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Abstract. Analytical and numerical solutions of the lin-
earized rotating shallow water equations are combined to
study the geostrophic adjustment on the midlatitude β plane.
The adjustment is examined in zonal periodic channels of
width Ly = 4Rd (narrow channel, where Rd is the radius
of deformation) and Ly = 60Rd (wide channel) for the par-
ticular initial conditions of a resting fluid with a step-like
height distribution, η0. In the one-dimensional case, where
η0 = η0(y), we find that (i) β affects the geostrophic state
(determined from the conservation of the meridional vortic-
ity gradient) only when b = cot(φ0)

Rd
R
≥ 0.5 (where φ0 is the

channel’s central latitude, and R is Earth’s radius); (ii) the
energy conversion ratio varies by less than 10 % when b in-
creases from 0 to 1; (iii) in wide channels, β affects the waves
significantly, even for small b (e.g., b = 0.005); and (iv) for
b = 0.005, harmonic waves approximate the waves in narrow
channels, and trapped waves approximate the waves in wide
channels. In the two-dimensional case, where η0 = η0(x),
we find that (i) at short times the spatial structure of the
steady solution is similar to that on the f plane, while at
long times the steady state drifts westward at the speed of
Rossby waves (harmonic Rossby waves in narrow channels
and trapped Rossby waves in wide channels); (ii) in wide
channels, trapped-wave dispersion causes the equatorward
segment of the wavefront to move faster than the northern
segment; (iii) the energy of Rossby waves on the β plane ap-
proaches that of the steady state on the f plane; and (iv) the
results outlined in (iii) and (iv) of the one-dimensional case
also hold in the two-dimensional case.

1 Introduction

It has long been established that large-scale flows in the
ocean and atmosphere are in near-geostrophic balance,
whereby the pressure gradient force is balanced by the Cori-
olis force (see, e.g., Gill, 1982, Sect. 7.6, and Vallis, 2017,
Chap. 5). The fundamental theory of the way in which
these flows transition from an initial unbalanced state to a
geostrophically balanced state (known as geostrophic adjust-
ment) is a cornerstone of geophysical fluid dynamics, as it
is crucial for understanding the dynamics of the ocean and
the atmosphere (see, e.g., Gill, 1982). Despite decades of
research, the understanding of geostrophic adjustment is far
from being complete.

The geostrophic adjustment theory was first studied in
the 1930s, when Carl-Gustaf Rossby published pioneering
works on the subject (Rossby, 1937, 1938). Rossby’s work
was extended in several papers, e.g., Blumen (1972) and Ya-
coby et al. (2021). However, as in Rossby’s original studies,
nearly all of these earlier studies addressed particular aspects
(e.g., initial or boundary conditions) of the adjustment on the
f plane; thus, their applicability to the real ocean is limited.
Though the adjustment theory was extended to the equa-
torial β plane (Sect. 11.11 in Gill, 1982; Killworth, 1991;
Rostami and Zeitlin, 2019, 2020) and to the sphere (Paldor
and Dritschel, 2021), only marginal advances were made in
extending the geostrophic adjustment theory to midlatitude
β plane. In his discussion of the expected effect of β on the
adjustment in midlatitudes, Blumen (1972, Sect. C2) com-
mented that, on the β plane, the fluid should adjust to the
quasi-geostrophic Rossby waves in the way that it adjusts to
the steady-geostrophic state on the f plane. Similarly, in their
study of the nonlinear adjustment process on the f plane,
Reznik et al. (2001, Sect. 5) commented heuristically on the
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changes in the theory that should be expected when β 6= 0,
but they have not developed a complete theory.

The waves that develop on the f and β planes during the
adjustment process are determined by the boundary condi-
tions and by the governing equations as follows: (i) in un-
bounded domains on the f plane, only Poincaré waves de-
velop (Cahn, 1945); (ii) in channels on the f plane, Kelvin
and Poincaré waves develop (Gill, 1976, 1982); (iii) in un-
bounded domains on the midlatitude β plane, Rossby and
Poincaré waves develop (Blumen, 1972; Gill, 1982); (iv) on
the equatorial β plane, Rossby, Kelvin, and Poincaré waves
develop (Gill, 1982; Rostami and Zeitlin, 2019); and (v) in
channels on the midlatitude β plane, Rossby, Kelvin, and
Poincaré waves develop as in (iv), following from the com-
bination of (ii) and (iii).

In wide channels on the midlatitude β plane, an alternate
theory, the trapped-wave theory, was developed for Poincaré
and Rossby waves (Paldor et al., 2007; Paldor and Sigalov,
2008; Paldor, 2015; see details in Sect. 3 below). These
waves are called trapped since, in contrast to the classical
harmonic waves, they are not spread over the entire merid-
ional domain. Instead, they decay monotonically with lat-
itude from their unique single maximum located near the
equatorward boundary for low modes. The relevance of the
trapped-wave theory was recently confirmed, using numer-
ical simulations (Gildor et al., 2016) and satellite observa-
tions from the Indian Ocean (De-Leon and Paldor, 2017).
The trapped-wave theory is employed in this study, as it un-
derscores the effect of β on waves in wide channels (see
Sects. 4.3, 5.2–5.3, and 6.2).

This paper examines the geostrophic adjustment theory in
periodic zonal channels on the midlatitude β plane, and its
outline is as follows: in Sect. 2, the governing equations, the
numerical schemes used, and the setup of the problem are
presented. In Sect. 3, we briefly compare the harmonic-wave
theory and the trapped-wave theory and classify the width of
the channels in which each of these theories is expected to
be valid. For each theory, we summarize the analytical ex-
pressions for the dispersion relations and the eigenfunctions
of both Poincaré and Rossby waves. In Sect. 4, we address
the one-dimensional zonally invariant adjustment problem,
when the initial height distribution, η0, is a function of y. In
Sect. 5, we address the two-dimensional adjustment problem,
when η0 is a function of x (the y dependence is explicit in
f (y)). In both the one-dimensional and the two-dimensional
cases, we examine the effect of β on the (i) geostrophic
steady state (Sects. 4.1 and 5.1), (ii) waves’ structure and
spectrum (Sects. 4.3 and 5.2–5.3), and (iii) energetics of the
adjustment process (Sects. 4.2 and 5.4). The paper ends with
a discussion and summary in Sect. 6.

2 Setup of the problem

2.1 Governing equations

The (inviscid) linearized rotating shallow water equations
(LRSWEs) are as follows:

∂u

∂t
− f (y)v =−g

∂η

∂x
, (1)

∂v

∂t
+ f (y)u=−g

∂η

∂y
, (2)

∂η

∂t
+H

(
∂u

∂x
+
∂v

∂y

)
= 0, (3)

where u and v are the velocity components along the x
(zonal) and y (meridional) coordinates, respectively. η is the
deviation of the fluid height from its mean value H , and g
is the gravitational acceleration (or the reduced gravitational
acceleration when the fluid is stratified). On the midlatitude
β plane, the Coriolis frequency, f (y)= 2�sin(φ) (where �
is Earth’s frequency of rotation and φ is the latitude), is ex-
panded to the first order in y, in the vicinity of a mean latitude
φ0 (where y=0), such that

f (y)= f0+βy = 2�
(

sin(φ0)+
cos(φ0)

R
y

)
,

where R, as mentioned above, is Earth’s mean radius.
To reduce the number of free parameters in the prob-

lem, we scale t on f−1
0 , (x,y) on the radius of deforma-

tion, Rd =
√
gH/f0, η on the initial disturbance amplitude

η̃, and (u,v) on η̃
√
gH/H . This scaling guarantees that the

amplitude of η(t = 0) is 1 and yields the following non-
dimensional equations:

∂u

∂t
− (1+ by)v =−

∂η

∂x
, (4)

∂v

∂t
+ (1+ by)u=−

∂η

∂y
, (5)

∂η

∂t
+
∂u

∂x
+
∂v

∂y
= 0. (6)

This system contains the single free parameter (the non-
dimensional β), defined as follows:

b =
βRd

f0
= cot(φ0)

Rd

R
.

It should be noted that, formally, this scaling applies to
the Northern Hemisphere, where φ0 > 0 i.e., f0 > 0. In the
Southern Hemisphere, a minus sign should be added to the
scales of x, y (i.e., to Rd), and t , while the parameter b and
the variables u, v, and η are unchanged.

Subtracting the y derivative of Eq. (4) from the x deriva-
tive of Eq. (5) yields the following vorticity equation:

∂

∂t

(
∂v

∂x
−
∂u

∂y

)
+ (1+ by)

(
∂u

∂x
+
∂v

∂y

)
=−bv,
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which, together with Eq. (6), yields

∂q

∂t
=−bv, q =

∂v

∂x
−
∂u

∂y
− (1+ by)η. (7)

Following Gill (1982), the quantity q/H is here termed
the perturbation potential vorticity. This equation is used in
Sect. 4.1 to find the geostrophic steady state.

2.2 Numerical scheme

The time-dependent system in Eqs. (4)–(6) is solved numer-
ically, using the rotating shallow water (RSW) solver de-
scribed in Gildor et al. (2016). Briefly, the finite difference
numerical scheme employs a leapfrog time-differencing and
central spatial differencing on an Arakawa C grid. A Robert–
Asselin filter (Haltiner and Williams, 1980) is applied to sup-
press numerical modes. More details on this solver can be
found in Gildor et al. (2016). The time step (1t) and the grid
spacing (1x, 1y) were varied and are noted in Table 1 for
each simulation (indicated in the table by the letters A–E).
For several simulations, the results of the RSW calculations
were compared to those obtained with the Massachusetts In-
stitute of Technology General Circulation Model (MITgcm;
see Marshall et al., 1997). In all such comparisons, the re-
sults obtained with the two models were identical, and for
the most part, the RSW solver was less stable than the MIT-
gcm and required a smaller 1t for given 1x and 1y, so it
required a significantly longer computation time. Therefore,
the longest simulation (D; see tend in Table 1) was carried out
using the MITgcm.

2.3 Channel configurations and boundary conditions

The adjustment is studied in a periodic zonal channel (i.e.,
where the channel walls of length Lx are aligned along the
x direction and the channel width is Ly). When examining
the one-dimensional (x-independent) problem (see Sect. 4),
the number of cells in the zonal direction was set to the min-
imal value allowed by the solver, namely Lx/1x = 4. As
expected, no variations in the zonal direction were devel-
oped in the numerical solution. When examining the two-
dimensional problem (see Sect. 5), the channel length was
varied from Lx = 12 to Lx = 120 (the length is noted in each
case). The channel width was varied from Ly = 4 in narrow
channels toLy = 60 in wide channels. The origin of the y co-
ordinate is chosen such that the channel walls are located at
y =±

Ly
2 . The boundary conditions at the channel’s merid-

ional boundaries are the vanishing of the normal velocities,
such that

v = 0 at y =±
Ly

2
. (8)

The boundary conditions at the channel’s zonal boundaries
are the periodicity of u, v, and η.

2.4 Initial conditions

Throughout this work, the fluid is assumed to be initially at
rest (the subscript 0 in u, v, and η denotes initial values), such
that

u0 = v0 = 0. (9)

In the one-dimensional case (Sect. 4), the initial surface
height distribution, η0, is a function of y and given by the
following:

η0(y)= sgn(y), (10)

while in the two-dimensional case (Sect. 5), η0 is a function
of x given by

η0(x)=

{
0, for |x|>D,
1, for |x|<D, (11)

with D = Lx/12. An initial-step condition, η0(x)= sgn(x),
is not addressed here, since it violates the assumed periodic-
ity in the boundary conditions.

3 Harmonic- and trapped-wave theories in a channel

We now let the (u,v) velocity components and η in the LR-
SWE Eqs. (4)–(6) vary with x and t as a zonally traveling
wave with a y-dependent amplitude, such that

(u,v,η)=
(
û(y), v̂(y), η̂(y)

)
ei(kx−ωt),

where k is the wave’s zonal wavenumber, and ω is its fre-
quency. As shown in Paldor et al. (2007) and Paldor and
Sigalov (2008), substituting these expressions for u, v, and η
in Eqs. (4)–(6), eliminating û and η̂, and neglecting second-
order terms in by (i.e., the term b2y2v̂, noting that second-
order terms in y have already been neglected in the first-order
expansion of f (y)), yields the following Schrödinger eigen-
value equation for v̂:

d2v̂

dy2 + (E− 2by)v̂ = 0, (12)

where v̂ is the eigenfunction and

E = ω2
− k2
−
bk

ω
− 1 (13)

is the eigenvalue. Note that since Eq. (12) is a typical
Schrödinger equation, E can be interpreted as its energy
level and −2by as its potential. In the high-frequency limit,
bk
ω
� 1 and can be neglected, which yields the approximate

dispersion relation for Poincaré waves, as follows:

ω2
= 1+ k2

+E. (14)
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Table 1. Values of the numerical parameters (defined in Sect. 2.2–2.3) used in the five simulations denoted by the letters A–E.

Simulation Model 1t 1x 1y Lx taend Sampling Figure
intervals

A RSW solver 10−3 Lx/4b 0.01 41xb 200 0.1 2

B RSW solver 10−3 Lx/4 Widec: 0.1
Narrow: 0.01

41x 103 0.1 3–8

C RSW solver 10−2 Wide: 0.2
Narrow: 0.1

Wide: 0.2
Narrow: 0.1

120 105 20 10–11, 16

D MITgcm 10−1 2 Wide: 1
Narrow: 0.1

120 106 100 12–13

E RSW solver 10−3 0.1 Wide: 0.1
Narrow: 0.01

12 103 0.1 14–16

a Runtime. b This indicates that the number of cells in the zonal direction is four, which is the minimal value allowed by the solver (see Sect. 2.3).
c The terms “wide” and “narrow” refer to a wide channel (Ly = 60) and a narrow channel (Ly = 4), respectively.

In the low-frequency limit, ω2 can be neglected, which yields
the approximate dispersion relation for Rossby waves.

ω =
−bk

1+ k2+E
(15)

The value of E, determined from the solution of the eigen-
value in Eq. (12), varies with b; for a small (respectively,
large) value of b, it yields harmonic (respectively, trapped)
waves.

For completeness, in the following subsections, we briefly
outline the main properties of these two wave types and de-
lineate the domains (b, Ly) in which each of these waves is
expected to prevail.

3.1 Harmonic waves

In the harmonic-wave theory, the y-dependent term, −2by,
is neglected in Eq. (12), which is solved by the following
harmonic eigenfunctions:

v̂n = sin
[
π(n+ 1)
Ly

(
y+

Ly

2

)]
, (16)

with the corresponding eigenvalues of

En =

(
π(n+ 1)
Ly

)2

. (17)

Substituting the expression for En found above in the disper-
sion relations (Eqs. 14 and 15) yields

ω2
= 1+ k2

+

(
π(n+ 1)
Ly

)2

, (18a)

ω =
−bk

1+ k2+
(
π(n+1)
Ly

)2 (18b)

for harmonic Poincaré waves and harmonic Rossby waves,
respectively.

3.2 Trapped waves

In the trapped-wave theory, the term −2by in Eq. (12) is re-
tained. Defining

z(y)=−(2b)−2/3 [E− 2by
]

transforms Eq. (12) to the following Airy equation:

d2v̂

dz2 − zv̂ = 0. (19)

The general solution of Eq. (19) is a linear combination
of Ai(z) that decays (faster than exponential) for z > 0 and
Bi(z) that grows (faster than exponential) for z > 0. When
z
(
y =+

Ly
2

)
is sufficiently large, then Ai

[
z
(
y =+

Ly
2

)]
is

negligibly small, so this function alone nearly satisfies the
boundary condition at the northern wall, y =+Ly2 , so the
contribution of Bi(z) to the general solution has to be neg-
ligible. For example, for z

(
y =+

Ly
2

)
= 2, the value of Ai

at the northern wall is Ai
[
z
(
y =+

Ly
2

)]
≤ 0.035, while the

value of Bi(2)≈ 3.3 there. Thus, the Bi(z) term in the linear
combination of the general solution must be 0 in order for the
solutions to satisfy the boundary conditions.

The boundary condition at the southern wall, y =−Ly2 , is

satisfied by setting z
(
y =−

Ly
2

)
to the nth 0 of Ai(z) (de-

noted as −ξn with ξn > 0, since all zeros of Ai(z) are neg-
ative), and this condition determines the discrete eigenfunc-
tions,

v̂n = Ai
[
(2b)1/3

(
y+

Ly

2

)
− ξn

]
, (20)

with the corresponding eigenvalues,

En = (2b)2/3ξn− bLy . (21)
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Substituting this expression for En in the dispersion relations
(Eqs. 14 and 15) yields

ω2
= 1+ k2

+ (2b)2/3ξn− bLy (22)

for trapped Poincaré waves and

ω =
−bk

1+ k2+ (2b)2/3ξn− bLy
(23)

for trapped Rossby waves.
As shown in Paldor and Sigalov (2008) and Gildor et al.

(2016), the harmonic-wave theory provides accurate approx-
imations for waves in narrow channels, while the trapped-
wave theory does so in wide channels. The wide-channel sce-
nario applies when z

(
y =+L2

)
is increased above a thresh-

old value, Z∗, namely, when

z

(
y =+

Ly

2

)
=−(2b)−2/3 [E− bLy]> Z∗,

where Z∗ is sufficiently large. Using the expression for En
(i.e., Eq. 21) leads to the following constraint on Ly :

Ly > (2b)−
1
3
(
Z∗+ ξn

)
, (24)

which indicates that the higher the wave mode, n (and with it,
value of ξn), the wider the channel should be for the trapped-
wave theory to hold. As mentioned above, Z∗ should be a
sufficiently large number, and following the discussion at the
beginning of this subsection, Z∗ = 2 should be considered
sufficiently large. We examine this subtle issue in Sect. 4.3
(see Eq. 38). The applicability of the trapped-wave theory to
the ocean is discussed in Sect. 6.7.

Having established analytically the character of the tran-
sient waves in wide and narrow channels, we now turn to nu-
merical solutions of the adjustment problem in one and two
dimensions.

4 One-dimensional adjustment problem

When η0 is a function of x only, then both the initial con-
ditions (Eqs. 9–10) and the coefficients of the LRSWEs are
independent of x, so the solutions can be assumed to be in-
dependent of x at all times. In this case, the governing equa-
tions, Eqs. (4)–(6), reduce to the following:

∂u

∂t
− (1+ by)v = 0, (25)

∂v

∂t
+ (1+ by)u=−

∂η

∂y
, (26)

∂η

∂t
+
∂v

∂y
= 0, (27)

and Eq. (7) becomes

∂

∂t

(
∂u

∂y
+ (1+ by)η

)
= bv. (28)

Substituting the continuity equation, Eq. (27), into the y
derivative of Eq. (28) yields

∂

∂t

(
∂2u

∂y2 + (1+ by)
∂η

∂y
+ 2bη

)
= 0, (29)

or, equivalently,

∂

∂t

(
∂q

∂y
− bη

)
= 0.

This conservation equation for the meridional gradient of
q (minus bη that originates from the y derivative of bv
on the right-hand side of Eq. (28), which, according to
Eq. (27), equals −b∂η/∂t) implies that the combination of
time-dependent variables in the parentheses at time t equals
their initial combination (denoted by the subscript “0”), such
that

∂2u

∂y2+(1+by)
∂η

∂y
+2bη =

∂2u0

∂y2 +(1+by)
∂η0

∂y
+2bη0. (30)

In contrast to the f plane, where q is locally conserved (i.e.,
it retains its initial value at each point), on the β plane,
the conserved quantity is ∂q/∂y− bη. Thus, while on the
f plane Eq. (28) with b = 0 yields the relation between the
initial and final states, on the β plane, this relation is derived
from the y derivative of the vorticity equation in the form
of Eq. (30). Indeed, on the f plane, the conservation of q
was employed in Gill (1976, Eqs. 4.7–4.8) and Gill (1982,
Eqs. 7.2.8–7.2.10).

We note that in the dimensional form, the potential vor-
ticity (PV) is given by the following (see, e.g., Vallis, 2017,
Sect. 3.9.2):

Q=

∂v
∂x
−
∂u
∂y
+ f (y)

H + η
≈
ζ + f

H

(
1−

η

H

)
≈

1
H

(
f + ζ − f

η

H

)
=
f

H
+
q

H

and is conserved in a Lagrangian manner (but not necessarily
locally) on both the f and β planes, such that

DQ
Dt
= 0, (31)

where

D
Dt
=
∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+w

∂

∂z

is the material derivative, and q/H is the dimensional form
of the perturbation potential vorticity defined (in nondimen-
sional form) in Eq. (7). Thus, Eq. (7) is, in fact, the linearized
and nondimensional form of Eq. (31) that yields the local
conservation law – Eq. (28) – when ∂/∂x = 0.
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4.1 Steady state

The steady (geostrophic) solution of Eqs. (25)–(26) (denoted
with the subscript “g”) satisfies

vg = 0 (32)

and

∂ηg

∂y
=−(1+ by)ug. (33)

No information beyond this geostrophic relation between
ug and ηg is contained in the system (Eqs. 25–27) when
∂
∂t
= 0= v. However, a second general relation between u

and η is provided by Eq. (30) that expresses the conserva-
tion of the meridional gradient of vorticity, and this general
relation applies also to the steady solutions. The geostrophic
relation can be combined with the conservation of the merid-
ional vorticity gradient to uniquely determine ug and ηg. The
system (Eqs. 30 and 33) can only be solved numerically by
imposing relevant boundary conditions and solving the as-
sociated eigenvalue problem (we used the MATLAB bvp4c
solver). The boundary conditions for u were derived as fol-
lows: substituting the boundary condition v

(
±
Ly
2

)
= 0 in

Eq. (25) yields ∂u
∂t

∣∣
y=±Ly/2

= 0, so u retains its initial value
at the boundaries, such that

u= u0 = 0 at y =±
Ly

2
. (34)

Note that, formally, the condition (Eq. 34) determines the
vanishing of u(y, t) at the boundaries and not the vanish-
ing of the steady-geostrophic ug(y). However, since ug is
the averaged distribution (over many wave periods) of u, ug
must also satisfy the condition (Eq. 34). The boundary con-
ditions for ηg were determined as follows: for large channels
(Ly = 60), we assume that the geostrophic state is confined
to a relatively small area around x = 0, such that

ηg = η0 =±1 at y =±
Ly

2
. (35)

For narrow channels (Ly = 4), we impose the condition

∂ηg

∂y
= 0 at y =−

Ly

2
, (36)

which follows from Eq. (33), since ug(±Ly/2= 0)= 0, and
the condition

ηg =−a at y =−
Ly

2
, (37)

where the value of a is determined by mass conservation as

Ly/2∫
−Ly/2

ηgdy =

Ly/2y∫
−Ly/2

η0dy = 0.

Figure 1. The spatial structure of the geostrophic steady state, ηg
(blue) and ug (red). Solid lines show the distributions for the indi-
cated values of b, and dashed lines show the distributions for b = 0
(i.e., on the f plane). (a, c, e) A wide channel. (b, d, f) A narrow
channel. In all steady states, v = 0. For b ≤ 0.05, the solid lines co-
incide with the dashed lines. For the f plane, we use the analytic
solutions (A31)–(A32) of Yacoby et al. (2021), with ηg(x) replaced
by ηg(y) and vg(x) replaced by −ug(y).

This mass conservation condition is applied as follows. We
scan a finite range of a values from−1 to−0.3, with intervals
of 0.005, and choose the value of a that yields the lowest
absolute value (i.e., closest to 0) of the integral:

Ly/2∫
−Ly/2

ηgdy.

Figure 1 compares the geostrophic solutions on the β plane
(solid lines) and the f plane (dashed lines). In midlatitudes
(π0 = π/4), the value b = 0.005 corresponds to Rd ∼ 30 km,
a typical oceanic value, whereas b = 0.05 corresponds to
Rd ∼ 300 km, a typical atmospheric value. The figure clearly
shows that the effect of β on the geostrophic state is relatively
small and becomes significant only at large b values that are
unacceptable for the midlatitude β plane, since bLy/2≥ 1
(i.e., βLy/2≥ f0 in dimensional notation). Such unaccept-
able cases are evident in Fig. 1 in the b = 0.05 row of a wide
channel (left column, middle panel; bLy/2= 1.5) and both
columns of the b = 0.5 row (bottom panels; bLy/2= 15 in
the left panel and bLy/2= 1 in the right panel). Thus, in
all acceptable values of b and Ly , the steady state on the
f plane provides an accurate estimate of the same state on
the β plane.

4.2 Energy

Having analyzed the effect of β on the steady-geostrophic
state, we turn to the examination of its effect on the energet-
ics of the adjustment process. This analysis proved to be very
informative on the f plane, where it quantifies the division
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between the potential energy and kinetic energy in the final
state and between the waves and the final steady state (Ya-
coby et al., 2021). As we shall shortly see, the effect of β on
the energy division is small for physically acceptable values
of b.

Since the seminal study by Gill (1976), it has become
common practice to analyze the energetics of the adjustment
problem by calculating the energy conversion ratio as fol-
lows (see, e.g., Grimshaw et al., 1998; Fang and Wu, 2002;
Yacoby et al., 2021):

γ =
KEg

PE0−PEg
,

where KEg =
1
2

∫ Ly/2
−Ly/2u

2
gdy is the total kinetic energy of the

geostrophic state, PEg =
1
2

∫ Ly/2
−Ly/2η

2
gdy is the total potential

energy of the geostrophic state, and PE0 =
1
2

∫ Ly/2
−Ly/2η

2
0dy is

the total potential energy of the initial state. Note that the
total kinetic and potential energies are defined as the inte-
gral of the corresponding local values over the entire channel
width Ly . Figure 2 shows γ as a function of b for Ly = 60
(blue line and dots) and for Ly = 4 (red line and dots). The
value of γ is calculated in two ways (one shown by lines and
the other by dots) that differ by the methods used for cal-
culating the geostrophic state, ηg and ug. The first method
is that employed in Fig. 1; i.e., it solves Eqs. (30) and (33)
using MATLAB’s bvp4c routine. Prior to the calculation of
the integral of 1

2η
2
g and 1

2u
2
g over the entire channel width

(to calculate PEg and KEg), the values of ηg and ug are
spline-interpolated. The values of γ calculated in this way
are shown by the blue (Ly = 60) and red (Ly = 4) lines. In
the second method, η, u, and v are simulated using the RSW
solver described in Sect. 2.2 (simulation A) and the simulated
η and u values are averaged over many wave periods. The
averages were calculated between t = 0 and t = 200, with
intervals of 0.1 time units (i.e., intervals of 1001t ; see Ta-
ble 1). Figure 2 shows that γ varies with b by no more than
10 % compared to the f plane values noted along the b = 0
ordinate. In a narrow channel (Ly = 4; red line and dots),
the decrease in γ (b) is monotonic, while in a wide channel
(Ly = 60; blue line and dots), γ has a local maximum of
≈ 0.343 at b ≈ 0.3.

4.3 Poincaré waves

The analysis of the v(y, t) field employs the empirical or-
thogonal function (EOF) method that examines the field’s
spatial and temporal patterns of variability (see, e.g., Björns-
son and Venegas, 1997; Eshel, 2011, Chap. 11). We apply
the EOF analyses to the v(y, t) field simulated by the RSW
solver (simulation B). Henceforth, we choose b = 0.005, a
typical value in the ocean, where Rd ∼ 30 km at φ0 = π/4.

The solid lines in Fig. 3 show the first four EOFs of v(y, t)
in a wide channel (Ly = 60) for b = 0.005. Each EOF mode

Figure 2. The energy conversion ratio, γ , as a function of b for
Ly = 60 (blue) and for Ly = 4 (red). Lines show the values of γ
based on the geostrophic state calculated using MATLAB bvp4c, as
in Fig. 1. Dots show the values of γ when the geostrophic state is
calculated using the RSW solver by taking the average of η and u,
as detailed in the text.

can be associated with a different wave mode by examin-
ing the number of nodal points; i.e., EOFs 1–4 are associ-
ated with wave modes n= 3, 4, 6, and 9, respectively. The
dashed lines show the Airy eigenfunctions given by Eq. (20)
for n= 3 (blue), n= 4 (red), n= 6 (green), and n= 9 (pur-
ple), and the dotted lines show the corresponding harmonic
modes given by Eq. (16) for the same mode numbers. All
curves are normalized, such that the maximal absolute value
of their amplitude equals 1 and their derivative at y =−Ly/2
is positive.

Clearly, in a wide channel, the EOFs are very similar to the
Airy eigenfunctions. However, there is a significant deviation
between EOF 4 (solid purple) and its associated Airy eigen-
function (dashed purple) near the northern wall, y = Ly/2.
The reason for this deviation is the violation of the condi-
tion (Eq. 24) for large-mode numbers, i.e., when ξn is too
large. The fact that the EOFs match the Airy eigenfunctions
accurately for n= 3,4, and 6 but not so for n= 9 results
from the bound on the value of Z∗ (set to 2, as discussed
at the end of Sect. 3.2). Specifically, the condition (Eq. 24)
implies the following:

(2b)1/3Ly − ξn > Z∗. (38)

For the values of Ly = 60 and b = 0.005 used here, the left-
hand side of Eq. (38) equals 2.886 for n= 6 (ξ6 = 10.040),
while for n= 9 (ξ9 = 12.829) it equals 0.098. The results
shown in Fig. 3, where EOF 3 matches the n= 6 mode in the
channel nicely, while EOF 4 matches the n= 9 mode only
roughly, supports our choice of Z∗ = 2 in Eq. (38). As could
be expected, the mismatch between EOF 4 and the n= 9
wave mode is maximal near the northern boundary, while in-
ward of it, the match is acceptable throughout most of the
domain. The results also show that harmonic waves do not
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Figure 3. Solid lines show the first four EOFs of v(y, t) in a wide channel. Dashed lines show the Airy eigenfunctions for n= 3 (blue), n= 4
(red), n= 6 (green), and n= 9 (purple). Dotted lines show the harmonic eigenfunctions for the same modes. In this wide channel case, the
EOFs resemble the Airy eigenfunctions.

Figure 4. The variance explained by each of the first 10 EOFs in a
wide channel.

yield acceptable approximations to the calculated EOFs in
the wide channel for any mode number.

In addition to the spatial structure of the EOF modes,
the EOF analysis also yields the percentage of variance ex-
plained by each of the modes. The percentage of variance
explained by each of the first 10 first EOF modes in a wide
channel is shown in Fig. 4. The first four EOFs explain
∼ 33 % of the variance, while any mode higher than 10 ac-
counts for less than ∼ 1 % of the variance.

The solid lines in Fig. 5 show the fast Fourier transform
(FFT) of the first four principal components (PCs) obtained
from the EOF analysis. The dashed vertical lines indicate the

Figure 5. Solid lines show the FFT of the first four PCs in a wide
channel. Dashed lines show the trapped-wave frequencies. Dotted
lines show the harmonic-wave frequencies.

frequencies of the trapped-waves theory, Eq. (22), with k = 0
for n= 3, 4, 6, and 9. The dotted vertical lines indicate the
frequencies of the harmonic-wave theory, Eq. (18a), for the
same modes. As expected, the frequencies obtained from the
FFT are much closer to the frequencies of trapped waves than
to the frequencies of harmonic waves. Note that the dashed
red lines and dotted red lines overlap.

Figures 6–8 show the counterparts of Figs. 3–5 but for
a narrow channel, where Ly = 4 (and b = 0.005 in a wide
channel). Figure 6 shows that the first four EOFs of v(y, t)
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Figure 6. Solid lines show the first four EOFs of v(y, t) in a narrow channel. Dashed lines show the Airy eigenfunctions for n= 0 (blue),
n= 2 (red), n= 4 (green), and n= 6 (purple). Dotted lines (indistinguishable from the solid lines) show the harmonic eigenfunctions for the
same modes. In contrast to a wide channel, in a narrow channel, the EOFs are identical to the harmonic eigenfunctions.

(solid lines) are identical to the harmonic eigenfunctions,
Eq. (16), with n= 0, 2, 4, and 6 (dotted lines that overlap
the solid lines). Clearly, the Airy eigenfunctions, shown by
the dashed lines in Fig. 6, are irrelevant for the calculated
eigenfunctions in a narrow channel. Figure 7 shows that over
96 % of the variability is explained by the first three EOFs,
which should be compared with a wide channel, where the
first three modes explain less than 30 % of the variability.
We speculate that the EOF algorithm decomposes a signal
more efficiently when the basis functions are harmonic. Fig-
ure 8 shows that the frequencies obtained from the FFT (solid
lines) match those of harmonic modes (Eq. 18a with k = 0)
very well (dotted lines), while those of the trapped modes
(Eq. 22 with k = 0) provide extremely poor estimates in a
narrow channel (the four dashed vertical lines at ω slightly
above 1).

5 Two-dimensional adjustment problem

Here we examine the adjustment problem in zonal channels,
when η0(x) is given by Eq. (11). Although η0 depends only
on x, the solution in this case is a function of both x and y,
since both the boundary conditions (Eq. 8) and the Coriolis
parameter (i.e., the term (1+ by) in Eqs. 4–5) depend on y.
Thus, the solutions in this case vary with x and y.

Figure 7. The variance explained by each of the first 10 EOFs in a
narrow channel.

5.1 The quasi-geostrophic state

When ∂
∂x
6= 0 the dependence of the meridional variation

in the Coriolis parameter generates Rossby waves. The fre-
quency of Rossby waves is distinct from that of Poincaré
and Kelvin waves, which causes the adjustment process to
take place in two stages. In the first, relatively rapid stage
(t =O(10)), the Poincaré and Kelvin waves propagate away
from the initial disturbance, leaving a quasi-geostrophic state
behind them. This stage resembles the geostrophic adjust-
ment on the f plane. In the second stage, Rossby waves in-
duce a slow westward motion of the initial disturbance and
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Figure 8. Solid lines show the FFT of the first four PCs in a narrow
channel. Dashed lines show the trapped-wave frequencies. Dotted
lines show the harmonic-wave frequencies.

slowly deform the near-geostrophic equilibrium established
in the first stage (Blumen, 1972; Gill, 1982, Sect. 11.11).
Our simulations show that the second stage itself can be di-
vided into two sub-stages, where in the first sub-stage the
near-geostrophic state only drifts westward, while its spatial
structure is hardy changed, while in the second sub-stage,
wave dispersion becomes dominant, which alters the near-
geostrophic state.

Figure 9 shows the geostrophic steady state on the f plane
(b = 0) in wide (Ly = 60; left column) and narrow (Ly = 4;
right column) channels. The steady solutions were calcu-
lated using the analytic expressions developed in subsection
5 of the Appendix in Yacoby et al. (2021) for long chan-
nels (Lx �D). In both channels, the steady solutions vary
with y only near the boundaries, so their variation with y
is less pronounced in wide channels, as the solution there
remains (nearly) independent of y throughout most of the
channel width (though the width of the boundary layer near
the wall is not identical in the two channels; in a wide chan-
nel, η is nearly uniform over the −25< y < 25 range). The
steady state on the f plane can be compared to the quasi-
geostrophic state (i.e., the westward-propagating near-steady
state) on the β plane illustrated in Fig. 10.

The temporal development of η on the β plane (b = 0.005)
in wide and narrow channels was simulated with Lx = 120,
so D = Lx/12 in Eq. (11) was set to 10 (simulation C). The
second row in Fig. 10 shows the westward propagation of the
initial disturbance at t = 1000 (∼ 102 d). During this (short)
time, the effect of wave dispersion is relatively small, and the
initial state only shifts westward by ≈ 15Rd, while adjusting
to a near-geostrophic state (close to that shown in Fig. 9).
Kelvin waves are also evident at this time near the merid-
ional boundaries. In contrast, for t ≥ 7000 (third to fifth rows
in Fig. 10), the massive deformation due to wave dispersion
is evident in the simulations. The simulations also highlight

the fact that wave dispersion is more significant in a wide
channel than in a narrow channel.

The speed of westward migration, i.e., the speed of the
leading edge, cmax, can be estimated from the phase speeds
of long harmonic and trapped Rossby waves (i.e., by substi-
tuting n= 0= k in the dispersion relations). For harmonic
waves, Eq. (18b) implies

cmax =
−b

1+π2/L2
y

, (39)

while for trapped Rossby waves, Eq. (23) implies

cmax =
−b

1+ (2b)2/3ξ0− bLy
. (40)

The dotted vertical lines and dashed vertical lines in Fig. 10
indicate the position of the leading edge using Eqs. (39) and
(40), respectively. Clearly, in a narrow channel, the lead-
ing edge moves with the speed of a harmonic Rossby wave,
while in a wide channel it moves with the speed of a trapped
Rossby wave. A comparison between the η fields in the two
channels at t = 21 000 (fifth row) shows that in a narrow
channel the field resembles the f plane steady state shown
in Fig. 9 much more closely than in a wide channel (i.e., the
wave dispersion distorts the field more efficiently in a wide
channel than in a narrow one).

From the left column of Fig. 10, it is evident that in a wide
channel, where the trapped-wave theory applies, the south-
ern part of the wavefront moves faster than the northern part,
causing a latitudinal tilting of the wavefront that increases
with time. This phenomenon was established in prior numer-
ical simulations of the β plane (e.g., Sura et al., 2000, and
Isachsen et al., 2007). The latitudinal tilting was heuristically
attributed in these studies to the decrease with latitude of the
Rossby wave phase. Clearly, the harmonic-wave theory can-
not explain the latitudinal tilting, since all long waves propa-
gate at the same phase speed. In the alternate, trapped-wave
theory, the tilt of the wavefront is easily explained by the dis-
persion of the non-harmonic waves. In this theory, the phase
speed of trapped Rossby waves with k = 0 is as follows:

cph =
−b

1+ (2b)2/3ξn− bLy
, (41)

which decreases with ξn; i.e., the lower the wave mode, the
faster the phase speed. Also, for higher wave modes, the do-
main where the trapped wave oscillates and does not decay
extends farther away from the channel’s southern boundary,
causing the wave peak to shift further northward. As a result,
the southern part of the wavefront (where the low modes have
O(1) amplitude) moves faster than the northern part, which
is dominated by high modes. This mechanism is illustrated
in Fig. 11, where the sub-range in the channel in which the
amplitude of a particular mode is O(1) is shown in Fig. 11a,
and the distance traveled by that mode in 7000 time units is
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Figure 9. The geostrophic steady state on the f plane in wide and narrow channels. Note the vastly different scales of the ordinates in the
two panels.

Figure 10. The temporal development of η in wide and narrow channels. Note the emergence of Kelvin waves near the channel walls (most
prominent in the narrow channel at t = 1000). The near-geostrophic state is shifted westward at the speed of Rossby waves (harmonic in
a narrow channel and trapped in a wide channel). The effect of dispersion increases with time. The vertical lines show the location of the
leading edge based on the harmonic-wave theory (dotted lines; Eq. 39) and based on the trapped-wave theory (dashed lines; Eq. 40). As
expected, the harmonic-wave theory yields more accurate estimates in a narrow channel, while the trapped-wave theory does so in a wide
channel.

shown in Fig. 11b as a dot overlaid on the η contours of the
t = 7000 panel in the left column in Fig. 10.

The temporal development of η in narrow channels on the
β plane (right column of Fig. 10) can be compared to the
development of η on the f plane illustrated in Fig. 8 of Ya-
coby et al. (2021). Note that the simulation time in the latter
is much shorter than here.

5.2 Rossby waves

As was done in the one-dimensional case studied in Sect. 4.3,
we also use the EOF method to examine the spatial and tem-
poral structures of the waves in the two-dimensional case.
The analyses are performed on v(x =−50,y, t), as calcu-
lated by the MITgcm (simulation D).

Figure 12 shows the results of the analysis in a wide chan-
nel. The solid lines in Fig. 12a–b show the first two EOFs
of v(x =−50,y, t). The dashed lines show the Airy eigen-
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Figure 11. Dispersion of the Airy trapped waves in a wide channel. (a) Meridional structure of the first five trapped-wave modes (n= 0, 1, 2,
3, 4) at t = 7000. The locations of the wave modes were calculated from the phase speed of trapped Rossby waves, with k = 0 (i.e., Eq. 41).
The lower the wave mode, the faster the phase speed. As a result, the southern part of the wavefront moves faster than the northern part, since
low modes occupy only the former. (b) Colored dots are the locations of the peaks of the Airy wave modes shown in panel (a) at t = 7000.
The contours are η at t = 7000 (as in the third panel from the top in the left column of Fig. 10). The locations of the peaks are consistent
with the numerical results (contours) and explain the slope in the wavefront.

functions, Eq. (20), for n= 0 (blue) and n= 2 (red). The
dotted lines show the harmonic eigenfunctions, Eq. (16), for
the same wave modes. All curves are normalized using the
normalization employed in Figs. 3 and 6. Similar to the re-
sults in the one-dimensional problem, in a wide channel, the
EOFs have the same structure as the Airy eigenfunctions.
However, in the two-dimensional case, the differences be-
tween the EOF modes and the corresponding Airy eigen-
functions are more substantial than in the one-dimensional
case (Fig. 3). We hypothesize that some of the differences
between the EOFs and the eigenfunctions result from a rel-
atively low spatial and temporal resolution of simulation D
(compared to simulation B; see Table 1). Clearly, the struc-
tures of the harmonic modes approximate those of the EOF
modes very poorly. Figure 12c shows the variance explained
by each of the first 10 EOF modes. The first two EOFs ex-
plain 47 % of the variance. The solid lines in Fig. 12d–e show
the FFT of the first (blue) and second (red) PCs. The verti-
cal blue dashed lines and vertical red dashed lines show the
frequencies of the n= 0 and the n= 2 trapped modes (re-
spectively) given by Eq. (23), where k = π(m+ 1)/Lx for
m= 1, 3, 5, and 7. The vertical blue dotted lines and verti-
cal red dotted lines show the harmonic frequencies given by
Eq. (18b) for the same wave modes. Clearly, the frequencies
obtained from the FFT are much closer to the trapped-wave
frequencies than to the harmonic-wave frequencies.

Figure 13 shows the same information as Fig. 12 but for a
narrow channel. Figure 13a–b show the first two EOFs that
are identical to the harmonic eigenfunctions (Eq. 16) with
n= 0 and n= 2. As in the one-dimensional case, the Airy
eigenfunctions provide a very poor approximation to the cal-
culated structure of the EOF modes. Figure 13c shows that
the first EOF explains nearly all the variance so that each of

the subsequent modes explains a minute fraction of the vari-
ance. Figure 13d–e show that the wave spectrum matches
the spectrum of harmonic waves. Note that in Fig. 13d the
trapped-wave frequencies withm≥ 3 are outside of the range
of the abscissa.

5.3 Poincaré waves

Following the examination of Rossby waves, we turn now
to the examination of Poincaré waves. The calculations of
the energy evolution, discussed in detail in Sect. 5.4, re-
veal that the fraction of the initial (potential) energy con-
verted to Poincaré wave energy during the adjustment pro-
cess decreases with the length of the initial perturbation,
2D. This is consistent with the results found on the f plane
in Yacoby et al. (2021). Hence, to increase the energy of
Poincaré waves, we decrease the channel length, Lx , to 12
so that D = Lx/12= 1 instead of 10. The EOF analysis is
performed on v(x = 5,y, t), as calculated by the RSW solver
(simulation E).

The results of the EOF analysis in a wide channel pre-
sented in Fig. 14 clearly show that (i) the numerically cal-
culated EOFs of Poincaré waves in Fig. 14a–b are approx-
imated by the Airy eigenfunctions more accurately than by
the EOFs of Rossby waves (the latter are shown in Fig. 12a–
b); (ii) the first two EOFs shown in Fig. 14c explain ∼ 40 %
of the variance, which is slightly less than the variance ex-
plained by the Rossby wave EOFs (the latter are shown in
Fig. 12c); and (iii) the wave spectra in Fig. 14d–e match the
spectra corresponding to the Airy waves.

Figure 15 shows the same information as in Fig. 14 but
for a narrow channel. The differences between wide and nar-
row channels, evident from a comparison between the two
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Figure 12. EOF analysis of Rossby waves in a wide channel. (a–b) Solid lines show the first two EOFs of v(x =−50,y, t), dashed lines
show the Airy eigenfunctions for n= 0 (blue) and n= 2 (red), and dotted lines show the harmonic eigenfunctions for the same modes.
(c) The variance explained by each of the first 10 EOFs. (d–e) Solid lines show the FFT of the first two PCs. Dashed lines show the expected
frequencies according to the trapped-waves theory (Eq. 23). Dotted lines show the expected frequencies according to the harmonic-waves
theory (Eq. 18b).

Figure 13. As in Fig. 12 but in a narrow channel.
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Figure 14. EOF analysis of Poincaré waves in a wide channel. (a–b) Solid lines show the first two EOFs of v(x = 5,y, t); dashed lines show
the Airy eigenfunctions for n= 0 (blue) and n= 2 (red); dotted lines show the harmonic eigenfunctions for the same modes. (c) The variance
explained by each of the first 10 EOFs. (d–f) Solid lines show the FFT of the first two PCs. Dashed lines show the expected frequencies
according to the trapped-waves theory (Eq. 22, where k = π(m+ 1)/Lx , with m= 1, 3, 5, 7). Dotted lines show the expected frequencies
according to the harmonic-waves theory (Eq. 18a for the same wave modes).

Figure 15. As in Fig. 14 but in a narrow channel.
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figures, are such that, in a narrow channel, (i) the first two
EOFs are identical to the harmonic eigenfunctions with n= 0
(Fig. 15a) and n= 2 (Fig. 15b), (ii) the first EOF explains
nearly all of the variance (Fig. 15c), and (iii) the wave spec-
tra match the spectra of harmonic waves (Fig. 15d–e).

5.4 Energy

In the previous sections (Sect. 5.1–5.3), we analyzed the re-
sults of simulations C, D (Lx = 120, D = 10), and E (Lx =
12, D = 1), each with both Ly = 4 and Ly = 60. In the
present subsection, simulations C and E are used to analyze
the energy of Rossby waves and establish its relation to the
energy of the steady state on the f plane. We prefer simula-
tion C over simulation D because it has a better spatial and
temporal resolution. The longer runtime of simulation D was
irrelevant here, since we analyzed the energy for t ≤ 1000
only (see Fig. 16). Specifically, we compare the total (poten-
tial and kinetic) energy, 1

2

(
η2
+ u2
+ v2), of Rossby waves

on the β plane to the total (potential and kinetic) energy of
the steady state on the f plane. To separate the low-frequency
Rossby waves from the high-frequency Poincaré and Kelvin
waves, we apply a fifth-order low-pass Butterworth filter (in
both forward and reverse directions). The cutoff frequency
is set to ω = π/Lx (half the frequency of the Kelvin mode
of the lowest frequency, i.e., with k = 2π/Lx) which sepa-
rates the frequencies of Rossby waves from the frequencies
of Poincaré and Kelvin waves. However, since the integral of
the surface initial height distribution,

Ly/2∫
−Ly/2

Lx/2∫
−Lx/2

η0dxdy = 2DLy,

is not 0, Kelvin waves have a mean, time-independent, com-
ponent (ηK,uK) in addition to the time-dependent, high-
frequency components. For small b, the mean component of
Kelvin waves is approximated by

ηK =
2D
Lx

(
e−y−Ly/2+ ey−Ly/2

)
=

4D
Lx
e−Ly/2 cosh(y),

uK =−
∂uK

∂y
=−

4D
Lx
e−Ly/2 sinh(y).

To separate the Rossby waves from the time-independent
component of the Kelvin waves, we subtract ηK and uK from
η and u after applying the low-pass filter.

The total energy of the steady state obtained on the f plane
was calculated using the analytic expressions developed in
Sect. 5 of the Appendix in Yacoby et al. (2021) for long
channels (see Fig. 9 above). The solid lines in Fig. 16 show
the total energy of the Rossby waves (i.e., the integral over
the entire channel) as a function of time. The dashed lines
show the total energy of the steady state on the f plane.
All curves are normalized on the initial energy given by
1
2Ly

∫ Lx/2
−Lx/2η0(x)

2dx = LyD. The figure shows that within a

Figure 16. Solid lines show the total (potential and kinetic) energy
of Rossby waves as a function of time. Dashed lines show the total
energy of the steady state obtained on the f plane. The curves were
normalized by the initial energy, LyD.

relatively brief time (t ≈ 10, when D = 1, and t ≈ 60, when
D = 10), the energy of the Rossby waves reaches the fi-
nal value that equals the energy of the steady state on the
f plane. We hypothesize that the difference in the time it
takes the energy of Rossby waves to its final value forD = 1
(simulation E) and D = 10 (simulation C) is partially due
to the difference in the temporal resolution between simu-
lation E (1t = 10−3) and simulation C (1t = 10−1). The
results shown in Fig. 16 affirm that Rossby waves on the
β plane are the counterpart of the steady state on the f plane.
For given Ly , the initial energy that transforms to Rossby
(Poincaré) wave energy increases (decreases) with D.

6 Discussion and summary

This paper examines the process of geostrophic adjustment in
periodic zonal channels on the β plane, focusing on the effect
of β on the (i) geostrophic steady state, (ii) waves’ structure
and spectrum, and (iii) energetics of the adjustment process
(i.e., the energy conversion ratio, γ , and the energy of Rossby
waves). The three issues are addressed in the three following
subsections, namely Sect. 6.1–6.3. Each subsection begins
with a brief summary followed by a discussion.

6.1 The effect of β on the geostrophic steady state

In the one-dimensional case, the step in η0(y) given by
Eq. (10) parallels the domain’s zonal walls (i.e., parallels
the x axis). Thus, Poincaré waves propagate in the merid-
ional direction, and upon reaching the zonal walls, they are
reflected back into the interior of the channel. Since the re-
flection takes place in both walls, Poincaré waves never leave
the domain, so the geostrophic state shown in Fig. 1 only rep-
resents the time-averaged solution over many wave periods
and not a steady state that is actually reached by the system
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at long times. As was shown in Fig. 1, the effect of β on the
geostrophic steady state is minor, and its contribution is neg-
ligible for b values that are typical of the ocean (b = 0.005;
first row of Fig. 1) and atmosphere (b = 0.05; second row
of Fig. 1). The independence of the steady state on β even
for b = 0.05 and Ly = 60 is surprising since, for these val-
ues, bLy/2= 1.5> 1 (i.e., the βy term exceeds f0). Based
on the calculations of the steady state in Fig. 1, we suggest
that the β effect should be quantified based on the (nearly ex-
ponential) distribution of ug(y) instead of the value of bLy .
According to this argument, the β effect is significant only
when the Coriolis frequency, 1+by, vanishes not too far from
the center of the channel (i.e., at y >−2). Contrary to the
naive approach based on a power series expansion of f (y)
near y = 0, the deviation of 1+by from 1 does not affect the
steady state. Our results suggest that the condition guarantee-
ing the significance of the β effect= 4+2′q is not bLy/2∼ 1
but

1+ by ≤ 0 at y =−2,

such that b ≥ 0.5 irrespective of the value of max(y)= Ly/2.
The significant effect of β near the Equator is demonstrated
in Killworth (1991) on the equatorial β plane and in Paldor
and Dritschel (2021) on a sphere. In contrast, if the Coriolis
parameter vanishes far from the center of the channel, i.e., at
y ≤−2, then the effect of β on the steady state is insignif-
icant. The reason for this is, of course, that at y ≤−2 the
velocity, ug, and with it the Coriolis force (i.e. f ug) are tiny,
according to Fig. 1.

In contrast to the one-dimensional case, in the two-
dimensional case, the effect of β on the geostrophic state
is significant also for b = 0.005 and also in narrow channels
(Ly = 4). The effect originates from the formation of Rossby
waves instead of the steady state and the slow westward
translation of the quasi-geostrophic state by these waves. As
time passes, the dispersion of Rossby waves increases, which
alters the structure of the quasi-geostrophic state, as shown in
Fig. 10. As is evident in Figs. 10 and 11, in wide channels,
the dispersion is more pronounced and causes a latitudinal
tilting of the front that increases with time.

6.2 The effect of β on the waves

For b = 0.005, we found that harmonic waves provide an
accurate approximation for the waves in narrow channels,
while trapped waves provide an accurate approximation in
wide channels, which agrees with the conclusion of Paldor
and Sigalov (2008) and Gildor et al. (2016). Thus, the effect
of β on the spectrum and structure of the waves is signifi-
cant in wide channels, even for small b. However, the defini-
tions of “wide” and “narrow” in this context have to be clar-
ified. The transition from a narrow channel to a wide chan-
nel occurs when the condition (Eq. 24) on Ły is satisfied,
which indicates that the definitions of “narrow” and “wide”
are not absolute but depend on (i) the wave mode, n; (ii) the

value of b; and (iii) the value of Z∗ (the threshold value that
z
(
y =+L2

)
has to exceed for v̂ to satisfy the boundary con-

dition at y = L/2) that should be sufficiently large. The dis-
cussion of Eq. (38) is based on the choice of Z∗ = 2. Thus,
substituting Z∗ = 2, b = 0.005, and ξn = ξ0 = 2.338 implies
that the condition for a channel to be wide is Ly > 20.136
(i.e., about 20 deformation radii or about 600 km for Rd =

30 km). Furthermore, for higher wave modes, the channel has
to be even wider in order to satisfy this condition. These ar-
guments justify our choice of Ly = 4 as an example of a nar-
row channel. On the other hand, Ly = 60 satisfies the condi-
tion (Eq. 24) even for ξn = ξ6 = 10.040, which justifies our
choice of Ly = 60 as an example of a wide channel.

It is worth noting that the satisfaction of the condi-
tion (Eq. 24) guarantees that the trapped-wave theory will
provide an accurate approximation, but the violation of this
condition does not imply that the harmonic-wave theory pro-
vides an accurate approximation. An example in which the
condition (Eq. 24) is not satisfied and neither the harmonic-
wave theory nor the trapped-wave theory provides an ac-
ceptable approximation is shown in the lower-right panel of
Fig. 3, as EOF 4 (solid purple line) does not perfectly match
either the harmonic (dotted purple line) or the Airy eigen-
function (dashed purple line). Nevertheless, it resembles the
Airy eigenfunction better than the harmonic eigenfunction.

To conclude the discussion in this subsection, we note
that our examination of the waves focuses on the meridional
velocity, v, since this variable satisfies the boundary condi-
tions (Eq. 8), so the eigenvalue equation (Eq. 12) is derived
for this variable. Thus, the effect of β on Kelvin waves is ig-
nored here, which is justified by the results reported in Paldor
et al. (2007), who showed that in Kelvin waves the effect of
β is negligible.

6.3 The effect of β on the energy

In the one-dimensional case, Fig. 2 shows that the energy
conversion ratio, γ , varies by no more than 10 % when b
increases from 0 to 1. This near-independence of γ (that
depends only on the initial state, PE0, and the geostrophic
state, KEg and PEg) on β reflects the near-independence of
the steady state on b (see Fig. 1). As discussed in Sect. 6.1,
the effect of β on the steady state is significant only near
the Equator (where b ∝ cos(φ0)/sin2(φ0) is large). As a re-
sult, near the Equator, γ (b) is significantly different from
γ (b = 0), which is the value of γ on the f plane (results
not shown).

In the two-dimensional case, we found that the zonal ki-
netic energy of Rossby waves (on the β plane) is similar to
the zonal kinetic energy of the steady state on the f plane.
This implies that the amount of initial energy that transforms
into energy of the (high-frequency) Poincaré and Kelvin
waves is nearly unaffected by β.

Ocean Sci., 19, 1163–1181, 2023 https://doi.org/10.5194/os-19-1163-2023



I. Yacoby et al.: Geostrophic adjustment on the midlatitude β plane 1179

6.4 Additional initial and boundary conditions

The analysis presented above is limited to two initial height
distributions, given by Eqs. (10) and (11). While the transi-
tion from the trapped-wave theory (in wide channels) to the
harmonic-wave theory (in narrow channels) is probably rel-
evant to all initial conditions, some of the results presented
above are expected to vary with the initial conditions, e.g.,
the distribution of energy between the different wave types
(Rossby, Poincarè, and Kelvin), the structure of the domi-
nant EOFs, and the variance explained by each of them. The
present analysis is also limited to zonal periodic channels,
while other boundary conditions such as the introduction of
meridional walls (i.e., a rectangular basin) require further
analysis. A complete description of the geostrophic adjust-
ment on the β plane has to address the adjustment process un-
der different initial and boundary conditions, and this study
is a first attempt in this direction.

6.5 Ocean response to a sudden wind stress

This study examines the adjustment process of an initially
unbalanced ocean, where the waves are driven by an initial
height disturbance. While progress on extending this particu-
lar problem to the midlatitude β plane has been limited, other
ocean adjustment problems have been extensively studied on
the β plane in recent decades. An example of such an ocean
adjustment problem is the ocean’s response to a wind stress
impulse that generates westward-moving Rossby waves that
cause a thinning of the western boundary layer (see, e.g.,
Anderson and Gill, 1975). The applicability of the trapped-
waves theory to the wind-driven adjustment problem remains
uncertain. Nonetheless, simulations of the forced LRSWEs
with no x variations, i.e., Eqs. (25)–(27) with wind forcing,
suggest that trapped waves are indeed generated in this ad-
justment scenario (results not shown). Furthermore, the slope
in the Rossby wavefront observed in the two-dimensional
wind-driven adjustment problem (see, e.g., Sura et al., 2000)
agrees with the slope shown in Fig. 11, which was attributed
to the dispersion of trapped waves but does not occur in har-
monic waves.

6.6 Nonlinear effects

This study focuses on the linear theory on the β plane. We
note that the nonlinear geostrophic adjustment on the f plane
is similar to the linear adjustment on the β plane in that both
occur in two stages. In the present study, this is demonstrated
in Sect. 5.1. In the nonlinear adjustment on the f plane,
this was pointed out in Gill (1976, Sect. 9), Hermann et al.
(1989), Tomasson and Melville (1992), and Reznik et al.
(2001). In the rapid first stage, the evolution is determined by
the fast Poincaré waves (that exist on both the f plane and
the β plane). The second stage is much slower, and the mech-
anisms that drive it differ between the linear β plane and the

nonlinear f plane. While on the linear β plane this stage is
driven by Rossby waves, in the nonlinear adjustment on the
f plane, this stage is driven by advection of PV. We conclude
by noting that Reznik et al. (2001, Sect. 5) remark (but do not
develop a complete theory) on the nonlinear geostrophic ad-
justment on the β plane. This important issue is left for future
work.

6.7 Applicability of the trapped-wave theory to the
ocean

As with all Sturm–Liouville eigenvalue problems, any par-
ticular solution of the eigenvalue equation (Eq. 12) requires
boundary conditions. Thus, the properties of all wave solu-
tions are determined by the conditions imposed at the bound-
aries. However, geographically, no solid meridional bound-
aries exist at midlatitudes in the Atlantic or Pacific oceans,
which stimulates the question about the applicability of any
wave theory to the real ocean. Despite the lack of actual
meridional boundaries, we estimate that the trapped-wave
theory can be applied to the ocean for the following reasons:

i. Several fundamental models of physical oceanography
assume solid boundaries, e.g., the Stommel and Munk
models of the wind-driven midlatitude gyres (see, e.g.,
Vallis, 2017, Chap. 19). Nonetheless, their applicabil-
ity to the ocean is well established (Gianchandani et al.,
2021). In fact, all wave theories have to assume either
the existence of boundaries or an infinite domain (i.e.,
Ly→∞). Clearly, the second assumption violates the
basic β plane assumption by� 1 (or βy� f0 in a di-
mensional form).

ii. There exist cases in which the velocity field is assumed
to be dynamically confined to a specific region, despite
the absence of physical bounding walls. An example in
which the existence of such a region has to be assumed
is the equatorial zone. Indeed, this assumption provides
the justification for the Matsuno (1966) model of equa-
torial waves, where it is assumed that the meridional
velocity vanishes at infinity, while the meridional do-
main is small enough for the first-order expansion of
the β plane approximation to be valid.

iii. The amplitude of trapped waves decays toward the pole
faster than the exponential. Therefore, the trapped-wave
theory requires only a single wall that marks the equa-
torward boundary of the domain, where the meridional
velocity has to vanish. This is in contrast with the har-
monic theory that requires two such walls instead of
one. While zonal channels do not exist in the midlat-
itude oceans, a single zonal wall does exist in some
particular places. Such a region, in which the trapped-
wave theory has been successfully applied, is the In-
dian Ocean to the south of Australia. This region is suf-
ficiently wide (in the zonal direction) and is bounded
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on its equatorward side by a nearly zonal coast. In-
deed, trapped Rossby waves were observed in the In-
dian Ocean by satellite-borne altimeters (De-Leon and
Paldor, 2017).

iv. Though zonal channels are scarce in the current midlat-
itude oceans, they may have been more abundant in past
geologic periods, e.g., the early Paleogene (∼ 60 million
years ago (Ma); see Fig. 1 in Farouk et al., 2014) and
the Early Cretaceous (the Barremian age,∼ 120 Ma; see
Fig. S5q in Farnsworth et al., 2019), so the trapped-
wave theory may be relevant to paleo-ocean dynamics.
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