present case, important systematic errors
are visible as the offsets between the curves in Fig. 11.

This system can theoretically be overdetermined by letting
the number of observations at time t exceed the number of
unknowns – should the null space of E(t) then vanish. As ex-
pected, with 14 covarying observations and 18 time-varying
unknowns xi (t), rank-12 time-independent E(t)= E has a
null space, and thus energy in the true field is missed even
if the observations are perfect. As is well-known in inverse
methods, the smaller eigenvalues of E and their correspond-
ing eigenvectors are most susceptible to noise biases. The
solution null space of this particular E(t) is found from the

solution eigenvectors of the singular value decomposition,
U3VT = E. The solution resolution matrix at rank K = 12,
VKVTK , is shown in Fig. 12. Thus the observations carry no
information about modes (as ordered) 3, 6, 9, 12, 15, and 18.
In a real situation, if control over positioning of the obser-
vations was possible, this result could sensibly be modified
and/or a strengthening of the weaker singular values could be
achieved. Knowledge of the null space structure is important
in the interpretation of results.

A more general discussion of null spaces involves that
of the weighted P(τ,−)ET appearing in the Kalman gain
(Eq. 5). If P(τ,−)1/2 is the Cholesky factor of P(τ,−) (Wun-
sch, 2006, page 56), then EP(τ,−)1/2 is the conventional
column weighting of E at time τ , and the resolution analy-
sis would be applied to that combination. A diagonal A does
not distribute information from any covariance amongst the
elements xj (τ ) and which would be carried in P(τ,−).

Turning now to the RTS smoother, Fig. 11 shows that the
energy in the smoothed solution, 8RTS (t), is continuous (up
to the model time-stepping changes). The only information
available to the prediction prior to the observational inter-
val lies in the initial conditions, which were given incorrect
values, leading to an initial uncertainty. Estimated unknown
elements u(t), the control vector of q (t), in this interval also
have a large variance.
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Figure 12. (a) Eigenvalues of the first 14 singular vectors of E. The rank is 12 with 14 observational positions. (b) Diagonal elements of the
rank-12 solution resolution matrix, showing lack of information for several of the modes. A value of 1 means that the mode is fully resolved
by the observations. All variables are non-dimensional.

One element through time of the estimated control vector
ũ(t) and its standard error are shown in Fig. 13. The com-
plex result of the insertion of data is apparent. As with the
KF, discussion of any systematic errors has to take place out-
side of the formalities leading to the smoothed solution. This
RTS solution does conserve 8(t) as well as other properties
(circulation).

4.3.2 Western boundary current estimates

Consider now determination of T̃WBC (t), the north–south
transport across latitude y0 at each time step, whose true
value is constant. TWBC (t) is computed from the velocity or
stream function as

TWBC (t)= ψ (t, 0, y0)−ψ (t, x0, y0) , (33)

the stream-function difference between a longitude pair, x =
0, x0. From the boundary condition, ψ (t,0,y0)= 0. The
horizontal line segment in Fig. 10 indicates the location of
the zonal section for the experiment at y0 = 0.5, extend-
ing from x = 0 to x0 = 0.2. In the present context, five dif-
ferent values of TWBC (t) are relevant: (a) the true, steady,
time-invariant value, computed from the Stommel solution;
(b) the true time-dependent value including mode contribu-

tions from Eq. (27); (c) the estimated value from the predic-
tion model; (d) the estimate from the KF; and (e) the estimate
from the RTS smoother. Figure 14a displays the transport
computed from the Stommel solution ψs alongside the trans-
port computed from the KF estimate. Panel (b) in Fig. 14 dis-
plays the same steady transport alongside the RTS estimate.
Values here are dominated by the variability induced by the
normal modes, leading to a random walk. Note that the result
can depend sensitively on positions x0 and y0, as well as the
particular spatial structure of any given normal mode.

In the KF reconstruction (Fig. 14a), observations move the
WBC transport values closer to the steady solution, seen via
the jump at t = 400, but remain noisy. Transport value un-
certainties are derived from the P of the state vector using
Eq. (A1) and shown in Fig. 14c. Within the observation in-
terval the estimates are indistinguishable from the true value
but still have a wide uncertainty with timescales present from
both the natural variability and the regular injection times of
the data. The magnitude of the uncertainty during the obser-
vation intervals is still roughly 10 % of the magnitude of the
KF estimate.

Figure 14b shows the behavior of the estimate of TWBC (t)

after the RTS smoother has been applied. Most noticeably,
the discontinuity that occurs at the onset of the observations
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Figure 13. (a) One element, u2(t), of the control vector correction estimate and (b) its standard error through time, showing the drop towards
zero at the data time and the slow increase towards a higher value when no data are available (we note here that q(t,+) is computed from
t = Tf backwards to t = 0).

has been removed. A test of the null hypothesis that the trans-
port computed from the RTS smoother was indistinguishable
from a steady value is based upon an analysis using the un-
certainty (not shown).

The very large uncertainty prior to the onset of data, even
with use of a smoothing algorithm, is a central reason that the
state estimate produced by the Estimating the Circulation and
Climate of the Ocean (ECCO) project (e.g., Stammer et al.,
2002; Fukumori et al., 2018) is confined to the interval fol-
lowing 1992 when the data become far denser than before
through the advent of ocean-dedicated satellite altimetry and
nascent Argo arrays. Estimates prior to a dense data interval
depend greatly upon the time durations built into the system,
which in the present case are limited by the longest normal
mode period. The real ocean does include some very long
memory (Wunsch and Heimbach, 2008), but the estimation
skill will depend directly on the specific physical variables
of concern (ECCO estimates are based upon a different algo-
rithm using iterative least-squares and Lagrange multipliers;
see Stammer et al., 2002). For a linear system, results are

identical to those using a sequential smoother (see Fukumori
et al., 2018).

Some understanding of the impact via the smoother of
later observations on KF time estimates can be found from
the operator L(t). Figure 15 shows the norm of the opera-
tor L (Eq. 20) controlling the correction to earlier state esti-
mates, along with the time dependence of one of its diagonal
elements. As always, the temporal structure of L(t) depends
directly upon the time constants embedded in A and the com-
positions of P(t) and P(t +1t,−). In turn, the latter are de-
termined by any earlier information, including initial con-
ditions, as well as the magnitudes and distributions of later
forcing and data accuracies. Generalizations are not easy.

The norm of the gain matrix M(t), used for computa-
tion of the control vector in Eq. (A4), provides a measure
of its importance relative to the prior estimate and is dis-
played in Fig. 16. Here the dependence is directly upon the
a priori known control variance q (t), the data distributions,
and P(t +1t,−). The limiting cases discussed above for the
state vector also provide insights here.
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Figure 14. (a) Estimated non-dimensional western boundary current transport from the Kalman filter (solid line) and the steady western
boundary current from the Stommel solution (dashed line). (b) Same as (a) except showing the smoothed TWBC from the RTS smoother next
to the steady solution. Vertical dashed lines indicate time steps where data were available. (c) Uncertainty in the TWBC predictions over time,
computed from the operators P(t) and P(t,+).

4.3.3 Spectra

Computation of the Fourier spectral estimates of the vari-
ous estimates of any state vector element or combination is
straightforward, and the z transforms in the Appendix pro-
vide an analytic approach. What is not so straightforward is
the interpretation of the result in this non-statistically station-
ary system. Care must be taken to account for the nonstation-
arity.

5 Discussion and conclusions

In sequential estimation methods, the behavior of dynami-
cal system invariants and conservation laws, including en-
ergy or circulation or scalar inventories, or derived ones such
as a thermocline depth, depend, as shown using toy models,
upon a number of parameters. These parameters include the
timescales embedded in the dynamical system, the temporal
distribution of the data used in the sequential estimation rel-
ative to the embedded timescales, and the accuracies of ini-

tial conditions, boundary conditions, sources and sinks, and
data, as well as the accuracy of the governing time evolution
model. Errors in any of these parameters can lead to phys-
ically significant errors in estimates of the state and control
vectors as well as any quantity derived from them.

Estimates depend directly upon the accuracies of the as-
sumed and calculated uncertainties in all of the elements
making up the estimation system. Impacts of data insertions
can range from very short time intervals to those extending
far into the future. Because of model–data interplay, the only
easy generalization is that the user must check the accuracies
of all of these elements, including the appearance of system-
atic errors in any of them (e.g., Dee, 2005), or of periodicities
arising solely from data distributions. When feasible, a strong
clue to the presence of systematic errors in energies, as one
example, lies in determining the null space of the observa-
tion matrices coupled with the structure of the state evolu-
tion matrices, A. Analogous examples have been computed
for advection–diffusion systems (not shown, but see Marchal
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Figure 15. (a) Norm of the operator L controlling the backwards-in-time state estimate (see Eq. 20, RTS smoother for the full equation).
(b) The real (solid line) and imaginary (dashed line) components of L22(t).

and Zhao, 2021) with results concerning, in one example, es-
timates of fixed total tracer inventories.

Use of Kalman filters, and the simple analogs most often
used in weather prediction or “reanalyses”, produces results
that are always suboptimal when the goal is reconstruction
because data future to the estimate have not been used. A sec-
ond consequence is the failure of the result to satisfy any par-
ticular dynamical time evolution model, implying loss of en-
ergy, mass, etc. conservation laws. In the Rossby wave exam-
ple, reconstructions of the constant western boundary current
transport improved as expected from that of the KF by using
future data and the Rauch–Tung–Striebel (RTS) smoother.
Estimates can nonetheless still contain large uncertainties –
quantifiable from the accompanying algorithmic equations.

All possible error sources have not been explored. In par-
ticular, only linear systems were analyzed, assuming exact
knowledge of the state transition matrix, A, and the data dis-
tribution matrix, B. Notation was simplified by using only
time-independent versions of them. Nonlinear problems aris-
ing from errors in A and B will be described elsewhere. Other
interesting nonlinear problems include those wherein the ob-
servations are derived quantities of the state vector, or the
observations – such as a speed – are nonlinear in the state
vector.

Unless, as in weather prediction, short-term predictions
are almost immediately testable by comparison with the ob-
served outcome, physical insights into the system behavior
are essential, along with an understanding of the structure of
the imputed statistical relationships. As considerable litera-
ture cited above has made clear, the inference of trends in
properties and understanding of the physics (or biology or
chemistry) in the presence of time-evolving observation sys-
tems require particular attention. At a minimum, one should
test any such system against the behavior of a known re-
sult – for example, treating a general circulation model as
the “truth” and then running the smoothing algorithms to test
whether that truth is forthcoming.

The RTS algorithm is only one choice from several ap-
proaches to the finite interval estimation problem. Alterna-
tives include the least-squares and/or Lagrange multiplier ap-
proach of the ECCO project, which in the linear case can
be demonstrated to produce identical results. This approach
guarantees exact dynamical and kinematic consistency of the
state estimate (Stammer et al., 2002; Stammer et al., 2016;
Wunsch and Heimbach, 2007), a key requirement when seek-
ing physical understanding of the results. Such consistency is
ensured by restricting observation-induced updates to those
that are formally independent inputs to the conservation laws,
i.e., initial, surface, or – where relevant – lateral boundary
conditions. This consistency ensures no artificial source or
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Figure 16. Norm of the gain matrix M through time and which determines the magnitude and persistence of inferred changes in the control
variables u(t).

sink terms in the conservation equations. The ECCO project
has conducted this approach with considerable success over
the past 2 decades and demonstrated the merits of accu-
rate determination of heat, freshwater, and momentum bud-
gets and their constituents (Heimbach et al., 2019). The La-
grange multiplier framework similarly provides a general in-
verse modeling framework, which addresses several estima-
tion problems either separately or jointly: (i) inference of
optimal initial conditions, such as produced by incremen-
tal so-called four-dimensional variational data assimilation
practiced in numerical weather prediction; (ii) inference of
updated (or corrected) boundary conditions, such as prac-
ticed in flux inversion methods; (iii) inference of optimal
model parameters, such as done in formal parameter calibra-
tion problems; or (iv) any combination thereof. More details
of this more general framework in the context of similar toy
models will be presented in a sequel paper.

Appendix A: Notation and equations

A1 Kalman filter

The model state transition equation is that in Eq. (1), and the
weighted averaging equation is Eq. (4), with the gain matrix
K(t) defined in Eq. (5). Time evolution of the covariance
matrix of x̃ (t) is governed by

P(t,−)=
〈
(x̃ (t,−)− x (t))(x̃ (t,−)− x (t))T

〉
= A(t − 1)P(t −1t)A(t − 1)T

+0 (t −1t)q (t −1t)0(t −1t)T (A1)

and

P(t)= P(t,−)−K(t)E(t)P(t,−)

= P(t,−)−P(t,−)E(t)T[
E(t)P(t,−)E(t)T +R(t)

]−1
E(t)P(t,−) , (A2)

with E and R defined in the text. The matrix symbol 0 is in-
troduced for a situation in which the control distribution over
the state differs from that in B. Otherwise they are identical.
Because P is square of the state vector length, calculating it
is normally the major computational burden in the use of a
Kalman filter.

Under some circumstances in which a system including
observation injection reaches a steady state, the time index
may be omitted in both the KF and the RTS smoother. Time
independence is commonly assumed when the rigorous for-
mulation for the KF is replaced by an ad hoc constant gain
matrix K.

A2 RTS smoother

In addition to Eqs. (19) and (20), the Rauch–Tung–Striebel
smoother estimates

ũ(t,+)=M(t +1t)
[
x̃(t +1t,+)− x̃(t +1t,−)

]
, (A3)

M(t +1t)= q(t)0(t)T P(t +1t,−)−1, (A4)

for the updated control u(t); q(t) is the assumed covariance
of u(t) (the uncertainty in q (t)), and 0 is again often equal
to B. Then the corresponding uncertainties of the smoothed
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estimates are

P(t,+)= P(t)+L(t +1t) [P(t +1t,+)

−P(t +1t,−) ]L(t +1t)T , (A5a)

Pu(t,+)= q(t,+)= q(t)+M(t +1t)

[P(t +1t,+)−P(t +1t,−)]M(t +1t)T . (A5b)

One can gain insight into this filter–smoother machinery by
considering its operation on a scalar state vector with scalar
observations (not shown here).

Appendix B: Green function analysis of estimates

B1 KF response

The impact at other times of having data at time t can lend
important physical insight into the sequential analyses. De-
fine an innovation vector,

dδ (t,j)= y (t)−E(t)x (t)= δt,τ δij : (B6)

that is, dδ is a vector of Kronecker deltas representing the
difference Dij (τ )= δt,τ δij = yj (τ )−

∑
rEir (τ )xr (τ ). So-

lutions to the innovation Eq. (4) are the columns of the Green
function matrix,

G(t)= AG(t −1t)+Kdδ (t) , t =m1t. (B7)

K, now fixed in time, is sought as an indication of delta im-
pulse effects of observations on the prediction model at time
τ .

Define the scalar complex variable,

z= exp(−i2πs1t),−1/21t ≤ s ≤ 1/21t, (B8)

where s is the frequency. Then the discrete Fourier transform
of Eq. (B7) (the z transform – a matrix polynomial in z) is

Ĝ(z)= (I− zA)−1KD̂δ (z) . (B9)

The norm of the variable (I− zA)−1 defines the “resolvent”
of A in the full complex plane (see Trefethen and Embree,
2005), but here, only |z| = 1 is of direct interest: that is, only
on the unit circle. The full complex plane carries information
about the behavior of A, including stability.

Here D̂(z)= Izτ and

Ĝ(z)= (I− zA)−1Kzτ . (B10)

If a suitably defined norm of A is less than 1,

Ĝ(z)= (I− zA)−1Kzτ

≈

(
zτ I+ zτ+1A+ zτ+2A2

+ zτ+3A3
+ . . .

)
K, (B11)

and the solution matrix in time is the causal vector sequence
(no disturbance before t = τ) of columns of

G(t)= 0, t < τ = AmK(τ ) , t = τ +m1t
m= 0,1,2, . . .,

where G can be obtained without the z transform, but the
frequency content of these results is of interest.

B2 Green function of smoother innovation

As with the innovation equation for filtering, Eq. (19) in-
troduces a disturbance into the previous estimate, x̃ (t), in
which the structure of L(t) determines the magnitude and
timescales of observational disturbances propagated back-
wards in time. It provides direct insight into the extent to
which later measurements influence earlier ones. As an ex-
ample, suppose that the KF has been run to time Tf so that
x̃ (Tf,+)= x̃ (Tf), which is the only measurement. Let the
innovation, x̃(Tf,+)− x̃(Tf,−), be a matrix of δ functions in
separate columns,

D= δ (t − Tf)IN . (B12)

Then a backwards-in-time matrix Green function is

G(t)= L(t). . .L(Tf−1t)L(Tf) . (B13)

The various timescales embedded in L depend upon those
in A,P(t,−), and P(t), as well as with many observations
including those of the observation intervals and any structure
in the observational noise. Similarly, the control modification
will be determined by P(t+1t,−)−1 if q(t)0(t)T values are
constant in time.
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