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Abstract. The tail behaviour of the statistical distribution of
extreme storm surges is conveniently described by a return
level plot, consisting of water level (y axis) against average
recurrence interval on a logarithmic scale (x axis). An aver-
age recurrence interval is often referred to as a “return pe-
riod”.

Hunter’s allowance for sea-level rise gives a suggested
amount by which to raise coastal defences in order to main-
tain the current level of flood risk, given an uncertain pro-
jection of future mean sea-level rise. The allowance is most
readily evaluated by assuming that sea-level annual maxima
follow a Gumbel distribution, and the evaluation is awkward
if we use a generalized extreme value (GEV) fit. When we
use a Gumbel fit, we are effectively assuming that the return
level plot is a straight line. In other words, the shape param-
eter, which describes the curvature of the return level plot, is
ZEero.

On the other hand, coastal asset managers may need an
estimate of the return period of unprecedented events even
under current mean sea levels. For this purpose, curvature of
the return level plot is usually accommodated by allowing
a non-zero shape parameter whilst extrapolating the return
level plot beyond the observations, using some kind of fit to
observed extreme values (for example, a GEV fit to annual
maxima).

This might seem like a conflict: which approach is “cor-
rect”?

Here I present evidence that the shape parameter varies
around the coast of the UK and is consequently not zero.

Despite this, I argue that there is no conflict: a suitably
constrained non-zero-shape fit is appropriate for extrapola-
tion and a Gumbel fit is appropriate for evaluation of Hunter’s
allowance.
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1 Introduction

Estimation of the average recurrence interval of unprece-
dented coastal sea-level events (i.e. events with magnitude
even larger than those in the tide gauge record) usually in-
volves a characterization of the return level plot, which is a
plot of water level (y axis) against average recurrence inter-
val on a logarithmic scale (x axis).

This is typically done by fitting a theoretical distribution
to observed extreme values. This could mean, for example,
fitting a generalized extreme value distribution to the annual
maxima, or fitting a Generalized Pareto distribution (GPD)
to all peaks over a chosen threshold. The general form of the
resulting return level curve is described by the generalized
extreme value (GEV) distribution (e.g. Coles, 2001), which
has three parameters: location, scale, and shape (u, A, and &
respectively).

Loosely speaking, the location, scale, and shape can be
thought of as the intercept, gradient, and curvature of the re-
turn level plot (see Howard and Williams, 2021a). This tech-
nical note is concerned primarily with the shape parameter,
which, to reiterate, can be thought of as a measure of the cur-
vature of the return level plot.

Estimating the average recurrence interval of unprece-
dented events involves, in effect, extrapolating the return
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level plot beyond the domain of the observations. For this
purpose, there are advantages in terms of simplicity and
tractability if we fix the shape parameter at zero, giving
the Gumbel distribution and a straight-line return level plot.
Coles (2001) and Dixon et al. (1998) counsel against this be-
cause the estimated extrapolations, and corresponding uncer-
tainties, are sensitive to the shape parameter (as illustrated by
Howard and Williams, 2021a, henceforth HW21, their Ap-
pendix C), and fixing it somewhat arbitrarily at zero can re-
sult in substantially underestimated uncertainties. Fixing the
shape parameter affects not only the uncertainties, but also
the central estimate of the extrapolation (Wahl et al., 2017;
see also Sect. 3.1 below).

Martins and Stedinger (2000) note that small-sample
maximum-likelihood estimators of the GEV parameters are
unstable and recommend use of a Bayesian prior distribution
to constrain the shape parameter. From that perspective, the
use of the Gumbel distribution could be seen as an overly
tight constraint on the shape parameter.

On the other hand, Hunter (2012) proposed a simple al-
lowance for uncertain projected future mean sea-level rise.
The method involves treating the expected number of ex-
ceedances of a given (high, rare) water level as a cost func-
tion. Weighting the sea-level rise projections by this cost
function suggests an amount by which to raise coastal de-
fences in order to maintain the current expected costs at some
time in the future. Evaluation of Hunter’s allowance (Hunter,
2012) in its usual form is simplified by the use of a Gumbel
fit, and Woodworth et al. (2021) present evidence in favour
of that fit. Furthermore, Van den Brink and K&énnen (2011)
also present arguments and evidence in favour of the Gum-
bel fit, for extreme sea-level data from tide gauges on the
Dutch coast.

So, on one hand we have authors arguing in favour of ac-
commodating curvature in the return level plot in order to ex-
trapolate to unprecedented events, and on the other hand we
have authors arguing in favour of assuming a straight line in
order to simplify the calculation of a sea-level rise allowance.
In this note I suggest that these two approaches are compati-
ble.

Skew surge (de Vries et al., 1995) is the difference be-
tween the elevation of the predicted astronomical high tide
and the nearest (in time) experienced high water. “Experi-
enced high water” here refers to either observed or modelled
high water. This short article presents evidence of variations
in the GEV shape parameter of skew surge around the coast
of the UK.

I note that, in view of this variation, it is generally inap-
propriate to assume a shape parameter of zero for extrapo-
lation of the return level curve (although, for short record
lengths, the shape parameter should be appropriately con-
strained). However, I show that a Gumbel fit is suitable for
the evaluation of Hunter’s allowance.
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2 Introduction to the experiments

This article describes some experiments pertaining to geo-
graphical variations in & which we found whilst preparing
HW?21. Two of the experiments were documented in HW21
and are only summarized here. The others are new and are
described in detail.

2.1 Agreement in & from different sources

I believe that the most persuasive evidence we found of ge-
ographical variations in & is the discovery that the pattern of
& diagnosed from a simulation correlates strongly with the
pattern diagnosed in the most recent UK government guid-
ance, contained in Coastal Flood Boundary Conditions for
the UK: update 2018 (Environment Agency, 2018, hence-
forth CFB2018) from tide gauge data, around the UK coast.
Both simulation and tide gauges suggest a large-scale pat-
tern of shape parameter variation including two peaks in the
south-west and the south-east with generally slightly lower
values on the south coast, and a substantial trough in values
around the northern coasts of the mainland (i.e. most of the
coast of Scotland). Substantial small-scale variations are su-
perimposed on this large-scale pattern. HW?21 (their Figs. 2d
and Al) shows this pattern and the tide gauge locations.
Here, a scatter plot (Fig. 1) further illustrates the agreement
between these two sources. The shape parameters diagnosed
from the simulation (y axis) have a negative mean and are
generally more negative than those derived from tide-gauge
observations (x axis), which have a positive mean. This is
discussed further in HW21.

The simulation takes atmospheric data from a free-running
484-year climate model control run which does not assimi-
late any observed data, meaning that the two patterns come
from two independent data sources, and yet they correlate
well. This suggests that the correlation arises due to factors
which are common to both sources: essentially the physics
of the atmosphere and ocean (e.g. Pugh and Woodworth,
2014) (for example the surface momentum transfer and the
bathymetry of the shelf sea) which are present in reality and
represented in a numerical form in the simulation.

However, £ is not the only parameter to exhibit this spa-
tial correlation between observed and modelled values. Both
w and A (location and scale parameters) exhibit spatial cor-
relation. When we fit the GEV model to data, we typically
find that uncertainties in A and & show significant negative
correlation: an underestimate in A can be compensated by an
overestimate in £ (Simon Brown, personal communication,
2021%). This raises the question of whether the spatial corre-
lation between modelled and observed & could be an artefact

IThis is readily confirmed by generating random Gumbel-
distributed samples of record length around, say, 30 (comparable
to typical record lengths at UK tide gauge sites), and fitting them by
MLE with a GEV fit. In almost all cases the A, & covariance will be
found to be negative.
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Figure 1. Illustrating correlation between shape parameter of skew surge as diagnosed by CFB2018 from tide-gauge data (x axis) and by
HW?21 from a simulation (y axis), for 44 sites on the UK coast. Pearson’s R coefficient is 0.86. Sites which almost overlap on the plot are
identified by coloured symbols; other sites are identified by letters. Sites are listed in UK coastal chainage order in the key. Chainage runs

clockwise around the UK mainland coast.

caused by spatial correlation between modelled and observed
A somehow “printing through” to create an apparent corre-
lation between modelled and observed &. To control for this
possibility I performed two experiments, which are described
in Sect. 2.2.

2.2 Break correlation

To control for the possibility of the A—& compensation “print-
ing through” into an apparent &(model, tide-gauge) spatial
correlation via the A(model, tide-gauge) spatial correlation
and the fitting process, I performed two tests intended to
break the &(model, tide-gauge) spatial correlation. In both
tests I left the tide-gauge & data unchanged. In both cases
the results (described below) indicate that the &(model, tide-
gauge) spatial correlation is not caused by A—§ compensa-
tion.

2.2.1 First test

For the model data, at each site, instead of fitting GEV to
the annual maxima, I fitted Gumbel to give (u,A). Using
(w, 1), I produced random Gumbel “annual maxima” for that
site. I then proceeded as before (i.e. fitted a GEV distribu-
tion to that random data). If, having done this for all sites,
significant &(random, tide-gauge) spatial correlation is still
seen, it could be that the £(model, tide-gauge) spatial corre-
lation is an artefact of A—£ compensation. No such significant
& (random, tide-gauge) spatial correlation was found.

2.2.2 Second test

This test is similar to the first test, but instead of generating
random Gumbel data, I generated random GEV data, with
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spatially shuffled shape parameters. For the model data, at
each site, I fitted GEV to the annual maxima to give (i, A, ).
For each site, I used the (i, A) of that site, but £ chosen at
random from any site. Using (u, A, &), I produced random
GEV “annual maxima” for that site. I then proceeded as in
the first test (i.e. fitted a GEV distribution to that random
data). As in the first test, no significant & (random, tide-gauge)
spatial correlation was found.

2.3 Woodworth et al. (2021) plot applied to model
annual maxima

Woodworth et al. (2021) calculate Gumbel scale parameters
A for the world coastline, in order to evaluate Hunter’s al-
lowance (Hunter, 2012). The Gumbel fit is an obvious choice
for this purpose: Hunter’s allowance reduces the number
of variables in sea-level rise projections, and although the
method can be extended to accommodate the GEV, this is at
the cost of reintroducing a variable (the allowance then de-
pends on the return level of interest). Howard and Palmer
(2020) demonstrate that Hunter’s allowance calculations for
the UK are not particularly sensitive to curvature of the re-
turn level curve, and thus a Gumbel fit is satisfactory for this
purpose (see Sect. 3).

Woodworth et al. (2021) use a simple test of the suitability
of the Gumbel fit. They use the fact that, for the Gumbel
distribution, the scale parameter A is related to the standard
deviation by A = o'+/6r where o is the standard deviation of
the annual maxima. Thus, they use a plot of A (by maximum-
likelihood Gumbel fit to the annual maxima) against o /67
(where o is the sample standard deviation) as a goodness-of-
fit test.

Ocean Sci., 18, 905-913, 2022
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I followed the approach of Woodworth et al. (2021) using
simulated skew surges from the long control run described in
HW?21. Results are shown in panel (a) of Fig. 2. A estimated
from the standard deviation is within the uncertainty of the
fitted estimate at most sites, but there is a consistent bias
in panel (a) which is absent in the control panel (b), where
Gumbel-distributed random data have been used in place of
the simulated skew surge data. To quantify this bias, I eval-
uated the RMS difference across sites between “A from fit”
and o+/67. To quantify the significance of this bias, I made
multiple versions of panel (b) (i.e. multiple random samples
using a true Gumbel distribution) and evaluated the RMS
difference across sites for each version, to give a distribu-
tion of RMS difference. The RMS difference based on the
real data is more than 6 standard deviations away from the
mean of this random distribution, showing the statistical sig-
nificance of the bias and re-emphasizing that the simulated
annual maxima are not Gumbel-distributed (for further de-
tails see Appendix A).

2.4 Tests following Van den Brink and Kénnen (2008)

Van den Brink and Kénnen (2008) (henceforth VABKO08) de-
vised a sophisticated goodness-of-fit test that emphasizes the
quality of fit at the most extreme value (the “outlier””) from
each site. They developed what might be called a “standard-
ized” quantile—quantile (Q—Q) plot> showing the outlier at
each site, where “standardized” refers to removing the effects
of different GEV parameters and record lengths at different
sites. The approach is described rigorously in VdBKO08. For
ease of reference, a brief informal expression of an exactly
equivalent procedure follows.
Consider the following concept.

— If the cumulative distribution function (CDF) of a ran-
dom variate R is known, then a sample R;,i =1...n
of n values from that distribution can be transformed
to a sample U;,i = 1...n whose expected distribution
is standard-uniform (i.e. uniform between O and 1).
This is sometimes referred to as the probability integral
transform (PIT; see for example Folland and Anderson,
2002). If the inverse CDF is known, the PIT can also
be used to generate a non-uniformly distributed sam-
ple such as R;,i = 1...n from a standard-uniformly dis-
tributed sample such as U;,i = 1.. .n.

We use this concept in the following procedure.

Step 1 Suppose that a sample Y;,i = 1...n of n annual max-
ima from a given site is assumed to be drawn from a
generalized extreme value (GEV) distribution.

2A quantile—quantile plot (sometimes “quantile plot”, e.g. Coles,
2001) typically compares the quantiles (water levels) from two dif-
ferent sources, for example observations on one axis and a statistical
model on the other axis.
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Step 2 If the parameters of the GEV are known, we can
transform this sample using the PIT to a sample U;,i =
1...n whose expected distribution is standard-uniform.
This transformation depends on the parameters.

Step 3 The “outlier” of this transformed sample, M =
max(U;,i = 1...n), has its own distribution: Pr(M <
x) = x" (note that this depends on n).

Step 4 Since its CDF is known, a sample M;, j =1...m of
outliers from m different sites can also be transformed
to a standard-uniform distribution, U, j = 1...m, using
the PIT (n need not be the same at every site).

(Reminder: n is the number of annual maxima at a given
site. m is the number of sites considered.) We can plot the
sorted sample Uj, j = 1...m against its expected (i.e. uni-
formly distributed) values. Departures from this expectation
will arise due to sampling uncertainty, resulting in departures
from the idealized straight line of gradient one and intercept
Zero.

VdBKO8 apply this procedure to a situation where the
GEV parameters at each site are not known, but rather es-
timated by fitting a GEV (or Gumbel) to the sample Y;,i =
1...n at that site. Now departures from the idealized line
will arise not only from sampling uncertainty, but also from
poor fitting. Thus the departure from the idealized line be-
comes a measure of goodness-of-fit, with the emphasis on
quality of fit at the outlier at each site. This plot can be
thought of as a “standardized” probability-probability (P—P)
plot?, where “standardized” refers to removing the effects
of different GEV parameters and record lengths at differ-
ent sites. VABKO8 perform one further transformation. In-
stead of the plot described above, they take —log(—1log(.))
of both axes. This emphasizes the departures at the high-end
extremes of the plot, making their plot more like a “stan-
dardized” Q-Q plot, where again “standardized” refers to re-
moving the effects of different GEV parameters and record
lengths at different sites. It is also known as a Gumbel plot,
—log(—1log(.)) being the inverse CDF of the Gumbel distri-
bution. For further details see VdBKO8S.

VdBKOS8 show that when unconstrained GEV is fitted
to synthetic Gumbel-distributed maxima, the additional free
parameter results in over-fitting; the variability in U;, j =
1...m is seen to be too small.

Among other applications, Van den Brink and Konnen
(2011) used the procedure specifically to help choose be-
tween GEV-fitting and Gumbel-fitting the distributions of
simulated and observed annual maximum sea level at 19 sites
on the Dutch coast. They fixed the shape parameter and found
an optimum value of —0.005. They prefer Gumbel-fitting to

3A probability—probability plot (sometimes “probability plot”,
e.g. Coles, 2001) typically compares the probability of an event as
estimated from two different sources, for example estimated empir-
ically from observations on one axis and estimated from a statistical
model on the other axis.
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Figure 2. (a) Following Woodworth et al. (2021), we compare A diagnosed from a Gumbel fit to 484 years of simulated annual maxima
(x axis) with o6 /7, where o is the standard deviation of the 484 annual maxima, for UK coastal sites. The two should be the same in the
case of the annual maxima conforming to a Gumbel distribution. The horizontal error bars represent 95 % uncertainty in the fitted A. The red
line represents a ratio of 1. Each point represents the site of a tide gauge on the coast of the UK. (b) As (a), but instead of simulated annual
maxima, at each site we use 484 random variates drawn from the Gumbel distribution, using the A for that site determined by the fit in (a).

unconstrained GEV-fitting for this application, arguing that
the uncertainties in extrapolation are smaller.

I followed the procedure described to make both types of
plot (P-P and Q-Q) for two different sets of annual maxi-
mum skew surge at sites of UK tide gauges. The two differ-
ent sets are tide gauge observations and data from the numer-
ical simulation as used in Sect. 1 (for details see Howard and
Williams, 2021a). The resulting plots are shown in Fig. 3.

As in VABKOS (their Fig. 3), each plot shows a compar-
ison of two different types of fitting. The top panels com-
pare unconstrained GEV fits (blue circles) to simulated an-
nual maxima with Gumbel fits (orange crosses) to the same
annual maxima. These results suggest that allowing for some
variation in the shape parameter is preferable to Gumbel fit-
ting, presumably because Gumbel fitting represents too tight
a constraint on the shape, for these data.

In the bottom panels, the sophisticated constrained gener-
alized Pareto distribution (GPD) fit to peaks over a thresh-
old (POT) as used in the CFB2018 guidance (Environment
Agency, 2018) was applied to observed skew surge extremes,
and the blue circles relate to that fit. The orange crosses again
relate to simple Gumbel fits to annual maxima. This is a less
fair comparison than that shown in the top panels, because
the constrained GPD fit to POT takes advantage of more data.
Nevertheless, the constrained GPD fit allows for a non-zero
shape parameter whereas the Gumbel fit does not, and again
we do not see any clear support for preferring the Gumbel fit.

One possible criticism of this test is that the data are not
independent, since a surge event will typically affect several
sites. A crude fix is to miss out closely neighbouring tide
gauges, and to use results from every second tide gauge, ev-
ery third tide gauge, etc. The results of doing so are shown in
the Howard and Williams (2021a) review material available
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online (Howard and Williams, 2021b). Again, these results
do not provide any clear support for preferring the Gumbel
fit.

3 Discussion

All of the above experiments illustrate that the shape param-
eter of sea-level annual maxima around the UK is not, in gen-
eral, zero, as has been widely recognized (e.g. Marcos and
Woodworth, 2017; Wahl et al., 2017; Environment Agency,
2018). Thus it is appropriate to use a (suitably constrained) fit
accommodating non-zero shape for the purpose of quantify-
ing the return level curve and extrapolating to quantify levels
(and uncertainties) of unprecedented events at these sites.

However, Howard and Palmer (2020) (working with still
water level rather than skew surge) have shown that curva-
ture in the return level plot gives variations of less than 5 cm
(absolute, and less than 6 % relative) in Hunter’s allowance
for UK coastal sites based on RCP8.5 for 2100, and this
contribution to uncertainty in the allowance is less impor-
tant than the contribution from the uncertainty in the present-
day return level curves (see Fig. 4 here, and Howard and
Palmer, 2020, their Sect. 5.3). Thus, it is reasonable to use
the Gumbel distribution for a simple evaluation of Hunter’s
allowance, at least for sites on the UK coast. Note, however,
that curvature in the return level plot implies that an appro-
priate allowance may be dependent on the return period of
interest (Buchanan et al., 2017).

3.1 Extrapolation

Here are some simplified examples illustrating the effect
of constraint when extrapolating the return level curve be-

Ocean Sci., 18, 905-913, 2022
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Figure 3. Panels (a) and (c) show P-P plots as described above, and (b) and (d) show plots following VdBKO8, for skew surge at 44 sites
of UK tide gauges (one plotted point per gauge). Orange cross symbols relate to a Gumbel fit to annual maxima. Blue circles relate to
unconstrained GEV fits to annual maxima (simulation, a, b) and constrained GPD fits to peaks over a threshold following the CFB2018
guidance (Environment Agency, 2018) method (observations, ¢, d). Each point represents an outlier (the largest annual maximum in the
record) at a gauge. The y axis of the Q-Q plot is labelled AX,, for consistency with VdBKO0S.

yond the observational record. I compare three different para-
metric fits to observed annual maximum skew surge at UK
coastal sites:

1. GEV fit unconstrained

2. GEV fit constrained to give a range of shape parameters

comparable to CFB2018.
3. Gumbel fit.

Maximum likelihood estimation (MLE) is used in all cases
(generalized MLE (Martins and Stedinger, 2000) for case 2).
CFB2018 used a normal prior on the shape with mean 0.0119
and standard deviation 0.0343. Applying this to only the an-
nual maxima gives a much smaller range of shapes than that
found by CFB2018. This is because the annual maxima rep-
resent a smaller data set than the peaks over threshold used by
CFB2018, and this smaller quantity of data allows the prior to
dominate. To compensate for this, I increased the width of the
prior until I produced a similar range of shapes to CFB2018.

Ocean Sci., 18, 905-913, 2022

My prior has mean 0.0119 and standard deviation 0.062. Us-
ing only the annual maxima is not to be recommended in
general, because better results can be obtained using more
data (for example N-largest or peaks-over-threshold). Nev-
ertheless, I take the constrained GEV fit to be “truth” for the
purpose of this illustration and identify anomalies relative to
that. Anomalies are shown in Fig. 5.

This figure shows that, even though we believe that the
data represent distributions with non-zero shape parameters,
the likely inaccuracies associated with unconstrained shape
parameters are more serious than the likely inaccuracies as-
sociated with the over-constraint of insisting the shape pa-
rameters be zero (Gumbel fitting). In other words, we see the
importance of choosing an appropriate prior constraint on the
shape parameter, for typical real-world record lengths.

The most serious anomaly in the unconstrained GEV fit is
at Hinkley Point in the Bristol Channel, where only 26 skew
surge annual maxima from the tide-gauge record are included
in the fit. The difficulty with this site was noted and discussed

https://doi.org/10.5194/0s-18-905-2022
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Figure 4. Following Howard and Palmer (2020), we show the sensitivity (black filled bars) of Hunter’s allowance to curvature of the return
level plot of still water level (in other words, sensitivity to the departure of the still water extremes from a Gumbel distribution) for 44 sites on
the UK coast. Also shown for comparison is the sensitivity to uncertainty in the return level curve. For full details of the method see Howard
and Palmer (2020). Sites are ordered by curvature sensitivity (not geographical location).
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Figure 5. Anomalies in the 10 000-year return level of skew surge as
estimated from annual maxima at 44 UK coastal sites by maximum
likelihood estimation using a Gumbel fit (left) and an unconstrained
GEV fit (right). Anomalies are relative to a constrained GEV esti-
mate (see main text). The bar shown in pink (Hinkley Point) exceeds
the limits of the plot.

by Batstone et al. (2013). Figure 6 illustrates the three differ-
ent fitted return level curves at that site. Also shown is an
example site (Bournemouth, 18 annual maxima), where the
unconstrained shape parameter is negative.

We have seen in previous sections that the shape param-
eter of UK skew surges varies spatially and, consistent with
this, we have some confirmation (in Sect. 2.4) that an appro-
priately constrained GEV fit is preferable to a Gumbel fit for
UK skew surges. Figures 3, 5, and 6 all show that the Gumbel

https://doi.org/10.5194/0s-18-905-2022

fit is at odds with an appropriately constrained GEV fit, but
on the other hand, Figs. 5 and 6 show that the Gumbel fit is
much safer than an unconstrained GEV fit to short records.

4 Conclusions

In summary, at least for sites on the UK coast, a non-zero
shape parameter should be accommodated at the fitting stage
for the purpose of extrapolating the storm surge return level
curve. However, fitting with an unconstrained shape param-
eter to short records is not advisable, as it is liable to give
larger errors than the over-constraint inherent in a Gumbel
fit.

Also, it is reasonable to use a Gumbel fit for evaluation of
Hunter’s allowance.

Appendix A: Statistical test associated with figure 2

Let m be the number of sites considered.

Let {Yy,Y5,...Y;,...Y,} be the annual maximum skew
surges over n years at a given site. In the context of Fig. 2
we are considering annual maxima simulated by our numer-
ical model of the shelf sea, and n = 484.

Let A ; be the scale parameter diagnosed by a Gumbel fit to
the n annual maxima at site j, let o; be the standard deviation
of the n annual maxima at site j, and let

Ocean Sci., 18, 905-913, 2022
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Figure 6. Illustrating a well-known issue with unconstrained GEV fit by MLE to annual maxima from a short record. The three different fits

are described in the main text.

This is the departure of a point in Fig. 2a from the line x = y.
Then our test metric (call it Ty) is the root-mean-square value
of {di,da, .. d;,...dy}:

Ty=\/d_,2~,

where the overbar indicates a mean over j=1,2,...m
sites. This test metric is a single value. To test the sta-
tistical significance of the value of Ty that we find when
{Y1,Y2,...Y;,...Y,} are the annual maximum skew surges
simulated by our numerical model of the shelf sea, we
repeat the test, replacing {Y1,Y>,...Y;,...Y,} at each site
j by {G1,G2,...Gji,...G,} where {G1,Ga,...G,...G,}
is a random sample drawn from a Gumbel distribution
whose scale parameter® is A j- We do this many times
(say N =256 times) to create a 256-element distribution
of values {7.1,76,2, ... TGk, --.TG,n}, each being a value
of Tg that we find when {G{, G2,...G;,...G,} are “eas-
ily made pseudo-extremes” from a Gumbel distribution,
instead of “hard-won” simulated annual maxima of un-
known distribution like {Y1, Y>,...Y;,...Y,;}. The variation
in {T6,1. 76,2, ...TG k. ...TG,n} arises due to sampling un-
certainties.

When we compare 7y with the distribution
{Tg1,762,..-Tgk,---Tg.n}, we find that Ty de-
parts from the mean of {7.1,762,..--Tk,---TG.N}
by more than 6 times the standard deviation of
{Tg1,7162,..- TGk, ---Tg,n}, implying that this depar-
ture is not simply an artefact of sampling but arises from the

4We could also employ the corresponding location parameter,
but there is no need because this only introduces an offset. We sim-
ply set the location parameter to zero. Incidentally, we can generate
this random sample from a uniformly distributed random sample
using the probability integral transform, among other possible ap-
proaches.
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fact that the {7, Y»,...Y;,...Y,} are not Gumbel-distributed.
This large departure (more than 6 standard deviations) might
seem surprising given that Fig. 2a shows that most points
are within the 95 % (approximately 2 standard deviations)
uncertainty range of the x = y line. The large departure is
associated with the fact that the shape parameters of the
{Y1,Y2,...Y;,...Y,} are predominantly negative. We can
see this expressed in Fig. 2a, where almost all of the scatter
points lie to the right of the line x = y, whereas in panel (b)
(which is one of the 256 examples of what happens when we
replace Y; by G;) the scatter points lie on either side of the
line.

It would be interesting to apply a similar statistical test to
the scatter of points in Fig. S1 of the Supplement to Wood-
worth et al. (2021). Assuming that, as found by Wabhl et al.
(2017), the shape parameters are predominantly negative,
one might expect to see the test statistic Ty similarly outside
the distribution TG,k =1,2,...N, although the shortness
of the tide-gauge records might reduce the statistical signifi-
cance. The bias, d_j, is another alternative test statistic.

Data availability. This note contains Environment Agency infor-
mation © Environment Agency and database right. The Environ-
ment Agency CFB2018 technical report is available to download
from https://environment.data.gov.uk (Environment Agency, 2018).

All data used in the figures here are available in the Supplement.
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line at: https://doi.org/10.5194/0s-18-905-2022-supplement.
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